TLV2381 [TI]

FAMILY OF MICROPOWER RAIL-TO-RAIL INPUT AND OUTPUT OPERATIONAL AMPLIFIERS; 系列微功耗轨至轨输入和输出运算放大器
TLV2381
型号: TLV2381
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

FAMILY OF MICROPOWER RAIL-TO-RAIL INPUT AND OUTPUT OPERATIONAL AMPLIFIERS
系列微功耗轨至轨输入和输出运算放大器

运算放大器 输出元件 输入元件
文件: 总12页 (文件大小:275K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV2381  
TLV2382  
SLOS377A – SEPTEMBER 2001– REVISED JULY 2003  
FAMILY OF MICROPOWER RAIL-TO-RAIL INPUT AND OUTPUT  
OPERATIONAL AMPLIFIERS  
FEATURES  
DESCRIPTION  
BiMOS Rail-to-Rail Input/Output  
The TLV238x single supply operational amplifiers  
Input Bias Current . . . 1 pA  
provide rail-to-rail input and output capability. The  
TLV238x takes the minimum operating supply voltage  
down to 2.7 V over the extended industrial temperature  
range, while adding the rail-to-rail output swing feature.  
The TLV238x also provides 160-kHz bandwidth from  
only 7 µA. The maximum recommended supply voltage  
is 16 V, which allows the devices to be operated from  
( 8 V supplies down to 1.35 V) two rechargeable cells.  
High Wide Bandwidth . . . 160 kHz  
High Slew Rate . . . 0.1 V/µs  
Supply Current . . . 7 µA (per channel)  
Input Noise Voltage . . . 90 nV/Hz  
Supply Voltage Range . . . 2.7 V to 16 V  
Specified Temperature Range  
– –40°C to 125°C . . . Industrial Grade  
Ultra-Small Packaging  
– 5 Pin SOT-23 (TLV2381)  
The combination of rail-to-rail inputs and outputs make  
them good upgrades for the TLC27Lx family—offering  
more bandwidth at a lower quiescent current. The offset  
voltage is lower than the TLC27LxA variant.  
APPLICATIONS  
To maintain cost effectiveness the TLV2381/2 are only  
available in the extended industrial temperature range.  
This means that one device can be used in a wide range  
of applications that include PDAs as well as automotive  
sensor interface.  
Portable Medical  
Power Monitoring  
Low Power Security Detection Systems  
Smoke Detectors  
All members are available in SOIC, with the singles in  
the small SOT-23 package, duals in the MSOP.  
SELECTION GUIDE  
V
[V]  
I
/ch  
V
V
[mV]  
I
IB  
GBW  
[MHz]  
SLEW RATE  
V , 1 kHz  
n
S
Q
ICR  
[V]  
IO  
DEVICE  
[µA]  
[pA]  
[V/µs]  
[nV/Hz]  
100  
100  
68  
TLV238x  
TLV27Lx  
TLC27Lx  
OPAx349  
OPAx347  
TLC225x  
2.7 to 16  
2.7 to 16  
4 to 16  
10  
–0.2 to V + 0.2  
4.5  
60  
0.16  
0.16  
0.06  
0.06  
0.03  
0.02  
0.01  
0.02  
S
11  
–0.2 to V – 1.2  
5
60  
S
17  
–0.2 to V – 1.5  
10/5/2  
10  
60  
0.085  
0.070  
0.35  
S
1.8 to 5.5  
2.3 to 5.5  
2.7 to 16  
2
–0.2 to V + 0.2  
10  
300  
60  
S
34  
–0.2 to V + 0.2  
6
10  
S
62.5  
0 to V – 1.5  
1.5/0.85  
60  
0.200  
19  
S
NOTE: All dc specs are maximums while ac specs are typicals.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright 2001–2003 Texas Instruments Incorporated  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
www.ti.com  
TLV2381  
TLV2382  
SLOS377A – SEPTEMBER 2001– REVISED JULY 2003  
PACKAGE/ORDERING INFORMATION  
SPECIFIED  
PACKAGE  
CODE  
PRODUCT  
PACKAGE  
SYMBOL  
TEMPERATURE  
RANGE  
ORDER NUMBER TRANSPORT MEDIA  
TLV2381ID  
TLV2381IDR  
TLV2381IDBVR  
TLV2381IDBVT  
TLV2382ID  
Tube  
TLV2381ID  
TLV2381IDBV  
TLV2382ID  
SOIC-8  
SOT-23  
SOIC-8  
