TLV2186 [TI]

低功耗、轨到轨输入和输出、24V、零漂移运算放大器;
TLV2186
型号: TLV2186
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

低功耗、轨到轨输入和输出、24V、零漂移运算放大器

放大器 运算放大器
文件: 总43页 (文件大小:2538K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV2186  
ZHCSK18 JULY 2019  
TLV2186 精密、轨至轨输入和输出、24V、零漂移运算放大器  
1 特性  
3 说明  
1
高精度:  
TLV2186 是一款低功耗、24V、轨至轨输入和输出的  
零漂移运算放大器。TLV2186 具有 仅 10µV 的典型失  
调电压和 0.1µV/°C 的典型失调电压温漂。该器件非常  
适合精密仪表、信号测量和有源滤波 应用。  
温漂:0.1μV/°C  
低失调电压:10μV  
低静态电流:90µA  
出色的动态性能:  
TLV2186 具有低静态电流消耗 (90μA),非常适合功率  
敏感型 应用,如电池供电和便携式系统。  
增益带宽:750kHz  
压摆率:0.35V/µs  
此外,高共模架构以及低失调电压可实现正电源轨的高  
侧电流分流监控。该器件还在运输、装卸和组装期间提  
供强大的 ESD 保护。  
强大设计:  
RFI/EMI 滤波输入  
轨至轨输入/输出  
电源电压范围:4.5V 24V  
此器件的额定工作温度范围为 –40°C +125°C。  
器件信息(1)  
2 应用  
器件型号  
TLV2186  
封装  
SOIC (8)  
封装尺寸(标称值)  
精密高侧电流检测  
4.90mm × 3.90mm  
桥式放大器  
应变仪  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
温度测量  
电阻式温度检测器  
称重计  
测热仪表  
电源  
高侧电流分流监控器应用  
VOS 与输入共模电压  
RS  
4
3
6 V to 24 V  
2
1
0
Microcontroller  
ADC  
-1  
-2  
-3  
-4  
-5  
-6  
Battery /  
Power  
Supply  
TLV2186  
+
0 V to 5 V  
-12.5 -10 -7.5 -5 -2.5  
0
2.5  
5
7.5 10 12.5  
Input Common-mode Voltage (V)  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS947  
 
 
 
TLV2186  
ZHCSK18 JULY 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
Application and Implementation ........................ 20  
8.1 Application Information............................................ 20  
8.2 Typical Applications ................................................ 22  
Power Supply Recommendations...................... 27  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagram ....................................... 14  
7.3 Feature Description................................................. 15  
7.4 Device Functional Modes........................................ 19  
10 Layout................................................................... 28  
10.1 Layout Guidelines ................................................. 28  
10.2 Layout Example .................................................... 29  
11 器件和文档支持 ..................................................... 30  
11.1 器件支持................................................................ 30  
11.2 文档支持................................................................ 30  
11.3 接收文档更新通知 ................................................. 30  
11.4 社区资源................................................................ 30  
11.5 ....................................................................... 31  
11.6 静电放电警告......................................................... 31  
11.7 Glossary................................................................ 31  
12 机械、封装和可订购信息....................................... 31  
7
4 修订历史记录  
日期  
修订版本  
说明  
2019 7 月  
*
初始发行版  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TLV2186  
www.ti.com.cn  
ZHCSK18 JULY 2019  
5 Pin Configuration and Functions  
D Package  
8-Pin SOIC  
Top View  
OUT A  
œIN A  
+IN A  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT B  
œIN B  
+IN B  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN A  
+IN A  
–IN B  
+IN B  
OUT A  
OUT B  
V–  
NO.  
2
I
I
Inverting input channel A  
3
Noninverting input channel A  
Inverting input channel B  
Noninverting input channel B  
Output channel A  
6
I
5
I
1
O
O
7
Output channel B  
4
Negative supply  
V+  
8
Positive supply  
Copyright © 2019, Texas Instruments Incorporated  
3
TLV2186  
ZHCSK18 JULY 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VS  
Supply voltage, VS = (V+) – (V–)  
26  
(V+) + 0.5  
V
Common-mode  
Input  
(V–) –0.5  
V
voltage  
Differential  
(V+) – (V–) + 0.2  
Output short-circuit(2)  
Continuous  
TJ  
Operating junction temperature  
Storage temperature  
-40  
-65  
150  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Theseare stress ratings  
only, which do not imply functional operation of the device at these or anyother conditions beyond those indicated under Recommended  
OperatingConditions. Exposure to absolute-maximum-rated conditions for extended periods mayaffect device reliability.  
(2) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
4000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safemanufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safemanufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
24  
UNIT  
Single supply  
Dual supply  
Supply  
Voltage  
VS  
TA  
±2.25  
–40  
±12  
125  
V
Specified temperature  
°C  
6.4 Thermal Information  
TLV2186  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
129.4  
69.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
72.8  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
20.8  
ΨJB  
72.0  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2019, Texas Instruments Incorporated  
 
TLV2186  
www.ti.com.cn  
ZHCSK18 JULY 2019  
6.5 Electrical Characteristics  
at TA = 25°C, VS = ±2.25V to ±12V, RL = 10 kconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
PARAMETER  
OFFSET VOLTAGE  
VOS Input offset voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
±10  
±250  
±1.0  
μV  
dVOS/dT Input offset voltage drift  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
±0.1  
μV/°C  
Power-supply rejection  
PSRR  
ratio  
±0.05  
0.1  
±1  
μV/V  
INPUT BIAS CURRENT  
0.6  
0.6  
5
IB  
Input bias current  
Input offset current  
Input voltage noise  
TA = –40to +85℃  
TA = –40to +125℃  
nA  
nA  
0.1  
1.2  
1.2  
2
IOS  
TA = –40to +85℃  
TA = –40to +125℃  
NOISE  
f = 0.1 Hz to 10 Hz  
110  
38  
nVRMS  
nV/Hz  
fA/Hz  
eN  
iN  
Input voltage noise density f = 1 kHz  
Input current noise f = 1 kHz  
100  
INPUT VOLTAGE  
VCM  
Common-mode voltage  
(V–) – 0.2  
108  
(V+) + 0.2  
V
VS = ±2.25 V  
VS = ±12 V  
VS = ±2.25 V  
VS = ±12 V  
126  
134  
114  
120  
(V–) – 0.1 < VCM < (V+) + 0.1 V,  
TA = –40to +125℃  
110  
Common-mode rejection  
ratio  
CMRR  
dB  
106  
(V–) – 0.1 < VCM < (V+) + 0.1 V,  
TA = –40to +125℃  
106  
FREQUENCY RESPONSE  
GBW  
SR  
tS  
Gain-bandwidth product  
750  
0.35  
7.5  
kHz  
V/μs  
μs  
Slew rate  
1-V step, G = 1  
Settling time  
To 0.1%, 1-V step , G = 1  
VIN × gain > VS  
Overload recovery time  
10  
μs  
INPUT CAPACITANCE  
ZID  
Differential  
100 || 5  
50 || 2.5  
MΩ || pF  
GΩ || pF  
ZICM  
Common-mode  
OPEN-LOOP GAIN  
(V–) + 0.3 V < VO < (V+) –  
0.3 V, RL = 10 kΩ  
120  
120  
120  
120  
140  
134  
140  
134  
(V–) + 0.3 V < VO < (V+) –  
0.3 V, RL = 10 k, TA  
=
–40°C to 125°C  
AOL  
Open-loop voltage gain  
VS = ±12 V  
dB  
(V–) + 0.65 V < VO < (V+) –  
0.65 V, RL = 2 kΩ  
(V–) + 0.65 V < VO < (V+) –  
0.65 V, RL = 2 k, TA  
=
–40°C to 125°C  
OUTPUT  
No load  
5
60  
20  
100  
500  
115  
RL = 10 kΩ  
Voltage output swing from  
both rails  
VO  
mV  
mA  
RL = 2 kΩ  
340  
90  
RL = 10 kΩ, TA = –40to +125℃  
ISC  
Short-circuit current  
Capacitive load drive  
±20  
CLOAD  
See typical curves  
See typical curves  
Open-loop output  
impedance  
RO  
POWER SUPPLY  
90  
130  
150  
Quiescent current per  
amplifier  
IQ  
VS = ±2.25 to ±12 V  
µA  
TA = –40°C to 125°C  
Copyright © 2019, Texas Instruments Incorporated  
5
 
