TLV172 [TI]

适用于成本敏感型应用的单路、36V、10MHz、低功耗运算放大器;
TLV172
型号: TLV172
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于成本敏感型应用的单路、36V、10MHz、低功耗运算放大器

放大器 运算放大器
文件: 总45页 (文件大小:2444K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV172, TLV2172, TLV4172  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
适用于成本敏感型系统的 TLVx172 36V 单电源、低功耗  
运算放大器  
1 特性  
大多数运算放大器仅有一个额定电源电压,而  
1
TLVx172器件的额定电压范围为 4.5V 36V。超过电  
源轨的输入信号不会导致相位反转。TLVx172器件可  
在容性负载高达 300pF 时保持稳定。输入可在负电源  
轨以下 100mV 以及正电源轨 2V 之内正常运行。请注  
意,此系列器件可在超出正电源轨 100mV 的完整轨至  
轨输入范围内运行,但是在正电源轨 2V 之内运行时,  
性能会受到影响。  
电源电压范围:4.5V 36V±2.25V ±18V  
低噪声:9 nV/Hz  
低温漂:±1μV/°C(典型值)  
抗电磁干扰 (EMI)  
输入范围包括负电源  
轨到轨输出  
增益带宽:10MHz  
转换速率:10V/μs  
TLVx172运算放大器的额定工作温度范围为 –40°C 至  
+125°C。  
低静态电流:每个放大器 1.6mA  
高共模抑制:116dB(典型值)  
低输入偏压电流:10pA  
器件信息(1)  
封装  
器件型号  
封装尺寸(标称值)  
4.90mm × 3.91mm  
2.00mm × 1.25mm  
2.90mm × 1.60mm  
4.90mm × 3.91mm  
3.00mm × 3.00mm  
8.65mm × 3.91mm  
5.00mm × 4.40mm  
SOIC (8)  
2 应用  
TLV172  
SC70 (5)  
SOT-23 (5)  
SOIC (8)  
薄膜晶体管 (TFT) - 液晶显示屏 (LCD) 驱动电路  
触摸屏显示屏  
无线 LAN  
TLV2172  
TLV4172  
VSSOP (8)  
SOIC (14)  
便携式仪表  
TSSOP (14)  
模数转换器 (ADC) 缓冲器  
有源滤波器  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
线路驱动器或线路接收器  
超声波  
简化原理图  
点钞机  
VCC  
VCC  
VEE  
变频器放大器  
R1  
3.9 k  
R2  
3.9 kΩ  
VEE  
V1  
15 V  
V2  
15 V  
3 说明  
VOUT  
TLVx172 系列 36V 单电源、低噪声抗电磁干扰 (EMI)  
运算放大器在 1kHz 频率下 具有 0.0002% 的  
THD+N,能够在 4.5V (±2.25V) 36V (±18V) 的电源  
电压范围内正常工作。这些 特性和低噪声、高 PSRR  
特性,使TLVx172能够 在 HEV EV 汽车及动力传动  
系统、医疗仪器等应用中放大毫伏级信号。TLVx172  
器件具有良好的失调电压和温漂、10MHz 高带宽和  
10V/µs 压摆率,且在工作温度范围内的静态电流仅有  
2.3mA(最大值)  
+
+
R3  
LSK489  
VCC  
1.13 kΩ  
Q1  
Q2  
VCC  
R4  
11.5 Ω  
R6  
27.4 kΩ  
Q3  
MMBT4401  
Q4  
MMBT4401  
R5  
300 Ω  
VEE  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS784  
 
 
 
 
 
TLV172, TLV2172, TLV4172  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 19  
Application and Implementation ........................ 20  
9.1 Application Information............................................ 20  
9.2 Typical Application .................................................. 20  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings.............................................................. 7  
7.3 Recommended Operating Conditions....................... 7  
7.4 Thermal Information: TLV172 ................................... 8  
7.5 Thermal Information: TLV2172 ................................. 8  
7.6 Thermal Information: TLV4172 ................................. 8  
7.7 Electrical Characteristics........................................... 9  
7.8 Typical Characteristics............................................ 10  
Detailed Description ............................................ 15  
8.1 Overview ................................................................. 15  
8.2 Functional Block Diagram ...................................... 15  
8.3 Feature Description................................................. 16  
9
10 Power Supply Recommendations ..................... 22  
11 Layout................................................................... 22  
11.1 Layout Guidelines ................................................. 22  
11.2 Layout Example .................................................... 23  
12 器件和文档支持 ..................................................... 24  
12.1 器件支持................................................................ 24  
12.2 文档支持................................................................ 24  
12.3 相关链接................................................................ 25  
12.4 接收文档更新通知 ................................................. 25  
12.5 社区资源................................................................ 25  
12.6 ....................................................................... 25  
12.7 静电放电警告......................................................... 25  
12.8 术语表 ................................................................... 25  
13 机械、封装和可订购信息....................................... 25  
8
4 修订历史记录  
Changes from Revision B (September 2018) to Revision C  
Page  
将数据表标题从“TLV2172 36V、单电源、低功耗...” 更改成了“TLVx172 36V、单电源、低功耗.......................................... 1  
Changes from Revision A (May 2018) to Revision B  
Page  
Deleted the Device Family Comparison table ........................................................................................................................ 3  
Added the 5-pin SC70 and SOT-23, and the 8-pin SOIC pinout diagrams to the data sheet ............................................... 4  
Added TLV172 Pin Functions table to the data sheet............................................................................................................ 4  
Added 14-pin SOIC and TSSOP pinout diagram to the data sheet ...................................................................................... 6  
Changes from Original (November 2016) to Revision A  
Page  
Updated supply voltage values in Absolute Maximum Ratings table..................................................................................... 7  
2
Copyright © 2016–2019, Texas Instruments Incorporated  
 