D
2381I  
VBKI  
2382I  
Tape and Reel  
DBV  
D
–40°C to 125°C  
Tape and Reel  
Tube  
TLV2382IDR  
Tape and Reel  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.5 V  
S
Input voltage, V (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V + 0.2 V  
I
S
Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA  
O
Differential input voltage, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
ID  
S
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Maximum junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Operating free-air temperature range, T : I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 125°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 125°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. Relative to GND pin.  
2. Maximum is 16.5 V or V +0.2 V whichever is the lesser value.  
S
DISSIPATION RATING TABLE  
25°C  
PACKAGE  
θ
θ
JA  
T
A
T = 85°C  
A
JC  
(°C/W)  
38.3  
55  
(°C/W)  
POWER RATING POWER RATING  
D (8)  
176  
710 mW  
385 mW  
425 mW  
370 mW  
201 mW  
221 mW  
DBV (5)  
DBV (6)  
324.1  
294.3  
55  
2
www.ti.com  
TLV2381  
TLV2382  
SLOS377A – SEPTEMBER 2001– REVISED JULY 2003  
recommended operating conditions  
MIN  
1.35  
2.7  
MAX  
8
UNIT  
Dual supply  
Supply voltage, (V )  
S
V
Single supply  
16  
Input common-mode voltage range  
–0.2 V +0.2  
V
S
Operating free air temperature, T  
I-suffix  
–40  
125  
°C  
A
electrical characteristics at recommended operating conditions, V = 2.7 V, 5 V, and 15 V (unless  
S
otherwise noted)  
dc performance  
PARAMETER  
Input offset voltage  
Offset voltage drift  
TEST CONDITIONS  
T
A
MIN  
TYP  
MAX  
4.5  
UNIT  
mV  
25°C  
Full range  
25°C  
0.5  
V
IO  
V
R
= V /2,  
S
= 100 kΩ  
V
R
= V /2  
= 50 Ω  
S
IC  
L
O S  
6.5  
α
VIO  
1.1  
69  
µV/°C  
25°C  
54  
53  
71  
70  
58  
57  
72  
70  
65  
64  
72  
70  
80  
77  
80  
77  
77  
74  
V
R
= 0 V to V ,  
S
IC  
= 50 Ω  
Full range  
25°C  
S
V
S
V
S
V
S
= 2.7 V  
dB  
dB  
dB  
86  
74  
V
R
= 0 V to V –1.3 V,  
S
= 50 Ω  
IC  
Full range  
25°C  
S
V
R
= 0 V to V ,  
= 50 Ω  
S
IC  
Full range  
25°C  
S
CMRR Common-mode rejection ratio  
= 5 V  
88  
V
R
= 0 V to V –1.3 V,  
= 50 Ω  
S
IC  
Full range  
25°C  
S
80  
V
R
= 0 V to V ,  
= 50 Ω  
S
IC  
Full range  
25°C  
S
= 15 V  
90  
V
R
= 0 V to V –1.3 V,  
= 50 Ω  
S
IC  
Full range  
25°C  
S
100  
100  
83  
V
S
V
S
V
S
= 2.7 V  
= 5 V  
Full range  
25°C  
Large-signal differential voltage  
amplification  
V
R
=V /2,  
S
= 100 kΩ  
O(PP)  
A
VD  
dB  
Full range  
25°C  
L
= 15 V  
Full range  
Full range is –40°C to 125°C.  
input characteristics  
PARAMETER  
TEST CONDITIONS  
T
MIN  
TYP  
MAX  
60  
UNIT  
A
25°C  
70°C  
125°C  
25°C  
70°C  
125°C  
25°C  
1
I
Input offset current  
100  
1000  
60  
pA  
IO  
IB  
V
R
= V /2,  
S
V
R
= V /2,  
= 50 Ω  
S
IC  
L
O S  
= 100 k,  
1
I
Input bias current  
200  
1000  
pA  
r
Differential input resistance  
1000  
8
GΩ  
i(d)  
C
Common-mode input capacitance  
f = 1 kHz  
25°C  
pF  
IC  
3
www.ti.com  
TLV2381  
TLV2382  
SLOS377A – SEPTEMBER 2001– REVISED JULY 2003  
electrical characteristics at recommended operating conditions, V = 2.7 V, 5 V, and 15 V (unless  
S
otherwise noted) (continued)  