TLV2186  
ZHCSK18 JULY 2019  
www.ti.com.cn  
6.6 Typical Characteristics  
1. Typical Characteristic Graphs  
DESCRIPTION  
Offset Voltage Distribution  
FIGURE  
1  
Offset Voltage Drift (-40°C to +125C°C)  
Input Bias Current Distribution  
2  
3  
Input Offset Current Distribution  
4  
Offset Voltage vs Common-Mode Voltage  
Offset Voltage vs Supply Voltage  
Open-Loop Gain and Phase vs Frequency  
Closed-Loop Gain vs Frequency  
5  
6  
7  
8  
Input Bias Current and Offset Current vs Temperature  
Output Voltage Swing vs Output Current (Sourcing)  
Output Voltage Swing vs Output Current (Sinking)  
CMRR and PSRR vs Frequency  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
CMRR vs Temperature  
PSRR vs Temperature  
0.1-Hz to 10-Hz Voltage Noise  
Input Voltage Noise Spectral Density vs Frequency  
THD+N vs Frequency  
THD+N vs Output Amplitude  
Quiescent Current vs Supply Voltage  
Quiescent Current vs Temperature  
Open-Loop Gain vs Temperature (10 kΩ)  
Open-Loop Gain vs Temperature (2 kΩ)  
Open-Loop Output Impedance vs Frequency  
Small-Signal Overshoot vs Capacitive Load (Gain = –1, 10-mV step)  
Small-Signal Overshoot vs Capacitive Load (Gain = 1, 10-mV step)  
No Phase Reversal  
Positive Overload Recovery  
Negative Overload Recovery  
Small-Signal Step Response (Gain = 1, 10-mV step)  
Small-Signal Step Response (Gain = –1, 10-mV step)  
Large-Signal Step Response (Gain = 1, 10-V step)  
Large-Signal Step Response (Gain = –1, 10-V step)  
Phase Margin vs Capacitive Load  
Settling Time (1-V Step, 0.1% Settling)  
Short Circuit Current vs Temperature  
Maximum Output Voltage vs Frequency  
EMIRR vs Frequency  
Channel Separation  
6
版权 © 2019, Texas Instruments Incorporated  
 