TLV172, TLV2172, TLV4172  
www.ti.com.cn  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
5 Device Comparison Table  
DEVICE  
PACKAGE  
TLV172 (single)  
TLV2172 (dual)  
TLV4172 (quad)  
SC70-5, SOT-23-5, SOIC-8  
SOIC-8, VSSOP-8  
SOIC-14, TSSOP-14  
Copyright © 2016–2019, Texas Instruments Incorporated  
3
TLV172, TLV2172, TLV4172  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
www.ti.com.cn  
6 Pin Configuration and Functions  
TLV172 DCK Package  
5-Pin SC70  
TLV172 DBV Package  
5-Pin SOT-23  
Top View  
Top View  
+IN  
Vœ  
1
2
3
5
V+  
OUT  
Vœ  
1
2
3
5
V+  
+
œ
œIN  
4
OUT  
+IN  
4
œIN  
Not to scale  
Not to scale  
TLV172 D Package  
8-Pin SOIC  
Top View  
NC  
1
2
3
4
8
7
6
5
NC  
V+  
œIN  
+IN  
Vœ  
œ
OUT  
NC  
+
Not to scale  
NC- no internal connection  
Pin Functions: TLV172  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN  
SC70  
SOT-23  
SOIC  
3
1
4
3
2
I
Negative (inverting) input  
+IN  
NC  
OUT  
V–  
3
I
Positive (noninverting) input  
4
1
1, 5, 8  
O
No internal connection (can be left floating)  
Output  
6
4
7
2
2
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
5
5
4
Copyright © 2016–2019, Texas Instruments Incorporated  
TLV172, TLV2172, TLV4172  
www.ti.com.cn  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
TLV2172 D and DGK Packages  
8-Pin SOIC and VSSOP  
Top View  
OUT A  
œIN A  
+IN A  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT B  
œIN B  
+IN B  
Not to scale  
Pin Functions: TLV2172  
PIN  
I/O  
DESCRIPTION  
SOIC  
(D)  
VSSOP  
(DGK)  
NAME  
–IN A  
–IN B  
+IN A  
+IN B  
OUT A  
OUT B  
V–  
2
6
3
5
1
7
4
8
2
6
3
5
1
7
4
8
I
I
Inverting input, channel A  
Inverting input, channel B  
Noninverting input, channel A  
Noninverting input, channel B  
Output, channel A  
I
I
O
O
Output, channel B  
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
Copyright © 2016–2019, Texas Instruments Incorporated  
5
TLV172, TLV2172, TLV4172  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
www.ti.com.cn  
TLV4172 D and PW Packages  
14-Pin SOIC and TSSOP  
Top View  
OUT A  
œIN A  
+IN A  
V+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
œIN D  
+IN D  
Vœ  
+IN B  
œIN B  
OUT B  
+IN C  
œIN C  
OUT C  
8
Not to scale  
Pin Functions: TLV4172  
PIN  
I/O  
DESCRIPTION  
SOIC  
(D)  
TSSOP  
(PW)  
NAME  
–IN A  
2
6
2
6
I
I
Inverting input, channel A  
–IN B  
–IN C  
–IN D  
+IN A  
+IN B  
+IN C  
+IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V–  
Inverting input, channel B  
Inverting input, channel C  
Inverting input, channel D  
Noninverting input, channel A  
Noninverting input, channel B  
Noninverting input, channel C  
Noninverting input, channel D  
Output, channel A  
9
9
I
13  
3
13  
3
I
I
5
5
I
10  
12  
1
10  
12  
1
I
I
O
O
O
O
7
7
Output, channel B  
8
8
Output, channel C  
14  
11  
4
14  
11  
4
Output, channel D  
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
6
Copyright © 2016–2019, Texas Instruments Incorporated  
TLV172, TLV2172, TLV4172  
www.ti.com.cn  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
Supply voltage, [(V+) – (V)]  
40  
40  
Single-supply voltage  
Voltage  
Common-mode  
Differential(3)  
(V–) – 0.5  
–0.5  
(V+) + 0.5  
0.5  
Signal input pin(2)  
Signal input pin  
Current  
–10  
10  
mA  
Output short-circuit(4)  
Continuous  
Operating, TA  
–55  
150  
150  
150  
Temperature  
Junction, TJ  
Storage, Tstg  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Transient conditions that exceed these voltage ratings must be current limited to 10 mA or less.  
(3) See the Electrical Overstress section for more information.  
(4) Short-circuit to ground, one amplifier per package.  
7.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
36  
UNIT  
Single-supply  
Dual-supply  
Supply voltage, (V+) – (V–)  
Specified temperature  
V
±2.25  
–40  
±18  
125  
°C  
Copyright © 2016–2019, Texas Instruments Incorporated  
7
 
 
TLV172, TLV2172, TLV4172  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
www.ti.com.cn  
7.4 Thermal Information: TLV172  
TLV172  
DBV (SOT-23)  
5 PINS  
227.9  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
126.5  
80.6  
DCK (SC70)  
5 PINS  
285.2  
60.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
115.7  
67.1  
65.9  
78.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
31.0  
10.7  
0.8  
ψJB  
65.6  
65.3  
77.9  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Thermal Information: TLV2172  
TLV2172  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
116.1  
69.8  
DGK (VSSOP)  
UNIT  
8 PINS  
158  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
48.6  
78.7  
3.9  
56.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
22.5  
ψJB  
56.1  
77.3  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.6 Thermal Information: TLV4172  
TLV4172  
THERMAL METRIC(1)  
D (SOIC)  
14 PINS  
82.7  
PW (TSSOP)  
14 PINS  
111.1  
40.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
42.3  
37.3  
54.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
8.9  
3.8  
ψJB  
37  
53.3  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8
Copyright © 2016–2019, Texas Instruments Incorporated  
TLV172, TLV2172, TLV4172  
www.ti.com.cn  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
7.7 Electrical Characteristics  
at TA = 25°C, VS = ±2.25 V to ±18 V, VCM = VOUT = VS / 2, and RL = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
TA = 25°C  
0.5  
1.7  
2
VOS  
Input offset voltage  
mV  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
dVOS/dT Input offset voltage drift  
1
120  
5
µV/°C  
dB  
PSRR  
Power-supply rejection ratio  
Channel separation, dc  
VS = 4 V to 36 V, TA = –40°C to +125°C  
100  
µV/V  
INPUT BIAS CURRENT  
IB  
Input bias current  
Input offset current  
TA = 25°C  
TA = 25°C  
±10  
±2  
pA  
pA  
IOS  
NOISE  
Input voltage noise  
f = 0.1 Hz to 10 Hz  
f = 100 Hz  
2.5  
14  
9
µVPP  
nV/Hz  
nV/Hz  
fA/Hz  
en  
in  
Input voltage noise density  
f = 1 kHz  
Input current noise density  
f = 1 kHz  
1.6  
INPUT VOLTAGE  
(V–) –  
0.1  
VCM  
Common-mode voltage range(1)  
(V+) – 2  
V
VS = ±18 V, (V–) – 0.1 V < VCM < (V+) – 2 V,  
TA = –40°C to +125°C  
CMRR  
Common-mode rejection ratio  
94  
116  
dB  
INPUT IMPEDANCE  
Differential  
100 || 4  
6 || 4  
MΩ || pF  
1013 Ω ||  
pF  
Common-mode  
OPEN-LOOP GAIN  
(V–) + 0.35 V < VO < (V+) – 0.35 V, TA = –40°C to +125°C  
97  
115  
107  
AOL  
Open-loop voltage gain  
dB  
(V–) + 0.5 V < VO < (V+) – 0.5 V,  
RL = 2 kΩ, TA = –40°C to +125°C  
FREQUENCY RESPONSE  
GBP  
SR  
Gain bandwidth product  
10  
10  
MHz  
V/µs  
Slew rate  
G = +1  
To 0.1%, VS = ±18 V, G = +1, 10-V step  
To 0.01% (12-bit), VS = ±18 V, G = +1, 10-V step  
VIN × gain > VS  
2
tS  
Settling time  
µs  
ns  
3.2  
Overload recovery time  
200  
THD+N  
Total harmonic distortion + noise VS = 36 V, G = +1, f = 1 kHz, VO = 3.5 VRMS  
0.0002%  
OUTPUT  
TA = 25°C  
70  
95  
VS = ±18 V, RL = 10 kΩ  
Voltage output swing from rail  
TA = –40°C to +125°C  
TA = 25°C  
VO  
mV  
330  
470  
±75  
400  
530  
VS = ±18 V, RL = 2 kΩ  
TA = –40°C to +125°C  
ISC  
Short-circuit current  
Capacitive load drive  
mA  
pF  
Ω
CLOAD  
RO  
See Typical Characteristics  
Open-loop output resistance  
f = 1 MHz, IO = 0 A  
60  
POWER SUPPLY  
VS  
IQ  
Specified voltage range  
Quiescent current per amplifier  
4.5  
36  
2.3  
V
IO = 0 A, TA = –40°C to +125°C  
1.6  
mA  
(1) The input range can be extended beyond (V+) – 2 V up to V+. See the Typical Characteristics and Application and Implementation  
sections for additional information.  
版权 © 2016–2019, Texas Instruments Incorporated  
9
TLV172, TLV2172, TLV4172  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
www.ti.com.cn  
7.8 Typical Characteristics  
at VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
1. Characteristic Performance Measurements  
DESCRIPTION  
Offset Voltage Production Distribution  
Offset Voltage vs Common-Mode Voltage  
Offset Voltage vs Common-Mode Voltage (Upper Stage)  
Input Bias Current vs Temperature  
FIGURE  
1  
2  
3  
4  
Output Voltage Swing vs Output Current (Maximum Supply)  
CMRR and PSRR vs Frequency (Referred-to-Input)  
0.1-Hz to 10-Hz Noise  
5  
6  
7  
Input Voltage Noise Spectral Density vs Frequency  
Quiescent Current vs Supply Voltage  
Open-Loop Gain and Phase vs Frequency  
Closed-Loop Gain vs Frequency  
8  
9  
10  
11  
Open-Loop Output Impedance vs Frequency  
Small-Signal Overshoot vs Capacitive Load  
No Phase Reversal  
12  
13, 14  
15  
Small-Signal Step Response (10 mV)  
Large-Signal Step Response  
16, 17  
18, 19  
20, 21  
22  
Large-Signal Settling Time  
Short-Circuit Current vs Temperature  
Maximum Output Voltage vs Frequency  
EMIRR IN+ vs Frequency  
23  
24  
10  
版权 © 2016–2019, Texas Instruments Incorporated  
 
