TLV2170IDR [TI]

适用于成本敏感型应用的双路、36V、1.2MHz、低功耗运算放大器 | D | 8 | -40 to 125;
TLV2170IDR
型号: TLV2170IDR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于成本敏感型应用的双路、36V、1.2MHz、低功耗运算放大器 | D | 8 | -40 to 125

放大器 运算放大器
文件: 总44页 (文件大小:2004K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV170, TLV2170, TLV4170  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
TLVx170 面向成本敏感型系统的 36V 单电源、抗 EMI 型低功耗运算放大  
1 特性  
3 说明  
1
电源电压范围:2.7V 36V±1.35V ±18V  
TLVx170 系列抗电磁干扰型 36V 单电源低噪声运算放  
大器在 1kHz 下的 THD+N 0.0002%,能够在 2.7V  
(±1.35V) 36V (±18V) 的电源电压范围内运行。这些  
特性结合低噪声和超高电源抑制比 (PSRR) 使得单通  
TLV170、双通道 TLV2170 和四通道 TLV4170 成  
为毫伏级信号放大的理想选择。TLVx170 系列器件还  
具有良好的失调电压、温漂和带宽以及低静态电流特  
性。  
低噪声:22 nV/Hz  
电磁干扰 (EMI) 滤波器和内部射频 (RF)  
输入范围包括负电源  
单位增益稳定:200pF 容性负载  
轨至轨输出  
增益带宽:1.2MHz  
低静态电流:每个放大器 125µA  
高共模抑制:110dB  
大多数运算放大器仅有一个指定的电源电  
低偏置电流:10pA(典型值)  
压,TLVx170 系列运算放大器则有所不同,其可在  
2.7V 36V 的电压范围内额定运行,超过电源轨的输  
入信号摆幅不会导致反相。TLVx170 系列同时也是单  
位增益稳定的精密运算放大器,容性负载为 200pF,  
带宽为 1.2MHz,转换率为 0.4V/μs,非常适用于电流-  
电压转换器。  
2 应用  
点钞机  
AC-DC 转换器  
电源模块内的跟踪放大器  
服务器电源  
器件输入可在负电源轨以下 100mV 以及正电源轨 2V  
之内正常运行,但满轨到轨输入的性能会受到影响。  
TLVx170 器件的额定运行温度范围为 -40°C +125°  
C。  
逆变器  
测试设备  
电池供电的仪器  
变频器放大器  
线路驱动器或线路接收器  
器件信息(1)  
封装  
器件型号  
TLV170  
封装尺寸(标称值)  
4.90mm × 3.91mm  
2.90mm × 1.60mm  
4.90mm × 3.91mm  
3.00mm × 3.00mm  
8.65mm × 3.91mm  
5.00mm × 4.40mm  
36V 运算放大器的最小封装  
SOIC (8)  
Package Footprint Comparison (to Scale)  
SOT-23 (5)  
SOIC (8)  
TLV2170  
TLV4170  
VSSOP (8)  
SOIC (14)  
TSSOP (14)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
Package Height Comparison (to Scale)  
D (SO-8)  
DBV (SOT23-5)  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS782  
 
 
 
TLV170, TLV2170, TLV4170  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 20  
Application and Implementation ........................ 21  
8.1 Application Information............................................ 21  
8.2 Typical Application .................................................. 21  
Power Supply Recommendations...................... 23  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 7  
6.1 Absolute Maximum Ratings ...................................... 7  
6.2 ESD Ratings.............................................................. 7  
6.3 Recommended Operating Conditions....................... 7  
6.4 Thermal Information: TLV170 ................................... 8  
6.5 Thermal Information: TLV2170 ................................. 8  
6.6 Thermal Information: TLV4170 ................................. 8  
6.7 Electrical Characteristics........................................... 9  
6.8 Typical Characteristics: Table of Graphs................ 10  
6.9 Typical Characteristics............................................ 11  
Detailed Description ............................................ 16  
7.1 Overview ................................................................. 16  
7.2 Functional Block Diagram ...................................... 16  
7.3 Feature Description................................................. 17  
8
9
10 Layout................................................................... 23  
10.1 Layout Guidelines ................................................. 23  
10.2 Layout Example .................................................... 24  
11 器件和文档支持 ..................................................... 25  
11.1 器件支持................................................................ 25  
11.2 文档支持................................................................ 26  
11.3 相关链接................................................................ 26  
11.4 接收文档更新通知 ................................................. 26  
11.5 社区资源................................................................ 26  
11.6 ....................................................................... 26  
11.7 静电放电警告......................................................... 26  
11.8 术语表 ................................................................... 26  
12 机械、封装和可订购信息....................................... 26  
7
4 修订历史记录  
Changes from Original (November 2016) to Revision A  
Page  
Updated the Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application figure........................................... 18  
2
Copyright © 2016–2018, Texas Instruments Incorporated  
 
TLV170, TLV2170, TLV4170  
www.ti.com.cn  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
Table 1. Device Comparison  
PACKAGE-LEAD  
NO OF  
PART NUMBER  
VSSOP  
(micro size)  
CHANNELS  
SOT23-5  
D
TSSOP  
TLV170  
TLV2170  
TLV4170  
1
2
4
5
8
8
8
14  
14  
Copyright © 2016–2018, Texas Instruments Incorporated  
3
TLV170, TLV2170, TLV4170  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
5 Pin Configuration and Functions  
TLV170: DBV Package  
5-Pin SOT-23  
TLV170: D Package  
8-Pin SOIC  
Top View  
Top View  
OUT  
Vœ  
1
2
3
5
V+  
NC  
œIN  
+IN  
Vœ  
1
2
3
4
8
7
6
5
NC  
V+  
œ
OUT  
NC  
+
+IN  
4
œIN  
Not to scale  
Not to scale  
Pin Functions: TLV170  
PIN  
TLV170  
I/O  
DESCRIPTION  
NAME  
SOT-23  
D
–IN  
+IN  
NC(1)  
OUT  
V–  
4
3
2
I
Negative (inverting) input  
3
I
Positive (noninverting) input  
1
1, 5, 8  
O
No internal connection (can be left floating)  
Output  
6
4
7
2
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
5
(1) NC indicates no internal connection.  
4
Copyright © 2016–2018, Texas Instruments Incorporated  
TLV170, TLV2170, TLV4170  
www.ti.com.cn  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
TLV2170: D and DGK Packages  
8-Pin SOIC and VSSOP  
Top View  
OUT A  
œIN A  
+IN A  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT B  
œIN B  
+IN B  
Not to scale  
Pin Functions: TLV2170  
PIN  
TLV2170  
VSSOP  
I/O  
DESCRIPTION  
NAME  
SOIC  
(micro size)  
–IN A  
–IN B  
+IN A  
+IN B  
OUT A  
OUT B  
V–  
2
6
3
5
1
7
4
8
2
6
3
5
1
7
4
8
I
I
Inverting input, channel A  
Inverting input, channel B  
Noninverting input, channel A  
Noninverting input, channel B  
Output, channel A  
I
I
O
O
Output, channel B  
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
Copyright © 2016–2018, Texas Instruments Incorporated  
5
TLV170, TLV2170, TLV4170  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
TLV4170: D and PW Packages  
14-Pin SOIC and TSSOP  
Top View  
OUT A  
œIN A  
+IN A  
V+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
œIN D  
+IN D  
Vœ  
+IN B  
œIN B  
OUT B  
+IN C  
œIN C  
OUT C  
8
Not to scale  
Pin Functions: TLV4170  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN A  
–IN B  
–IN C  
–IN D  
+IN A  
+IN B  
+IN C  
+IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V–  
SOIC  
2
TSSOP  
2
6
I
I
Inverting input, channel A  
6
Inverting input, channel B  
Inverting input, channel C  
Inverting input, channel D  
Noninverting input, channel A  
Noninverting input, channel B  
Noninverting input, channel C  
Noninverting input, channel D  
Output, channel A  
9
9
I
13  
3
13  
3
I
I
5
5
I
10  
12  
1
10  
12  
1
I
I
O
O
O
O
7
7
Output, channel B  
8
8
Output, channel C  
14  
11  
4
14  
11  
4
Output, channel D  
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
6
Copyright © 2016–2018, Texas Instruments Incorporated  
TLV170, TLV2170, TLV4170  
www.ti.com.cn  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
40  
UNIT  
V
Supply voltage, [(V+) – (V)]  
Voltage  
Single-supply voltage  
Signal input pin  
Signal input pin  
Output short-circuit(2)  
Operating, TA  
40  
(V) 0.5  
(V+) + 0.5  
10  
–10  
mA  
Current  
Continuous  
–55  
–65  
150  
150  
150  
Temperature  
Junction, TJ  
°C  
Storage, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±4000  
±750  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
36  
UNIT  
V
Voltage  
TA  
Supply, VS = (V+) – (V–)  
Specified temperature  
Operating temperature  
2.7  
–40  
–55  
125  
150  
°C  
TA  
°C  
Copyright © 2016–2018, Texas Instruments Incorporated  
7
 
 
TLV170, TLV2170, TLV4170  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
6.4 Thermal Information: TLV170  
TLV170  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
149.5  
97.9  
DBV (SOT-23)  
5 PINS  
245.8  
133.9  
83.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
87.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
35.5  
18.2  
ψJB  
89.5  
83.1  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Thermal Information: TLV2170  
TLV2170  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
134.3  
72.1  
DGK (VSSOP)  
UNIT  
8 PINS  
180  
55  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
60.6  
130  
5.3  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
18.2  
ψJB  
53.8  
120  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Thermal Information: TLV4170  
TLV4170  
THERMAL METRIC(1)  
D (SOIC)  
14 PINS  
93.2  
PW (TSSOP)  
14 PINS  
106.9  
24.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
51.8  
49.4  
59.3  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
13.5  
0.6  
ψJB  
42.2  
54.3  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8
Copyright © 2016–2018, Texas Instruments Incorporated  
TLV170, TLV2170, TLV4170  
www.ti.com.cn  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
6.7 Electrical Characteristics  
at TA = 25°C, VCM = VOUT = VS / 2, and RL = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
TA = 25°C  
0.5  
±2.5  
±2.7  
VOS  
Input offset voltage  
mV  
TA = –40°C to +125°C  
dVOS/dT  
PSRR  
Input offset voltage drift  
Power-supply rejection ratio  
Channel separation, dc  
TA = –40°C to +125°C  
±2  
105  
5
µV/°C  
dB  
VS = 4 V to 36 V, TA = –40°C to +125°C  
90  
µV/V  
INPUT BIAS CURRENT  
TA = 25°C  
±10  
±1  
pA  
nA  
IB  
Input bias current  
TA = –40°C to +125°C  
TA = 25°C  
±10  
±50  
IOS  
Input offset current  
pA  
TA = –40°C to +125°C  
NOISE  
Input voltage noise  
f = 0.1 Hz to 10 Hz  
f = 100 Hz  
2
27  
22  
µVPP  
en  
Input voltage noise density  
nV/Hz  
f = 1 kHz  
INPUT VOLTAGE  
VCM  
Common-mode voltage range(1)  
(V–) – 0.1  
(V+) – 2  
V
VS = ±2 V, (V–) – 0.1 V < VCM < (V+) – 2 V,  
TA = –40°C to +125°C  
100  
110  
CMRR  
Common-mode rejection ratio  
dB  
VS = ±18 V, (V–) – 0.1 V < VCM < (V+) – 2 V,  
TA = –40°C to +125°C  
95  
INPUT IMPEDANCE  
Differential  
100 || 3  
6 || 3  
MΩ || pF  
1012 Ω || pF  
Common-mode  
OPEN-LOOP GAIN  
VS = 36 V,  
AOL  
Open-loop voltage gain  
(V–) + 0.35 V < VO < (V+) – 0.35 V,  
TA = –40°C to +125°C  
94  
130  
dB  
FREQUENCY RESPONSE  
GBP  
SR  
Gain bandwidth product  
1.2  
0.4  
20  
MHz  
V/µs  
Slew rate  
G = +1  
To 0.1%, VS = ±18 V, G = +1, 10-V step  
tS  
Settling time  
µs  
To 0.01% (12-bit), VS = ±18 V, G = +1,  
10-V step  
28  
THD+N  
Total harmonic distortion + noise  
G = +1, f = 1 kHz, VO = 3 VRMS  
0.0002%  
OUTPUT  
VS = ±18 V, RL = 10 kΩ; TA = –40°C to +125°C  
(V–) + 0.2  
(V–) + 0.35  
–20  
(V+) – 0.3  
(V+) – 0.35  
17  
VO  
Voltage output swing from rail  
V
RL = 10 kΩ, AOL 94 dB,  
TA = –40°C to +125°C  
ISC  
Short-circuit current  
mA  
pF  
Ω
See Typical Characteristics: Table of  
CLOAD  
RO  
Capacitive load drive  
Open-loop output resistance  
Graphs  
f = 1 MHz, IO = 0 A  
900  
POWER SUPPLY  
VS  
IQ  
Specified voltage range  
Quiescent current per amplifier  
2.7  
36  
175  
V
IO = 0 A, TA = –40°C to +125°C  
125  
µA  
(1) The input range can be extended beyond (V+) – 2 V up to V+. See the Typical Characteristics: Table of Graphs and Application and  
Implementation sections for additional information.  
版权 © 2016–2018, Texas Instruments Incorporated  
9
TLV170, TLV2170, TLV4170  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
6.8 Typical Characteristics: Table of Graphs  
at VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
2. Characteristic Performance Measurements  
DESCRIPTION  
FIGURE  
Offset Voltage Production Distribution  
1  
2  
Offset Voltage vs Common-Mode Voltage  
Offset Voltage vs Common-Mode Voltage (Upper Stage)  
Input Bias Current vs Temperature  
3  
4  
Output Voltage Swing vs Output Current (Maximum Supply)  
CMRR and PSRR vs Frequency (Referred-to-Input)  
0.1-Hz to 10-Hz Noise  
5  
6  
7  
Input Voltage Noise Spectral Density vs Frequency  
Quiescent Current vs Supply Voltage  
Open-Loop Gain and Phase vs Frequency  
Closed-Loop Gain vs Frequency  
8  
9  
10  
11  
Open-Loop Gain vs Temperature  
12  
Open-Loop Output Impedance vs Frequency  
Small-Signal Overshoot vs Capacitive Load  
No Phase Reversal  
13  
14, 15  
16  
Small-Signal Step Response (100 mV)  
Large-Signal Step Response  
17, 18  
19, 20  
21, 22  
23  
Large-Signal Settling Time  
Short-Circuit Current vs Temperature  
Maximum Output Voltage vs Frequency  
EMIRR IN+ vs Frequency  
24  
25  
10  
版权 © 2016–2018, Texas Instruments Incorporated  
 
TLV170, TLV2170, TLV4170  
www.ti.com.cn  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
6.9 Typical Characteristics  
20  
18  
16  
14  
12  
10  
8
6
4
VCM = - 18.1 V  
2
0
Common-Mode Voltage (V)  
Offset Voltage (µV)  
G001  
5 typical units shown  
Distribution taken from 400 amplifiers  
2. Offset Voltage vs Common-Mode Voltage  
1. Offset Voltage Production Distribution  
2000  
1500  
1000  
500  
IB+  
IB-  
IOS  
0
Normal  
Operation  
-500  
-1000  
-75 -50 -25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
Common-Mode Voltage (V)  
5 typical units shown  
4. Input Bias Current vs Temperature  
3. Offset Voltage vs Common-Mode Voltage  
(Upper Stage)  
18  
17  
16  
140  
120  
100  
80  
15  
14.5  
-14.5  
-15  
60  
-40°C  
+25°C  
+125°C  
40  
-16  
-17  
-18  
+PSRR  
-PSRR  
CMRR  
20  
0
0
1
2
3
4
5
6
7
8
9
10  
1
10  
100  
1k  
10k  
100k  
1M  
Output Current (mA)  
Frequency (Hz)  
5. Output Voltage Swing vs Output Current (Maximum  
6. CMRR and PSRR vs Frequency  
Supply)  
(Referred-to Input)  
版权 © 2016–2018, Texas Instruments Incorporated  
11  
TLV170, TLV2170, TLV4170  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
1000  
100  
10  
1
1
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
G014  
8. Input Voltage Noise Spectral Density vs Frequency  
7. 0.1-Hz to 10-Hz Noise  
140  
120  
100  
80  
135  
90  
Gain  
45  
0
Phase  
60  
-45  
40  
-90  
20  
-135  
-180  
-225  
-270  
0
-20  
-40  
0.1  
1
10  
100  
1k  
10k 100k  
1M  
10M  
Frequency (Hz)  
10. Open-Loop Gain and Phase vs Frequency  
9. Quiescent Current vs Supply Voltage  
3
50  
VS = 2.7 V  
VS = 4 V  
40  
30  
20  
10  
2.5  
2
VS = 36 V  
1.5  
1
0
0.5  
0
G = −1  
G = 1  
G = 100  
−10  
−20  
-75 -50 -25  
0
25  
50  
75  
100 125 150  
1k  
10k  
100k 1M  
Frequency (Hz)  
10M  
100M  
Temperature (°C)  
G020  
12. Open-Loop Gain vs Temperature  
11. Closed-Loop Gain vs Frequency  
12  
版权 © 2016–2018, Texas Instruments Incorporated  
TLV170, TLV2170, TLV4170  
www.ti.com.cn  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
Typical Characteristics (接下页)  
10k  
1k  
100  
10  
18 V  
ROUT  
1
W
RL  
CL  
-18 V  
W
W
1m  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
100-mV output step, RL = 10 kΩ, G = +1  
13. Open-Loop Output Impedance vs Frequency  
14. Small-Signal Overshoot vs Capacitive Load  
18 V  
-18 V  
37-VPP  
Sine Wave  
(±18.5 V)  
RF = 10 kW  
RI = 10 kW  
18 V  
ROUT  
W
CL  
W
-18 V  
W
Time (100 ms/div)  
100-mV output step, RL = 10 kΩ, G = –1  
16. No Phase Reversal  
15. Small-Signal Overshoot vs Capacitive Load  
RI = 2 kW RF = 2 kW  
+18 V  
18 V  
-18 V  
RL  
CL  
CL  
-18 V  
Time (5 ms/div)  
Time (5 ms/div)  
RL = 10 kΩ, CL = 10 pF, G = +1  
RL = 10 kΩ, CL = 10 pF, G = –1  
17. Small-Signal Step Response (100 mV)  
18. Small-Signal Step Response (100 mV)  
版权 © 2016–2018, Texas Instruments Incorporated  
13  
TLV170, TLV2170, TLV4170  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
Time (50 μs/div)  
Time (50 ms/div)  
G = +1, RL = 10 kΩ, CL = 10 pF  
G = –1, RL = 10 kΩ, CL = 10 pF  
20. Large-Signal Step Response  
19. Large-Signal Step Response  
10  
8
10  
8
6
6
4
4
12-Bit Settling  
12-Bit Settling  
2
2
0
0
-2  
-4  
-6  
-8  
-10  
-2  
-4  
-6  
-8  
-10  
(±1/2 LSB = ±0.012%)  
(±1/2LSB = ±0.012%)  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Time (ms)  
Time (ms)  
10-V negative step, G = –1  
10-V positive step, G = +1  
21. Large-Signal Settling Time  
22. Large-Signal Settling Time  
15  
30  
24  
18  
12  
6
Short-Circuit Current, Source  
Short-Circuit Current, Sink  
VS = ±15 V  
12.5  
10  
7.5  
5
Maximum output range without  
slew−rate induced distortion  
0
VS = ±5 V  
-6  
-12  
-18  
-24  
-30  
2.5  
0
VS = ±1.35 V  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
-50 -30 -10 10  
30  
50  
70  
90 110 130 150  
G035  
Temperature (è C)  
D002  
24. Maximum Output Voltage vs Frequency  
23. Short-Circuit Current vs Temperature  
14  
版权 © 2016–2018, Texas Instruments Incorporated  
TLV170, TLV2170, TLV4170  
www.ti.com.cn  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
Typical Characteristics (接下页)  
140  
120  
100  
80  
60  
40  
20  
0
10M  
100M  
1G  
10G  
Frequency (Hz)  
PRP = –10 dBm, VS = ±18 V, VCM = 0 V  
25. EMIRR IN+ vs Frequency  
版权 © 2016–2018, Texas Instruments Incorporated  
15  
TLV170, TLV2170, TLV4170  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TLVx170 family of op amps provides high overall performance, making the devices ideal for many general-  
purpose applications. The excellent offset drift of only 2 μV/°C provides excellent stability over the entire  
temperature range. In addition, the family offers very good overall performance with high CMRR, PSRR, and AOL  
.
7.2 Functional Block Diagram  
PCH  
FF Stage  
Ca  
Cb  
+IN  
PCH  
Input Stage  
2nd Stage  
OUT  
Output  
Stage  
-IN  
NCH  
Input Stage  
16  
版权 © 2016–2018, Texas Instruments Incorporated  
TLV170, TLV2170, TLV4170  
www.ti.com.cn  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
7.3 Feature Description  
7.3.1 Operating Characteristics  
The TLVx170 family of amplifiers is specified for operation from 2.7 V to 36 V (±1.35 V to ±18 V). Many of the  
specifications apply from –40°C to +125°C. Parameters that can exhibit significant variance with regard to  
operating voltage or temperature are presented in the Typical Characteristics: Table of Graphs section.  
7.3.2 Phase-Reversal Protection  
The TLVx170 family has an internal phase-reversal protection. Many op amps exhibit a phase reversal when the  
input is driven beyond the linear common-mode range. This condition is most often encountered in noninverting  
circuits when the input is driven beyond the specified common-mode voltage range, causing the output to  
reverse into the opposite rail. The input of the TLVx170 prevents phase reversal with excessive common-mode  
voltage. Instead, the output limits into the appropriate rail. This performance is shown in 26.  
18 V  
-18 V  
37-VPP  
Sine Wave  
(±18.5 V)  
Time (100 ms/div)  
26. No Phase Reversal  
7.3.3 Electrical Overstress  
Designers often ask questions about the capability of an op amp to withstand electrical overstress. These  
questions tend to focus on the device inputs, but can involve the supply voltage pins or even the output pin. Each  
of these different pin functions have electrical stress limits determined by the voltage breakdown characteristics  
of the particular semiconductor fabrication process and specific circuits connected to the pin. Additionally, internal  
electrostatic discharge (ESD) protection is built into these circuits for protection from accidental ESD events both  
before and during product assembly.  
A good understanding of this basic ESD circuitry and the relevance to an electrical overstress event is helpful. 图  
27 illustrates the ESD circuits contained in the TLVx170 (indicated by the dashed line area). The ESD protection  
circuitry involves several current-steering diodes connected from the input and output pins and routed back to the  
internal power-supply lines, where the diodes meet at an absorption device internal to the op amp. This  
protection circuitry is intended to remain inactive during normal circuit operation.  
版权 © 2016–2018, Texas Instruments Incorporated  
17  
 
TLV170, TLV2170, TLV4170  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
Feature Description (接下页)  
TVS  
R
F
+V  
S
R
1
2.5 kΩ  
INœ  
2.5 kΩ  
R
S
IN+  
+
Power-Supply  
ESD Cell  
I
R
L
D
+
V
IN  
œ
œV  
S
TVS  
27. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application  
An ESD event produces a short-duration, high-voltage pulse that is transformed into a short-duration, high-  
current pulse when discharging through a semiconductor device. The ESD protection circuits are designed to  
provide a current path around the op amp core to prevent damage. The energy absorbed by the protection  
circuitry is then dissipated as heat.  
When an ESD voltage develops across two or more amplifier device pins, current flows through one or more  
steering diodes. Depending on the path that the current takes, the absorption device can activate. The absorption  
device has a trigger, or threshold voltage, that is above the normal operating voltage of the TLVx170 but below  
the device breakdown voltage level. When this threshold is exceeded, the absorption device quickly activates  
and clamps the voltage across the supply rails to a safe level.  
When the op amp connects into a circuit, as shown in 27, the ESD protection components are intended to  
remain inactive and do not become involved in the application circuit operation. However, circumstances can  
arise where an applied voltage exceeds the operating voltage range of a given pin. If this condition occurs, there  
is a risk that some internal ESD protection circuits can turn on and conduct current. Any such current flow occurs  
through steering-diode paths and rarely involves the absorption device.  
27 shows a specific example where the input voltage (VIN) exceeds the positive supply voltage (V+) by 500  
mV or more. Much of what happens in the circuit depends on the supply characteristics. If V+ can sink the  
current, then one of the upper input steering diodes conducts and directs current to V+. Excessively high current  
levels can flow with increasingly higher VIN. As a result, the data sheet specifications recommend that  
applications limit the input current to 10 mA.  
If the supply is not capable of sinking the current, VIN can begin sourcing current to the op amp and then take  
over as the source of positive supply voltage. The danger in this case is that the voltage can rise to levels that  
exceed the op amp absolute maximum ratings.  
18  
版权 © 2016–2018, Texas Instruments Incorporated  
 
TLV170, TLV2170, TLV4170  
www.ti.com.cn  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
Feature Description (接下页)  
Another common question involves what happens to the amplifier if an input signal is applied to the input when  
the power supplies (V+ or V–) are at 0 V. Again, this question depends on the supply characteristic when at 0 V,  
or at a level below the input signal amplitude. If the supplies appear as high impedance, then the input source  
supplies the op amp current through the current-steering diodes. This state is not a normal bias condition; most  
likely, the amplifier does not operate normally. If the supplies are low impedance, then the current through the  
steering diodes can become quite high. The current level depends on the ability of the input source to deliver  
current, and any resistance in the input path.  
If there is any uncertainty about the ability of the supply to absorb this current, add external Zener diodes to the  
supply pins; see 27. Select the Zener voltage so that the diode does not turn on during normal operation.  
However, the Zener voltage must be low enough so that the Zener diode conducts if the supply pin begins to rise  
above the safe-operating, supply-voltage level.  
The TLVx170 input pins are protected from excessive differential voltage with back-to-back diodes; see 27. In  
most circuit applications, the input protection circuitry has no effect. However, in low-gain or G = 1 circuits, fast-  
ramping input signals can forward-bias these diodes because the output of the amplifier cannot respond rapidly  
enough to the input ramp. If the input signal is fast enough to create this forward-bias condition, limit the input  
signal current to 10 mA or less. If the input signal current is not inherently limited, an input series resistor can be  
used to limit the input signal current. This input series resistor degrades the low-noise performance of the  
TLVx170. 27 illustrates an example configuration that implements a current-limiting feedback resistor.  
7.3.4 Capacitive Load and Stability  
The dynamic characteristics of the TLVx170 are optimized for common operating conditions. The combination of  
low closed-loop gain and high capacitive loads decreases the phase margin of the amplifier and can lead to gain  
peaking or oscillations. As a result, heavier capacitive loads must be isolated from the output. The simplest way  
to achieve this isolation is to add a small resistor (for example, ROUT equal to 50 Ω) in series with the output. 图  
28 and 29 show graphs of small-signal overshoot versus capacitive load for several values of ROUT. Also, see  
the Feedback Plots Define Op Amp AC Performance application report for details of analysis techniques and  
application circuits.  
18 V  
RF = 10 kW  
RI = 10 kW  
ROUT  
18 V  
ROUT  
W
RL  
CL  
W
-18 V  
CL  
W
W
-18 V  
W
W
100-mV output step, RL = 10 kΩ, G = +1  
28. Small-Signal Overshoot vs Capacitive Load  
100-mV output step, RL = 10 kΩ, G = –1  
29. Small-Signal Overshoot vs Capacitive Load  
版权 © 2016–2018, Texas Instruments Incorporated  
19  
 
TLV170, TLV2170, TLV4170  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Common-Mode Voltage Range  
The input common-mode voltage range of the TLVx170 family extends 100 mV below the negative rail and within  
2 V of the top rail for normal operation.  
This device can operate with full rail-to-rail input 100 mV beyond the top rail, but with reduced performance within  
2 V of the top rail. The typical performance in this range is summarized in 3.  
3. Typical Performance for Common-Mode Voltages Within 2 V of the Positive Supply  
PARAMETER  
Input common-mode voltage  
MIN  
TYP  
MAX  
UNIT  
V
(V+) – 2  
(V+) + 0.1  
Offset voltage  
7
12  
mV  
Offset voltage vs temperature  
Common-mode rejection ratio  
Open-loop gain  
µV/°C  
dB  
65  
60  
dB  
Gain-bandwidth product  
Slew rate  
0.3  
0.3  
MHz  
V/µs  
7.4.2 Overload Recovery  
Overload recovery is defined as the time required for the op amp output to recover from the saturated state to  
the linear state. The output devices of the op amp enter the saturation region when the output voltage exceeds  
the rated operating voltage, either resulting from the high input voltage or the high gain. After the device enters  
the saturation region, the charge carriers in the output devices need time to return back to the normal state. After  
the charge carriers return back to the equilibrium state, the device begins to slew at the normal slew rate. Thus,  
the propagation delay in case of an overload condition is the sum of the overload recovery time and the slew  
time. The overload recovery time for the TLVx170 is approximately 2 µs.  
20  
版权 © 2016–2018, Texas Instruments Incorporated  
 
TLV170, TLV2170, TLV4170  
www.ti.com.cn  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TLVx170 family of op amps provides high overall performance in a large number of general-purpose  
applications. As with all amplifiers, applications with noisy or high-impedance power supplies require decoupling  
capacitors placed close to the device pins. In most cases, 0.1-µF capacitors are adequate. Follow the additional  
recommendations in the Layout Guidelines section in order to achieve the maximum performance from this  
device. Many applications can introduce capacitive loading to the output of the amplifier (potentially causing  
instability). One method of stabilizing the amplifier in such applications is to add an isolation resistor between the  
amplifier output and the capacitive load. The design process for selecting this resistor is given in the Typical  
Application section.  
8.2 Typical Application  
This circuit can be used to drive capacitive loads (such as cable shields, reference buffers, MOSFET gates, and  
diodes). The circuit uses an isolation resistor (RISO) to stabilize the output of an op amp. RISO modifies the open-  
loop gain of the system to ensure the circuit has sufficient phase margin.  
+VS  
VOUT  
RISO  
+
CLOAD  
+
VIN  
-VS  
œ
Copyright © 2016, Texas Instruments Incorporated  
30. Unity-Gain Buffer With RISO Stability Compensation  
8.2.1 Design Requirements  
The design requirements are:  
Supply voltage: 30 V (±15 V)  
Capacitive loads: 100 pF, 1000 pF, 0.01 μF, 0.1 μF, and 1 μF  
Phase margin: 45° and 60°  
8.2.2 Detailed Design Procedure  
30 shows a unity-gain buffer driving a capacitive load. 公式 1 shows the transfer function for the circuit in 图  
30. Not shown in 30 is the open-loop output resistance of the op amp, Ro.  
1 + CLOAD × RISO × s  
T(s) =  
1 + R + R  
× C  
× s  
(
)
o
ISO  
LOAD  
(1)  
The transfer function in 公式 1 has a pole and a zero. The frequency of the pole (fp) is determined by (Ro + RISO  
)
and CLOAD. Components RISO and CLOAD determine the frequency of the zero (fz). A stable system is obtained by  
selecting RISO such that the rate of closure (ROC) between the open-loop gain (AOL) and 1/β is 20 dB per  
decade; see 31. The 1/β curve for a unity-gain buffer is 0 dB.  
版权 © 2016–2018, Texas Instruments Incorporated  
21  
 
 
 
TLV170, TLV2170, TLV4170  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
Typical Application (接下页)  
120  
100  
80  
AOL  
1
fp  
=
2 ì Œ ì  
R
+ Ro ì C  
ISO LOAD  
(
)
60  
40 dB  
1
fz  
=
2 ì Œ ì RISO ì CLOAD  
40  
1 dec  
1/  
20  
20 dB  
dec  
ROC =  
0
100M  
10M  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
31. TIPD128 Unity-Gain Amplifier With RISO Compensation  
ROC stability analysis is typically simulated. The validity of the analysis depends on multiple factors, especially  
the accurate modeling of Ro. In addition to simulating the ROC, a robust stability analysis includes a  
measurement of overshoot percentage and ac gain peaking of the circuit using a function generator,  
oscilloscope, and gain and phase analyzer. Phase margin is then calculated from these measurements. 4  
shows the overshoot percentage and ac gain peaking that correspond to phase margins of 45° and 60°. For  
more details on this design and other alternative devices that can be used in place of the TLV170, see the  
Capacitive Load Drive Solution Using an Isolation Resistor precision design.  
4. Phase Margin versus Overshoot and AC Gain  
Peaking  
PHASE  
MARGIN  
OVERSHOOT  
AC GAIN PEAKING  
45°  
23.3%  
8.8%  
2.35 dB  
0.28 dB  
60°  
8.2.3 Application Curve  
Using the described methodology, the values of RISO that yield phase margins of 45º and 60º for various  
capacitive loads were determined. The results are shown in 32.  
10000  
45°Phase Margin  
60°Phase Margin  
1000  
100  
10  
0.1  
1
10  
100  
1000  
Capacitive Load (nF)  
C002  
32. Isolation Resistor Required for Various Capacitive Loads to Achieve a Target Phase Margin  
22  
版权 © 2016–2018, Texas Instruments Incorporated  
 
 
TLV170, TLV2170, TLV4170  
www.ti.com.cn  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
9 Power Supply Recommendations  
The TLVx170 is specified for operation from 2.7 V to 36 V (±1.35 V to ±18 V); many specifications apply from  
–40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are presented in the Typical Characteristics: Table of Graphs section.  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device; see the  
Absolute Maximum Ratings.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see the Layout  
section.  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good printed-circuit board (PCB) layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the op amp  
itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power  
sources local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground  
planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically  
separate digital and analog grounds, paying attention to the flow of the ground current.  
In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicularly is much  
better than in parallel with the noisy trace.  
Place the external components as close to the device as possible. As illustrated in 34, keeping RF and  
RG close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly  
reduce leakage currents from nearby traces that are at different potentials.  
版权 © 2016–2018, Texas Instruments Incorporated  
23  
 
TLV170, TLV2170, TLV4170  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
10.2 Layout Example  
+
VIN  
VOUT  
RG  
œ
RF  
33. Schematic Representation  
Place components close  
to device and to each  
other to reduce parasitic  
errors  
Run the input traces  
as far away from  
the supply lines  
as possible  
VS+  
RF  
NC  
NC  
Use a low-ESR,  
ceramic bypass  
capacitor  
RG  
GND  
œIN  
+IN  
Vœ  
V+  
OUTPUT  
NC  
VIN  
GND  
GND  
VSœ  
VOUT  
Ground (GND) plane on another layer  
Use low-ESR,  
ceramic bypass  
capacitor  
34. Op Amp Board Layout for a Noninverting Configuration  
24  
版权 © 2016–2018, Texas Instruments Incorporated  
TLV170, TLV2170, TLV4170  
www.ti.com.cn  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 TINA-TI™(免费软件下载)  
TINA-TI™ 是一款基于 SPICE 引擎的电路仿真程序,简单易用并且功能强大。 TINA-TI™TINA-TI™ 软件的一款  
免费全功能版本,除了一系列无源和有源模型外,此版本软件还预先载入了一个宏模型库。TINA-TI™ 提供所有传  
统的 SPICE 直流、瞬态和频域分析,以及其他设计功能。  
TINA-TI™ 提供全面的后处理能力,便于用户以多种方式获得结果,用户可从 Analog eLab Design Center(模拟  
电子实验室设计中心)免费下载。虚拟仪器提供选择输入波形和探测电路节点、电压以及波形的功能,从而构建一  
个动态的快速入门工具。  
这些文件需要安装 TINA 软件(由 DesignSoft™提供)或者 TINA-TI™ 软件。请下载 TINA-  
TI™ 文件夹中的免费 TINA-TI™ 软件。  
11.1.1.2 DIP 适配器 EVM  
DIP 适配器 EVM 工具为小型表面贴装器件的原型设计提供了一种简易的低成本方法。评估工具使用以下 TI 封  
装:D U (SOIC-8)PW (TSSOP-8)DGK (VSSOP-8)DBVSOT23-6SOT23-5 SOT23-3)、DCK  
SC70-6 SC70-5)以及 DRL (SOT563-6)DIP 适配器 EVM 也可搭配引脚排使用,或者直接与现有电路相  
连。  
11.1.1.3 通用运放 EVM  
通用运放 EVM 是一系列通用空白电路板,可简化采用各种器件封装类型的电路板原型设计。借助评估模块电路板  
设计,可以轻松快速地构造多种不同电路。共有  
5
个模型可供选用,每个模型都对应一种特定封装类型。支持  
PDIPSOICVSSOPTSSOP SOT23 封装。  
这些电路板均为空白电路板,用户必须自行提供相关器件。TI 建议您在订购通用运放 EVM  
时申请几个运放器件样品。  
11.1.1.4 TI 高精度设计  
TI 高精度设计是由 TI 公司高精度模拟 应用 专家创建的模拟解决方案,提供了许多实用电路的工作原理、组件选  
择、仿真、完整印刷电路板 (PCB) 电路原理图和布局布线、物料清单以及性能测量结果。TI 高精度设计可从  
www.ti.com/ww/en/analog/precision-designs/ 在线获取。  
11.1.1.5 WEBENCH®滤波器设计器  
WEBENCH® 滤波器设计器是一款简单、功能强大且便于使用的有源滤波器设计程序。借助 WEBENCH® 滤波器  
设计器,您可以使用一系列 TI 运算放大器和 TI 供应商合作伙伴提供的无源组件来构建最佳滤波器设计方案。  
WEBENCH® 设计中心以基于网络的工具形式提供 WEBENCH® 滤波器设计器。用户通过该工具可在短时间内完  
成多级有源滤波器解决方案的设计、优化和仿真。  
版权 © 2016–2018, Texas Instruments Incorporated  
25  
TLV170, TLV2170, TLV4170  
ZHCSFO7A NOVEMBER 2016REVISED MAY 2018  
www.ti.com.cn  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
《反馈曲线图定义运算放大器交流性能》(文献编号:SBOA015)  
11.3 相关链接  
5 列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
5. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
TLV170  
TLV2170  
TLV4170  
11.4 接收文档更新通知  
如需接收文档更新通知,请访问 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收  
产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.5 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.6 商标  
TINA-TI, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
DesignSoft is a trademark of DesignSoft, Inc.  
11.7 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.8 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
26  
版权 © 2016–2018, Texas Instruments Incorporated  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV170IDBVR  
TLV170IDBVT  
TLV170IDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
D
5
5
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
14QT  
14QT  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU | SN  
NIPDAU  
8
2500 RoHS & Green  
2500 RoHS & Green  
TLV170  
14NV  
TLV2170IDGKR  
TLV2170IDGKT  
TLV2170IDR  
TLV4170ID  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
NIPDAUAG | SN  
NIPDAUAG | SN  
NIPDAU  
8
250  
2500 RoHS & Green  
50 RoHS & Green  
RoHS & Green  
14NV  
8
TL2170  
TLV4170  
TLV4170  
TLV4170  
SOIC  
D
14  
14  
14  
NIPDAU  
TLV4170IDR  
TLV4170IPWR  
SOIC  
D
2500 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
TSSOP  
PW  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Apr-2023  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV170IDBVR  
TLV170IDBVT  
TLV170IDR  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
D
5
5
3000  
250  
180.0  
180.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
8.4  
3.23  
3.23  
6.4  
5.3  
5.3  
5.3  
5.3  
6.4  
6.5  
6.9  
3.17  
3.17  
5.2  
3.4  
3.4  
3.4  
3.4  
5.2  
9.0  
5.6  
1.37  
1.37  
2.1  
1.4  
1.4  
1.4  
1.4  
2.1  
2.1  
1.6  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
8.4  
8.0  
8
2500  
2500  
2500  
250  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
16.4  
12.4  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
12.0  
TLV2170IDGKR  
TLV2170IDGKR  
TLV2170IDGKT  
TLV2170IDGKT  
TLV2170IDR  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
8
8
8
8
250  
8
2500  
2500  
2000  
TLV4170IDR  
SOIC  
D
14  
14  
TLV4170IPWR  
TSSOP  
PW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV170IDBVR  
TLV170IDBVT  
TLV170IDR  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
D
5
5
3000  
250  
223.0  
223.0  
356.0  
366.0  
366.0  
366.0  
366.0  
356.0  
356.0  
356.0  
270.0  
270.0  
356.0  
364.0  
364.0  
364.0  
364.0  
356.0  
356.0  
356.0  
35.0  
35.0  
35.0  
50.0  
50.0  
50.0  
50.0  
35.0  
35.0  
35.0  
8
2500  
2500  
2500  
250  
TLV2170IDGKR  
TLV2170IDGKR  
TLV2170IDGKT  
TLV2170IDGKT  
TLV2170IDR  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
8
8
8
8
250  
8
2500  
2500  
2000  
TLV4170IDR  
SOIC  
D
14  
14  
TLV4170IPWR  
TSSOP  
PW  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Aug-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
SOIC  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TLV4170ID  
D
14  
50  
506.6  
8
3940  
4.32  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV2171

适用于成本敏感型应用的双路、36V、3MHz、低功耗运算放大器
TI

TLV2171IDGKR

适用于成本敏感型应用的双路、36V、3MHz、低功耗运算放大器 | DGK | 8 | -40 to 125
TI

TLV2171IDGKT

适用于成本敏感型应用的双路、36V、3MHz、低功耗运算放大器 | DGK | 8 | -40 to 125
TI

TLV2171IDR

适用于成本敏感型应用的双路、36V、3MHz、低功耗运算放大器 | D | 8 | -40 to 125
TI

TLV2172

适用于成本敏感型应用的双路、36V、10MHz、低功耗运算放大器
TI

TLV2172-Q1

适用于成本敏感型应用的汽车级、双路、36V、10MHz、低功耗运算放大器
TI

TLV2172IDGKR

适用于成本敏感型应用的双路、36V、10MHz、低功耗运算放大器 | DGK | 8 | -40 to 125
TI

TLV2172IDGKT

适用于成本敏感型应用的双路、36V、10MHz、低功耗运算放大器 | DGK | 8 | -40 to 125
TI

TLV2172IDR

适用于成本敏感型应用的双路、36V、10MHz、低功耗运算放大器 | D | 8 | -40 to 125
TI

TLV2172QDGKRQ1

适用于成本敏感型应用的汽车级、双路、36V、10MHz、低功耗运算放大器 | DGK | 8 | -40 to 125
TI

TLV2186

低功耗、轨到轨输入和输出、24V、零漂移运算放大器
TI

TLV2186IDR

低功耗、轨到轨输入和输出、24V、零漂移运算放大器 | D | 8 | -40 to 125
TI