power supply  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP  
MAX  
10  
UNIT  
25°C  
Full range  
25°C  
7
I
Supply current (per channel)  
V
= V /2  
µA  
DD  
S
O
15  
74  
70  
82  
V
V
= 2.7 V to 16V,  
= V /2 V  
No load,  
S
IC  
PSRR  
Power supply rejection ratio (V /V  
IO  
)
dB  
S
Full range  
S
Full range is –40°C to 125°C for I suffix.  
output characteristics  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
200  
220  
120  
200  
120  
150  
800  
900  
400  
500  
TYP  
MAX  
UNIT  
25°C  
Full range  
25°C  
160  
V
V
V
V
= 2.7 V  
= 5 V  
S
S
S
S
85  
50  
V
I
= V /2,  
S
IC  
= 100 µA  
mV  
Full range  
25°C  
O
V
O
Output voltage swing from rail  
= 15 V  
= 5 V  
Full range  
25°C  
420  
200  
400  
Full range  
25°C  
V
I
= V /2,  
IC S  
= 500 µA  
mV  
O
V
V
= 15 V  
= 2.7 V  
S
Full range  
25°C  
I
O
Output current  
V
O
= 0.5 V from rail  
µA  
S
Full range is –40°C to 125°C for I suffix.  
dynamic performance  
PARAMETER  
Gain bandwidth product  
TEST CONDITIONS  
= 100 k, = 10 pF, f = 1 kHz  
T
MIN  
TYP  
160  
0.06  
0.05  
0.08  
62  
MAX  
UNIT  
A
GBP  
SR  
R
C
25°C  
25°C  
kHz  
L
L
V
C
= 2 V,  
= 10 pF  
R
= 100 kΩ,  
L
O(pp)  
Slew rate at unity gain  
–40°C  
125°C  
25°C  
V/µs  
L
φ
M
Phase margin  
Gain margin  
°
R
= 100 k,  
C
= 50 pF  
L
L
25°C  
6.7  
dB  
Rise  
Fall  
31  
V
C
= 1 V, A = 1,  
V
(STEP)pp  
= 10 pF,  
t
s
Settling time (0.1%)  
25°C  
µs  
R = 100 kΩ  
61  
L
L
noise/distortion performance  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP  
MAX  
UNIT  
V
n
Equivalent input noise voltage  
f = 1 kHz  
25°C  
90  
nV/Hz  
4
www.ti.com  
TLV2381  
TLV2382  
SLOS377A – SEPTEMBER 2001– REVISED JULY 2003  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
V
Input offset voltage  
vs Common-mode input voltage  
1, 2, 3  
4
IO  
/I  
I
Input bias and offset current  
High-level output voltage  
Low-level output voltage  
vs Free-air temperature  
vs High-level output current  
vs Low-level output current  
vs Supply voltage  
IB IO  
V
5, 7, 9  
6, 8, 10  
11  
OH  
OL  
V
I
Q
Quiescent current  
vs Free-air temperature  
12  
Supply voltage and supply current ramp up  
Differential voltage gain and phase shift  
Gain-bandwidth product  
13  
A
vs Frequency  
14  
VD  
GBP  
vs Free-air temperature  
vs Load capacitance  
vs Frequency  
15  
φ
m
Phase margin  
16  
CMRR Common-mode rejection ratio  
17  
PSRR  
Power supply rejection ratio  
Input referred noise voltage  
Slew rate  
vs Frequency  
18  
vs Frequency  
19  
SR  
vs Free-air temperature  
vs Frequency  
20  
V
Peak-to-peak output voltage  
Inverting small-signal response  
Inverting large-signal response  
Crosstalk  
21  
O(PP)  
22  
23  
vs Frequency  
24  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
INPUT OFFSET VOLTAGE  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
2000  
2000  
1500  
1000  
500  
2000  
1500  
1000  
500  
0
V
T
= 2.7 V  
= 25°C  
V
T
= 5 V  
= 25°C  
S
A
S
A
V
= 15 V  
1500  
1000  
S
T
A
= 25°C  
500  
0
0
–500  
–1000  
–1500  
–2000  
–500  
–1000  
–1500  
–2000  
–500  
–1000  
–1500  
–2000  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
–0.2  
7.5  
15.2  
V
– Common-Mode Input Voltage – V  
V
– Common-Mode Input Voltage – V  
IC  