TLV172, TLV2172, TLV4172  
www.ti.com.cn  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
at VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
225  
150  
75  
25  
20  
15  
10  
5
VCM = -18.1 V  
VCM = 16 V  
0
-75  
-150  
-225  
0
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
-1 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8  
1
Common-Mode Voltage (V)  
D001  
D013  
Offset Voltage (mV)  
5 typical units shown, VS = ±18 V  
Distribution taken from 5185 amplifiers  
2. Offset Voltage vs Common-Mode Voltage  
1. Offset Voltage Production Distribution Histogram  
20  
8000  
6000  
4000  
2000  
0
IB+  
IB-  
IOS  
10  
0
-10  
-20  
-30  
-40  
-50  
-2000  
14  
15  
16  
17  
18  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Common-Mode Voltage (V)  
Temperature (èC)  
D015  
D009  
5 typical units shown, VS = ±18 V  
3. Offset Voltage vs Common-Mode Voltage  
4. Input Bias Current vs Temperature  
(Upper Stage)  
(V+)  
1
160  
140  
120  
100  
80  
+
(V )  
+
-
(V  
(V  
+
)
1
2
3
4
5
-
+
)
-
-
(V )  
+
(V )  
+
125°C  
85°C  
25°C  
-
(V )  
+
~
~
~
~
(V- )  
5
4
3
2
1
+
+
-40°C  
-
(V )  
60  
-
(V )  
+
40  
-
(V )  
+
+
+PSRR  
-PSRR  
CMRR  
-
(V )  
20  
-
(V )  
(V )  
- -  
1
0
0
10  
20  
30  
40  
50  
60  
Output Current (mA)  
70  
80  
90 100  
1
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
D008  
D012  
5. Output Voltage Swing vs Output Current (Maximum  
6. CMRR and PSRR vs Frequency (Referred-to-Input)  
Supply)  
版权 © 2016–2019, Texas Instruments Incorporated  
11  
TLV172, TLV2172, TLV4172  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
www.ti.com.cn  
at VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
100  
10  
1
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
C001  
7. 0.1-Hz to 10-Hz Noise  
8. Input Voltage Noise Spectral Density vs Frequency  
140  
180  
135  
90  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
Open-Loop Gain  
Phase  
120  
100  
80  
60  
40  
20  
45  
0
-20  
0
0
4
8
12  
16  
20  
24  
28  
32  
36  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Supply Voltage (V)  
Frequency (Hz)  
D007  
D004  
CLOAD = 15 pF  
10. Open-Loop Gain and Phase vs Frequency  
9. Quiescent Current vs Supply Voltage  
100  
10  
1
25  
20  
15  
10  
5
0
-5  
-10  
-15  
-20  
G = +1  
G = -10  
G = -1  
1000  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
C003  
Frequency (Hz)  
Frequency (Hz)  
D017  
11. Closed-Loop Gain vs Frequency  
12. Open-Loop Output Impedance vs Frequency  
12  
版权 © 2016–2019, Texas Instruments Incorporated  
TLV172, TLV2172, TLV4172  
www.ti.com.cn  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
at VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
RI  
=
1
k
RF  
=
1 k  
+
18  
V
-
ROUT  
+
-
VIN  
= 100mV  
+
CL  
18  
V
+
18 V  
ROUT = 0  
ROUT= 0  
-
ROUT  
+
+
-
RL  
CL  
R = 25  
RO = 25  
OUT  
RRO ==2255  
OUT  
VIN  
= 100mV  
18  
V
RRO ==5500  
OUT  
RO = 50  
ROUT= 50  
0p  
100p  
200p  
300p  
400p  
500p  
0p  
100p  
200p  
300p  
400p  
500p  
Capacitive Load (F)  
C013  
Capacitive Load (F)  
C013  
100-mV output step, G = –1  
100-mV output step, G = 1  
13. Small-Signal Overshoot vs Capacitive Load  
14. Small-Signal Overshoot vs Capacitive Load  
+ 18 V  
-
+18 V  
-
VOUT  
+
-18 V  
+
37 VPP  
Sine Wave  
CL  
+
-
+
-
- 18 V  
VIN = 10 mV  
(
18.5 V)  
VOUT  
VIN  
Time (200 µs/div)  
Time (200 ns/div)  
D011  
D016  
CL = 10 pF  
10-mV step  
15. No Phase Reversal  
16. Small-Signal Step Response  
+ 18 V  
-
+
CL  
+
-
- 18 V  
VIN = 10 mV  
RI = 1 NW RF = 1 NW  
+18 V  
+
-
VIN = 10 mV  
-
+
RL  
CL  
-18 V  
rIrrr
Time (200 ns/div)  
Time (500 ns/div)  
D006  
D014  
RL = 1 kΩ  
CL = 10 pF  
10-mV step  
CL = 10 pF  
18. Large-Signal Step Response  
17. Small-Signal Step Response  
版权 © 2016–2019, Texas Instruments Incorporated  
13  
TLV172, TLV2172, TLV4172  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
www.ti.com.cn  
at VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
20  
15  
10  
5
0
-5  
0.1% Settling = 10 mV  
-10  
-15  
-20  
RI  
= 1 NW RF = 1 NW  
+18  
V
+
-
VIN  
= 10 V  
-
+
RL  
CL  
-18  
V
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Time (s)  
C034  
Time (500 ns/div)  
10-V positive step  
G = 1  
CL = 10 pF  
D005  
RL = 1 kΩ  
CL = 10 pF  
20. Large-Signal Settling Time  
19. Large-Signal Step Response  
20  
15  
10  
5
100  
75  
50  
25  
0
ISC, Sink ±18 V  
ISC, Source ±18 V  
0
-5  
0.1% Settling = 10 mV  
-10  
-15  
-20  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Time (s)  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
C034  
Temperature (èC)  
CL = 10 pF  
10-V negative step  
G = 1  
D010  
22. Short-Circuit Current vs Temperature  
21. Large-Signal Settling Time  
160  
30  
25  
20  
15  
10  
5
150  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
Maximum output voltage without  
slew-rate induced distortion.  
VS  
VS  
VS  
=
=
=
15 V  
5 V  
2.25 V  
40  
30  
20  
10  
0
10M  
0
10k  
100k  
1M  
Frequency (Hz)  
10M  
100M  
Frequency (Hz)  
1G  
10G  
C033  
D018  
PRF = –10 dBm  
VSUPPLY = ±18 V  
VCM = 0 V  
23. Maximum Output Voltage vs Frequency  
24. EMIRR IN+ vs Frequency  
14  
版权 © 2016–2019, Texas Instruments Incorporated  
TLV172, TLV2172, TLV4172  
www.ti.com.cn  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
8 Detailed Description  
8.1 Overview  
The TLVx172 operational amplifier provides high overall performance, making these devices designed for many  
general-purpose applications. The excellent offset drift of only 1 μV/°C provides excellent stability over the entire  
temperature range. In addition, the device offers very good overall performance with high CMRR, PSRR, and  
AOL  
.
8.2 Functional Block Diagram  
PCH  
FF Stage  
Ca  
Cb  
+IN  
PCH  
Input Stage  
2nd Stage  
OUT  
Output  
Stage  
-IN  
NCH  
Input Stage  
版权 © 2016–2019, Texas Instruments Incorporated  
15  
TLV172, TLV2172, TLV4172  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Operating Characteristics  
The TLVx172 amplifier is specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V). Many of the  
specifications apply from –40°C to +125°C. Parameters that can exhibit significant variance with regard to  
operating voltage or temperature are shown in the Typical Characteristics section.  
8.3.2 Phase-Reversal Protection  
The TLVx172 device has an internal phase-reversal protection. Many operational amplifiers exhibit a phase  
reversal when the input is driven beyond the linear common-mode range. This condition is most often  
encountered in noninverting circuits when the input is driven beyond the specified common-mode voltage range,  
causing the output to reverse into the opposite rail. The input of the TLVx172 prevents phase reversal with  
excessive common-mode voltage. Instead, the output limits into the appropriate rail. This performance is shown  
in 25.  
+18 V  
-
VOUT  
VOUT  
+
+
-18 V  
37 VPP  
Sine Wave  
(-18.5V)  
-
VIN  
Time (200 ms/div)  
25. No Phase Reversal  
8.3.3 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress.  
These questions tend to focus on the device inputs, but can involve the supply voltage pins or even the output  
pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits for protection from  
accidental ESD events both before and during product assembly.  
A good understanding of this basic ESD circuitry and the relevance to an electrical overstress event is helpful. 图  
26 shows the ESD circuits contained in the TLVx172 (indicated by the dashed box). The ESD protection circuitry  
involves several current-steering diodes connected from the input and output pins and routed back to the internal  
power-supply lines, where the diodes meet at an absorption device internal to the operational amplifier. This  
protection circuitry is intended to remain inactive during normal circuit operation.  
16  
版权 © 2016–2019, Texas Instruments Incorporated  
 
TLV172, TLV2172, TLV4172  
www.ti.com.cn  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
Feature Description (接下页)  
TVS  
R
F
+V  
S
R
1
2.5 kΩ  
INœ  
2.5 kΩ  
R
S
IN+  
+
Power-Supply  
ESD Cell  
I
R
L
D
+
V
IN  
œ
œV  
S
TVS  
26. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application  
An ESD event produces a short-duration, high-voltage pulse that is transformed into a short-duration, high-  
current pulse when discharging through a semiconductor device. The ESD protection circuits are designed to  
provide a current path around the operational amplifier core to prevent damage. The energy absorbed by the  
protection circuitry is then dissipated as heat.  
When an ESD voltage develops across two or more amplifier device pins, current flows through one or more  
steering diodes. Depending on the path that the current takes, the absorption device can activate. The absorption  
device has a trigger, or threshold voltage, that is above the normal operating voltage of the TLVx172 but below  
the device breakdown voltage level. When this threshold is exceeded, the absorption device quickly activates  
and clamps the voltage across the supply rails to a safe level.  
When the operational amplifier connects into a circuit, as shown in 26, the ESD protection components are  
intended to remain inactive and do not become involved in the application circuit operation. However,  
circumstances can arise where an applied voltage exceeds the operating voltage range of a given pin. If this  
condition occurs, there is a risk that some internal ESD protection circuits can turn on and conduct current. Any  
such current flow occurs through steering-diode paths and rarely involves the absorption device.  
26 shows a specific example where the input voltage (VIN) exceeds the positive supply voltage (V+) by 500  
mV or more. Much of what happens in the circuit depends on the supply characteristics. If V+ can sink the  
current, then one of the upper input steering diodes conducts and directs current to V+. Excessively high current  
levels can flow with increasingly higher VIN. As a result, the data sheet specifications recommend that  
applications limit the input current to 10 mA.  
If the supply is not capable of sinking the current, VIN can begin sourcing current to the operational amplifier and  
then take over as the source of positive supply voltage. The danger in this case is that the voltage can rise to  
levels that exceed the operational amplifier absolute maximum ratings.  
Another common question involves what happens to the amplifier if an input signal is applied to the input when  
the power supplies (V+ or V–) are at 0 V. Again, this question depends on the supply characteristic when at 0 V,  
or at a level below the input signal amplitude. If the supplies appear as high impedance, then the input source  
supplies the operational amplifier current through the current-steering diodes. This state is not a normal bias  
condition; most likely, the amplifier does not operate normally. If the supplies are low impedance, then the current  
through the steering diodes can become quite high. The current level depends on the ability of the input source  
to deliver current and any resistance in the input path.  
版权 © 2016–2019, Texas Instruments Incorporated  
17  
 
TLV172, TLV2172, TLV4172  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
www.ti.com.cn  
Feature Description (接下页)  
If there is any uncertainty about the ability of the supply to absorb this current, add external Zener diodes to the  
supply pins; see 26. Select the Zener voltage so that the diode does not turn on during normal operation.  
However, the Zener voltage must be low enough so that the Zener diode conducts if the supply pin begins to rise  
above the safe-operating, supply-voltage level.  
The input pins of the TLVx172 are protected from excessive differential voltage with back-to-back diodes; see 图  
26. In most circuit applications, the input protection circuitry has no effect. However, in low-gain or G = 1 circuits,  
fast-ramping input signals can forward-bias these diodes because the output of the amplifier cannot respond  
rapidly enough to the input ramp. If the input signal is fast enough to create this forward-bias condition, then limit  
the input signal current to 10 mA or less. If the input signal current is not inherently limited, an input series  
resistor can limit the input signal current. This input series resistor degrades the low-noise performance of the  
TLVx172. 26 shows an example configuration that implements a current-limiting feedback resistor.  
8.3.4 Capacitive Load and Stability  
The dynamic characteristics of the TLVx172 are optimized for common operating conditions. The combination of  
low closed-loop gain and high capacitive loads decreases the phase margin of the amplifier and can lead to gain  
peaking or oscillations. As a result, heavier capacitive loads must be isolated from the output. The simplest way  
to achieve this isolation is to add a small resistor (for example, ROUT equal to 50 Ω) in series with the output. 图  
27 and 28 show graphs of small-signal overshoot versus capacitive load for several values of ROUT. See the  
Feedback Plots Define Op Amp AC Performance application note for details of analysis techniques and  
application circuits.  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
RI  
=
1
k
RF  
=
+
1 k  
18  
V
-
ROUT  
+
-
VIN  
= 100mV  
+
CL  
18  
V
+
18 V  
ROUT = 0  
ROUT= 0  
-
ROUT  
+
+
-
RL  
CL  
R = 25  
RO = 25  
OUT  
RRO ==2255  
OUT  
VIN  
= 100mV  
18  
V
RO = 50  
ROUT= 50  
RRO ==5500  
OUT  
0p  
100p  
200p  
Capacitive Load (F)  
100-mV output step, G = 1  
300p  
400p  
500p  
0p  
100p  
200p  
300p  
400p  
500p  
C013  
Capacitive Load (F)  
100-mV output step, G = –1  
C013  
28. Small-Signal Overshoot vs Capacitive Load  
27. Small-Signal Overshoot vs Capacitive Load  
18  
版权 © 2016–2019, Texas Instruments Incorporated  
 
TLV172, TLV2172, TLV4172  
www.ti.com.cn  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
8.4 Device Functional Modes  
8.4.1 Common-Mode Voltage Range  
The input common-mode voltage range of the TLVx172 device extends 100 mV below the negative rail and  
within 2 V of the top rail for normal operation.  
This device can operate with full rail-to-rail input 100 mV beyond the top rail, but with reduced performance within  
2 V of the top rail. 2 lists the typical performances in this range.  
2. Typical Performance for Common-Mode Voltages Within 2 V of the Positive Supply  
PARAMETER  
Input common-mode voltage  
Offset voltage  
MIN  
TYP  
MAX  
UNIT  
V
(V+) – 2  
(V+) + 0.1  
7
12  
mV  
Offset voltage vs temperature  
Common-mode rejection  
Open-loop gain  
µV/°C  
dB  
65  
60  
dB  
Gain-bandwidth product  
Slew rate  
0.3  
0.3  
MHz  
V/µs  
8.4.2 Overload Recovery  
Overload recovery is defined as the time required for the operational amplifier output to recover from the  
saturated state to the linear state. The output devices of the operational amplifier enter the saturation region  
when the output voltage exceeds the rated operating voltage, which is a result from the high input voltage or the  
high gain. After the device enters the saturation region, the charge carriers in the output devices require time to  
return back to the normal state. After the charge carriers return back to the equilibrium state, the device begins to  
slew at the normal slew rate. As a result, the propagation delay in case of an overload condition is the sum of the  
overload recovery time and the slew time. The overload recovery time for the TLVx172 is approximately 2 µs.  
版权 © 2016–2019, Texas Instruments Incorporated  
19  
 
TLV172, TLV2172, TLV4172  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TLVx172 operational amplifier provides high overall performance in a large number of general-purpose  
applications. As with all amplifiers, applications with noisy or high-impedance power supplies require decoupling  
capacitors placed close to the device pins. In most cases, 0.1-µF capacitors are adequate. Follow the additional  
recommendations in the Layout Guidelines section to achieve the maximum performance from this device. Many  
applications introduce capacitive loading to the output of the amplifier (which potentially causes instability). To  
stabilize the amplifier, add an isolation resistor between the amplifier output and the capacitive load. Typical  
Application section shows the process for selecting a resistor.  
9.2 Typical Application  
This circuit can drive capacitive loads (such as cable shields, reference buffers, MOSFET gates, and diodes).  
The circuit uses an isolation resistor (RISO) to stabilize the output of an operational amplifier. RISO modifies the  
open-loop gain of the system to ensure that the circuit has sufficient phase margin.  
+VS  
VOUT  
RISO  
+
CLOAD  
+
VIN  
-VS  
œ
Copyright © 2017, Texas Instruments Incorporated  
29. Unity-Gain Buffer With RISO Stability Compensation  
9.2.1 Design Requirements  
The design requirements are:  
Supply voltage: 30 V (±15 V)  
Capacitive loads: 100 pF, 1000 pF, 0.01 μF, 0.1 μF, and 1 μF  
Phase margin: 45° and 60°  
9.2.2 Detailed Design Procedure  
29 shows a unity-gain buffer driving a capacitive load. 公式 1 shows the transfer function for the circuit in 图  
29.29 does not show the open-loop output resistance of the operational amplifier (Ro).  
1 + CLOAD × RISO × s  
T(s) =  
1 + R + R  
× C  
× s  
(
)
o
ISO  
LOAD  
(1)  
The transfer function in 公式 1 has a pole and a zero. The frequency of the pole (fp) is determined by (Ro + RISO  
)
and CLOAD. The RISO and CLOAD components determine the frequency of the zero (fz). A stable system is obtained  
by selecting RISO so that the rate of closure (ROC) between the open-loop gain (AOL) and 1/β is 20 dB per  
decade. 30 shows the concept. The 1/β curve for a unity-gain buffer is 0 dB.  
20  
版权 © 2016–2019, Texas Instruments Incorporated  
 
 
 
TLV172, TLV2172, TLV4172  
www.ti.com.cn  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
Typical Application (接下页)  
120  
AOL  
100  
80  
60  
40  
20  
0
1
fp  
=
2 ì Œ ì  
R
+ Ro ì C  
(
)
ISO  
LOAD  
40 dB  
1
fz  
=
2 ì Œ ì RISO ì CLOAD  
1 dec  
1/  
20 dB  
dec  
ROC =  
100M  
10M  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
30. Unity-Gain Amplifier With RISO Compensation  
Typically, ROC stability analysis is simulated. The validity of the analysis depends on multiple factors, especially  
the accurate modeling of Ro. In addition to simulating the ROC, a robust stability analysis includes a  
measurement of overshoot percentage and AC gain peaking of the circuit using a function generator,  
oscilloscope, and gain and phase analyzer. Phase margin is then calculated from these measurements. 3  
shows the overshoot percentage and AC gain peaking that correspond to phase margins of 45° and 60°. For  
more details on this design and other alternative devices that can replace the TLVx172, see the Capacitive Load  
Drive Solution Using an Isolation Resistor precision design.  
3. Phase Margin versus Overshoot and AC Gain  
Peaking  
PHASE  
MARGIN  
OVERSHOOT  
AC GAIN PEAKING  
45°  
23.3%  
8.8%  
2.35 dB  
0.28 dB  
60°  
9.2.3 Application Curve  
The values of RISO that yield phase margins of 45º and 60º for various capacitive loads are determined using the  
described methodology. 31 shows the results.  
1000  
60°Phase Margin  
45°Phase Margin  
100  
10  
1
0.01  
0.1  
1
10  
CLOAD (nF)  
100  
1000  
C041  
31. Isolation Resistor Required for Various Capacitive Loads to Achieve a Target Phase Margin  
版权 © 2016–2019, Texas Instruments Incorporated  
21  
 
 
TLV172, TLV2172, TLV4172  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
The TLVx172 is specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V); many specifications apply from  
–40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are shown in the Typical Characteristics section.  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device; see the  
Absolute Maximum Ratings table.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see the Layout  
section.  
11 Layout  
11.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the  
operational amplifier itself. Bypass capacitors are used to reduce the coupled noise by providing low-  
impedance power sources local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of the circuitry is one of the simplest and most-  
effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to  
ground planes. A ground plane helps distribute heat and reduces electromagnetic interference (EMI)  
noise pickup. Make sure to physically separate digital and analog grounds, paying attention to the flow of  
the ground current.  
In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicularly is much  
better than in parallel with the noisy trace.  
Place the external components as close to the device as possible. As shown in 33, keeping RF and RG  
close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly  
reduce leakage currents from nearby traces that are at different potentials.  
22  
版权 © 2016–2019, Texas Instruments Incorporated  
 
TLV172, TLV2172, TLV4172  
www.ti.com.cn  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
11.2 Layout Example  
VIN  
+
VOUT  
RG  
RF  
Copyright © 2016, Texas Instruments Incorporated  
32. Schematic Representation  
Place components  
close to device  
and to each other  
to reduce parasitic  
errors  
Run the input traces  
as far away from  
the supply lines  
as possible  
VS+  
RF  
N/C  
N/C  
RG  
GND  
VIN  
GND  
œIN  
+IN  
Vœ  
V+  
OUTPUT  
N/C  
Use low-ESR,  
ceramic bypass  
capacitor  
GND  
Use low-ESR,  
ceramic bypass  
capacitor  
VSœ  
VOUT  
Copyright © 2016, Texas Instruments Incorporated  
33. Operational Amplifier Board Layout for a Noninverting Configuration  
版权 © 2016–2019, Texas Instruments Incorporated  
23  
TLV172, TLV2172, TLV4172  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.1.2 开发支持  
12.1.2.1 TINA-TI™(免费软件下载)  
TINA-TI™ 是一款基于 SPICE 引擎的电路仿真程序,简单易用并且功能强大。 TINA-TI™TINA 软件的一款免费  
全功能版本,除了一系列无源和有源模型外,此版本软件还预先载入了一个宏模型库。TINA-TI™ 提供所有传统的  
SPICE 直流、瞬态和频域分析,以及其他设计功能。  
TINA-TI™ 提供全面的后处理能力,便于用户以多种方式获得结果,用户可从 Analog eLab Design Center(模拟  
电子实验室设计中心)免费下载。虚拟仪器提供选择输入波形和探测电路节点、电压以及波形的功能,从而构建一  
个动态快速入门工具。  
这些文件需要安装 TINA 软件(由 DesignSoft™提供)或者 TINA-TI™ 软件。请下载 TINA-  
TI™ 文件夹中的免费 TINA-TI™ 软件。  
12.1.2.2 DIP 适配器 EVM  
DIP 适配器 EVM 工具为小型表面贴装器件的原型设计提供了一种简易的低成本方法。评估工具使用以下 TI 封  
装:D U (SOIC-8)PW (TSSOP-8)DGK (VSSOP-8)DBVSOT23-6SOT23-5 SOT23-3)、DCK  
SC70-6 SC70-5)以及 DRL (SOT563-6)DIP 适配器 EVM 也可搭配引脚排使用,或者直接与现有电路相  
连。  
12.1.2.3 通用运放 EVM  
通用运放 EVM 是一系列通用空白电路板,可简化采用各种器件封装类型的电路板原型设计。借助评估模块电路板  
设计,可以轻松快速地构造多种不同电路。共有  
5
个模型可供选用,每个模型都对应一种特定封装类型。支持  
PDIPSOICVSSOPTSSOP SOT23 封装。  
这些电路板均为空白电路板,用户必须自行提供相关器件。TI 建议您在订购通用运算放大器  
EVM 时申请几个运算放大器器件样品。  
12.1.2.4 TI 高精度设计  
TI 高精度设计是由 TI 公司高精度模拟 应用 专家创建的模拟解决方案,提供了许多实用电路的工作原理、组件选  
择、仿真、完整印刷电路板 (PCB) 电路原理图和布局布线、物料清单以及性能测量结果。TI 高精度设计可从  
http://www.ti.com.cn/ww/analog/precision-designs/ 在线获取。  
12.1.2.5 WEBENCH®滤波器设计器  
WEBENCH® 滤波器设计器是一款简单、功能强大且便于使用的有源滤波器设计程序。借助 WEBENCH 滤波设计  
器,用户可使用精选 TI 运算放大器和 TI 供应商合作伙伴提供的无源组件打造最佳滤波器设计方案。  
WEBENCH® 设计中心以基于网络的工具形式提供 WEBENCH® 滤波器设计器。用户通过该工具可在短时间内完  
成多级有源滤波器解决方案的设计、优化和仿真。  
12.2 文档支持  
12.2.1 相关文档  
如需相关文档,请参阅:  
24  
版权 © 2016–2019, Texas Instruments Incorporated  
TLV172, TLV2172, TLV4172  
www.ti.com.cn  
ZHCSFN0C NOVEMBER 2016REVISED JANUARY 2019  
文档支持 (接下页)  
《反馈曲线图定义运算放大器交流性能》  
《运算放大器的 EMI 抑制比》  
《用直观方式补偿跨阻放大器》  
《高速运算放大器噪声分析》  
12.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
4. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
TLV172  
TLV2172  
TLV4172  
12.4 接收文档更新通知  
如需接收文档更新通知,请访问 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收  
产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.5 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.6 商标  
TINA-TI, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
DesignSoft is a trademark of DesignSoft, Inc.  
12.7 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.8 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016–2019, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV172IDBVR  
TLV172IDBVT  
TLV172IDCKR  
TLV172IDCKT  
TLV172IDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
DCK  
D
5
5
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
18VV  
18VV  
15W  
15W  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU | SN  
NIPDAU  
5
SC70  
5
NIPDAU  
SOIC  
8
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
TLV172  
14P6  
TLV2172IDGKR  
TLV2172IDGKT  
TLV2172IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
NIPDAUAG | SN  
NIPDAUAG | SN  
NIPDAU  
8
250  
RoHS & Green  
14P6  
8
2500 RoHS & Green  
2500 RoHS & Green  
2000 RoHS & Green  
TL2172  
TLV4172  
TLV4172  
TLV4172IDR  
SOIC  
D
14  
14  
NIPDAU  
TLV4172IPWR  
TSSOP  
PW  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Apr-2023  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV2172 :  
Automotive : TLV2172-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV172IDBVR  
TLV172IDBVT  
TLV172IDCKR  
TLV172IDCKT  
TLV172IDR  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
DCK  
D
5
5
3000  
250  
180.0  
180.0  
178.0  
178.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
8.4  
8.4  
3.23  
3.23  
2.4  
2.4  
6.4  
5.3  
5.3  
5.3  
5.3  
6.4  
6.5  
6.9  
3.17  
3.17  
2.5  
2.5  
5.2  
3.4  
3.4  
3.4  
3.4  
5.2  
9.0  
5.6  
1.37  
1.37  
1.2  
1.2  
2.1  
1.4  
1.4  
1.4  
1.4  
2.1  
2.1  
1.6  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
5
3000  
250  
9.0  
8.0  
SC70  
5
9.0  
8.0  
SOIC  
8
2500  
2500  
2500  
250  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
16.4  
12.4  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
12.0  
TLV2172IDGKR  
TLV2172IDGKR  
TLV2172IDGKT  
TLV2172IDGKT  
TLV2172IDR  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
8
8
8
8
250  
8
2500  
2500  
2000  
TLV4172IDR  
SOIC  
D
14  
14  
TLV4172IPWR  
TSSOP  
PW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV172IDBVR  
TLV172IDBVT  
TLV172IDCKR  
TLV172IDCKT  
TLV172IDR  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
DCK  
D
5
5
3000  
250  
223.0  
202.0  
180.0  
180.0  
356.0  
366.0  
366.0  
366.0  
366.0  
356.0  
356.0  
356.0  
270.0  
201.0  
180.0  
180.0  
356.0  
364.0  
364.0  
364.0  
364.0  
356.0  
356.0  
356.0  
35.0  
28.0  
18.0  
18.0  
35.0  
50.0  
50.0  
50.0  
50.0  
35.0  
35.0  
35.0  
5
3000  
250  
SC70  
5
SOIC  
8
2500  
2500  
2500  
250  
TLV2172IDGKR  
TLV2172IDGKR  
TLV2172IDGKT  
TLV2172IDGKT  
TLV2172IDR  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
8
8
8
8
250  
8
2500  
2500  
2000  
TLV4172IDR  
SOIC  
D
14  
14  
TLV4172IPWR  
TSSOP  
PW  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV172IDBVR

适用于成本敏感型应用的单路、36V、10MHz、低功耗运算放大器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV172IDBVT

适用于成本敏感型应用的单路、36V、10MHz、低功耗运算放大器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV172IDCKR

适用于成本敏感型应用的单路、36V、10MHz、低功耗运算放大器 | DCK | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV172IDCKT

适用于成本敏感型应用的单路、36V、10MHz、低功耗运算放大器 | DCK | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV172IDR

适用于成本敏感型应用的单路、36V、10MHz、低功耗运算放大器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV1805

具有推挽输出和关断模式的高电压比较器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV1805-Q1

具有推挽输出和关断模式的汽车级高电压比较器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV1805DBVR

具有推挽输出和关断模式的高电压比较器 | DBV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV1805QDBVRQ1

具有推挽输出和关断模式的汽车级高电压比较器 | DBV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV1811

具有推挽输出的单通道、微功耗高压比较器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV1811-Q1

具有失效防护功能的汽车级、40V、低功耗、推挽、单路比较器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV1811DBVR

具有推挽输出的单通道、微功耗高压比较器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI