TLV1805-Q1 [TI]

具有推挽输出和关断模式的汽车级高电压比较器;
TLV1805-Q1
型号: TLV1805-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有推挽输出和关断模式的汽车级高电压比较器

比较器
文件: 总36页 (文件大小:1932K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV1805-Q1  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
具有关断功能的 TLV1805-Q1 40V、轨至轨输入、推挽输出、高电压汽车  
比较器  
1 特性  
3 说明  
1
具有符合 AEC-Q100 标准的下列特性:  
TLV1805-Q1 高电压比较器集独特的宽电源范围、推  
挽输出、轨至轨输入、低静态电流、关断功能和快速输  
出响应组合特性于一体。所有这些 特性 使该比较器非  
常适合 需要 在正电压轨或负电压轨上进行检测的应  
用,例如智能二极管控制器的反向电流保护、过流检测  
和过压保护电路,其中推挽输出级用于驱动 P 沟道或  
N 沟道 MOSFET 开关的栅极。  
器件温度等级 1–40°C +125°C 的环境工作  
温度范围  
器件 HBM ESD 分类等级 2  
器件 CDM ESD 分类等级 C6  
电源电压范围:3.3V 40V  
低静态电流:135µA  
高峰值电流推挽输出  
具有相位反转保护功能的轨至轨输入  
内置迟滞:14mV  
高峰值电流推挽输出级是高电压比较器的一个特色,它  
具有允许输出以较快的边沿速率主动将负载驱动至任一  
电源轨的优势。对于需要快速 将 MOSFET 栅极 驱动  
至高电平或低电平以将主机连接至电压高于预期的电源  
或与其断开的应用而言,这特别有用。其他 特性 (如  
低输入失调电压、低输入偏置电流和高阻态关断)使  
TLV1805-Q1 能够灵活地处理各种 应用的要求。上电  
复位可防止加电时产生错误输出。  
250ns 传播延迟  
低输入失调电压:500µV  
关断后具有高阻态输出  
上电复位 (POR)  
SOT-23-6 封装  
2 应用  
TLV1805-Q1 采用 6 引脚 SOT-23 封装并符合 AEC-  
Q100 标准,具有 –40°C +125°C 的汽车 1 级温度  
范围。  
反向电流保护智能二极管控制器  
过压、欠压和过流检测  
OR-ing MOSFET 控制器  
MOSFET 栅极驱动器  
高电压振荡器  
器件信息(1)  
器件型号  
封装  
SOT-23 (6)  
封装尺寸(标称值)  
TLV1805-Q1  
1.60mm × 2.90mm  
针对以下应用的系统监控:  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
汽车信息娱乐系统和仪表组  
HEV/EV 和动力总成  
采用 P 沟道 MOSFET 的反向电流和过压保护  
采用 N 沟道 MOSFET 的反向电流保护  
P-Channel MOSFETs  
Clock  
Source  
Charge  
Pump  
iBAT  
D
S
S
D
System  
Power  
+
TLV1805-Q1  
+
SD  
N-Channel MOSFET  
Q1  
Q2  
D2  
-
iBAT  
System  
Power  
V
BAT  
+
D1  
VBAT  
-
SD  
+
TLV1805-Q1  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNOSD52  
 
 
 
 
TLV1805-Q1  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 18  
Application and Implementation ........................ 21  
8.1 Application Information............................................ 21  
8.2 Typical Applications ............................................... 21  
Power Supply Recommendations...................... 28  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 5  
6.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 17  
7.1 Overview ................................................................. 17  
7.2 Functional Block Diagram ....................................... 17  
7.3 Feature Description................................................. 17  
8
9
10 Layout................................................................... 28  
10.1 Layout Guidelines ................................................. 28  
10.2 Layout Example .................................................... 28  
11 器件和文档支持 ..................................................... 29  
11.1 文档支持................................................................ 29  
11.2 接收文档更新通知 ................................................. 29  
11.3 支持资源................................................................ 29  
11.4 ....................................................................... 29  
11.5 静电放电警告......................................................... 29  
11.6 Glossary................................................................ 29  
12 机械、封装和可订购信息....................................... 29  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (May 2019) to Revision B  
Page  
已添加 向 应用列表添加了链接 ........................................................................................................................................... 1  
已更改 Output High and Low vs Supply Graphs .................................................................................................................. 10  
Changes from Original (August 2018) to Revision A  
Page  
已更改 将预告信息更改为生产数据.................................................................................................................................... 1  
Changes from Revision A (May 2019) to Revision B  
Page  
已添加 向 应用列表添加了链接 ........................................................................................................................................... 1  
已更改 Output High and Low vs Supply Graphs .................................................................................................................. 10  
2
Copyright © 2018–2020, Texas Instruments Incorporated  
 
TLV1805-Q1  
www.ti.com.cn  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
5 Pin Configuration and Functions  
TLV1805-Q1 DBV Package  
6-Pin SOT-23  
Top View  
OUT  
V-  
1
2
3
6
5
4
V+  
SHDN  
+IN  
-IN  
Note the reversed positions of the input pins. This differs from a similar popular pinout.  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
IN+  
NO.  
4
I
I
Noninverting input  
IN–  
3
Inverting input  
OUT  
SHDN  
V+  
1
O
I
Output  
5
Shutdown (active high)  
Positive (highest) power supply  
Negative (lowest) power supply  
6
P
P
V–  
2
Copyright © 2018–2020, Texas Instruments Incorporated  
3
TLV1805-Q1  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
-0.3  
MAX  
42  
UNIT  
V
Supply voltage: VS = (V+) – (V–)  
Input pins (IN+, IN–)(2)  
Shutdown pin (SHDN)(3)  
Current into Input pins (IN+, IN–, SHDN)(2)  
Output (OUT)  
(V–) – 0.3  
(V–) – 0.3  
(V+) + 0.3  
(V–) + 5.5  
±10  
V
V
mA  
V
(V–) – 0.3  
–65  
(V+) + 0.3  
150  
Junction temperature, TJ  
Storage temperature, Tstg  
°C  
°C  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the supply rails must  
be current-limited to 10 mA or less.  
(3) Shutdown pin is diode-clamped to (V–). Input to SHDN that can swing more than 0.3 V below (V–) must be current-limited to 10 mA or  
less.  
6.2 ESD Ratings  
VALUE  
±2000  
±1500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Electrostatic  
discharge  
V(ESD)  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.3  
MAX  
UNIT  
Supply voltage: VS = (V+) – (V–)  
Ambient temperature, TA  
40  
V
–40  
125  
°C  
6.4 Thermal Information  
TLV1805-Q1  
DBV (SOT23)  
6 PINS  
166.9  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
104.2  
46.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
31.3  
ψJB  
46.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018–2020, Texas Instruments Incorporated  
TLV1805-Q1  
www.ti.com.cn  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
6.5 Electrical Characteristics  
VS = 3.3 V to 40 V, VCM = VS / 2; TA = 25°C (unless otherwise noted). Typical values are at VS = 12 V and TA = 25°C,VCM = VS  
/ 2  
PARAMETER  
TEST CONDITIONS  
MIN  
-4.5  
-6.5  
TYP  
MAX  
UNIT  
VS = 3.3V, 12V and 40V  
±0.5  
4.5  
VIO  
Input offset voltage  
mV  
VS = 3.3V, 12V and 40V, TA = –40°C to +125°C  
TA = –40°C to +125°C  
6.5  
dVIO/dT  
VHYS  
VCM  
Input offset voltage drift  
Input hysteresis voltage  
Common-mode voltage range  
Input bias current  
±2.5  
14  
μV/°C  
mV  
V
TA = -40to +125℃  
(V–) – 0.2  
(V+) + 0.2  
IB  
0.05  
0.05  
95  
pA  
IOS  
Input offset current  
pA  
PSRR  
CMRR  
Power-supply rejection ratio  
Common-mode rejection ratio  
VCM = V-  
dB  
(V–) < VCM < (V+)  
80  
dB  
I
SINK 5mA, input overdrive = –100 mV,  
VOL  
Voltage output swing from (V–)  
Voltage output swing from (V+)  
300  
300  
mV  
VS = 5V, TA = –40°C to +125°C  
ISOURCE 5mA, input overdrive = +100 mV,  
VOH  
mV  
mA  
mA  
µA  
VS = 5V, TA = –40°C to +125°C  
Peak charging current (sourcing)  
Isc_source  
Isc_sink  
Vs = 5 V to 40 V  
100  
100  
135  
(1)  
with output shorted to V-  
Peak dis-charging current (sinking)  
Vs = 5 V to 40 V  
(1)  
with output shorted to V+  
VS = 12 V, no load, VID = –0.1 V (output low), TA  
= 25°C  
200  
400  
IQ  
Quiescent current  
VS =12V to 40V no load, VID = –0.1 V (output  
low), TA = –40°C to +125°C  
µA  
tOFF  
Time to enter shutdown  
Time to exit shutdown  
CL = 15 pF  
1.0  
2.3  
µs  
µs  
V
tON  
CL = 15 pF  
(2)  
VSD  
Shutdown input: voltage range  
V s= 3.3 to 40V, TA = -40 to 125 °C  
VS = 3.3 V and 40V, TA = -40 to 125 °C  
VS = 3.3 V and 40V, TA = -40 to 125 °C  
VS = VSD = 5.5 V  
0
2
5.5  
0.4  
VSD_VIH  
VSD_VIL  
SHDN pin input high level  
SHDN pin input low level  
1.35  
0.65  
V
V
0.015  
0.001  
9.5  
nA  
nA  
µA  
IB-SDH  
IQ-SD  
SHDN bias current  
VS = 5 V, VSD = 0 V  
Quiescent current (Shutdown)  
VS = 12V; TS = 25°C; VSD > VSD_VIH Min  
13  
(1) Continuous short circuit can result in excessive heating and exceeding the maximum allowed junction temperature of 150°C. Please  
refer to the Maximum Output Current Derating curve in the Typical Operation Plots.  
(2) The recommended voltage range if VSD is independent of VS.  
6.6 Switching Characteristics  
Typical values are at TA = 25°C, VS = 12 V, VCM = VS / 2; Input overdrive = 100 mV (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
250  
450  
250  
500  
18  
MAX  
UNIT  
ns  
CL = 15 pF  
CL = 4 nF  
CL = 15 pF  
CL = 4 nF  
Propagation delay time, high-to-low  
tPHL  
tPLH  
tR  
(1)  
ns  
ns  
Propagation delay time, low-to-high  
(1)  
ns  
20% to 80%, CL = 15 pF  
20% to 80%, CL = 4 nF  
20% to 80%, CL = 15 pF  
20% to 80%, CL = 4 nF  
ns  
Rise time  
Fall time  
0.3  
µs  
10  
ns  
tF  
0.26  
45  
µs  
(2)  
tSTART  
Power-up time  
µs  
(1) High-to-low and low-to-high refers to the transition at the input.  
(2) During power on, VS must exceed 3.3 V for tON before the output is in a correct state.  
Copyright © 2018–2020, Texas Instruments Incorporated  
5
TLV1805-Q1  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
www.ti.com.cn  
1. Propagation Delay  
2. Shutdown Timing  
6
版权 © 2018–2020, Texas Instruments Incorporated  
TLV1805-Q1  
www.ti.com.cn  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
6.7 Typical Characteristics  
at TA = 25°C, VS = 12 V, VCM = VS/2, and input overdrive = 100 mV (unless otherwise noted)  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3
2
Distribution of 2917 Units  
30 Typical Units Shown  
1
0
-1  
-2  
-3  
0
0
4
8
12  
16  
20  
24  
Supply Voltage (V)  
28  
32  
36  
40  
Offset Voltage (mV)  
4. Offset Voltage Histogram  
3. Input Offset Voltage vs. Supply Voltage  
3
2
3
2
30 Typical Units Shown  
30 Typical Units Shown  
1
1
0
0
-1  
-2  
-3  
-1  
-2  
-3  
-1  
0
1
2
3
4
5
6
7
8
9
Input Common Mode Voltage (V)  
10 11 12 13  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
5. Offset Voltage vs. Common Mode  
6. Offset Voltage vs Temperature  
250  
225  
200  
175  
150  
125  
100  
75  
250  
225  
200  
175  
150  
125  
100  
75  
125°C  
85°C  
25°C  
-40°C  
125°C  
85°C  
25°C  
-40°C  
50  
50  
25  
25  
0
0
0
4
8
12  
16  
Supply Voltage (V)  
20  
24  
28  
32  
36  
40  
0
4
8
12  
16  
Supply Voltage (V)  
20  
24  
28  
32  
36  
40  
VCM = V-  
Output Low (VID = -0.1 V)  
VCM = V-  
Output High (VID = 0.1 V)  
7. Supply Current vs. Supply Voltage, Output Low  
8. Supply Current vs. Temperature, Output High  
版权 © 2018–2020, Texas Instruments Incorporated  
7
TLV1805-Q1  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 12 V, VCM = VS/2, and input overdrive = 100 mV (unless otherwise noted)  
200  
160  
120  
80  
40  
35  
30  
25  
20  
15  
10  
5
40V  
12V  
3.3V  
40  
0
-40  
-80  
-120  
-160  
-200  
0
-5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
0
1
2
3
4
5
6
VCM (V)  
7
8
9
10 11 12  
TA = 125 °C  
9. Input Bias Current vs. Temperature  
10. Input Bias Current vs. Common Mode, 125°C  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.1  
0.08  
0.06  
0.04  
0.02  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
0
1
2
3
4
5
6
VCM (V)  
7
8
9
10 11 12  
0
1
2
3
4
5
6
VCM (V)  
7
8
9
10 11 12  
TA = 25 °C  
TA = -40 °C  
11. Input Bias Current vs. Common Mode, 25°C  
12. Input Bias Current vs. Common Mode, -40°C  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
6
6
125 °C  
85 °C  
25 °C  
-40 °C  
125 °C  
85 °C  
25 °C  
-40 °C  
4
4
2
2
0
0
0
4
8
12  
16  
Supply Voltage (V)  
20  
24  
28  
32  
36  
40  
0
4
8
12  
16  
Supply Voltage (V)  
20  
24  
28  
32  
36  
40  
VCM = V-  
13. Shutdown Supply Current vs. Supply Votlage  
VCM = V-  
14. Shutdown Supply Current vs. Supply Votlage  
8
版权 © 2018–2020, Texas Instruments Incorporated  
TLV1805-Q1  
www.ti.com.cn  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 12 V, VCM = VS/2, and input overdrive = 100 mV (unless otherwise noted)  
1.85  
0.8  
0.75  
0.7  
40V  
36V  
24V  
12V  
5V  
3.3V  
40V  
36V  
24V  
12V  
5V  
3.3V  
Referenced to V-  
Referenced to V-  
1.7  
1.55  
1.4  
0.65  
0.6  
1.25  
1.1  
0.55  
0.5  
0.95  
0.8  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
15. Shutdown Voltage High Threshold vs. Temperature  
16. Shutdown Voltage Low Threshold vs. Temperature  
2
0.8  
125°C  
85°C  
50°C  
25°C  
0°C  
-40°C  
-40°C  
0°C  
25°C  
50°C  
85°C  
125°C  
Referenced to V-  
Referenced to V-  
0.75  
0.7  
1.8  
1.6  
1.4  
1.2  
1
0.65  
0.6  
0.55  
0.5  
0
5
10  
15  
Supply Voltage (V)  
20  
25  
30  
35  
40  
0
5
10  
15  
Supply Voltage (V)  
20  
25  
30  
35  
40  
17. Shutdown Voltage High Threshold vs. Supply Voltage  
18. Shutdown Voltage Low Threshold vs. Supply Voltage  
12  
18  
125°C  
85°C  
10  
25°C  
-40°C  
16  
14  
12  
10  
8
8
6
4
6
4
2
2
0
0
-2  
-2  
0
1
2
Shutdown Voltage (V)  
3
4
5
6
0
1
2
Shutdown Voltage (V)  
3
4
5
6
19. Shutdown Input Bias Current vs. Shutdown Input  
20. Shutdown Input Bias Current vs. Shutdown Input  
Voltage, High Temperatures  
Voltage, Low Temperatures  
版权 © 2018–2020, Texas Instruments Incorporated  
9
TLV1805-Q1  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 12 V, VCM = VS/2, and input overdrive = 100 mV (unless otherwise noted)  
20  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5V  
12V  
21V  
30V  
40V  
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
0.002  
0.001  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
VSD = 5 V  
DBV SOT-23-6 Package  
21. Shutdown Input Bias Current vs. Temperature  
22. Maximum Continuous Output Current vs. Ambient  
Temperature  
0.10  
0.10  
125 °C  
85 °C  
25 °C  
0 °C  
125 °C  
85°C  
25 °C  
0 °C  
-40 °C  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
0.09  
0.08  
-40 °C  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
0
4
8
12  
16  
Supply Voltage (V)  
20  
24  
28  
32  
36  
40  
0
4
8
12  
16  
Supply Voltage (V)  
20  
24  
28  
32  
36  
40  
ISINK = 1 mA  
ISOURCE = 1 mA  
23. Output Low Voltage vs. Supply Voltage  
24. Output High Voltage vs. Supply Voltage  
10  
1
10  
1
125 °C  
85 °C  
50 °C  
25 °C  
0 °C  
125 °C  
85 °C  
50 °C  
25 °C  
0 °C  
-40 °C  
-40 °C  
100m  
10m  
1m  
100m  
10m  
1m  
100m  
100m  
1 10  
Output Sinking Current (mA)  
100  
100m  
1 10  
Output Sourcing Current (mA)  
100  
VS = 3.3 V  
VS = 3.3 V  
25. Output Voltage vs. Output Sinking Current  
26. Output Voltage vs. Output Sourcing Current  
at 3.3V  
at 3.3V  
10  
版权 © 2018–2020, Texas Instruments Incorporated  
 