IC  
V
– Common-Mode Input Voltage – V  
IC  
Figure 1  
Figure 2  
Figure 3  
5
www.ti.com  
TLV2381  
TLV2382  
SLOS377A – SEPTEMBER 2001– REVISED JULY 2003  
TYPICAL CHARACTERISTICS  
INPUT BIAS AND INPUT  
OFFSET CURRENT  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
FREE-AIR TEMPERATURE  
15  
14  
13  
12  
11  
10  
9
15  
100  
V
= 15 V  
S
V
= 15 V  
S
V
V
V
= 2.5 V  
DD  
–40°C  
90  
125°C  
70°C  
25°C  
0°C  
= 0  
12.5  
10  
IC  
O
0°C  
80  
70  
60  
50  
40  
30  
20  
10  
0
= 0  
25°C  
R
= 50 Ω  
S
70°C  
8
7
7.5  
6
5
4
5
I
IB  
125°C  
3
2
1
0
I
IO  
2.5  
–40°C  
0
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8 10 12 14 16 18 20 22 24  
25  
45  
65  
85  
105  
125  
I
– Low-Level Output Current – mA  
I
– High-Level Output Current – mA  
OL  
T
A
– Free-Air Temperature – °C  
OH  
Figure 4  
Figure 5  
Figure 6  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
5
5
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
V
= 5 V  
V
= 5 V  
S
V = 2.7 V  
S
S
4.5  
4.5  
4
125°C  
70°C  
–40°C  
–40°C  
4
0°C  
0°C  
3.5  
3
3.5  
25°C  
25°C  
70°C  
25°C  
0°C  
3
70°C  
2.5  
2.5  
2
1.5  
1
2
1.5  
1
125°C  
125°C  
–40°C  
0.5  
0.3  
0
0.5  
0
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5 5 5.5  
6
0.4  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.2  
0.6  
0.8  
1
1.2 1.4  
I
– Low-Level Output Current – mA  
I
– High-Level Output Current – mA  
I
– High-Level Output Current – mA  
OL  
OH  
OH  
Figure 7  
Figure 8  
Figure 9  
QUIESCENT CURRENT  
vs  
FREE-AIR TEMPERATURE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
QUIESCENT CURRENT  
vs  
SUPPLY VOLTAGE  
8
7
6
5
4
3
2
1
0
8
7
6
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
16 V  
V
= 2.7 V  
125°C  
70°C  
S
5 V  
125°C  
70°C  
5
4
3
2
2.7 V  
25°C  
0°C  
–40°C  
25°C  
0°C  
0.9  
0.6  
0.3  
0
–40°C  
1
0
–40 –25–10  
5 20 35 50 65 80  
95 110  
125  
0
0.2  
0.4  
0.6  
0.8  
1
1.2 1.4  
0
2
4
6
8
10  
12 14 16  
T
A
– Free-Air Temperature – °C  
I
– Low-Level Output Current – mA  
V
– Supply Voltage – V  
OL  
S
Figure 12  
Figure 10  
Figure 11  
6
www.ti.com  
TLV2381  
TLV2382  
SLOS377A – SEPTEMBER 2001– REVISED JULY 2003  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL VOLTAGE GAIN  
AND PHASE SHIFT  
vs  
SUPPLY VOLTAGE AND  
FREQUENCY  
SUPPLY CURRENT RAMP UP  
40  
120  
100  
80  
15  
V
= 5 V  
S
V
S
R
C
T
= 100 kΩ  
= 10 pF  
= 25°C  
L
L
A
10  
5
0°  
V
O
30°  
0
V
R
C
= 0 to 15 V,  
= 100 ,  
= 10 pF,  
= 25°C  
S
L
L
60  
60°  
90°  
40  
T
A
15  
10  
I
Q
20  
0
120°  
150°  
180°  
5
0
–20  
0
5
10  
15  
20  
25  
30  
0.1  
1
10  
100  
1 k 10 k 100 k 1 M  
t – Time – ms  
f – Frequency – Hz  
Figure 13  
Figure 14  
GAIN-BANDWIDTH PRODUCT  
vs  
FREE-AIR TEMPERATURE  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
COMMON-MODE REJECTION RATIO  
vs  
FREQUENCY  
80  
170  
160  
120  
V
= 5 V  
S
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
T
= 5 V  
= 25°C  
S
A
70  
60  
50  
40  
30  
20  
10  
0
R
T
A
= 100 kΩ  
= 25°C  
L
V
= 2.7 V  
S
150  
140  
130  
V
= 5 V  
S
V
= 15 V  
S
120  
110  
100  
–40 –25 –10 5 20 35 50 65 80 95 110 125  
10  
100  
1000  
10  
100  
1 k  
10 k  
100 k  
1 M  
T
A
– Free-Air Temperature – °C  
C
– Load Capacitance – pF  
L
f – Frequency – Hz  
Figure 15  
Figure 16  
Figure 17  
SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
INPUT REFERRED NOISE VOLTAGE  
POWER SUPPLY REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
0.09  
100  
250  
200  
150  
100  
V
= 5 V,  
S
V
T
A
= 2.5 V  
S
= 25°C  
90  
80  
70  
0.08  
0.07  
0.06  
0.05  
SR+  
G = 2,  
= 100 kΩ  
R
F
SR–  
60  
50  
40  
30  
20  
0.04  
0.03  
0.02  
V = 5 V  
S
Gain = 1  
V
= 1  
50  
0
O
R
C
= 100 kΩ  
= 50 pF  
L
L
0.01  
0
10  
0
1
10  
100  
1 k  
10 k  
100 k  
10  
100  
1 k  
10 k  
100 k  
1 M  
–40 –25 –10 5 20 35 50 65 80 95 110 125  
T
A
– Free-air Temperature – °C  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 19  
Figure 20  
Figure 18  
7
www.ti.com  
TLV2381  
TLV2382  
SLOS377A – SEPTEMBER 2001– REVISED JULY 2003  
TYPICAL CHARACTERISTICS  
PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
INVERTING SMALL-SIGNAL  
RESPONSE  
FREQUENCY  
16  
2
V = 3 V  
I
PP  
V
= 15 V  
1.5  
S
14  
12  
10  
1
Gain = –1,  
R
C
= 100 k,  
= 10 pF,  
= 5 V,  
L
L
0.5  
R
C
= 100 k,  
= 10 pF,  
L
L
V
V
S
O
0
–0.5  
–1  
THD+N <= 5%  
8
6
4
= 3 V  
,
PP  
f = 1 kHz  
V
= 5 V  
S
V
–1.5  
–2  
2
0
= 2.7 V  
S
V
= 3 V  
PP  
O
10  
100  
1000  
1 k  
10 k  
–100  
0
100 200 300 400 500 600 700  
t – Time – µs  
f – Frequency – Hz  
Figure 22  
Figure 21  
CROSSTALK  
vs  
FREQUENCY  
INVERTING LARGE-SIGNAL  
RESPONSE  
0
0.06  
0.04  
0.02  
V
= 5 V  
S
R
C
= 2 kΩ  
= 10 pF  
= 25°C  
L
L
–20  
V = 100 mV  
I
PP  
T
A
Gain = –1,  
–40  
–60  
Channel 1 to 2  
R
C
= 100 k,  
= 10 pF,  
L
L
V
V
= 5 V,  
= 100 mV  
S
O
0
,
PP  
–80  
f = 1 kHz  
–0.02  
–0.04  
–0.06  
–100  
–120  
–140  
V
= 100 mV  
PP  
O
10  
100  
1 k  
10 k  
100 k  
–100  
0
100 200 300 400 500 600 700  
f – Frequency – Hz  
t – Time – µs  
Figure 23  
Figure 24  
8
www.ti.com  
TLV2381  
TLV2382  
SLOS377A – SEPTEMBER 2001– REVISED JULY 2003  
APPLICATION INFORMATION  
offset voltage  
The output offset voltage (V ) is the sum of the input offset voltage (V ) and both input bias currents (I ) times the  
OO  
IO  
IB  
corresponding gains. The following schematic and formula can be used to calculate the output offset voltage:  
R
F
I
IB–  
R
G
+
+
R
R
R
R
F
F
V
I
V
V
1
I
R
1
I
R
V
O
OO  
IO  
IB  
S
IB–  
F
G
G
R
S
I
IB+  
Figure 25. Output Offset Voltage Model  
general configurations  
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The  
simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier (see Figure 26).  
R
R
F
G
V
R
R
O
F
1
1
V
1
sR1C1  
I
G
V
DD  
/2  
1
V
O
f
+
–3dB  
V
I
2 R1C1  
R1  
C1  
Figure 26. Single-Pole Low-Pass Filter  
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task.  
For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure  
to do this can result in phase shift of the amplifier.  
C1  
R1 = R2 = R  
C1 = C2 = C  
Q = Peaking Factor  
(Butterworth Q = 0.707)  
+
_
V
I
1
R1  
R2  
f
–3dB  
2 RC  
C2  
R
F
1
R
=
G
R
F
2 –  
)
(
R
Q
G
V
DD  
/2  
Figure 27. 2-Pole Low-Pass Sallen-Key Filter  
9
www.ti.com  
TLV2381  
TLV2382  
SLOS377A – SEPTEMBER 2001– REVISED JULY 2003  
APPLICATION INFORMATION  
circuit layout considerations  
To achieve the levels of high performance of the TLV238x, follow proper printed-circuit board design techniques. A  
general set of guidelines is given in the following.  
Ground planes—It is highly recommended that a ground plane be used on the board to provide all  
components with a low inductive ground connection. However, in the areas of the amplifier inputs and  
output, the ground plane can be removed to minimize the stray capacitance.  
Proper power supply decoupling—Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic  
capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers  
depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal  
of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply  
terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less  
effective. The designer should strive for distances of less than 0.1 inches between the device power  
terminals and the ceramic capacitors.  
Sockets—Socketscanbeusedbutarenotrecommended. Theadditionalleadinductanceinthesocketpins  
will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board  
is the best implementation.  
Short trace runs/compact part placements—Optimum high performance is achieved when stray series  
inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,  
thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of  
the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at  
the input of the amplifier.  
Surface-mount passive components—Using surface-mount passive components is recommended for high  
performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of  
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small  
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray  
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be  
kept as short as possible.  
10  
www.ti.com  
TLV2381  
TLV2382  
SLOS377A – SEPTEMBER 2001– REVISED JULY 2003  
APPLICATION INFORMATION  
general power dissipation considerations  
For a given θ , the maximum power dissipation is shown in Figure 28 and is calculated by the following formula:  
JA  
T
–T  
MAX  
A
P
D
JA  
Where:  
P
= Maximum power dissipation of TLV238x IC (watts)  
= Absolute maximum junction temperature (150°C)  
= Free-ambient air temperature (°C)  
D
T
MAX  
T
A
θ
= θ + θ  
JA  
JC CA  
θ
θ
= Thermal coefficient from junction to case  
JC  
= Thermal coefficient from case to ambient air (°C/W)  
CA  
MAXIMUM POWER DISSIPATION  
vs  
FREE-AIR TEMPERATURE  
2
T
= 150°C  
PDIP Package  
J
Low-K Test PCB  
1.75  
1.5  
1.25  
1
θ
= 104°C/W  
JA  
MSOP Package  
Low-K Test PCB  
SOIC Package  
Low-K Test PCB  
θ
= 260°C/W  
JA  
θ
= 176°C/W  
JA  
0.75  
0.5  
SOT-23 Package  
Low-K Test PCB  
0.25  
0
θ
= 324°C/W  
JA  
–5540 –25 –10  
5
20 35 50 65 80 95 110 125  
T
A
– Free-Air Temperature – °C  
NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.  
Figure 28. Maximum Power Dissipation vs Free-Air Temperature  
TLV2381  
D PACKAGE  
(TOP VIEW)  
TLV2382  
D PACKAGE  
(TOP VIEW)  
TLV2381  
DBV PACKAGE  
(TOP VIEW)  
NC  
IN–  
NC  
1OUT  
1IN–  
1IN+  
GND  
V
DD  
1
2
3
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
5
4
V
DD  
OUT  
GND  
V
2OUT  
2IN–  
2IN+  
DD  
IN+  
OUT  
NC  
GND  
IN–  
IN+  
NC – No internal connection  
11  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2003, Texas Instruments Incorporated  

相关型号:

TLV2381ID

FAMILY OF MICROPOWER RAIL-TO-RAIL INPUT AND OUTPUT OPERATIONAL AMPLIFIERS
TI

TLV2381IDBVR

FAMILY OF MICROPOWER RAIL-TO-RAIL INPUT AND OUTPUT OPERATIONAL AMPLIFIERS
TI

TLV2381IDBVT

FAMILY OF MICROPOWER RAIL-TO-RAIL INPUT AND OUTPUT OPERATIONAL AMPLIFIERS
TI

TLV2381IDBVTG4

10-uA/Channel, 160kHz, RRIO Op Amp 5-SOT-23 -40 to 125
TI

TLV2381IDR

FAMILY OF MICROPOWER RAIL-TO-RAIL INPUT AND OUTPUT OPERATIONAL AMPLIFIERS
TI

TLV2381_12

FAMILY OF MICROPOWER RAIL-TO-RAIL INPUT AND OUTPUT OPERATIONAL AMPLIFIERS
TI

TLV2382

FAMILY OF MICROPOWER RAIL-TO-RAIL INPUT AND OUTPUT OPERATIONAL AMPLIFIERS
TI

TLV2382ID

FAMILY OF MICROPOWER RAIL-TO-RAIL INPUT AND OUTPUT OPERATIONAL AMPLIFIERS
TI

TLV2382IDG4

双路、16V、160kHz、RRIO 运算放大器 | D | 8 | -40 to 125
TI

TLV2382IDGK

DUAL OP-AMP, 6500uV OFFSET-MAX, 0.16MHz BAND WIDTH, PDSO8, ULTRA SMALL, PLASTIC, MSOP-8
TI

TLV2382IDGKR

暂无描述
TI

TLV2382IDR

FAMILY OF MICROPOWER RAIL-TO-RAIL INPUT AND OUTPUT OPERATIONAL AMPLIFIERS
TI