TLV1861DBVR [TI]

具有开漏输出的单路毫微功耗高压比较器 | DBV | 5 | -40 to 125;
TLV1861DBVR
型号: TLV1861DBVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有开漏输出的单路毫微功耗高压比较器 | DBV | 5 | -40 to 125

高压 比较器
文件: 总31页 (文件大小:1449K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV1861  
ZHCSOE4 DECEMBER 2022  
TLV185x TLV186x 40V 毫微功耗比较器  
所有器件均具有上电复位 (POR) 特性这可确保输出  
处于已知状态直到达到最小电源电压然后输出才对  
输入做出响应从而防止系统上电和断电期间出现错误  
输出。  
1 特性  
• 低电源电流每通440nA  
• 宽电源电压范围1.8V 40V  
• 过轨输入共模范围(V-) 40V(V+) 无关  
• 失效防护输入无电源时为高阻抗输入  
• 内部上电复位可提供已知的启动条件  
• 过驱动输入无相位反转  
输入具有过轨功能其中两个输入均可超过电源电压高  
40V并且仍能正常运行。这使得比较器非常适合  
高电源电压和低电源电压系统而不会限制可比较的输  
入电压范围。同样内部反向电池保护功能可防止电源  
引脚上的电池安装不当时损坏比较器。  
• 高40V 的反向电池保护  
• 推挽输出选(TLV185x)  
TLV185x 比较器具有推挽输出级TLV186x 比较器  
具有开漏输出级因此适用于电平转换。  
• 开漏输出选(TLV186x)  
• 温度范围-40°C +125°C  
器件信息  
封装(1)  
2 应用  
封装尺寸标称值)  
器件型号  
TLV1851  
移动电话和平板电脑  
耳麦/耳机和耳塞  
PC 和笔记本电脑  
气体检测仪  
烟雾和热量探测器  
运动检测器  
燃气表  
1.60mm x 2.90mm  
SOT-23 (5)预发布)  
SOT-23 (5)  
TLV1861  
3.91mm × 4.90mm  
3.00mm × 3.00mm  
2.00mm × 2.00mm  
1.60mm × 2.90mm  
SOIC (8)预发布)  
VSSOP (8)预发布)  
WSON (8)预发布)  
SOT-23 (8)预发布)  
SOIC (14)预发布)  
TLV1852TLV1862  
伺服驱动器位置传感器  
3.91 mm x 8.65 mm  
4.40mm × 5.00mm  
3 说明  
TSSOP (14)预发  
)  
TLV1854TLV1864  
TLV185x TLV186x 40V 毫微功耗比较器系列具  
有单通道、双通道和四通道选项。该系列提供具有推挽  
和开漏输出选项的失效防护 (FS) 输入。这些特性与在  
1.8V 40V 宽电源电压范围内的毫微功耗运行相结  
使此系列非常适合在低功耗、常开系统中的电压和  
4.20mm x 2.00mm  
3.00mm × 3.00mm  
SOT-23 (14)预发  
)  
WQFN (16)预发布)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
温度监测等辅助控制功能。  
V+  
Open-Drain  
only  
IN+  
IN-  
+
-
Output  
Control  
OUT  
SNAPBACK  
ESD  
CLAMPS  
V-  
V-  
V-  
Power-On  
Reset  
Bias  
V-  
电源电流与电源电压间的关系  
方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNOSDE7  
 
 
 
 
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................15  
7.4 Device Functional Modes..........................................15  
8 Application and Implementation..................................19  
8.1 Application Information............................................. 19  
8.2 Typical Applications.................................................. 22  
8.3 Power Supply Recommendations.............................24  
9 Layout.............................................................................25  
9.1 Layout Guidelines..................................................... 25  
9.2 Layout Example........................................................ 25  
10 器件和文档支持............................................................. 26  
10.1 Documentation Support.......................................... 26  
10.2 接收文档更新通知................................................... 26  
10.3 支持资源..................................................................26  
10.4 Trademarks.............................................................26  
10.5 Electrostatic Discharge Caution..............................26  
10.6 术语表..................................................................... 26  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Configuration.............................................................. 3  
Pin Configurations: TLV1852 and TLV1862......................4  
Pin Configurations: TLV1854 and TLV1864......................5  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings............................................................... 6  
6.3 Thermal Information....................................................6  
6.4 Recommended Operating Conditions.........................7  
6.5 Electrical Characteristics.............................................8  
6.6 Switching Characteristics............................................9  
6.7 Typical Characteristics..............................................10  
7 Detailed Description......................................................15  
7.1 Overview...................................................................15  
7.2 Functional Block Diagrams....................................... 15  
Information.................................................................... 26  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
December 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLV1861  
 
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
Pin Configuration  
OUT  
V-  
1
2
3
5
4
V+  
IN-  
IN+  
TLV1851, TLV1861 DBV Package,  
SOT-23-5  
Top View  
(Standard "north west" pinout)  
Pin Functions: TLV1851 and TLV1861  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
1
OUT  
V-  
O
-
Output  
2
Negative Supply Voltage  
Non-Inverting (+) Input  
Inverting (-) Input  
IN+  
IN-  
V+  
3
I
4
I
5
-
Positive Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLV1861  
 
 
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
Pin Configurations: TLV1852 and TLV1862  
OUT1  
IN1œ  
IN1+  
Vœ  
1
2
3
4
8
7
6
5
V+  
8
V+  
OUT1  
1
2
Exposed  
Thermal  
Die Pad  
on  
OUT2  
IN2œ  
IN2+  
IN1œ  
7
6
OUT2  
IN2œ  
IN1+  
3
4
Underside  
5
IN2+  
Vœ  
D, DGK, DDF Packages  
8-Pin SOIC, VSSOP, SOT-23-8  
Top View  
NOTE: Connect exposed thermal pad directly to V- pin.  
DSG Package,  
8-Pad WSON With Exposed Thermal Pad,  
Top View  
Pin Functions: TLV1852 and TLV1862  
PIN  
I/O  
DESCRIPTION  
NAME  
OUT1  
NO.  
1
O
I
Output pin of the comparator 1  
2
Inverting input pin of comparator 1  
Noninverting input pin of comparator 1  
Negative supply voltage  
IN1–  
IN1+  
V-  
3
I
4
IN2+  
IN2–  
OUT2  
V+  
5
I
Noninverting input pin of comparator 2  
Inverting input pin of comparator 2  
Output pin of the comparator 2  
Positive supply voltage  
6
I
7
O
8
Connect directly to V- pin  
(DSG Package only)  
Thermal Pad  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLV1861  
 
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
Pin Configurations: TLV1854 and TLV1864  
OUT1  
IN1-  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT4  
IN4-  
IN4+  
V-  
IN1+  
V+  
1
2
3
4
12  
11  
10  
9
IN4+  
V-  
IN1+  
V+  
Thermal  
Pad  
NC  
NC  
IN2+  
IN3+  
IN2+  
IN2-  
IN3+  
IN3-  
OUT3  
(TOP view,  
not to scale)  
OUT2  
8
NOTE: Connect exposed thermal pad directly to V- pin.  
RTE Package, 16-Pad WQFN With Exposed  
Thermal Pad, Top View  
Not to scale  
D, PW, DYY Package, 14-Pin SOIC, TSSOP, SOT-23,  
Top View  
Pin Functions: TLV1854 and TLV1864  
PIN  
SOIC  
I/O  
DESCRIPTION  
NAME  
WQFN  
OUT1  
IN1-  
1
2
3
4
15  
16  
1
O
I
Output pin of the comparator 1  
Negative input pin of the comparator 1  
Positive input pin of the comparator 1  
IN1+  
I
V+  
2
-
Positive supply voltage  
IN2+  
IN2-  
5
6
7
8
4
5
6
I
I
Positive input pin of the comparator 2  
Negative input pin of the comparator 2  
Output pin of the comparator 2  
Output pin of the comparator 3  
OUT2  
OUT3  
O
7
O
I
IN3-  
9
8
9
Negative input pin of the comparator 3  
Positive input pin of the comparator 3  
IN3+  
10  
I
V-  
11  
12  
13  
14  
11  
-
Negative supply voltage  
IN4+  
IN4-  
OUT4  
NC  
12  
13  
14  
3
I
Positive input pin of the comparator 4  
Negative input pin of the comparator 4  
Output pin of the comparator 4  
I
O
No Internal Connection - Leave floating or GND  
No Internal Connection - Leave floating or GND  
NC  
10  
Connect directly to V- pin.  
(RTE Package only)  
Thermal Pad  
PAD  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLV1861  
 
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
42  
Supply voltage: VS = (V+) (V)  
Differential Input Voltage, VID  
42  
V
42  
0.3  
10  
0.3  
0.3  
-10  
Input pins (IN+, IN) from (V)(2)  
Current into Input pins (IN+, IN)(3)  
Output (Open-drain version only) from (V)(4)  
Output (OUT) (Push-Pull) from (V)  
Output short circuit current(5)  
42  
10  
V
mA  
V
42  
(V+) + 0.3  
10  
V
mA  
°C  
°C  
Junction temperature, TJ  
150  
Storage temperature, Tstg  
150  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Input terminals are diode-clamped to (V). Inputs (IN+, IN) can be greater than (V+) and OUT as long as it is within the 0.3 V to  
42 V range  
(3) Input terminals are diode-clamped to (V). Input signals that swing more than 0.3 V below (V) must be current-limited to 10 mA or  
less.  
(4) Output (OUT) for open drain can be greater than (V+) and inputs (IN+, IN) as long as it is within the 0.3 V to 42 V range  
(5) Short-circuit to (V) or (V+).  
6.2 ESD Ratings  
VALUE  
±1500  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Thermal Information  
TLV185x/6x  
DBV  
DGK  
PW  
RTE  
(WQFN)  
THERMAL METRIC(1)  
(SOT-23 D (SOIC)  
)
UNIT  
(VSSOP) (TSSOP)  
5 pin  
168.1  
68.1  
8 pin  
8 pin 14 pin  
16 pin  
RqJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RqJC(top)  
RqJB  
37.4  
yJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
11.4  
yJB  
37.1  
RqJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLV1861  
 
 
 
 
 
 
 
 
 
 
 
 
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.8  
MAX  
40  
UNIT  
V
Supply voltage: VS = (V+) (V)  
Input voltage range from (V)  
40  
V
0.1  
0
40  
V
Common-mode input voltage range from (V)  
Output voltage for open drain from (V)  
Ambient temperature, TA  
40  
V
0.1  
40  
125  
°C  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLV1861  
 
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
UNIT  
6.5 Electrical Characteristics  
For VS = (V+) (V) = 12V, VCM = VS/2 at TA = 25°C (Unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
OFFSET VOLTAGE  
Input offset  
voltage  
VOS  
±0.25  
4.7  
5.5  
mV  
mV  
4.7  
5.5  
Input offset  
voltage  
VOS  
TA = 40°C to +125°C  
Input offset  
dVIO/dT  
3
µV/°C  
mV  
voltage drift  
Input hysteresis  
voltage  
VHYS  
1
0
2.8  
5
Common-mode  
voltage range from  
(V)  
VS = 1.8 V to 40 V  
TA = 40°C to +125°C  
VCM-Range  
40  
V
POWER SUPPLY  
Quiescent current  
IQ  
per comparator  
(output high)  
Open Drain Output option, no pull-up resistor  
440  
1.5  
700  
850  
nA  
Quiescent current  
per comparator  
(output high)  
Open Drain Output option, no pull-up resistor, TA  
= 40 °C to 125°C  
IQ  
nA  
V
During power on, VS must exceed VPOR for  
tON before the output will reflect the input.  
VPOR  
INPUT BIAS CURRENT  
1
250  
1500  
100  
pA  
pA  
pA  
pA  
Input bias current  
IB  
(1)  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
0.1  
Input offset  
IOS  
(1)  
current  
1000  
INPUT CAPACITANCE  
OUTPUT  
ISINK = 50 µA  
20  
200  
300  
mV  
mV  
Voltage swing  
from (V)  
VOL  
ISINK = 50 µA  
TA = 40°C to +125°C  
Open-drain output  
leakage current  
ILKG  
VID = +0.1 V, VPULLUP = (V+)  
0.3  
pA  
(1) This parameter is ensured by design and/or characterization and is not tested in production.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLV1861  
 
 
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
6.6 Switching Characteristics  
For VS = (V+) (V) = 12 V, VCM = VS / 2 at TA = 25°C (Unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
VOD = 10 mV, CL = 25 pF, VSTEP = 100 mV  
VOD = 50mV, CL = 25 pF, VSTEP = 100 mV  
VOD = 100mV, CL = 25 pF, VSTEP = 200 mV  
45  
16  
13  
µs  
µs  
µs  
Propagation delay time, high-  
to-low  
TPD-HL  
VOD = 10 mV, CL = 25 pF, RP = 1 M,  
57  
36  
µs  
µs  
VSTEP = 100 mV  
Propagation delay time, low-to-  
high (Open-Drain output)  
VOD = 50 mV, CL = 25 pF, RP = 1 M,  
VSTEP = 100 mV  
TPD-LH  
VOD = 100 mV, CL = 25 pF, RP = 1 M,  
35  
µs  
µs  
VSTEP = 200 mV  
TFALL  
Output Fall Time, 80% to 20% CL = 25 pF  
0.2  
POWER ON TIME  
TON  
Power on-time  
2
ms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLV1861  
 
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics  
At TA = 25°C, VS = 12 V, VCM = VS/2 V, RP = 1M(Open Drain only), CL = 25 pF, VOVERDRIVE = 100 mV unless  
otherwise noted.  
4
3.8  
3.6  
3.4  
3.2  
3
2.8  
2.6  
2.4  
VS = 1.8V  
VS = 12V  
VS = 40V  
2.2  
2
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
6-1. Offset vs. Temperature  
6-2. Hysteresis vs. Temperature  
5
4.6  
4.2  
3.8  
3.4  
3
5
4
For 29 units  
3
2
1
0
2.6  
2.2  
1.8  
1.4  
1
-1  
-2  
-3  
-4  
-5  
-40C  
25C  
85C  
125C  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
6-4. Hysteresis vs. Common-Mode, 1.8 V  
6-3. Offset vs. Common-Mode, 1.8 V  
For 29 units  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
Input Common-Mode Voltage (V)  
6-6. Hysteresis vs. Common-Mode, 12 V  
6-5. Offset vs. Common-Mode, 12 V  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLV1861  
 
 
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
5
5
4.6  
4.2  
3.8  
3.4  
3
For 29 units  
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.6  
2.2  
1.8  
1.4  
1
-40C  
25C  
85C  
125C  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
6-7. Offset vs. Common-Mode, 40 V  
6-8. Hysteresis vs. Common-Mode, 40 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40C  
25C  
85C  
125C  
-40C  
25C  
85C  
125C  
-10  
-10  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
6-10. Bias Current vs. Common-Mode, 12 V  
6-9. Bias Current vs. Common-Mode, 1.8 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1n  
100p  
10p  
1p  
-40C  
25C  
85C  
125C  
100  
10  
VPU = 1.8V  
VPU = 12V  
VPU = 40V  
-10  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
Input Common-Mode Voltage (V)  
6-12. Leakage Current vs. Temperature (Open Drain only)  
6-11. Bias Current vs. Common-Mode, 40 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLV1861  
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
100  
100  
10  
10  
1
1
100m  
10m  
1m  
100m  
10m  
1m  
-40C  
25C  
85C  
125C  
-40C  
25C  
85C  
125C  
100  
100  
1  
10  
100  
1m  
10m  
1  
10  
100  
1m  
10m  
Output Sinking Current (A)  
Output Sinking Current (A)  
6-13. Output Voltage vs. Output Sinking Current, 1.8 V  
6-14. Output Voltage vs. Output Sinking Current, 12 V  
100  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
10  
1
100m  
10m  
-40C  
-40C  
25C  
85C  
125C  
150  
100  
50  
25C  
85C  
125C  
1m  
100  
1  
10  
100  
1m  
10m  
0
Output Sinking Current (A)  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
Supply Voltage (V)  
6-15. Output Voltage vs. Output Sinking Current, 40 V  
6-16. Supply Current vs. Supply Voltage (Output Low)  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
VS = 1.8V  
VS = 12V  
VS = 40V  
100  
50  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
6-18. Supply Current vs. Temperature (Output Low)  
6-17. Supply Current vs. Supply Voltage (Output High)  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLV1861  
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
-40C  
25C  
85C  
125C  
0
10  
20 30 40 50 70 100  
200 300 500 7001,000  
Input Overdrive (mV)  
6-19. Supply Current vs. Temperature (Output High)  
6-20. Propagation Delay, Low to High, 1.8 V, Open Drain  
output  
80  
-40C  
25C  
85C  
125C  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
10  
20 30 40 50 70 100  
200 300 500 7001,000  
Input Overdrive (mV)  
6-21. Propagation Delay, High to Low, 1.8 V  
6-22. Propagation Delay, Low to High, 12 V, Open Drain  
output  
80  
80  
-40C  
25C  
85C  
125C  
-40C  
25C  
85C  
125C  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
10  
20 30 40 50 70 100  
200 300 500 7001,000  
10  
20 30 40 50 70 100  
200 300 500 7001,000  
Input Overdrive (mV)  
Input Overdrive (mV)  
6-23. Propagation Delay, High to Low, 12 V  
6-24. Propagation Delay, Low to High, 40 V, Open Drain  
output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLV1861  
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
-40C  
25C  
85C  
125C  
0
10  
20 30 40 50 70 100  
200 300 500 7001,000  
Input Overdrive (mV)  
6-25. Propagation Delay, High to Low, 40 V  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLV1861  
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TLV185x and TLV186x devices are nanopower comparators with push-pull and open-drain output options.  
Operating down to 1.8 V while only consuming only 440 nA per channel, the TLV185x and TLV186x are well  
suited for voltage, current, and temperature sensing in low and high voltage low-power, always-on systems. An  
internal power-on reset circuit ensures that the output remains in a known state during power-up and power-  
down. Inputs have fail-safe inputs that can tolerate input transients without damage or false outputs.  
7.2 Functional Block Diagrams  
V+  
Open-Drain  
only  
IN+  
+
Output  
Control  
OUT  
IN-  
-
SNAPBACK  
ESD  
CLAMPS  
V-  
V-  
V-  
Power-On  
Reset  
Bias  
V-  
7-1. Block Diagram  
7.3 Feature Description  
The TLV185x (push-pull output) and TLV186x (open-drain output) devices are nano-power comparators that are  
capable of operating at high voltages. This family of comparators feature a fail safe input stage and over the rail  
operating condition mode capable of operating up to 40 V, independent of V+. The comparators also have an  
internal reverse battery protection feature and Power-On-Reset for known start-up conditions.  
7.4 Device Functional Modes  
7.4.1 Inputs  
7.4.1.1 Operating Common-Mode Ranges  
The TLV185x and TLV186x devices have two operating common-mode ranges: within-the-rail and over-the-rail.  
Within-the-rail operation: IN+ and IN- are less than (V+)  
When an input pin is operating less than (V+), there are two operating regions defined where input voltages can  
be compared: low common-mode and high-common mode. In low-common mode which extends typically from 0  
V to (V+) - 1 V, the typical input bias current is less than 1 pA. In high common-mode which extends typically  
from (V+) - 1 V to (V+), the typical input bias current is less than 14 nA.  
Over-the-rail operation: IN+ and/or IN- are greater than (V+)  
The TLV185x and TLV186x devices have a distinctive input stage that allows the input common mode range to  
extend from 0 V to 40 V independent of the supply voltage. This feature means that operation at low supply  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLV1861  
 
 
 
 
 
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
voltages does not limit the range of input voltages that can be compared. When an input pin is operating over-  
the-rail (above (V+)), the bias current increases to a typical value of 55 nA.  
See Figure 6-9 to 6-11 in the Typical Characteristics section for input bias current vs. common-mode voltages.  
7.4.1.2 Fail-Safe Inputs  
A feature of the TLV185x and TLV186x family is that the inputs are fail safe up to 40 V, independent of (V+). The  
inputs are maintained as high input impedance and can be of any value between -0.1 V and 40 V, even while  
(V+) is unpowered or below the minimum supply voltage. This feature avoids power sequencing or transient  
issues since the inputs are not diode clamped to (V+).  
7.4.1.3 Unused Inputs  
If a channel is not to be used, DO NOT tie the inputs together. Due to the high equivalent bandwidth and low  
offset voltage, tying the inputs directly together can cause high frequency oscillations as the device triggers on  
it's own internal wideband noise. Instead, the inputs should be tied to any available voltage that resides within  
the specified input voltage range and provides a minimum of 50mV differential voltage. For example, one input  
can be grounded and the other input connected to a reference voltage, or even (V+).  
7.4.2 Internal Hysteresis  
The device hysteresis transfer curve is shown in 7-2. This curve is a function of three components: VTH, VOS  
and VHYST  
,
:
VTH is the actual set voltage or threshold trip voltage.  
VOS is the internal offset voltage between VIN+ and VIN. This voltage is added to VTH to form the actual trip  
point at which the comparator must respond to change output states.  
VHYST is the internal hysteresis (or trip window) that is designed to reduce comparator sensitivity to noise.  
(2.8 mV for the TLV185x/6x family)  
V
+ V œ (V  
/ 2)  
V
TH  
+ V  
V
+ V + (V  
OS  
/ 2)  
TH  
OS  
HYST  
OS  
TH  
HYST  
7-2. Hysteresis Transfer Curve  
7.4.3 Outputs  
7.4.3.1 TLV185x Push-Pull Output  
The TLV185x features a push-pull output stage capable of both sinking and sourcing current. This allows driving  
loads such as LED's and MOSFET gates, as well as eliminating the need for a power-wasting external pull-up  
resistor. The push-pull output must never be connected to another output.  
Directly shorting the output to the supply rails ((V+) when output "low" or (V-) when output "High") can result in  
thermal runaway and eventual device destruction at high (>12 V) supply voltages. If output shorts are possible, a  
series current limiting resistor is recommended to limit the power dissipation.  
Unused push-pull outputs should be left floating, and never tied to a supply, ground, or another output.  
7.4.3.2 TLV186x Open-Drain Output  
The TLV186x features an open-drain (also commonly called open collector) sinking-only output stage enabling  
the output logic levels to be pulled up to an external voltage from 0 V up to 40 V, independent of the comparator  
supply voltage (V+). The open-drain output also allows logical OR'ing of multiple open drain outputs and logic  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLV1861  
 
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
level translation. TI recommends setting the pull-up resistor current to less than 100 uA to optimize VOL logic  
levels. Lower pull-up resistor values will help increase the rising edge risetime, but at the expense of increasing  
VOL and higher power dissipation. The risetime will be dependent on the time constant of the total pull-up  
resistance and total load capacitance. Large value pull-up resistors (>1 MΩ) will create an exponential rising  
edge due to the output RC time constant and increase the risetime.  
Directly shorting the output to (V+) can result in thermal runaway and eventual device destruction at high (>12 V)  
pull-up voltages. If output shorts are possible, a series current limitng resistor is recommended to limit the power  
dissipation.  
Unused open drain outputs should be left floating, or can be tied to the (V-) pin if floating pins are not desired.  
7.4.4 ESD Protection  
7.4.4.1 Inputs  
The fail-safe inputs incorporates internal ESD protection circuits on all pins. The fail-safe inputs have ESD  
protection from each pin to (V-) which allows these pins to exceed the supply voltage (V+) up to 40 V. If input  
voltages are to exceed 40 V, an external clamp would be required. Likewise, negative voltages on the inputs are  
ESD clamped to (V-) and should be limited to less than -0.1 V.  
If the inputs are to be connected to a low impedance source, such as a power supply or buffered reference line,  
TI recommends adding a current-limiting resistor in series with the input to limit any transient currents should the  
clamps conduct. The current should be limited to 10 mA or less. This series resistance can be part of any  
resistive input dividers or networks.  
7.4.4.2 Outputs  
The TLV185x push-pull output protection also contains a conventional diode-type ESD clamps between the  
output and (V-), as the output should not exceed the supply rails.  
The TLV186x open-drain output ESD protection also consists of a snapback ESD clamp between the output and  
(V-) to allow the output to be pulled above (V+) to a maximum of 40 V.  
7.4.5 Power-On Reset (POR)  
The TLV185x and TLV186x devices have an internal Power-on-Reset (POR) circuit for known start-up or power-  
down conditions. While the power supply (V+) is ramping up or ramping down, the POR circuitry will be activated  
for up to 2 ms after the VPOR of 1.5 V is crossed. When the supply voltage is equal to or greater than the  
minimum supply voltage, and after the delay period, the comparator output reflects the state of the differential  
input (VID).  
For the TLV185x push-pull output devices, the output is held low during the POR period (ton).  
For the TLV186x open drain output devices, the POR circuit will keep the output high impedance (Hi-Z) during  
the POR period (ton).  
tON  
GND  
GND + 1.5V  
VCC  
VOH/2  
GND  
OUT  
7-3. Power-On Reset Timing Diagram  
Note that it the nature of an open collector output that the output will rise with the pull-up voltage during the POR  
period.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLV1861  
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
7.4.6 Reverse Battery Protection  
The TLV185x and TLV186x devices have an internal reverse battery protection feature that prevents damage to  
the comparator in the event of improper battery installation to the supply pins. This protection feature works up to  
40 V.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLV1861  
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Basic Comparator Definitions  
8.1.1.1 Operation  
The basic comparator compares the input voltage (VIN) on one input to a reference voltage (VREF) on the other  
input. In the 8-1 example below, if VIN is less than VREF, the output voltage (VO) is logic low (VOL). If VIN is  
greater than VREF, the output voltage (VO) is at logic high (VOH). 8-1 summarizes the output conditions. The  
output logic can be inverted by simply swapping the input pins.  
8-1. Output Conditions  
Inputs Condition  
IN+ > IN-  
Output  
HIGH (VOH  
)
IN+ = IN-  
Indeterminate (chatters - see Hysteresis)  
LOW (VOL  
IN+ < IN-  
)
8.1.1.2 Propagation Delay  
There is a delay between from when the input crosses the reference voltage and the output responds. This is  
called the Propagation Delay. Propagation delay can be different between high-to low and low-to-high input  
transitions. This is shown as tpLH and tpHL in 8-1 and is measured from the mid-point of the input to the  
midpoint of the output.  
8-1. Comparator Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLV1861  
 
 
 
 
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
8.1.1.3 Overdrive Voltage  
The overdrive voltage, VOD, is the amount of input voltage beyond the reference voltage (and not the total input  
peak-to-peak voltage). The overdrive voltage is 100 mV as shown in the 8-1 example. The overdrive voltage  
can influence the propagation delay (tp). The smaller the overdrive voltage, the longer the propagation delay,  
particularly when <100mV. If the fastest speeds are desired, it is recommended to apply the highest amount of  
overdrive possible.  
The risetime (tr) and falltime (tf) is the time from the 20% and 80% points of the output waveform.  
8.1.2 Hysteresis  
The basic comparator configuration may produce a noisy "chatter" output if the applied differential input voltage  
is near the comparator's offset voltage. This usually occurs when the input signal is moving very slowly across  
the switching threshold of the comparator. This problem can be prevented by adding external hysteresis to the  
comparator.  
Since the TLV185x and TLV186x devices only have a minimal amount of internal hysteresis of 2.7 mV, external  
hysteresis can be applied in the form of a positive feedback loop that adjusts the trip point of the comparator  
depending on its current output state.  
The hysteresis transfer curve is shown in 8-2. This curve is a function of three components: VTH, VOS, and  
VHYST  
:
VTH is the actual set voltage or threshold trip voltage.  
VOS is the internal offset voltage between VIN+ and VIN. This voltage is added to VTH to form the actual trip  
point at which the comparator must respond to change output states.  
VHYST is the hysteresis (or trip window) that is designed to reduce comparator sensitivity to noise.  
V
+ V œ (V  
/ 2)  
V
TH  
+ V  
V
+ V + (V  
OS  
/ 2)  
TH  
OS  
HYST  
OS  
TH  
HYST  
8-2. Hysteresis Transfer Curve  
For more information, please see Application Note SBOA219 "Comparator with and without hysteresis circuit".  
8.1.2.1 Inverting Comparator With Hysteresis  
The inverting comparator with hysteresis requires a three-resistor network that is referenced to the comparator  
supply voltage (VCC), as shown in 8-3.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLV1861  
 
 
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
+V  
CC  
+5 V  
R
1
1 MΩ  
5 V  
0 V  
V
IN  
œ
V
O
V
O
V
A
+
V
A2  
V
A1  
1.67 V  
3.33 V  
V
IN  
R
3
R
2
1 MΩ  
1 MΩ  
8-3. TLV185x in an Inverting Configuration With Hysteresis  
The equivalent resistor networks when the output is high and low are shown in 8-3.  
V
High  
V Low  
O
O
+V  
+V  
CC  
CC  
R
R
R
1
1
3
V
A1  
V
A2  
R
3
R
R
2
2
8-4. Inverting Configuration Resistor Equivalent Networks  
When VIN is less than VA, the output voltage is high (for simplicity, assume VO switches as high as VCC). The  
three network resistors can be represented as R1 || R3 in series with R2, as shown in 8-4.  
方程1 below defines the high-to-low trip voltage (VA1).  
R2  
VA1 = VCC  
´
(R1 || R3) + R2  
(1)  
When VIN is greater than VA, the output voltage is low. In this case, the three network resistors can be presented  
as R2 || R3 in series with R1, as shown in 方程2.  
Use 方程2 to define the low to high trip voltage (VA2).  
R2 || R3  
VA2 = VCC  
´
R1 + (R2 || R3)  
(2)  
(3)  
方程3 defines the total hysteresis provided by the network.  
DVA = VA1 - VA2  
8.1.2.2 Non-Inverting Comparator With Hysteresis  
A non-inverting comparator with hysteresis requires a two-resistor network and a voltage reference (VREF) at the  
inverting input, as shown in 8-5,  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLV1861  
 
 
 
 
 
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
5 V  
0 V  
V
œ
REF 2.5 V  
V
O
V
O
V
A
V
+
IN  
V
V
IN2  
IN1  
R
1
1.675 V  
3.325 V  
330 kΩ  
V
IN  
R
2
1 MΩ  
8-5. TLV185x in a Non-Inverting Configuration With Hysteresis  
The equivalent resistor networks when the output is high and low are shown in 8-6.  
V
Low  
IN1  
V
High  
O
O
+V  
+V  
CC  
R
R
R
R
2
1
V
A
= V  
V
= V  
A REF  
REF  
1
2
V
IN2  
8-6. Non-Inverting Configuration Resistor Networks  
When VIN is less than VREF,, the output is low. For the output to switch from low to high, VIN must rise above the  
V
IN1 threshold. Use 方程4 to calculate VIN1.  
VREF  
VIN1 = R1 ´  
+ VREF  
R2  
(4)  
When VIN is greater than VREF, the output is high. For the comparator to switch back to a low state, VIN must  
drop below VIN2. Use 方程5 to calculate VIN2  
.
VREF (R1 + R2) - VCC ´ R1  
VIN2  
=
R2  
(5)  
(6)  
The hysteresis of this circuit is the difference between VIN1 and VIN2, as shown in 方程6.  
R1  
DVIN = VCC  
´
R2  
For more information, please see Application Notes SNOA997 "Inverting comparator with hysteresis circuit" and  
SBOA313 "Non-Inverting Comparator With Hysteresis Circuit".  
8.1.2.3 Inverting and Non-Inverting Hysteresis using Open-Drain Output  
It is also possible to use an open drain output device, such as the TLV186x, but the output pull-up resistor must  
also be taken into account in the calculations. The pull-up resistor is seen in series with the feedback resistor  
when the output is high. Thus, the feedback resistor is actually seen as R2 + RPULLUP. TI recommends that the  
pull-up resistor be at least 10 times less than the feedback resistor value.  
8.2 Typical Applications  
8.2.1 Window Comparator  
Window comparators are commonly used to detect undervoltage and overvoltage conditions. 8-7 shows a  
simple window comparator circuit. Window comparators require open drain outputs (TLV186x if the outputs are  
directly connected together.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLV1861  
 
 
 
 
 
 
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
3.3 V  
RPU  
R
1
Low when V > V  
IN  
TH+  
10 MΩ  
UV_OV  
+
V
TH+  
Micro-  
Controller  
œ
Sensor  
Open Drain Output Only!  
V
IN  
R
2
10 MΩ  
Low when V < V  
IN  
TH-  
+
Output high  
when V is  
IN  
œ
V
TH-  
within window  
R
3
Open Drain Output Only!  
10 MΩ  
8-7. Window Comparator  
8.2.1.1 Design Requirements  
For this design, follow these design requirements:  
Alert (logic low output) when an input signal is less than 1.1 V  
Alert (logic low output) when an input signal is greater than 2.2 V  
Alert signal is active low  
Operate from a 3.3-V power supply  
8.2.1.2 Detailed Design Procedure  
Configure the circuit as shown in 8-7. Connect V+ to a 3.3-V power supply and VEE to ground. Make R1, R2  
and R3 each 10-MΩ resistors. These three resistors are used to create the positive and negative thresholds for  
the window comparator (VTH+ and VTH).  
With each resistor being equal, VTH+ is 2.2 V and VTH- is 1.1 V. Large resistor values such as 10-MΩare used to  
minimize power consumption. The resistor values may be recalculated to provide the desired trip point values.  
The sensor output voltage is applied to the inverting and noninverting inputs of the two comparators. Using two  
open-drain output comparators allows the two comparator outputs to be Wire-OR'ed together.  
The respective comparator outputs will be low when the sensor is less than 1.1 V or greater than 2.2 V. The  
respective comparator outputs will be high when the sensor is in the range of 1.1 V to 2.2 V (within the  
"window"), as shown in 8-8.  
8.2.1.3 Application Curve  
V
IN  
V + = 2.2 V  
TH  
V
= 1.1 V  
THœ  
OUT  
8-8. Window Comparator Results  
For more information, please see Application note SBOA221 "Window comparator circuit".  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLV1861  
 
 
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
8.3 Power Supply Recommendations  
Due to the fast output edges, it is critical to have bypass capacitors on the supply pin to prevent supply ringing  
and false triggers and oscillations. Bypass the supply directly at each device with a low ESR 0.1 µF ceramic  
bypass capacitor directly between the (V+) pin and ground pins. Narrow peak currents will be drawn during the  
output transition time, particularly for the push-pull output device. These narrow pulses can cause un-bypassed  
supply lines and poor grounds to ring, possibly causing variation that can eat into the input voltage range and  
create an inaccurate comparison or even oscillations.  
The device may be powered from both "split" supplies ((V+) &(V-)), or "single" supplies ((V+) and GND), with  
GND applied to the (V-) pin. Input signals must stay within the recommended input range for either type. Note  
that with a "split" supply the output will now swing "low" (VOL) to (V-) potential and not GND.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLV1861  
 
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
9 Layout  
9.1 Layout Guidelines  
For accurate comparator applications it is important maintain a stable power supply with minimized noise and  
glitches. Output rise and fall times are in the tens of nanoseconds, and should be treated as high speed logic  
devices. The bypass capacitor should be as close to the supply pin as possible and connected to a solid ground  
plane, and preferably directly between the (V+) and GND pins.  
Minimize coupling between outputs and inputs to prevent output oscillations. Do not run output and input traces  
in parallel unless there is a (V+) or GND trace between output to reduce coupling. When series resistance is  
added to inputs, place resistor close to the device. A low value (<100 ohms) resistor may also be added in series  
with the output to dampen any ringing or reflections on long, non-impedance controlled traces. For best edge  
shapes, controlled impedance traces with back-terminations should be used when routing long distances.  
9.2 Layout Example  
Ground  
Be er  
ꢀꢁ !F  
V+  
1
2
3
4
8
7
6
5
OUT1  
IN1-  
IN1+  
V-  
V+  
OUT2  
IN2-  
Input Resistors  
Close to device  
OK  
V+ or GND  
Ground  
IN2+  
9-1. Dual Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TLV1861  
 
 
 
TLV1861  
ZHCSOE4 DECEMBER 2022  
www.ti.com.cn  
10 器件和文档支持  
10.1 Documentation Support  
10.1.1 Related Documentation  
Analog Engineers Circuit Cookbook: Amplifiers (See Comparators section) - SLYY137  
Precision Design, Comparator with Hysteresis Reference DesignTIDU020  
Window comparator circuit - SBOA221  
Reference Design, Window Comparator Reference DesignTIPD178  
Comparator with and without hysteresis circuit - SBOA219  
Inverting comparator with hysteresis circuit - SNOA997  
Non-Inverting Comparator With Hysteresis Circuit - SBOA313  
A Quad of Independently Func Comparators - SNOA654  
10.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TLV1861  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV1861DBVR  
ACTIVE  
SOT-23  
DBV  
5
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
1861  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV197-Q1

汽车类、单通道、高电压、精密 RRIO 运算放大器
TI

TLV197QDGKRQ1

汽车类、单通道、高电压、精密 RRIO 运算放大器 | DGK | 8 | -40 to 125
TI

TLV2170

适用于成本敏感型应用的双路、36V、1.2MHz、低功耗运算放大器
TI

TLV2170IDGKR

适用于成本敏感型应用的双路、36V、1.2MHz、低功耗运算放大器 | DGK | 8 | -40 to 125
TI

TLV2170IDGKT

适用于成本敏感型应用的双路、36V、1.2MHz、低功耗运算放大器 | DGK | 8 | -40 to 125
TI

TLV2170IDR

适用于成本敏感型应用的双路、36V、1.2MHz、低功耗运算放大器 | D | 8 | -40 to 125
TI

TLV2171

适用于成本敏感型应用的双路、36V、3MHz、低功耗运算放大器
TI

TLV2171IDGKR

适用于成本敏感型应用的双路、36V、3MHz、低功耗运算放大器 | DGK | 8 | -40 to 125
TI

TLV2171IDGKT

适用于成本敏感型应用的双路、36V、3MHz、低功耗运算放大器 | DGK | 8 | -40 to 125
TI

TLV2171IDR

适用于成本敏感型应用的双路、36V、3MHz、低功耗运算放大器 | D | 8 | -40 to 125
TI

TLV2172

适用于成本敏感型应用的双路、36V、10MHz、低功耗运算放大器
TI

TLV2172-Q1

适用于成本敏感型应用的汽车级、双路、36V、10MHz、低功耗运算放大器
TI