TLV1805-Q1  
www.ti.com.cn  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 12 V, VCM = VS/2, and input overdrive = 100 mV (unless otherwise noted)  
10  
10  
125 °C  
85 °C  
50 °C  
25 °C  
0 °C  
125 °C  
85 °C  
50 °C  
25 °C  
0 °C  
1
1
-40 °C  
-40 °C  
100m  
10m  
1m  
100m  
10m  
1m  
100m  
100m  
1 10  
Output Sinking Current (mA)  
100  
100m  
1 10  
Output Sourcing Current (mA)  
100  
VS = 12 V  
VS = 12 V  
27. Output Voltage vs. Output Sinking Current  
28. Output Voltage vs. Output Sourcing Current  
at 12V  
at 12V  
10  
1
10  
125 °C  
85 °C  
50 °C  
25 °C  
0 °C  
125 °C  
85 °C  
50 °C  
25 °C  
0 °C  
1
100m  
10m  
1m  
-40 °C  
-40 °C  
100m  
10m  
1m  
100m  
100m  
1 10  
Output Sinking Current (mA)  
100  
100m  
1 10  
Output Sourcing Current (mA)  
100  
VS = 40 V  
VS = 40 V  
29. Output Voltage vs. Output Sinking Current  
30. Output Voltage vs. Output Sourcing Current  
at 40V  
at 40V  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
3V  
5V  
12V  
24V  
40V  
125°C  
85°C  
25°C  
-40°C  
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
2
6
10  
14  
18  
22  
26  
Supply Voltage (V)  
30  
34  
38  
31. Hysteresis vs. Temperature  
32. Hysteresis vs. Supply Voltage  
版权 © 2018–2020, Texas Instruments Incorporated  
11  
TLV1805-Q1  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 12 V, VCM = VS/2, and input overdrive = 100 mV (unless otherwise noted)  
25  
20  
15  
10  
5
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
Distribution of 2917 Units  
125°C  
85°C  
25°C  
-40°C  
0
0
1
2
3
4
5
6
7
Common Mode Voltage (V)  
8
9
10 11 12  
Hysteresis (mV)  
33. Hysteresis vs Common-Mode Voltage  
34. Hysteresis Histogram  
1000  
1000  
-40 °C  
0 °C  
25 °C  
50 °C  
85 °C  
125 °C  
125 °C  
85 °C  
50 °C  
25 °C  
0 °C  
800  
700  
800  
700  
600  
500  
600  
500  
-40 °C  
400  
300  
400  
300  
200  
200  
100  
100  
20  
30 40 50 70 100 200 300  
Input Overdrive Voltage (mV)  
500 700 1000  
20  
30 40 50 70 100 200 300  
Input Overdrive Voltage (mV)  
500 700 1000  
VS = 3.3 V  
CL = 15pF  
VS = 3.3 V  
CL = 15pF  
35. TPLH Response Time vs. Overdrive  
36. TPHL Response Time vs. Overdrive  
at 3.3V  
at 3.3V  
1000  
1000  
-40 °C  
0 °C  
25 °C  
50 °C  
85 °C  
125 °C  
-40 °C  
0 °C  
25 °C  
50 °C  
85 °C  
125 °C  
800  
700  
800  
700  
600  
500  
600  
500  
400  
300  
400  
300  
200  
200  
100  
100  
20  
30 40 50 70 100 200 300  
Input Overdrive Voltage (mV)  
500 700 1000  
20  
30 40 50 70 100 200 300  
Input Overdrive Voltage (mV)  
500 700 1000  
VS = 5 V  
CL = 15pF  
VS = 5 V  
CL = 15pF  
37. TPLH Response Time vs. Overdrive  
38. TPHL Response Time vs. Overdrive  
at 5V  
at 5V  
12  
版权 © 2018–2020, Texas Instruments Incorporated  
TLV1805-Q1  
www.ti.com.cn  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 12 V, VCM = VS/2, and input overdrive = 100 mV (unless otherwise noted)  
1000  
1000  
-40 °C  
0 °C  
25 °C  
50 °C  
85 °C  
125 °C  
-40 °C  
0 °C  
25 °C  
50 °C  
85 °C  
125 °C  
800  
700  
800  
700  
600  
500  
600  
500  
400  
300  
400  
300  
200  
200  
100  
100  
20  
30 40 50 70 100 200 300  
Input Overdrive Voltage (mV)  
500 700 1000  
20  
30 40 50 70 100 200 300  
Input Overdrive Voltage (mV)  
500 700 1000  
VS = 12 V  
CL = 15pF  
VS = 12 V  
CL = 15pF  
39. TPLH Response Time vs.  
40. TPHL Response Time vs. Overdrive  
Overdrive at 12V  
at 12V  
2000  
1000  
2000  
1000  
-40 °C  
0 °C  
25 °C  
50 °C  
85 °C  
125 °C  
-40 °C  
0 °C  
25 °C  
50 °C  
85 °C  
125 °C  
800  
700  
800  
700  
600  
500  
600  
500  
400  
300  
400  
300  
200  
200  
20  
30 40 50 70 100 200 300  
Input Overdrive Voltage (mV)  
500 700 1000  
20  
30 40 50 70 100 200 300  
Input Overdrive Voltage (mV)  
500 700 1000  
VS = 40 V  
CL = 15pF  
VS = 40 V  
CL = 15pF  
41. TPLH Response Time vs. Overdrive  
42. TPHL Response Time vs. Overdrive  
at 40V  
at 40V  
1000  
900  
1000  
900  
-40 °C  
0 °C  
25 °C  
50 °C  
85 °C  
125 °C  
800  
700  
800  
700  
600  
500  
600  
500  
-40 °C  
0 °C  
25 °C  
50 °C  
85 °C  
125 °C  
400  
400  
300  
300  
20  
30 40 50 70 100 200 300  
Input Overdrive Voltage (mV)  
500 700 1000  
20  
30 40 50 70 100 200 300  
Input Overdrive Voltage (mV)  
500 700 1000  
VS = 3.3 V  
CL = 4nF  
VS = 3.3 V  
CL = 4nF  
43. TPLH Response Time vs. Overdrive  
44. TPHL Response Time vs. Overdrive  
at 3.3V  
at 3.3V  
版权 © 2018–2020, Texas Instruments Incorporated  
13  
TLV1805-Q1  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 12 V, VCM = VS/2, and input overdrive = 100 mV (unless otherwise noted)  
1000  
1000  
125 °C  
85 °C  
50 °C  
25 °C  
0 °C  
125 °C  
85 °C  
50 °C  
25 °C  
0 °C  
900  
900  
800  
700  
800  
700  
-40 °C  
-40 °C  
600  
500  
600  
500  
400  
400  
300  
300  
20  
30 40 50 70 100 200 300  
Input Overdrive Voltage (mV)  
500 700 1000  
20  
30 40 50 70 100 200 300  
Input Overdrive Voltage (mV)  
500 700 1000  
VS = 5 V  
CL = 4nF  
VS = 5 V  
CL = 4nF  
45. TPLH Response Time vs. Overdrive  
46. TPHL Response Time vs. Overdrive  
at 5V  
at 5V  
1000  
900  
1000  
900  
125 °C  
125 °C  
85 °C  
50 °C  
25 °C  
0 °C  
85 °C  
50 °C  
25 °C  
0 °C  
800  
700  
800  
700  
-40 °C  
-40 °C  
600  
500  
600  
500  
400  
400  
300  
300  
20  
30 40 50 70 100 200 300  
Input Overdrive Voltage (mV)  
500 700 1000  
20  
30 40 50 70 100 200 300  
Input Overdrive Voltage (mV)  
500 700 1000  
VS = 12 V  
CL = 4nF  
VS = 12 V  
CL = 4nF  
47. TPLH Response Time vs.  
48. TPHL Response Time vs. Overdrive  
Overdrive at 12V  
at 12V  
3000  
2000  
3000  
2000  
125 °C  
85 °C  
50 °C  
25 °C  
0 °C  
125 °C  
85 °C  
50 °C  
25 °C  
0 °C  
-40 °C  
-40 °C  
1000  
900  
1000  
900  
800  
800  
700  
600  
700  
600  
500  
500  
20  
30 40 50 70 100 200 300  
Input Overdrive Voltage (mV)  
500 700 1000  
20  
30 40 50 70 100 200 300  
Input Overdrive Voltage (mV)  
500 700 1000  
VS = 40 V  
CL = 4nF  
VS = 40 V  
CL = 4nF  
49. TPLH Response Time vs. Overdrive  
50. TPHL Response Time vs. Overdrive  
at 40V  
at 40V  
14  
版权 © 2018–2020, Texas Instruments Incorporated  
TLV1805-Q1  
www.ti.com.cn  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 12 V, VCM = VS/2, and input overdrive = 100 mV (unless otherwise noted)  
1000  
1000  
500  
500  
300  
200  
300  
200  
100  
100  
50  
50  
30  
20  
30  
20  
10  
10  
125 °C  
85 °C  
25 °C  
- 40°C  
125 °C  
85 °C  
25 °C  
-40 °C  
5
5
3
2
3
2
1
0.01 0.02  
1
0.01 0.02  
0.05 0.1 0.2 0.3 0.5  
Capacitive Load (nF)  
1
2
3 4 567 10  
0.05 0.1 0.2 0.3 0.5  
Capacitive Load (nF)  
1
2
3 4 567 10  
VS = 3.3 V  
VS = 3.3 V  
51. tRISE vs. Capacitive Load  
52. tFALL vs. Capacitive Load  
at 3.3V  
at 3.3V  
1000  
500  
1000  
500  
300  
200  
300  
200  
100  
100  
50  
50  
30  
20  
30  
20  
10  
10  
125 °C  
85 °C  
25 °C  
- 40°C  
125 °C  
85 °C  
25 °C  
-40 °C  
5
5
3
2
3
2
1
0.01 0.02  
1
0.01 0.02  
0.05 0.1 0.2 0.3 0.5  
Capacitive Load (nF)  
1
2
3 4 567 10  
0.05 0.1 0.2 0.3 0.5  
Capacitive Load (nF)  
1
2
3 4 567 10  
VS = 5 V  
VS = 5 V  
53. tRISE vs. Capacitive Load  
54. tFALL vs. Capacitive Load  
at 5V  
at 5V  
1000  
500  
1000  
500  
300  
200  
300  
200  
100  
100  
50  
50  
30  
20  
30  
20  
10  
10  
125 °C  
85 °C  
25 °C  
- 40°C  
125 °C  
85 °C  
25 °C  
-40 °C  
5
5
3
2
3
2
1
0.01 0.02  
1
0.01 0.02  
0.05 0.1 0.2 0.3 0.5  
Capacitive Load (nF)  
1
2
3 4 567 10  
0.05 0.1 0.2 0.3 0.5  
Capacitive Load (nF)  
1
2
3 4 567 10  
VS = 12 V  
VS = 12 V  
55. tRISE vs. Capacitive Load  
56. tFALL vs. Capacitive Load  
at 12V  
at 12V  
版权 © 2018–2020, Texas Instruments Incorporated  
15  
TLV1805-Q1  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 12 V, VCM = VS/2, and input overdrive = 100 mV (unless otherwise noted)  
3000  
2000  
3000  
2000  
1000  
500  
1000  
500  
200  
100  
50  
200  
100  
50  
20  
10  
5
20  
10  
5
125 °C  
85 °C  
25 °C  
- 40°C  
125 °C  
85 °C  
25 °C  
-40 °C  
2
1
2
1
0.01 0.02  
0.05 0.1 0.2 0.3 0.5  
Capacitive Load (nF)  
1
2
3 4 567 10  
0.01 0.02  
0.05 0.1 0.2 0.3 0.5  
Capacitive Load (nF)  
1
2
3 4 567 10  
VS = 40 V  
VS = 40 V  
57. tRISE vs. Capacitive Load  
58. tFALL vs. Capacitive Load  
at 40V  
at 40V  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
-40 °C  
25 °C  
85 °C  
125 °C  
-40 °C  
25 °C  
85 °C  
125 °C  
0
4
8
12  
16  
Supply Voltage (V)  
20  
24  
28  
32  
36  
40  
0
4
8
12  
16  
Supply Voltage (V)  
20  
24  
28  
32  
36  
40  
59. Turn-On Time vs Supply Voltage  
60. Turn-Off Time vs Supply Voltage  
110  
100  
90  
3
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
-40 °C  
0 °C  
25 °C  
85 °C  
125 °C  
80  
70  
60  
50  
40  
30  
20  
0
5
10  
15  
20  
25  
Supply Voltage (V)  
30  
35  
40  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
61. Start-Up Time vs Supply Voltage  
62. Power On Reset Voltage vs. Temperature  
16  
版权 © 2018–2020, Texas Instruments Incorporated  
TLV1805-Q1  
www.ti.com.cn  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
7 Detailed Description  
7.1 Overview  
The TLV1805-Q1 comparator features a rail-to-rail inputs with a push-pull output stage that operates at supply  
voltages as high as 40 V or ±20 V. The rail-to-rail input stage enables detection of signals close to the supply  
and ground while the push-pull output stage creates fast transition edges to either supply rail. A low supply  
current of 135 μA per channel with small, space-saving packages, makes these comparators versatile for use in  
a wide range of applications, from portable to industrial.  
7.2 Functional Block Diagram  
VCC  
IN+  
IN-  
+
OUT  
œ
SHDN  
Bias  
Power-on-reset  
GND  
7.3 Feature Description  
7.3.1 Rail to Rail Inputs  
The TLV1805-Q1 comparator features a CMOS input with a common-mode range that includes both supply rails.  
The TLV1805-Q1 is designed to prevent phase inversion when the input pins exceed the supply voltage.  
7.3.2 Power On Reset  
The TLV1805-Q1 incorporates a power-on reset that holds the output in a High-Z state until the minimum  
operating supply voltage has been reached for at least 20µs. After this time the output will start responding to the  
inputs. This feature prevents false outputs during power-up and power-down.  
7.3.3 High Power Push-Pull Output  
The push-pull output stage, which is unique for high-voltage comparators, offers the advantage of allowing the  
output to actively drive the load to either supply rail with a fast edge rate. A high output sink and source peak  
current of over 100mA allows quickly charging and dis-cahrging capacitive loads such as cables and power  
MOSFET gates. Caution must be taken to ensure that the package power dissipation is not exceeded when  
switching at these high supply voltages. See 22 for the output current derating curve.  
7.3.4 Shutdown Function  
The TLV1805-Q1 has a logic level SHDN input. When the shutdown SHDN input is 1.4V above V-, the TLV1805-  
Q1 is disabled. When disabled, the output becomes high impedance (Hi-Z), and the supply current drops to  
below 10µA. The input bias current remains unchanged. Voltages may still be applied to the comparator inputs  
as long as V+ power is still applied and the applied input voltages are still within the specified input voltage  
range.  
版权 © 2018–2020, Texas Instruments Incorporated  
17  
TLV1805-Q1  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
www.ti.com.cn  
Feature Description (接下页)  
CAUTION  
The maximum voltage on the shutdown pin is +5.5V referred to V-, regardless of  
supply voltage. Connect the SHDN pin to V- if shutdown is not used. Do not float the  
SHDN pin.  
A high value pull-up or pull-down resistor on the output may be required if a specific logic level is required during  
shutdown (when the output is High-Z). This prevents logic inputs from floating to illegal states when the  
comparator output is in High-Z mode.  
Since the Shutdown threshold voltage is a tested parameter, the shutdown pin can also be used as a second  
comparison input to provide a secondary measurment, such as overvoltage monitoring, as shown in the P-  
Channel Reverse Current Protection With Overvotlage Protection circuit.  
7.3.5 Internal Hysteresis  
The TLV1805-Q1 contains 14mV of internal hysteresis.  
The hysteresis transfer curve is shown in 63. This curve is a function of three components: VTH, VOS, and  
VHYST  
:
VTH is the actual set voltage or threshold trip voltage.  
VOS is the internal offset voltage between VIN+ and VIN–. This voltage is added to VTH to form the actual trip  
point at which the comparator must respond to change output states.  
VHYST is the internal hysteresis (or trip window) that is designed to reduce comparator sensitivity to noise  
(14 mV for the TLV1805-Q1).  
VTH + VOS - (VHYST / 2)  
VTH + VOS  
VTH + VOS + (VHYST / 2)  
63. Hysteresis Transfer Curve  
7.4 Device Functional Modes  
7.4.1 External Hysteresis  
External Hysteresis may be added to further improve response to noisy or slow-moving input signals.  
18  
版权 © 2018–2020, Texas Instruments Incorporated  
 
TLV1805-Q1  
www.ti.com.cn  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
Device Functional Modes (接下页)  
7.4.1.1 Inverting Comparator With Hysteresis  
+VCC  
+5 V  
R1  
1 MW  
VIN  
5 V  
0 V  
RLOAD  
VA  
VO  
100 kW  
VA2  
1.67 V  
VA1  
3.33 V  
R3  
1 MW  
VIN  
R2  
1 MW  
VO High  
+VCC  
VO Low  
+VCC  
R1  
VA1  
R2  
R3  
R1  
VA2  
R2  
R3  
Copyright © 2016, Texas Instruments Incorporated  
64. TLV1805-Q1 in an Inverting Configuration With Hysteresis  
The inverting comparator with hysteresis requires a three-resistor network that is referenced to the comparator  
supply voltage (VCC), as shown in 64. When VIN at the inverting input is less than VA, the output voltage is  
high (for simplicity, assume VO switches as high as VCC). The three network resistors can be represented as R1  
|| R3 in series with R2. 公式 1 defines the high-to-low trip voltage (VA1).  
R2  
VA1 = VCC  
´
(R1 || R3) + R2  
(1)  
When VIN is greater than VA, the output voltage is low, very close to ground. In this case, the three network  
resistors can be presented as R2 || R3 in series with R1. Use 公式 2 to define the low to high trip voltage (VA2).  
R2 || R3  
VA2 = VCC ´  
R1 + (R2 || R3)  
(2)  
(3)  
公式 3 defines the total hysteresis provided by the network.  
DVA = VA1 - VA2  
版权 © 2018–2020, Texas Instruments Incorporated  
19  
 
 
 
 
TLV1805-Q1  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
www.ti.com.cn  
Device Functional Modes (接下页)  
7.4.1.2 Noninverting Comparator With Hysteresis  
+VCC  
+5 V  
VREF  
VO  
+2.5 V  
VA  
VIN  
RLOAD  
R1  
330 kW  
R2  
1 MW  
VO High  
+VCC  
VO Low  
VIN1  
5 V  
0 V  
R2  
R1  
VA = VREF  
R2  
VO  
VA = VREF  
R1  
VIN2  
VIN1  
1.675 V 3.325 V  
VIN  
VIN2  
Copyright © 2016, Texas Instruments Incorporated  
65. TLV1805-Q1 in a Noninverting Configuration With Hysteresis  
A noninverting comparator with hysteresis requires a two-resistor network, as shown in 65, and a voltage  
reference (VREF) at the inverting input. When VIN is low, the output is also low. For the output to switch from low  
to high, VIN must rise to VIN1. Use 公式 4 to calculate VIN1  
VREF  
.
VIN1 = R1 ´  
+ VREF  
R2  
(4)  
When VIN is high, the output is also high. For the comparator to switch back to a low state, VIN must drop to VIN2  
such that VA is equal to VREF. Use 公式 5 to calculate VIN2  
VREF (R1 + R2) - VCC ´ R1  
.
VIN2  
=
R2  
(5)  
(6)  
The hysteresis of this circuit is the difference between VIN1 and VIN2, as shown in 公式 6.  
R1  
DVIN = VCC  
´
R2  
20  
版权 © 2018–2020, Texas Instruments Incorporated  
 
 
 
 
TLV1805-Q1  
www.ti.com.cn  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TLV1805-Q1 family of devices can be used in a wide variety of applications, such as MOSFET gate drivers,  
zero crossing detectors, window comparators, over and undervoltage detectors, and high-side voltage sense  
circuits.  
8.2 Typical Applications  
Comparators are used to differentiate between two different signal levels. For example, a comparator  
differentiates between an over-temperature and normal-temperature condition. However, noise or signal variation  
at the comparison threshold causes multiple transitions. This application example sets upper and lower  
hysteresis thresholds to eliminate the multiple transitions caused by noise.  
R
H
576 kΩ  
5 V  
5 V  
R
X
V
+
100 kΩ  
OUT  
œ
R
Y
+
100 kΩ  
œ
V
IN  
66. Comparator with Hysteresis  
8.2.1 Design Requirements  
The design requirements are as follows:  
Supply voltage: 5 V  
Input: 0 V to 5 V  
Lower threshold (VL) = 2.3 V ±0.1 V  
Upper threshold (VH) = 2.7 V ±0.1 V  
VH – VL = 2.4 V ±0.1 V  
Low-power consumption  
8.2.2 Detailed Design Procedure  
A small change to the comparator circuit can be made to add hysteresis. Hysteresis uses two different threshold  
voltages to avoid the multiple transitions introduced in the previous circuit. The input signal must exceed the  
upper threshold (VH) to transition low, or below the lower threshold (VL) to transition high.  
66 illustrates hysteresis on a comparator. Resistor RH sets the hysteresis level.  
When the output is at a logic high (5 V), RH is in parallel with RX. This configuration drives more current into Ry,  
and raises the threshold voltage (VH) to 2.7 V. The input signal must drive above VH = 2.7 V to cause the output  
to transition to logic low (0 V).  
版权 © 2018–2020, Texas Instruments Incorporated  
21  
 
TLV1805-Q1  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
www.ti.com.cn  
Typical Applications (接下页)  
When the output is at logic low (0 V), Rh is in parallel with Ry. This configuration reduces the current into Ry, and  
reduces the threshold voltage to 2.3 V. The input signal must drive below VL = 2.3 V to cause the output to  
transition to logic high (5 V).  
For more details on this design, refer to Precision Design TIPD144, Comparator with Hysteresis Reference  
Design.  
8.2.3 Application Curve  
67 shows the upper and lower thresholds for hysteresis. The upper threshold is 2.76 V and the lower  
threshold is 2.34 V, both of which are close to the design target.  
67. TLV1805-Q1 Upper and Lower Threshold with Hysteresis  
22  
版权 © 2018–2020, Texas Instruments Incorporated  
 
TLV1805-Q1  
www.ti.com.cn  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
Typical Applications (接下页)  
8.2.4 Reverse Current Protection Using MOSFET and TLV1805-Q1  
An N-Channel or P-Channel MOSFET may be used to protect against reverse current. Reverse current is  
defined as current flowing from the load (VLOAD) to the source (VBATT). Both the P-Channel and N-Channel  
circuits work on the same basic principle, where a comparator monitors the voltage across the MOSFET's  
Source and Drain terminals (monitoring VDS). The described circuits also protect against reverse voltage.  
MOSFET  
Intrinsic  
Body Diode  
—Off“  
VBATT  
VLOAD  
Source  
Drain  
—On“  
R
DS(ON)  
Gate  
+
Load  
Battery  
68. Simplified Operational Theory  
When the current is flowing from the battery (VBATT) to the load (VLOAD), the battery voltage will be higher than  
the load voltage due to voltage drop across the MOSFET caused by the RDS(ON) or the intrinsic body diode  
forward voltage drop. The comparator will detect this and turn "on" the MOSFET so that the load current is now  
flowing through the low loss RDS(ON) path.  
In a reverse current condition, VLOAD will be higher than VBATT. The comparator will detect this and drive the gate  
to set VGS = 0 to turn "off" the MOSFET (non-conducting). The body diode is reverse biased and will block  
current flow.  
For a P-Channel MOSFET, the gate must be driven at least 4V or more below the battery voltage to turn "on" the  
MOSFET.  
For a N-Channel MOSFET, the gate must be driven 4V or more above the battery voltage to turn "on" the  
MOSFET. If a higher voltage is not available in the system, a charge pump is usually required to generate a  
voltage higher than the battery voltage to provide the necessary positive gate drive voltage.  
8.2.4.1 Minimum Reverse Current  
There is a minimum amount of reverse current that is needed to trip the comparator. To detect this reverse  
current, a voltage must be dropped across the MOSFET (VMEAS).  
When the MOSFET is off, VGS will be in the -600mV to -1V range due to the forward voltage drop (VF) of the  
MOSFET body diode. Response to this large voltage will be immediate.  
However, with the MOSFET "on" (conducting), the current required to create the trip voltage will be much  
greater. The trip voltage drop required across the MOSFET RDS(ON) will be the comparator offset voltage plus half  
of the hysteresis.  
The maximum offset voltage of the TLV1805-Q1 is 5mV with a typical hysteresis of 14mV. The trip voltage can  
be calculated from:  
VTRIP = VOS(max) + ( VHYST / 2) = 5 mV + 7 mV = 12 mV  
(7)  
The actual current trip point will depend on the MOSFET RDS(ON) and VGS drive level. Assuming the MOSFET  
has a 22 mΩ on resistance, the trip current is found from:  
ITRIP = VTRIP / RDS(ON) = 12 mV / 22 mΩ = 546mA  
(8)  
23  
版权 © 2018–2020, Texas Instruments Incorporated  
TLV1805-Q1  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
www.ti.com.cn  
Typical Applications (接下页)  
8.2.4.2 N-Channel Reverse Current Protection Circuit  
In order to turn "on" the N-Channel MOSFET, the MOSFET gate must be brought "High" above VBATT. If a higher  
voltage is not available, a charge pump circuit is required to provide the comparator with a supply voltage above  
VBATT  
.
J1  
External Clock  
Input  
Charge  
Pump  
R2  
Comparator  
Supply Clamp  
Clock  
Select  
EXT  
INT  
C1  
D2  
10 kΩ  
R1  
U1  
TLV1805-Q1  
47 Ω  
Q1  
SQ4850EY  
N-Channel  
100V  
1µF  
BAT46  
D3  
15 V  
3
4
6
œ
R3  
1
C3  
35V  
10µF  
+
47 Ω  
G
C2  
100V  
1µF  
2
5
R4  
100 kΩ  
D4  
BAT64  
D1  
BAT64  
VBATT_NCH  
VLOAD_OUT_NCH  
D
S
Input  
Protection  
Internal Oscillator Output œ 10kHz  
JP1  
Short  
C6  
50V  
Oscillator Supply  
C4  
50V  
0.22µF  
D5  
SMAJ28CA  
0.22µF  
D6  
DB2430100L  
C7  
50V  
0.22µF  
R7  
56 kΩ  
R6  
56 kΩ  
R5  
56 kΩ  
Oscillator  
Circuit  
GND  
GND  
3
6
œ
1
+
2
U2  
TLV1805-Q1  
4
5
C5  
1nF  
R8  
56 kΩ  
69. N-Channel Reverse Current Schematic with Oscillator  
C1, D1, D2 & C2 form the charge pump. The AC drive signal is applied through C1 into the charge pump. The  
result is a voltage across C2 that is approximately equal to the peak-to-peak amplitude of the AC waveform,  
minus 700mV. If a 12Vpp waveform is applied to the C1 input, 11.3V will be generated across C2. This voltage is  
on top of the VBATT voltage, so the voltage seen from the D2-C2 junction ground is 23.3V. This provides the  
needed higher voltage to drive the MOSFET and power the comparator.  
An external oscillator source may be used, such as the gate drive output of a switcher, system clock or any  
avaialbe clock source in the 1kHz to 10MHz range. The charge pump should be fed by a 50 percent duty cycle  
square wave source of 5Vpp or more. Since the input capacitor of the charge-pump effectively AC-couples the  
input, the oscillator may be ground referenced.  
R1 and D3 form the comparator supply clamp to limit the gate drive to prevent exceeding the VGS(MAX) of the  
MOSFET during an overvotlage event. R1 must be sized to dissapate any expected overvoltage.  
D4 and R2 clamp the input should VBATT drop below VLOAD (as in a supply reversal).  
The output diode D6 is used to anchor the output during light or floating loads. At light or no loads, there is a  
possibility the MOSFET could turn on due to the comparator offset voltage. The diode provides enough of a  
negative leakage to turn the MOSFET off.  
8.2.4.2.1 N-Channel Oscillator Circuit  
The oscillation frequency is determined by R5 and C5. The default configuration oscillates around 10kHz  
(depending on RC component tolerances). For further information on selecting these RC values, please see the  
Engineers Cookbook Circuit entitled Oscillator Circuit (SNOA990). Do note that R5 does present an AC load to  
the oscillator output, and should be sized appropriately to minimize the peak charging currents of C5 (use large  
resistors and small capacitors).  
24  
版权 © 2018–2020, Texas Instruments Incorporated  
TLV1805-Q1  
www.ti.com.cn  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
Typical Applications (接下页)  
The output amplitude is roughly equivalent to the VLOAD voltage minus the TLV1805-Q1 output saturation  
(approximately 300mV). With a maximum supply voltage of 40V for the TLV1805-Q1, the oscillator circuit is  
capable of generating up to 39Vpp!  
The TLV1805-Q1 oscillator typically starts oscillating when VLOAD reaches 2.8V, though full specified operation  
does not occur until 3.3V.  
For more information, please see the TLV1805-Q1 Evaluation Module Users Guide TLV1805-Q1 Evaluation  
Module Users Guide (SNOU158).  
8.2.5 P-Channel Reverse Current Protection Circuit  
70 shows the P-Channel circuit. In order to turn "on" the P-Channel MOSFET, the gate must be brought "Low"  
below VBATT . To accomplish this, the comparators Inverting input is tied to the battery side of the MOSFET to set  
the output low during forward current.  
R2  
47 Ω  
Q1  
SQJ459EP  
P-Channel  
G
R3  
100 kΩ  
VBATT_PCH  
VLOAD_OUT_PCH  
S
D
U1  
TLV1805-Q1  
6
Input  
Protection  
4
+
C2  
50V  
0.22µF  
1
C1  
25V  
10µF  
R1  
10 kΩ  
3
œ
2
D1  
SMAJ28CA  
5
D5  
DB2430100L  
D3  
15 V  
D2  
BAT64  
C3  
50V  
0.22µF  
GND  
GND  
D4  
BAT64  
R4  
560 Ω  
70. P-Channel Reverse Current Schematic  
This design implements a "floating ground" topology, using D3, D4 and R12, to allow for clamping the  
comparator supply voltage as to not exceed the VGS(MAX) of the MOSFET. During a reverse voltage or supply  
drop, D4 also prevents C1 from discharging to allow some standby time to keep the comparator powered during  
the event.  
During "normal" forward current operation, the quiescent current of the comparator circuit flows through D4 and  
R4. D3 provides the clamping during an overvoltage event.  
R4 is sized to allow for minimum voltage drop during "normal" operation, but also to allow for dissipation during  
overvoltage events. R4 will see the battery voltage minus the D3 Zener voltage during an overvoltage event.  
Since the comparator supply voltage is clamped by D3, the maximum battery voltage is determined by the power  
dissipated by R4 and the VDS(MAX) of the MOSFET.  
R2 limits the gate current should there be any transients and should be a low value to allow the peak currents  
needed to drive the MOSFET gate capacitance. R3 provides the pull-down needed when the comparator output  
goes high-Z during power-off to ensure the gate is pulled to zero volts to turn off the MOSFET.  
R1 and D2 clamp the input voltage should the VBATT input go below the floating ground Voltage (such as in a  
battery reversal). A bonus feature is that during a reverse battery voltage condition, D2 and R1 pull the floating  
ground down towards the negative potential, providing power to the comparator during reverse voltage.  
The output clamp diode D5 is used to anchor the output during light or floating loads. At light or no loads, there is  
a possibility the MOSFET could turn on due to the comparator offset voltage. The diode provides enough of a  
negative leakage to turn the MOSFET off.  
版权 © 2018–2020, Texas Instruments Incorporated  
25  
 
TLV1805-Q1  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
www.ti.com.cn  
Typical Applications (接下页)  
If shutdown of the comparator circuit is desired, a transistor or MOSFET switch can be placed between the  
ground end of R4 and ground. The MOSFET will be in body diode mode when the comparator is disabled.  
8.2.6 P-Channel Reverse Current Protection With Overvotlage Protection  
The SHDN pin can be utilized to add Overvotlage Protection (OVP) by adding a second MOSFET, zener diode  
and resistor, as shown in 71.  
G
G
R2  
100 kΩ  
R3  
22 Ω  
Q1  
P-Channel  
Q2  
P-Channel  
VBATT  
VLOAD_OUT  
S
D
S
D
U1  
TLV1805-Q1  
6
1
2
C1  
50V  
1µF  
4
+
R1  
10 kΩ  
3
œ
5
ZD1  
13 V  
GND  
GND  
Shutdown when > 1.35V  
RPD  
13.7 kΩ  
71. Adding Overvoltage Protection Using SHDN Pin  
When the SHDN pin is pulled 1.35 V above V-, the comparator is placed in shutdown. During shutdown, the  
comparator output goes Hi-Z and R2 pulls the gate and source together to turn off the MOSFET (VGS = 0 V).  
RPD pulls the SHDN pin low while the Zener diode is not conducting (< VZ). When ZD1 reaches its breakdown  
voltage and starts conducting, it will pull RPD up to a voltage calculated to place >1.35 V on the shutdown pin.  
The Zener diode ZD1 should be chosen so that the breakdown voltage (VB) is 1.35 V below the desired  
overvoltage point. The Zener should have low sub-threshold leakage and a sharp knee, such as the low power  
1N47xx or BZD series.  
The pull-down resistor RPD should be chosen to create 1.35 V at the desired Zener diode current (usually 100uA  
to 1mA) at the Zener breakdown voltage. Actual resistor value should be verified on the bench due to differences  
in actual Zener diode threshold voltages.  
If a 14.3 V overvotlage trip point (OVP) is desired, the Zener Diode voltage should be 12.95 V. We will choose a  
100uA Zener current. The required Zener diode breakdown voltage is determined from:  
VB = VOV - 1.35 V = 14 .3V - 1.35 V = 12.95 V  
(9)  
RPD = 1.35 V / 100 µA = 13.5 kΩ (13.7kΩ nearest value)  
(10)  
Resistor RPD may be split into two resistors to create a voltage divider if more precise trip points are needed, or  
a more convenient zener voltage is desired. Series voltage references can also be used if more accuracy is  
desired. A second resistor in series with the Zener or reference can extend the breakdown voltage.  
The maximum voltage allowed on the Shutdown pin is 5.5V, so make sure the highest VBATT voltage does not  
exceed 5.5 V.  
Note that the above circuit, as shown for simplicity, does not protect against reverse voltage. Reverse clamping  
diodes would be needed on the -IN, SHDN and Load Output. Also make sure VBATT does not exceed the  
VGS(MAX) of the MOSFET.  
26  
版权 © 2018–2020, Texas Instruments Incorporated  
 
TLV1805-Q1  
www.ti.com.cn  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
Typical Applications (接下页)  
8.2.7 ORing MOSFET Controller  
The previous reverse current circuits may be combined to create an OR'ing supply controller, utilizing either the  
P-Channel or N-Channel topologies.  
For the previous P-Channel circuit, if no negative input voltages are possible, and the input voltage is below the  
MOSFET's VGS(MAX) , then D3, D4 and R4 may be eliminated (the D2 anode, U1 pins 2 and 5, and C1 can be  
directly grounded).  
For the N-Channel circuit, the oscillator drive can be shared between the channels, or eliminated if a higher  
system voltage is available to provide the higher votlage.  
Charge Pump  
Gate  
Drive  
+
TLV1805-Q1  
+
SD  
Q1  
-
Power  
Supply  
#1  
Charge Pump  
System  
Gate  
Power  
Drive  
+
TLV1805-Q1  
+
SD  
Q2  
-
Power  
Supply  
#2  
72. N-Channel OR'ing MOSFET Controller  
版权 © 2018–2020, Texas Instruments Incorporated  
27  
TLV1805-Q1  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
www.ti.com.cn  
9 Power Supply Recommendations  
The TLV1805-Q1 family of devices is specified for operation from 3.3 V to 40 V (±1.65 to ±20 V); many  
specifications apply from –40°C to +125°C. Parameters that can exhibit significant variance with regard to  
operating voltage or temperature are presented in the Typical Characteristics section.  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device; see the  
Recommended Operating Conditions section.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement; see the Layout  
Guidelines section.  
The TLV1805-Q1 does not contain reverse battery protection, so applying negative voltage to the supply pins  
must be avoided. The TLV1805-Q1 cannot withstand ISO 16750 type waveforms alone and requires external  
protection circuitry.  
10 Layout  
10.1 Layout Guidelines  
Comparators are very sensitive to input noise. For best results, maintain the following layout guidelines:  
Use a printed circuit board (PCB) with a good, unbroken low-inductance ground plane. Proper grounding (use  
of ground plane) helps maintain specified performance of the TLV1805-Q1 family of devices.  
To minimize supply noise, place a decoupling capacitor (0.1-μF ceramic, surface-mount capacitor) as close  
as possible to VS as shown in 73.  
On the inputs and the output, keep lead lengths as short as possible to avoid unwanted parasitic feedback  
around the comparator. Keep inputs away from the output.  
Solder the device directly to the PCB rather than using a socket.  
Run the ground pin ground trace under the device up to the bypass capacitor, shielding the inputs from the  
outputs.  
10.2 Layout Example  
73. Oscillator Circuit Layout Example  
28  
版权 © 2018–2020, Texas Instruments Incorporated  
 
 
TLV1805-Q1  
www.ti.com.cn  
ZHCSJD8B AUGUST 2018REVISED JANUARY 2020  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
精密设计,《具有迟滞功能的比较器参考设计》- TIDU020  
参考设计,《窗口比较器参考设计》- TIPD178  
应用报告,《在反向电流 应用中使用比较器》- SNOAA23  
应用报告,《TLV1805-Q1 EVM ISO 测试结果》- SNOAA13  
EVM 用户指南,《TLV1805-Q1 反向电流评估模块用户指南》- SNOU158  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018–2020, Texas Instruments Incorporated  
29  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV1805QDBVRQ1  
ACTIVE  
SOT-23  
DBV  
6
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
1ULF  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Feb-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV1805QDBVRQ1  
SOT-23  
DBV  
6
3000  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Feb-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOT-23 DBV  
SPQ  
Length (mm) Width (mm) Height (mm)  
210.0 185.0 35.0  
TLV1805QDBVRQ1  
6
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TLV1805DBVR

具有推挽输出和关断模式的高电压比较器 | DBV | 6 | -40 to 125
TI

TLV1805QDBVRQ1

具有推挽输出和关断模式的汽车级高电压比较器 | DBV | 6 | -40 to 125
TI

TLV1811

具有推挽输出的单通道、微功耗高压比较器
TI

TLV1811-Q1

具有失效防护功能的汽车级、40V、低功耗、推挽、单路比较器
TI

TLV1811DBVR

具有推挽输出的单通道、微功耗高压比较器 | DBV | 5 | -40 to 125
TI

TLV1811LDBVR

具有推挽输出的单通道、微功耗高压比较器 | DBV | 5 | -40 to 125
TI

TLV1812

双路微功耗高电压比较器
TI

TLV1812-Q1

汽车类双路微功耗高压比较器
TI

TLV1812DR

双路微功耗高电压比较器 | D | 8 | -40 to 125
TI

TLV1812QDRQ1

汽车类双路微功耗高压比较器 | D | 8 | -40 to 125
TI

TLV1821

具有开漏输出的单通道、微功耗高压比较器
TI

TLV1821-Q1

具有开漏输出的汽车类、单通道、微功耗高压比较器
TI