TLV2186  
www.ti.com.cn  
ZHCSK18 JULY 2019  
at TA = 25°C, VS = ±12 V, VCM = VS / 2, RL = 10 kΩ (unless otherwise noted)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
30  
27  
24  
21  
18  
15  
12  
9
6
3
0
0
-50 -40 -30 -20 -10  
0
10  
20  
30  
40  
50  
-1 -0.8 -0.6 -0.4 -0.2  
0
0.2 0.4 0.6 0.8  
1
Input Offset Voltage (uV)  
Input Offset Voltage Drift (µV/èC)  
1. Offset Voltage Distribution  
2. Offset Voltage Drift (-40°C to 125C°C)  
80  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
72  
64  
56  
48  
40  
32  
24  
16  
8
0
0
-1200 -900 -600 -300  
0
300  
600  
900 1200  
Input Offset Current (pA)  
Input Bias Current (nA)  
3. Input Bias Current Distribution  
4. Input Offset Current Distribution  
4
3
5
4
2
3
1
0
2
-1  
-2  
-3  
-4  
-5  
-6  
1
0
-1  
-2  
-12.5 -10 -7.5 -5 -2.5  
0
2.5  
5
7.5 10 12.5  
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
Input Common-mode Voltage (V)  
Supply Voltage (V)  
5. Offset Voltage vs Common-Mode Voltage  
6. Offset Voltage vs Supply Voltage  
版权 © 2019, Texas Instruments Incorporated  
7
TLV2186  
ZHCSK18 JULY 2019  
www.ti.com.cn  
at TA = 25°C, VS = ±12 V, VCM = VS / 2, RL = 10 kΩ (unless otherwise noted)  
180  
150  
120  
90  
180  
150  
120  
90  
30  
20  
10  
0
Gain  
Phase  
G = +1  
G= -1  
G= +10  
60  
60  
30  
30  
-10  
-20  
0
0
-30  
-30  
10m 100m  
1
10  
100  
1k  
10k 100k 1M 10M  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
7. Open-Loop Gain and Phase vs Frequency  
8. Closed-Loop Gain vs Frequency  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
12  
10  
8
Ibn  
Ibp  
Ios  
6
4
2
0
-2  
-4  
-6  
-8  
-10  
-40èC  
25èC  
85èC  
125èC  
-0.3  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Output Current (mA)  
Temperature (èC)  
9. Input Bias Current and Offset Current vs Temperature  
10. Output Voltage Swing vs Output Current (Sourcing)  
12.5  
160  
-40èC  
PSRR+  
10  
25èC  
PSRR-  
140  
120  
100  
80  
85èC  
125èC  
CMRR  
7.5  
5
2.5  
0
-2.5  
-5  
60  
40  
-7.5  
-10  
-12.5  
20  
0
0
3
6
9
12  
15  
18  
21  
24  
27  
100m  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Output Current (mA)  
Frequency (Hz)  
11. Output Voltage Swing vs Output Current (Sinking)  
12. CMRR and PSRR vs Frequency  
8
版权 © 2019, Texas Instruments Incorporated  
TLV2186  
www.ti.com.cn  
ZHCSK18 JULY 2019  
at TA = 25°C, VS = ±12 V, VCM = VS / 2, RL = 10 kΩ (unless otherwise noted)  
150  
145  
140  
135  
130  
125  
120  
115  
110  
105  
170  
160  
150  
140  
130  
120  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
Temperature (èC)  
13. CMRR vs Temperature  
14. PSRR vs Temperature  
1000  
100  
10  
Time (1 s/div)  
100m  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
16. Input Voltage Noise Spectral Density vs Frequency  
15. 0.1-Hz to 10-Hz Voltage Noise  
1
-40  
-60  
-80  
-100  
1
0.1  
-40  
G = +1, RL = 10 kW  
G = +1, RL = 2 kW  
G = -1, RL = 10 kW  
G = -1, RL = 2 kW  
G = +1, RL = 10 kW  
G = +1, RL = 2 kW  
G = -1, RL = 10 kW  
G = -1, RL = 2 kW  
-60  
0.1  
0.01  
0.01  
-80  
0.001  
0.0001  
-100  
-120  
0.001  
10m  
100m  
1
10  
100  
1k  
10k  
Output Amplitude (VRMS  
)
Frequency (Hz)  
18. THD+N vs Output Amplitude  
17. THD+N vs Frequency  
版权 © 2019, Texas Instruments Incorporated  
9
TLV2186  
ZHCSK18 JULY 2019  
www.ti.com.cn  
at TA = 25°C, VS = ±12 V, VCM = VS / 2, RL = 10 kΩ (unless otherwise noted)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
110  
100  
90  
VS = 4.5 V  
VS = 24 V  
VS Min = 4.5 V  
80  
70  
60  
0
2
4
6
8
10 12 14 16 18 20 22 24  
Supply Voltage (V)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
19. Quiescent Current vs Supply Voltage  
20. Quiescent Current vs Temperature  
180  
160  
140  
120  
180  
160  
140  
120  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
Temperature (èC)  
RL = 2 kΩ  
21. Open-Loop Gain vs Temperature  
22. Open-Loop Gain vs Temperature  
1000  
100  
10  
40  
35  
30  
25  
20  
15  
10  
5
RISO = 0 W  
RISO = 25 W  
RISO = 50 W  
1
0.1  
0.01  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1000  
Frequency (Hz)  
Capactiance (pF)  
Gain = –1, 10-mV step  
23. Open-Loop Output Impedance vs Frequency  
24. Small-Signal Overshoot vs Capacitive Load  
版权 © 2019, Texas Instruments Incorporated  
10  
TLV2186  
www.ti.com.cn  
ZHCSK18 JULY 2019  
at TA = 25°C, VS = ±12 V, VCM = VS / 2, RL = 10 kΩ (unless otherwise noted)  
100  
VIN (V)  
VOUT (V)  
RISO = 0 W  
RISO = 25 W  
RISO = 50 W  
80  
60  
40  
20  
0
Time (100 ms/div)  
10  
100  
1000  
Capactiance (pF)  
Gain = 1, 10-mV step  
25. Small-Signal Overshoot vs Capacitive Load  
26. No Phase Reversal  
VIN  
VOUT  
VIN  
VOUT  
Time (10 ms/div)  
Time (10 ms/div)  
27. Positive Overload Recovery  
28. Negative Overload Recovery  
VIN  
VIN  
VOUT  
VOUT  
Time (10 ms/div)  
Time (10 ms/div)  
Gain = 1, 10-mV step  
Gain = –1, 10-mV step  
29. Small-Signal Step Response  
30. Small-Signal Step Response  
版权 © 2019, Texas Instruments Incorporated  
11  
TLV2186  
ZHCSK18 JULY 2019  
www.ti.com.cn  
at TA = 25°C, VS = ±12 V, VCM = VS / 2, RL = 10 kΩ (unless otherwise noted)  
VIN (V)  
VIN (V)  
VOUT (V)  
VOUT (V)  
Time (10 ms/div)  
Time (10 ms/div)  
Gain = 1, 10-V step  
Gain = –1, 10-V step  
31. Large-Signal Step Response  
32. Large-Signal Step Response  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
Falling  
Rising  
Time (5 ms/div)  
10  
100  
1000  
CLOAD (pF)  
1-V step, 0.1% settling  
33. Phase Margin vs Capacitive Load  
34. Settling Time  
32  
30  
25  
20  
15  
10  
5
Sinking  
Sourcing  
VS = ê12 V  
VS = ê2.25 V  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
1
10  
100  
1k  
10k  
100k  
1M  
Temperature (èC)  
Frequency (Hz)  
35. Short Circuit Current vs Temperature  
36. Maximum Output Voltage vs Frequency  
12  
版权 © 2019, Texas Instruments Incorporated  
TLV2186  
www.ti.com.cn  
ZHCSK18 JULY 2019  
at TA = 25°C, VS = ±12 V, VCM = VS / 2, RL = 10 kΩ (unless otherwise noted)  
175  
150  
125  
100  
75  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
50  
25  
10M  
100M  
Frequency (Hz)  
1G  
10G  
1k  
10k  
100k  
1M  
Frequency (Hz)  
37. EMIRR vs Frequency  
38. Channel Separation  
版权 © 2019, Texas Instruments Incorporated  
13  
TLV2186  
ZHCSK18 JULY 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TLV2186 operational amplifier combines precision offset and drift with excellent overall performance, making  
the device a great choice for a wide variety of precision applications. The precision offset drift of only 0.1 µV/°C  
provides stability over the entire operating temperature range of –40°C to +125°C. In addition, this device offers  
excellent linear performance with high CMRR, PSRR, and AOL. As with all amplifiers, applications with noisy or  
high-impedance power supplies require decoupling capacitors close to the device pins. In most cases, 0.1-µF  
capacitors are adequate. See the Layout Guidelines section for details and a layout example.  
The TLV2186 is part of a family of zero-drift, MUX-friendly, rail-to-rail output operational amplifiers. This device  
operates from 4.5 V to 24 V, is unity-gain stable, and is designed for a wide range of general-purpose and  
precision applications. The zero-drift architecture provides ultra-low input offset voltage and near-zero input offset  
voltage drift over temperature and time. This choice of architecture also offers outstanding ac performance, such  
as ultra-low broadband noise, zero flicker noise, and outstanding distortion performance when operating below  
the chopper frequency.  
7.2 Functional Block Diagram  
The Functional Block Diagram shows a representation of the proprietary TLV2186 architecture.  
C2  
Notch  
Filter  
CHOP1  
CHOP2  
GM2  
GM3  
GM1  
OUT  
+IN  
24-V  
Differential  
Front End  
œIN  
GM_FF  
C1  
14  
版权 © 2019, Texas Instruments Incorporated  
 
TLV2186  
www.ti.com.cn  
ZHCSK18 JULY 2019  
7.3 Feature Description  
The TLV2186 operational amplifier has several integrated features to help maintain a high level of precision  
through a variety of applications. These include a rail-to-rail inputs, phase-reversal protection, input bias current  
clock feedthrough, EMI rejection, electrical overstress protection and MUX-friendly Inputs.  
7.3.1 Rail-to-Rail Inputs  
Unlike many chopper amplifiers, the TLV2186 has rail-to-rail inputs that allow the input common-mode voltage to  
not only reach, but exceed the supply voltages by 200 mV. This configuration simplifies power-supply  
requirements by not requiring headroom over the input signal range.  
The TLV2186 is specified for operation from 4.5 V to 24 V (±2.25 V to ±12 V) with rail-to-rail inputs. Many  
specifications apply from –40°C to +125°C. Parameters that can exhibit significant variance with regard to  
operating voltage or temperature are presented in the Typical Characteristics section.  
7.3.2 Phase-Reversal Protection  
The TLV2186 has internal phase-reversal protection. Some op amps exhibit a phase reversal when the input is  
driven beyond the linear common-mode range. This condition is most often encountered in noninverting circuits  
when the input is driven beyond the specified common-mode voltage range, causing the output to reverse into  
the opposite rail. The TLV2186 input prevents phase reversal with excessive common-mode voltage. Instead, the  
output limits into the appropriate rail. This performance is shown in 39.  
VIN (V)  
VOUT (V)  
Time (100 ms/div)  
39. No Phase Reversal  
7.3.3 Input Bias Current Clock Feedthrough  
Zero-drift amplifiers such as the TLV2186 use a switching architecture on the inputs to correct for the intrinsic  
offset and drift of the amplifier. Charge injection from the integrated switches on the inputs can introduce short  
transients in the input bias current of the amplifier. The extremely short duration of these pulses prevents the  
pulses from amplifying, however the pulses may be coupled to the output of the amplifier through the feedback  
network. The most effective method to prevent transients in the input bias current from producing additional noise  
at the amplifier output is to use a low-pass filter, such as an RC network.  
版权 © 2019, Texas Instruments Incorporated  
15  
 
TLV2186  
ZHCSK18 JULY 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.4 EMI Rejection  
The TLV2186 uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI  
interference from sources such as wireless communications and densely-populated boards with a mix of analog  
signal chain and digital components. EMI immunity can be improved with circuit design techniques; the TLV2186  
benefits from these design improvements. Texas Instruments has developed the ability to accurately measure  
and quantify the immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to  
6 GHz. 40 shows the results of this testing on the TLV2186. 2 lists the EMIRR +IN values for the TLV2186  
at particular frequencies commonly encountered in real-world applications. Applications listed in 2 may be  
centered on or operated near the particular frequency shown. Detailed information can also be found in the EMI  
Rejection Ratio of Operational Amplifiers (SBOA128), available for download from www.ti.com.  
175  
150  
125  
100  
75  
50  
25  
10M  
100M  
Frequency (Hz)  
1G  
10G  
40. EMIRR Testing  
2. TLV2186 EMIRR IN+ for Frequencies of Interest  
FREQUENCY  
APPLICATION AND ALLOCATION  
EMIRR IN+  
Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency  
(UHF) applications  
400 MHz  
48.4 dB  
Global system for mobile communications (GSM) applications, radio  
communication, navigation, GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF  
applications  
900 MHz  
1.8 GHz  
2.4 GHz  
52.8 dB  
69.1 dB  
88.9 dB  
GSM applications, mobile personal communications, broadband, satellite, L-band  
(1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications,  
industrial, scientific and medical (ISM) radio band, amateur radio and satellite, S-  
band (2 GHz to 4 GHz)  
3.6 GHz  
5 GHz  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
82.5 dB  
95.5 dB  
802.11a, 802.11n, aero communication and navigation, mobile communication,  
space and satellite operation, C-band (4 GHz to 8 GHz)  
16  
版权 © 2019, Texas Instruments Incorporated  
 
 
TLV2186  
www.ti.com.cn  
ZHCSK18 JULY 2019  
The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational  
amplifiers. An adverse effect that is common to many op amps is a change in the offset voltage as a result of RF  
signal rectification. An op amp that is more efficient at rejecting this change in offset as a result of EMI has a  
higher EMIRR and is quantified by a decibel value. Measuring EMIRR can be performed in many ways, but this  
section provides the EMIRR +IN, which specifically describes the EMIRR performance when the RF signal is  
applied to the noninverting input pin of the op amp. In general, only the noninverting input is tested for EMIRR for  
the following three reasons:  
Op amp input pins are known to be the most sensitive to EMI, and typically rectify RF signals better than the  
supply or output pins.  
The noninverting and inverting op amp inputs have symmetrical physical layouts and exhibit nearly matching  
EMIRR performance  
EMIRR is more simple to measure on noninverting pins than on other pins because the noninverting input  
terminal can be isolated on a PCB. This isolation allows the RF signal to be applied directly to the  
noninverting input terminal with no complex interactions from other components or connecting PCB traces.  
High-frequency signals conducted or radiated to any pin of the operational amplifier may result in adverse  
effects, as the amplifier would not have sufficient loop gain to correct for signals with spectral content outside the  
bandwidth. Conducted or radiated EMI on inputs, power supply, or output may result in unexpected dc offsets,  
transient voltages, or other unknown behavior. Take care to properly shield and isolate sensitive analog nodes  
from noisy radio signals and digital clocks and interfaces.  
The EMIRR +IN of the TLV2186 is plotted versus frequency as shown in 40. The TLV2186 unity-gain  
bandwidth is 750 kHz. EMIRR performance below this frequency denotes interfering signals that fall within the op  
amp bandwidth.  
7.3.4.1 EMIRR +IN Test Configuration  
41 shows the circuit configuration for testing the EMIRR +IN. An RF source is connected to the op amp  
noninverting input terminal using a transmission line. The op amp is configured in a unity-gain buffer topology  
with the output connected to a low-pass filter (LPF) and a digital multimeter (DMM). A large impedance mismatch  
at the op amp input causes a voltage reflection; however, this effect is characterized and accounted for when  
determining the EMIRR IN+. The multimeter samples and measures the resulting DC offset voltage. The LPF  
isolates the multimeter from residual RF signals that may interfere with multimeter accuracy.  
Ambient temperature: 25˘C  
V+  
œ
Low-Pass  
50  
Filter  
+
RF Source  
DC Bias: 0 V  
Modulation: None (CW)  
Digital  
Multimeter  
Sample /  
Averaging  
Vœ  
Frequency Sweep: 201 pt. Log  
Not shown: 0.1 µF and 10 µF supply decoupling  
41. EMIRR +IN Test Configuration  
版权 © 2019, Texas Instruments Incorporated  
17  
 
TLV2186  
ZHCSK18 JULY 2019  
www.ti.com.cn  
7.3.5 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress.  
These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the output  
pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect from accidental  
ESD events both before and during product assembly.  
Having a good understanding of this basic ESD circuitry and the relevance to an electrical overstress event is  
helpful. See 42 for an illustration of the ESD circuits contained in the TLV2186 (indicated by the dashed line  
area). The ESD protection circuitry involves several current-steering diodes connected from the input and output  
pins and routed back to the internal power-supply lines, where the diodes meet at an absorption device internal  
to the operational amplifier. This protection circuitry is intended to remain inactive during normal circuit operation.  
An ESD event produces a short-duration, high-voltage pulse that is transformed into a short-duration, high-  
current pulse while discharging through a semiconductor device. The ESD protection circuits are designed to  
provide a current path around the operational amplifier core to prevent damage. The energy absorbed by the  
protection circuitry is then dissipated as heat.  
When an ESD voltage develops across two or more amplifier device pins, current flows through one or more  
steering diodes. Depending on the path that the current takes, the absorption device may activate. The  
absorption device has a trigger or threshold voltage that is greater than the normal operating voltage of the  
TLV2186, but less than the device breakdown voltage level. When this threshold is exceeded, the absorption  
device quickly activates and clamps the voltage across the supply rails to a safe level.  
When the operational amplifier connects into a circuit, as shown in 42, the ESD protection components are  
intended to remain inactive, and do not become involved in the application circuit operation. However,  
circumstances may arise where an applied voltage exceeds the operating voltage range of a given pin. If this  
condition occurs, there is a risk that some internal ESD protection circuits may be biased on, and conduct  
current. Any such current flow occurs through steering-diode paths and rarely involves the absorption device.  
TVS(2)  
RF  
V+  
RI  
ESD Current-  
Steering Diodes  
-IN  
(3)  
OUT  
Op Amp  
Core  
RS  
+IN  
Edge-Triggered ESD  
Absorption Circuit  
RL  
ID  
(1)  
VIN  
Vœ  
TVS(2)  
(1) VIN = (V+) + 500 mV  
(2) TVS: 26 V > VTVSBR (min) > V+ ; where VTVSBR (min) is the minimum specified value for the transient voltage suppressor  
breakdown voltage.  
(3) Suggested value is approximately 5 kΩ in example overvoltage condition.  
42. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application  
18  
版权 © 2019, Texas Instruments Incorporated  
 
TLV2186  
www.ti.com.cn  
ZHCSK18 JULY 2019  
42 shows a specific example where the input voltage (VIN) exceeds the positive supply voltage (V+) by 500  
mV or more. Much of what happens in the circuit depends on the supply characteristics. If V+ can sink the  
current, one of the upper input steering diodes conducts and directs current to +VS. Excessively high current  
levels can flow with increasingly higher VIN. As a result, the data sheet specifications recommend that  
applications limit the input current to 10 mA.  
If the supply is not capable of sinking the current, VIN may begin sourcing current to the operational amplifier, and  
then take over as the source of positive supply voltage. The danger in this case is that the voltage can rise to  
levels that exceed the operational amplifier absolute maximum ratings.  
Another common question involves what happens to the amplifier if an input signal is applied to the input while  
the power supplies V+ or V– are at 0 V. Again, this question depends on the supply characteristic while at 0 V, or  
at a level below the input signal amplitude. If the supplies appear as high impedance, then the operational  
amplifier supply current may be supplied by the input source through the current-steering diodes. This state is not  
a normal bias condition; the amplifier most likely does not operate normally. If the supplies are low impedance,  
then the current through the steering diodes can become quite high. The current level depends on the ability of  
the input source to deliver current, and any resistance in the input path.  
If there is any uncertainty about the ability of the supply to absorb this current, external zener diodes must be  
added to the supply pins, as shown in 42. The zener voltage must be selected such that the diode does not  
turn on during normal operation. However, the zener voltage must be low enough so that the zener diode  
conducts if the supply pin begins to rise above the safe operating supply voltage level.  
7.3.6 MUX-Friendly Inputs  
The TLV2186 features a proprietary input stage design that allows an input differential voltage to be applied while  
maintaining high input impedance. Typically, high-voltage CMOS or bipolar-junction input amplifiers feature  
antiparallel diodes that protect input transistors from large VGS voltages that may exceed the semiconductor  
process maximum and permanently damage the device. Large VGS voltages can be forced when applying a large  
input step, switching between channels, or attempting to use the amplifier as a comparator.  
The TLV2186 solves these problems with a switched-input technique that prevents large input bias currents  
when large differential voltages are applied. This solves many issues seen in switched or multiplexed  
applications, where large disruptions to RC filtering networks are caused by fast switching between large  
potentials. The TLV2186 offers outstanding settling performance as a result of these design innovations and  
built-in slew rate boost and wide bandwidth. The TLV2186 can also be used as a comparator. Differential and  
common-mode Absolute Maximum Ratings still apply relative to the power supplies.  
7.4 Device Functional Modes  
The TLV2186 has a single functional mode, and is operational when the power-supply voltage is greater than 4.5  
V (±2.25 V). The maximum power supply voltage for the TLV2186 is 24 V (±12 V).  
版权 © 2019, Texas Instruments Incorporated  
19  
TLV2186  
ZHCSK18 JULY 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TLV2186 operational amplifier combines precision offset and drift with excellent overall performance, making  
the device ideal for many precision applications. The precision offset drift of only 0.1 µV/°C provides stability over  
the entire temperature range. In addition, the device pairs excellent CMRR, PSRR, and AOL dc performance with  
outstanding low-noise operation. As with all amplifiers, applications with noisy or high-impedance power supplies  
require decoupling capacitors close to the device pins. In most cases, 0.1-µF capacitors are adequate.  
The following application examples highlight only a few of the circuits where the TLV2186 can be used.  
8.1.1 Basic Noise Calculations  
Low-noise circuit design requires careful analysis of all noise sources. External noise sources can dominate in  
many cases; consider the effect of source resistance on overall op amp noise performance. Total noise of the  
circuit is the root-sum-square combination of all noise components.  
The resistive portion of the source impedance produces thermal noise proportional to the square root of the  
resistance. The source impedance is usually fixed; consequently, select the op amp and the feedback resistors  
to minimize the respective contributions to the total noise.  
43 illustrates both noninverting (A) and inverting (B) op amp circuit configurations with gain. In circuit  
configurations with gain, the feedback network resistors also contribute noise. In general, the current noise of the  
op amp reacts with the feedback resistors to create additional noise components. However, the extremely low  
current noise of the TLV2186 means that the current noise contribution can be neglected.  
The feedback resistor values can generally be chosen to make these noise sources negligible. Low impedance  
feedback resistors load the output of the amplifier. The equations for total noise are shown for both  
configurations.  
20  
版权 © 2019, Texas Instruments Incorporated  
TLV2186  
www.ti.com.cn  
ZHCSK18 JULY 2019  
Application Information (接下页)  
(A) Noise in Noninverting Gain Configuration  
Noise at the output is given as EO, where  
R1  
R2  
2
42  
41 42  
2
2
2
2
¨
: ;  
1
:
;
:
;
:
;
>
?
84/5  
'
1
= l1 + p A5 + A0 + kA4 2 o + E0 45 + lE0 d  
hp  
æ4  
1
41  
41 + 42  
GND  
œ
EO  
8
: ;  
2
A = 4 G$ 6(-) 45  
d
h
¥
Thermal noise of RS  
+
5
*V  
¾
RS  
41 42  
8
: ;  
3
A4  
= ¨4 G$ 6(-) d  
2
h
d
h
Thermal noise of R1 || R2  
æ4  
1
41 + 42  
*V  
¾
+
,
h
VS  
Source  
GND  
G$ = 1.38065 10F23  
: ;  
4
d
œ
Boltzmann Constant  
-
Temperature in kelvins  
: ;  
>
?
-
5
6(-) = 237.15 + 6%)  
(B) Noise in Inverting Gain Configuration  
Noise at the output is given as EO, where  
R1  
R2  
2
:
;
42  
45 + 41 42  
'
1
= l1 +  
p A0 2 + kA4  
o2 + FE0 H  
+4 æ4  
5 2  
IG  
¨
: ;  
6
:
;
>
84/5  
?
1
45 + 41  
45 + 41 + 42  
RS  
œ
EO  
:
;
45 + 41 42  
8
+
: ;  
7
¨
4 G$ 6(-) H  
A4  
=
I
d
h
Thermal noise of (R1 + RS) || R2  
+4 æ4  
5
1
2
45 + 41 + 42  
*V  
¾
+
VS  
œ
,
GND  
G$ = 1.38065 10F23  
d
h
: ;  
8
Boltzmann Constant  
Source  
GND  
-
: ;  
9
>
?
6(-) = 237.15 + 6%)  
-
Temperature in kelvins  
Copyright © 2017, Texas Instruments Incorporated  
(1) en is the voltage noise spectral density of the amplifier. For the TLV2186 series of operational amplifiers, en = 38 nV/  
Hz at 1 kHz.  
(2) For additional resources on noise calculations visit TI Precision Labs.  
43. Noise Calculation in Gain Configurations  
版权 © 2019, Texas Instruments Incorporated  
21  
TLV2186  
ZHCSK18 JULY 2019  
www.ti.com.cn  
8.2 Typical Applications  
8.2.1 High-Side Current Sensing  
RL  
+
24 V  
œ
IL  
Load Current  
R1  
R2  
+ 24 V œ  
VO  
œ
R3  
+
TLV2186  
R4  
R1 = R3, R2 = R4  
44. High-Side Current Monitor  
8.2.1.1 Design Requirements  
A common systems requirement is to monitor the current being delivered to a load. Monitoring makes sure that  
normal current levels are being maintained, and also provides an alert if an overcurrent condition occurs.  
Fortunately, a relatively simple current monitor solution can be achieved using a precision rail-to-rail input/output  
op amp such as the TLV2186. This device has an input common-mode voltage (VCM) range that extends 200 mV  
beyond each power supply rail allowing for operation at the supply rail.  
The TLV2186 is configured as a difference amplifier with a predetermined gain. The difference amplifier inputs  
are connected across a sense resistor through which the load current flows. The sense resistor may be  
connected to the high side or low side of the circuit through which the load current flows. Commonly, high-side  
current sensing is applied and an applicable TLV2186 configuration is in 44. Low-side current sensing may be  
applied as well if the sense resistor can be placed between the load and ground.  
Use the following parameters for this design example:  
Single supply: 24 V  
Linear output voltage range: 0.3 V to 3.3 V  
Iload: 1 A to 11 A  
The design details and equations below can be used to reconfigure this design for different output voltage ranges  
and current loads.  
8.2.1.2 Detailed Design Procedure  
Designing a high-side current monitor circuit is straightforward providing the amplifier electrical characteristics are  
carefully consideration so that linear operation is maintained. Other additional considerations, such as the input  
voltage range of the analog to digital converter (ADC) that follows the current monitor stage, must be kept in  
mind while configuring the system.  
Consider the design of a TLV2186 high-side current monitor with an output voltage range set to be compatible  
with the input of ADC with an input range of 3.3 V, such as one integrated in a microcontroller. The full-scale  
input range of such a converter is 0 V to 3.3 V. The TLV2186 can be operated from a single 24-V supply,  
referenced to ground. Although the TLV2186 is specified as a rail-to-rail input/output (RRIO) amplifier, the linear  
output operating range (like all amplifiers) does not quite extend all the way to the supply rails. This linear  
operating range must be taken into consideration.  
22  
版权 © 2019, Texas Instruments Incorporated  
 
TLV2186  
www.ti.com.cn  
ZHCSK18 JULY 2019  
Typical Applications (接下页)  
The TLV2186 is powered by 24 V; therefore, the device is easily capable of providing the 3.3-V positive level, or  
even more if the ADC has a wider input range. However, because the TLV2186 output does not swing  
completely to 0 V, the specified lower swing limit must be observed in the design.  
The best measure of an op amp linear output voltage range comes from the open-loop voltage gain (AOL  
)
specification listed in the Electrical Characteristics table. The AOL test conditions specify a linear swing range 300  
mV from each supply rail (RL = 10 k). Therefore, the linear swing limit on the low end (VoMIN) is 300 mV, and  
3.3 V is the VoMAX limit, thus yielding an 11:1 VoMAX to VoMIN ratio. This ratio proves important in determining the  
difference amplifier operating parameters.  
An optimum load current, ILOAD of 10 A is used as an example. In most applications, however, the ability to  
monitor current levels well below 10 A is useful. This situation is where the 11:1 VoMAX to VoMIN ratio is crucial. If  
11 A is set as the maximum current, this current must correspond to a 3.3-V output. Using the 11:1 ratio, the  
minimum current of 1 A corresponds to 300 mV.  
Selection of the current sense resistor RS comes down to how much voltage drop can be tolerated at maximum  
current and the permissible power loss, or dissipation. A good compromise for a 10-A sense application is an RS  
of 10 m. That value results in a power dissipation of 1 W, and a 0.1-V drop at 10 amps.  
Next, determine the gain of the TLV2186 difference amplifier circuit. The maximum current of 11 A flowing  
through a 10-msense resistor results in 110 mV across the resistor. That voltage appears as a differential  
voltage, VR, that is applied across the TLV2186 difference amplifier circuit inputs:  
VS = IL *RS  
VS = 11 A *10 mW = 110 mV  
(1)  
The TLV2186 required voltage gain is determined from:  
VOMAX  
GA  
=
VS  
3.3 V  
0.11 V  
V
V
GA  
=
= 30  
(2)  
(3)  
Now, checking the VoMIN using IL = 1 A:  
VOMIN = GA *ISMIN *RS  
V
VOMIN = 30 *1 A *10 mW = 300 mV  
V
The complete TLV2186 high-side current monitor is shown in 45. The circuit is capable of monitoring a current  
range of < 1 A to 11 A, with a VCM very close to the 24-V supply voltage.  
RL = 10 m  
+
24 V  
œ
IL  
Load Current  
1 A to 11 A  
R1 = 1 kꢀ  
R2 = 30 kꢀ  
+ 24 V œ  
+ 3.3 V œ  
œ
µController  
ADC  
R3 = 1 kꢀ  
+
TLV2186  
R4 = 30 kꢀ  
VO = 300 mV to 3.3 V  
45. TLV2186 Configured as a High-Side Current Monitor  
版权 © 2019, Texas Instruments Incorporated  
23  
 
TLV2186  
ZHCSK18 JULY 2019  
www.ti.com.cn  
Typical Applications (接下页)  
In this example, the TLV2186 output voltage is intentionally limited to 3.3 V. However, because of the 24-V  
supply, the output voltage could be much higher to allow for a higher-voltage data converter with a higher  
dynamic range.  
The circuit in 45 was checked using the TINA Spice circuit simulation tool to verify the correct operation of the  
TLV2186 high-side current monitor. The simulation results are seen in 46. The performance is exactly as  
expected. Upon careful inspection of the plots, one possible surprise is that VO continues towards zero as the  
sense current drops below 1 A, where VO is 300 mV and less.  
VLOAD  
RL = 10 m  
+
24 V  
œ
IL  
Load Current  
0 A to 11 A  
R1 = 1 kꢀ  
R2 = 30 kꢀ  
+ 24 V œ  
VO = 0 V to 3.3 V  
100 nF  
œ
R3 = 1 kꢀ  
+
TLV2186  
RL = 10 kꢀ  
R4 = 30 kꢀ  
46. TLV2186 High-Side Current-Monitor Simulation Schematic  
The TLV2186 output, as well as other CMOS output amplifiers, often swing closer to 0 V than the linear output  
parameters suggest. The Electrical Characteristics table lists under the OUTPUT subsection VO, which is an  
output slam to the rail measure. It is not an indication of the linear output range, but instead how close the output  
can move towards the supply rail. In that region, the amplifier output approaches saturation, and the amplifier  
ceases to operate linearly. Thus, in the current-monitor application, the current-measurement capability may  
continue well below the 300 mV output level. However, keep in mind that the linearity errors are becoming large.  
Lastly, some notes about maximizing the high-side current monitor performance:  
All resistor values are critical for accurate gain results. The resistor pairs of [R1 and R3] and [R2 and R4]  
must be matched as closely as possible to minimize common-mode mismatch error. Use a 0.1% tolerance, or  
better. Often, selecting two adjacent resistors on a reel provides close matching compared to random  
selection.  
Keep the closed-loop gain, GA, to which the TLV2186 difference amplifier is set, to a reasonable value. Doing  
so reduces gain error and can be used to maximize bandwidth. A GA of 30 V/V is used in the example.  
Although current monitoring is often used for monitoring dc supply currents, ac current can also be monitored.  
The –3-dB bandwidth, or upper cutoff frequency, of the circuit of is:  
GBW  
fH =  
Noise Gain  
where  
GBW is the amplifier unity gain bandwidth; 750 kHz for the TLV2186.  
Noise gain is equal to the gain as seen looking into the op amp noninverting input, as shown in 公式 5.  
(4)  
(5)  
R2  
GNG = 1+  
R1  
24  
版权 © 2019, Texas Instruments Incorporated  
 
 
TLV2186  
www.ti.com.cn  
ZHCSK18 JULY 2019  
Typical Applications (接下页)  
For the TLV2186 circuit in 45:  
30 kW  
1 kW  
V
V
GNG = 1+  
= 31  
750 kHz  
fH =  
= 24.2 kHz  
31  
Make sure that the amplifier slew rate is sufficient to support the expected output voltage swing range and  
waveform. Also, if a single power supply such as 24 V is used, the ac power source applied to the sense input  
must have a positive dc component to keep the VCM above 0 V. The input voltage cannot drop below 0 V if  
normal operation is to be maintained.  
The TLV2186 output can attain a 0 V output level if a small negative voltage is used to power the V– pin instead  
of ground. The LM7705 is a switched capacitor voltage inverter with a regulated, low-noise, –0.23-V fixed voltage  
output. Powering the TLV2186 V– pin at this level approximately matches the 300-mV linear output voltage swing  
lower limit, thus extending the output swing to 0 V, or very near 0 V. Doing so greatly improves the resolution at  
low sense current levels.  
The LM7705 requires only about 78 μA of quiescent current, but be aware that the specified supply range is 3 V  
to 5.25 V. The 3.3-V or 5-V supply used by the ADC could be tapped as a power source.  
For more information about amplifier-based, high-side current monitors, see the TI Analog Engineer’s Circuit  
Cookbook: Amplifiers.  
8.2.1.3 Application Curve  
4
3.6  
3.2  
2.8  
2.4  
2
24.2  
VOUT  
VLOAD  
24.16  
24.12  
24.08  
24.04  
24  
1.6  
1.2  
0.8  
0.4  
0
23.96  
23.92  
23.88  
23.84  
23.8  
0
1
2
3
4
5
6
7
8
9
10 11  
Input Current (A)  
47. High-Side Results  
版权 © 2019, Texas Instruments Incorporated  
25  
TLV2186  
ZHCSK18 JULY 2019  
www.ti.com.cn  
Typical Applications (接下页)  
8.2.2 Bridge Amplifier  
48 shows the basic configuration for a bridge amplifier. Click the following link to download the TINA-TI file:  
Bridge Amplifier Circuit.  
VEX  
R1  
R
R
R
R
+5V  
VOUT  
VREF  
Copyright © 2017, Texas Instruments Incorporated  
48. Bridge Amplifier  
8.2.3 Low-Side Current Monitor  
49 shows the TLV2186 configured in a low-side current-sensing application. The load current (ILOAD) creates a  
voltage drop across the shunt resistor (RSHUNT). This voltage is amplified by the TLV2186, with a gain of 201. In  
this example, the load current is set from 0 A to 500 mA, and corresponds to an output voltage range from 0 V to  
10 V. The output range can be adjusted by changing the shunt resistor or gain of the configuration. Click the  
following link to download the TINA-TI file: Current-Sensing Circuit.  
VSYSTEM  
Load  
15 V  
+
VOUT = ILOAD * RSHUNT(1 + RF / RIN)  
VOUT  
TLV2186  
VOUT / ILOAD= 1 V / 49.75 mA  
ILOAD  
RSHUNT  
œ
100 m  
RIN  
RF  
100 ꢀ  
20 kꢀ  
CF  
150 pF  
49. Low-Side Current Monitor  
26  
版权 © 2019, Texas Instruments Incorporated  
 
 
TLV2186  
www.ti.com.cn  
ZHCSK18 JULY 2019  
Typical Applications (接下页)  
8.2.4 RTD Amplifier With Linearization  
See the Analog Linearization of Resistance Temperature Detectors technical brief for an in-depth analysis of 图  
50. Click the following link to download the TINA-TI file: RTD Amplifier with Linearization.  
15 V  
(5 V)  
Out  
In  
REF5050  
1 F  
1 F  
R2  
49.1 kΩ  
R3  
60.4 kΩ  
R1  
4.99 kΩ  
0°C = 0 V  
200°C = 5 V  
TLV2186  
VOUT  
R5  
105.8 k(1)  
RTD  
Pt100  
R4  
1 kΩ  
(1) R5 provides positive-varying excitation to linearize output.  
50. RTD Amplifier With Linearization  
9 Power Supply Recommendations  
The TLV2186 is specified for operation from 4.5 V to 24 V (±2.25 V to ±12 V); many specifications apply from  
–40°C to +125°C. The Typical Characteristics presents parameters that can exhibit significant variance with  
regard to operating voltage or temperature.  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device (see the  
Absolute Maximum Ratings).  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or  
high-impedance power supplies. For more detailed information on bypass capacitor placement, see the Layout  
section.  
版权 © 2019, Texas Instruments Incorporated  
27  
 
TLV2186  
ZHCSK18 JULY 2019  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
For the lowest offset voltage, avoid temperature gradients that create thermoelectric (Seebeck) effects in the  
thermocouple junctions formed from connecting dissimilar conductors. Also:  
Use low thermoelectric-coefficient conditions (avoid dissimilar metals).  
Thermally isolate components from power supplies or other heat sources.  
Shield operational amplifier and input circuitry from air currents, such as cooling fans.  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the op amp  
itself. Bypass capacitors reduce the coupled noise by providing low-impedance power sources local to the  
analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close as possible to the device. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital  
and analog grounds paying attention to the flow of the ground current. For more detailed information, seeThe  
PCB is a component of op amp design.  
To reduce parasitic coupling, run the input traces as far away as possible from the supply or output traces. If  
these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as opposed to  
in parallel with the noisy trace.  
Place the external components as close as possible to the device. As illustrated in 51, keep the feedback  
resistor (R3) and gain resistor (R4) close to the inverting input to minimize parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
For best performance, clean the PCB following board assembly.  
Any precision integrated circuit may experience performance shifts due to moisture ingress into the plastic  
package. Following any aqueous PCB cleaning process, bake the PCB assembly to remove moisture  
introduced into the device packaging during the cleaning process. A low-temperature, post-cleaning bake at  
85°C for 30 minutes is sufficient for most circumstances.  
28  
版权 © 2019, Texas Instruments Incorporated  
TLV2186  
www.ti.com.cn  
ZHCSK18 JULY 2019  
10.2 Layout Example  
Place bypass  
capacitors as close to  
device as possible  
(avoid use of vias)  
Use ground pours for  
shielding the input  
signal pairs  
GND  
C3  
C4  
+V  
R3  
C3  
C4  
R3  
INœ  
+V  
1
NC  
œIN  
+IN  
Vœ  
NC  
V+  
8
7
6
5
1
2
3
4
NC  
œIN  
+IN  
Vœ  
NC  
V+  
8
7
6
5
R1  
R2  
R1  
2
3
4
INœ  
œ
OUT  
IN+  
OUT  
NC  
OUT  
OUT  
NC  
+
R2  
-V  
C1  
C2  
IN+  
R4  
GND  
R4  
-V  
Place components  
C1  
C2  
Use a low-  
ESR,ceramic bypass  
capacitor  
close to device and to  
each other to reduce  
parasitic errors  
Copyright © 2017, Texas Instruments Incorporated  
51. Operational Amplifier Board Layout for Difference Amplifier Configuration  
版权 © 2019, Texas Instruments Incorporated  
29  
TLV2186  
ZHCSK18 JULY 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 TINA-TI™(免费软件下载)  
TINA-TI™ 是一款基于 SPICE 引擎的电路仿真程序,简单易用并且功能强大。TINA-TI™ TINA™软件的一款免  
费全功能版本,除了一系列无源和有源模型外,此版本软件还预先载入了一个宏模型库。TINA-TI™ 提供所有传统  
SPICE 直流、瞬态和频域分析,以及其他设计功能。  
TINA-TI™ 提供全面的后处理能力,便于用户以多种方式获得结果,用户可从 Analog eLab Design Center(模拟  
电子实验室设计中心)免费下载。虚拟仪器提供选择输入波形和探测电路节点、电压以及波形的功能,从而构建一  
个动态的快速入门工具。  
这些文件需要安装 TINA 软件(由 DesignSoft™提供)或者 TINA-TI™ 软件。请下载 TINA-  
TI™ 文件夹中的免费 TINA-TI™ 软件。  
11.1.1.2 TI 高精度设计  
欲获取 TI 高精度设计,请访问 http://www.ti.com.cn/ww/analog/precision-designs/TI 高精度设计是由 TI 公司高  
精度模拟 应用 专家创建的模拟解决方案,提供了许多实用电路的工作原理、组件选择、仿真、完整印刷电路板  
(PCB) 电路原理图和布局布线、物料清单以及性能测量结果。  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《零漂移放大器: 特性 和优势》  
德州仪器 (TI)《运算放大器设计组件 PCB》  
德州仪器 (TI)《适合所有人的运算放大器》  
德州仪器 (TI)《运算放大器增益稳定性,第 3 部分:交流增益误差分析》  
德州仪器 (TI)《运算放大器增益稳定性,第 2 部分:直流增益误差分析》  
德州仪器 (TI)《在全差分有源滤波器中使用无限增益、MFB 滤波器拓扑》  
德州仪器 (TI)《运算放大器性能分析》  
德州仪器 (TI)《运算放大器的单电源运行》  
德州仪器 (TI)《放大器调优》  
德州仪器 (TI)《无铅组件涂层的储存寿命评估》  
德州仪器 (TI)《反馈曲线图定义运算放大器交流性能》  
德州仪器 (TI)《运算放大器的 EMI 抑制比》  
德州仪器 (TI)《电阻式温度检测器的模拟线性化》  
德州仪器 (TI)TI 精密设计 TIPD102 高侧电压-电流 (V-I) 转换器》  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
30  
版权 © 2019, Texas Instruments Incorporated  
TLV2186  
www.ti.com.cn  
ZHCSK18 JULY 2019  
社区资源 (接下页)  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 商标  
TINA-TI, E2E are trademarks of Texas Instruments.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
TINA, DesignSoft are trademarks of DesignSoft, Inc.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
31  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV2186IDR  
TLV2186IDSGR  
TLV2186IDSGT  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
WSON  
WSON  
D
8
8
8
2500 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
T2186  
DSG  
DSG  
NIPDAU  
NIPDAU  
PVDY  
PVDY  
250  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV2186IDR  
TLV2186IDSGR  
TLV2186IDSGT  
SOIC  
WSON  
WSON  
D
8
8
8
2500  
3000  
250  
330.0  
180.0  
180.0  
12.4  
8.4  
6.4  
2.3  
2.3  
5.2  
2.3  
2.3  
2.1  
8.0  
4.0  
4.0  
12.0  
8.0  
Q1  
Q2  
Q2  
DSG  
DSG  
1.15  
1.15  
8.4  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV2186IDR  
TLV2186IDSGR  
TLV2186IDSGT  
SOIC  
WSON  
WSON  
D
8
8
8
2500  
3000  
250  
356.0  
210.0  
210.0  
356.0  
185.0  
185.0  
35.0  
35.0  
35.0  
DSG  
DSG  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.32  
0.18  
PIN 1 INDEX AREA  
2.1  
1.9  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.05  
0.00  
SIDE WALL  
0.08 C  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
PIN 1 ID  
(45 X 0.25)  
8X  
0.4  
0.2  
8X  
0.1  
C A B  
C
0.05  
4218900/E 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/E 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/E 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TLV2186IDR

低功耗、轨到轨输入和输出、24V、零漂移运算放大器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2186IDSGR

低功耗、轨到轨输入和输出、24V、零漂移运算放大器 | DSG | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2186IDSGT

低功耗、轨到轨输入和输出、24V、零漂移运算放大器 | DSG | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2197-Q1

汽车类、双通道、高电压、精密 RRIO 运算放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2197QDGKRQ1

汽车类、双通道、高电压、精密 RRIO 运算放大器 | DGK | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2211

Advanced LinCMOSE RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2211CDBV

Advanced LinCMOSE RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2211CDBVR

Advanced LinCMOC™ RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2211CDBVRG4

Single LinCMOS&#153; Rail-To-Rail uPower Operational Amplifier 5-SOT-23 0 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2211CDBVT

Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2211CDBVTG4

Single LinCMOS&#153; Rail-To-Rail uPower Operational Amplifier 5-SOT-23 0 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV2211IDBV

Advanced LinCMOSE RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI