TLV2474AQDRQ1 [TI]

FAMILY OF 600-uA.CH 2.8-HHz RAIL-TO-RAIL INPUT-OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS; 家庭的600-uA.CH 2.8 HHZ轨到轨输入 - 输出高驱动运算放大器
TLV2474AQDRQ1
型号: TLV2474AQDRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

FAMILY OF 600-uA.CH 2.8-HHz RAIL-TO-RAIL INPUT-OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS
家庭的600-uA.CH 2.8 HHZ轨到轨输入 - 输出高驱动运算放大器

运算放大器 放大器电路 光电二极管 输出元件 输入元件 驱动
文件: 总27页 (文件大小:660K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇꢈ ꢉ ꢊ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢋꢇ ꢈ ꢉ  
ꢒ ꢋꢓ ꢔꢕ ꢃ ꢖꢗ ꢇꢍ ꢘꢙ ꢚꢋꢎ ꢁ ꢇꢀꢐ ꢇꢚꢋꢎ ꢁ ꢎꢛ ꢜꢝꢀ ꢓ ꢐ ꢝꢀ ꢜꢝ ꢀ  
ꢘꢎ ꢞꢘ ꢇꢟꢚꢎꢂ ꢠ ꢐ ꢜꢠꢚ ꢋꢀ ꢎꢐ ꢛꢋꢁ ꢋꢍ ꢜ ꢁꢎ ꢌꢎ ꢠꢚ ꢡ  
µ
SGLS180A − AUGUST 2003 − REVISED OCTOBER 2004  
D
Qualification in Accordance With  
AEC-Q100  
D
High Output Drive Capability  
10 mA at 180 mV  
35 mA at 500 mV  
D
Qualified for Automotive Applications  
D
D
Input Offset Voltage . . . 250 µV (typ)  
Supply Voltage Range . . . 2.7 V to 6 V  
D
Customer-Specific Configuration Control  
Can Be Supported Along With  
Major-Change Approval  
D
ESD Protection Exceeds 2000 V Per  
MIL-STD-883, Method 3015; Exceeds 200 V  
Using Machine Model (C = 200 pF, R = 0)  
TLV2471  
D PACKAGE  
(TOP VIEW)  
D
D
D
D
CMOS Rail-To-Rail Input/Output  
Input Bias Current . . . 2.5 pA  
NC  
IN−  
NC  
1
2
3
4
8
7
6
5
V
DD  
Low Supply Current . . . 600 µA/Channel  
Gain-Bandwidth Product . . . 2.8 MHz  
IN+  
OUT  
NC  
GND  
Contact Texas Instruments for details. Q100 qualification data  
available on request.  
description  
The TLV247x is a family of CMOS rail-to-rail input/output operational amplifiers that establishes a new  
performance point for supply current versus ac performance. These devices consume just 600 µA/channel  
while offering 2.8 MHz of gain-bandwidth product. Along with increased ac performance, the amplifier provides  
high output drive capability, solving a major shortcoming of older micropower operational amplifiers. The  
TLV247x can swing to within 180 mV of each supply rail while driving a 10-mA load. For non-RRO applications,  
the TLV247x can supply 35 mA at 500 mV off the rail. Both the inputs and outputs swing rail-to-rail for increased  
dynamic range in low-voltage applications. This performance makes the TLV247x family ideal for sensor  
interface, portable medical equipment, and other data acquisition circuits.  
The family is fully specified at 3 V and 5 V across the automotive temperature range (40°C to 125°C).  
FAMILY TABLE  
NUMBER OF UNIVERSAL EVM  
DEVICE  
CHANNELS  
BOARD  
TLV2471  
TLV2472  
TLV2474  
1
2
4
See the EVM  
selection guide  
(SLOU060)  
A SELECTION OF SINGLE-SUPPLY OPERATIONAL AMPLIFIER PRODUCTS  
V
V
BW  
SLEW RATE  
I (per channel)  
DD  
OUTPUT  
DD  
IO  
DEVICE  
RAIL-TO-RAIL  
(V)  
(µV)  
250  
20  
(MHz)  
(V/µs)  
(µA)  
DRIVE  
35 mA  
10 mA  
90 mA  
10 mA  
TLV247X  
TLV245X  
TLV246X  
TLV277X  
2.7 − 6  
2.7 − 6  
2.7 − 6  
2.5 − 6  
2.8  
0.22  
6.4  
1.5  
0.11  
1.6  
600  
23  
I/O  
I/O  
I/O  
O
150  
360  
550  
1000  
5.1  
10.5  
All specifications measured at 5 V.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢀꢭ  
Copyright 2004 Texas Instruments Incorporated  
ꢩ ꢭ ꢪ ꢩꢢ ꢣꢴ ꢥꢤ ꢨ ꢰꢰ ꢮꢨ ꢦ ꢨ ꢧ ꢭ ꢩ ꢭ ꢦ ꢪ ꢖ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢘ ꢎꢞ ꢘꢇꢟ ꢚ ꢎ ꢂꢠ ꢐꢜꢠ ꢚꢋꢀꢎ ꢐ ꢛꢋ ꢁ ꢋꢍ ꢜꢁ ꢎ ꢌꢎ ꢠ ꢚꢡ  
µ
SGLS180A − AUGUST 2003 − REVISED OCTOBER 2004  
ORDERING INFORMATION  
ORDERABLE  
PART NUMBER  
TOP-SIDE  
MARKING  
T
A
PACKAGE  
SOP − D  
Tape and reel  
TLV2471QDRQ1  
TLV2471AQDRQ1  
TLV2471QDBVRQ1  
TLV2472QDRQ1  
TLV2472AQDRQ1  
TLV2472QDGNRQ1  
TLV2474QDRQ1  
TLV2474AQDRQ1  
2471Q1  
2471AQ  
471Q  
SOP − D  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
−40°C to 125°C  
−40°C to 125°C  
SOT23 − DBV  
SOP − D  
2472Q1  
2472AQ  
SOP − D  
MSOP − DGN  
SOP − D  
2474Q1  
2474AQ1  
2474Q1  
2474AQ1  
SOP − D  
−40°C to 125°C  
TSSOP − PWP Tape and reel  
TSSOP − PWP Tape and reel  
TLV2474QPWPRQ1  
TLV2474APWPRQ1  
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design  
guidelines are available at www.ti.com/sc/package.  
Product Preview.  
TLV247x PACKAGE PINOUTS  
TLV2474  
D OR PWP PACKAGE  
TLV2471  
DBV PACKAGE  
TLV2472  
D OR DGN PACKAGE  
(TOP VIEW)  
(TOP VIEW)  
(TOP VIEW)  
1
2
3
5
4
V
1OUT  
1IN−  
1IN+  
GND  
V
DD  
OUT  
GND  
IN+  
1
2
3
4
8
7
6
5
DD  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1OUT  
1IN−  
1IN+  
4OUT  
4IN−  
4IN+  
GND  
3IN+  
3IN−  
3OUT  
2OUT  
2IN−  
2IN+  
V
IN−  
DD  
2IN+  
2IN−  
8
2OUT  
NC − No internal connection  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇꢈ ꢉ ꢊ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢋ ꢇꢈ ꢉ  
ꢒ ꢋꢓ ꢔꢕ ꢃ ꢖꢗ ꢇꢍ ꢘꢙ ꢚꢋꢎ ꢁ ꢇꢀꢐ ꢇꢚꢋꢎ ꢁ ꢎꢛ ꢜꢝꢀꢓ ꢐ ꢝ ꢀꢜ ꢝꢀ  
ꢘꢎ ꢞꢘ ꢇꢟꢚꢎꢂ ꢠ ꢐ ꢜꢠꢚ ꢋꢀ ꢎꢐ ꢛꢋꢁ ꢋꢍ ꢜ ꢁꢎ ꢌꢎ ꢠꢚ ꢡ  
ꢁꢏ  
µ  
SGLS180A − AUGUST 2003 − REVISED OCTOBER 2004  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
Differential input voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
DD  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V
ID  
DD  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C  
Maximum junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE: All voltage values, except differential voltages, are with respect to GND.  
DISSIPATION RATING TABLE  
θ
θ
T 25°C  
A
JC  
JA  
PACKAGE  
(°C/W)  
38.3  
26.9  
55  
(°C/W)  
POWER RATING  
D (8)  
D (14)  
176  
710 mW  
122.3  
324.1  
52.7  
1022 mW  
385 mW  
DBV (3)  
DGN (8)  
PWP (14)  
4.7  
2370 mW  
4070 mW  
2.07  
30.7  
recommended operating conditions  
MIN  
2.7  
1.35  
0
MAX  
UNIT  
Single supply  
Split supply  
6
3
Supply voltage, V  
DD  
V
Common-mode input voltage range, V  
ICR  
V
DD  
125  
V
Operating free-air temperature, T  
40  
°C  
A
Relative to GND  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢋꢇꢈ ꢉ  
µ
ꢘ ꢎꢞ ꢘꢇꢟ ꢚ ꢎ ꢂꢠ ꢐꢜꢠ ꢚꢋꢀꢎ ꢐ ꢛꢋ ꢁ ꢋꢍ ꢜꢁ ꢎ ꢌꢎ ꢠ ꢚꢡ  
SGLS180A − AUGUST 2003 − REVISED OCTOBER 2004  
electrical characteristics at specified free-air temperature, V  
= 3 V (unless otherwise noted)  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
2200  
2400  
1600  
1800  
T
A
UNIT  
25°C  
Full range  
25°C  
250  
TLV247x  
V
V
R
= V /2,  
DD  
DD  
= 50 Ω  
IC  
O
S
= V /2,  
V
IO  
Input offset voltage  
µV  
250  
TLV247xA  
Full range  
V
V
R
= V /2,  
DD  
DD  
= 50 Ω  
IC  
O
S
Temperature coefficient of input  
offset voltage  
= V /2,  
α
0.4  
1.5  
µV/°C  
VIO  
V
V
R
= V /2,  
DD  
25°C  
Full range  
25°C  
50  
300  
50  
IC  
O
= V /2,  
I
IO  
Input offset current  
Input bias current  
DD  
= 50 Ω  
S
pA  
V
V
R
= V /2,  
DD  
2
IC  
O
= V /2,  
I
IB  
DD  
Full range  
300  
= 50 Ω  
S
25°C  
Full range  
25°C  
2.85  
2.8  
2.6  
2.5  
2.94  
2.74  
0.07  
0.2  
I
I
I
I
= 2.5 mA  
OH  
OH  
OL  
OL  
V
V
High-level output voltage  
Low-level output voltage  
V
= V /2  
DD  
V
V
OH  
IC  
= 10 mA  
= 2.5 mA  
= 10 mA  
Full range  
25°C  
0.15  
0.2  
Full range  
25°C  
V
= V /2  
DD  
OL  
IC  
0.35  
0.5  
Full range  
25°C  
30  
20  
30  
20  
Sourcing  
Sinking  
Full range  
25°C  
I
I
Short-circuit output current  
Output current  
mA  
mA  
OS  
Full range  
25°C  
V
= 0.5 V from rail  
= 1 V,  
O(PP)  
22  
O
O
25°C  
90  
88  
116  
Large-signal differential voltage  
amplification  
A
VD  
V
dB  
R
= 10 kΩ  
L
Full range  
25°C  
12  
10  
r
Differential input resistance  
i(d)  
Common-mode input  
capacitance  
C
f = 10 kHz  
f = 10 kHz,  
25°C  
19.3  
pF  
IC  
z
Closed-loop output impedance  
A
= 10  
25°C  
25°C  
2
o
V
58  
56  
68  
60  
70  
60  
78  
V
R
= 0 to 3 V,  
= 50 Ω  
IC  
S
CMRR  
Common-mode rejection ratio  
dB  
dB  
µA  
Full range  
25°C  
90  
92  
V
= 2.7 V to 6 V,  
V
= V  
= V  
/2,  
/2,  
DD  
IC  
DD  
No load  
Full range  
25°C  
Supply voltage rejection ratio  
k
SVR  
(V  
DD  
/V )  
IO  
V
= 3 V to 5 V,  
V
IC  
DD  
No load  
DD  
Full range  
25°C  
550  
750  
800  
I
Supply current (per channel)  
V
O
= 1.5 V,  
No load  
DD  
Full range  
Full range is −40°C to 125°C. If not specified, full range is 40°C to 125°C.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇꢈ ꢉ ꢊ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢋ ꢇꢈ ꢉ  
ꢒ ꢋꢓ ꢔꢕ ꢃ ꢖꢗ ꢇꢍ ꢘꢙ ꢚꢋꢎ ꢁ ꢇꢀꢐ ꢇꢚꢋꢎ ꢁ ꢎꢛ ꢜꢝꢀꢓ ꢐ ꢝ ꢀꢜ ꢝꢀ  
ꢘꢎ ꢞꢘ ꢇꢟꢚꢎꢂ ꢠ ꢐ ꢜꢠꢚ ꢋꢀ ꢎꢐ ꢛꢋꢁ ꢋꢍ ꢜ ꢁꢎ ꢌꢎ ꢠꢚ ꢡ  
ꢁꢏ  
µ
SGLS180A − AUGUST 2003 − REVISED OCTOBER 2004  
operating characteristics at specified free-air temperature, V  
= 3 V (unless otherwise noted)  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
1.1  
TYP  
MAX  
UNIT  
T
A
25°C  
Full range  
25°C  
1.4  
V
R
= 0.8 V,  
O(PP)  
= 10 kΩ  
C
= 150 pF,  
L
SR  
Slew rate at unity gain  
V/µs  
0.6  
L
f = 100 Hz  
f = 1 kHz  
f = 1 kHz  
28  
15  
nV/Hz  
pA/Hz  
V
I
Equivalent input noise voltage  
Equivalent input noise current  
n
25°C  
25°C  
0.405  
0.02%  
0.1%  
0.5%  
2.8  
n
A
= 1  
V
V
R
= 2 V,  
O(PP)  
= 10 k,  
A
V
= 10  
THD + N Total harmonic distortion plus noise  
Gain-bandwidth product  
25°C  
25°C  
L
f = 1 kHz  
A
= 100  
R = 600 Ω  
L
V
MHz  
f = 10 kHz,  
V
= 2 V,  
= 2 V,  
(STEP)PP  
0.1%  
1.5  
3.9  
1.6  
4
A
= −1,  
V
C
R
= 10 pF,  
= 10 kΩ  
L
L
0.01%  
0.1%  
t
s
Settling time  
25°C  
µs  
V
(STEP)PP  
A
= −1,  
V
C
R
= 56 pF,  
= 10 kΩ  
L
L
0.01%  
φ
m
Phase margin  
Gain margin  
25°C  
25°C  
61°  
R
R
= 10 k,  
= 10 k,  
C
C
= 1000 pF  
L
L
L
L
15  
dB  
= 1000 pF  
Full range is −40°C to 125°C. If not specified, full range is 40°C to 125°C.  
Depending on package dissipation rating  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢋꢇꢈ ꢉ  
µ  
ꢘ ꢎꢞ ꢘꢇꢟ ꢚ ꢎ ꢂꢠ ꢐꢜꢠ ꢚꢋꢀꢎ ꢐ ꢛꢋ ꢁ ꢋꢍ ꢜꢁ ꢎ ꢌꢎ ꢠ ꢚꢡ  
SGLS180A − AUGUST 2003 − REVISED OCTOBER 2004  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
2200  
2400  
1600  
2000  
T
A
UNIT  
25°C  
Full range  
25°C  
250  
TLV247x  
V
V
R
= V /2,  
DD  
DD  
= 50 Ω  
IC  
O
S
= V /2,  
V
IO  
Input offset voltage  
µV  
250  
TLV247xA  
Full range  
V
V
R
= V /2,  
DD  
DD  
= 50 Ω  
IC  
O
S
Temperature coefficient of input  
offset voltage  
= V /2,  
α
0.4  
1.7  
µV/°C  
VIO  
V
V
R
= V /2,  
DD  
25°C  
Full range  
25°C  
50  
300  
50  
IC  
O
= V /2,  
I
IO  
Input offset current  
Input bias current  
DD  
= 50 Ω  
S
pA  
V
V
R
= V /2,  
DD  
2.5  
IC  
O
= V /2,  
I
IB  
DD  
Full range  
300  
= 50 Ω  
S
25°C  
Full range  
25°C  
4.85  
4.8  
4.96  
4.82  
I
I
I
I
= 2.5 mA  
OH  
OH  
OL  
OL  
V
V
High-level output voltage  
Low-level output voltage  
V
= V /2  
DD  
V
V
OH  
IC  
4.72  
4.65  
= 10 mA  
= 2.5 mA  
= 10 mA  
Full range  
25°C  
0.07  
0.15  
0.2  
Full range  
25°C  
V
= V /2  
DD  
OL  
IC  
0.178  
0.28  
0.35  
Full range  
25°C  
110  
60  
Sourcing  
Sinking  
Full range  
25°C  
I
I
Short-circuit output current  
Output current  
mA  
mA  
OS  
90  
Full range  
25°C  
60  
V
= 0.5 V from rail  
= 3 V,  
O(PP)  
35  
O
O
25°C  
92  
91  
120  
Large-signal differential voltage  
amplification  
A
VD  
V
dB  
R
= 10 kΩ  
L
Full range  
25°C  
12  
10  
r
Differential input resistance  
i(d)  
Common-mode input  
capacitance  
C
f = 10 kHz  
f = 10 kHz,  
25°C  
18.9  
pF  
IC  
z
Closed-loop output impedance  
A
= 10  
25°C  
25°C  
1.8  
84  
o
V
62  
58  
68  
60  
70  
60  
V
R
= 0 to 5 V,  
= 50 Ω  
IC  
S
CMRR  
Common-mode rejection ratio  
dB  
dB  
µA  
Full range  
25°C  
90  
92  
V
= 2.7 V to 6 V,  
V
= V  
= V  
/2,  
/2,  
DD  
IC  
DD  
No load  
Full range  
25°C  
Supply voltage rejection ratio  
k
SVR  
(V  
DD  
/V )  
IO  
V
= 3 V to 5 V,  
V
IC  
DD  
No load  
DD  
Full range  
25°C  
600  
900  
I
Supply current (per channel)  
V
O
= 2.5 V,  
No load  
DD  
Full range  
1000  
Full range is −40°C to 125°C. If not specified, full range is 40°C to 125°C.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇꢈ ꢉ ꢊ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢋ ꢇꢈ ꢉ  
ꢒ ꢋꢓ ꢔꢕ ꢃ ꢖꢗ ꢇꢍ ꢘꢙ ꢚꢋꢎ ꢁ ꢇꢀꢐ ꢇꢚꢋꢎ ꢁ ꢎꢛ ꢜꢝꢀꢓ ꢐ ꢝ ꢀꢜ ꢝꢀ  
ꢘꢎ ꢞꢘ ꢇꢟꢚꢎꢂ ꢠ ꢐ ꢜꢠꢚ ꢋꢀ ꢎꢐ ꢛꢋꢁ ꢋꢍ ꢜ ꢁꢎ ꢌꢎ ꢠꢚ ꢡ  
ꢌꢋ  
ꢁꢏ  
µ
SGLS180A − AUGUST 2003 − REVISED OCTOBER 2004  
operating characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
1.1  
TYP  
MAX  
UNIT  
T
A
25°C  
Full range  
25°C  
1.5  
V
R
= 2 V,  
O(PP)  
= 10 kΩ  
C
= 150 pF,  
L
SR  
Slew rate at unity gain  
V/µs  
0.7  
L
f = 100 Hz  
f = 1 kHz  
f = 1 kHz  
28  
15  
nV/Hz  
pA/Hz  
V
I
Equivalent input noise voltage  
Equivalent input noise current  
n
25°C  
25°C  
0.39  
n
A
= 1  
0.01%  
0.05%  
0.3%  
2.8  
V
V
R
= 4 V,  
O(PP)  
= 10 k,  
A
V
= 10  
THD + N Total harmonic distortion plus noise  
Gain-bandwidth product  
25°C  
25°C  
L
f = 1 kHz  
A
= 100  
R = 600 Ω  
L
V
MHz  
f = 10 kHz,  
V
= 2 V,  
= 2 V,  
(STEP)PP  
0.1%  
1.8  
3.3  
1.7  
3
A
= −1,  
V
C
R
= 10 pF,  
= 10 kΩ  
L
L
0.01%  
0.1%  
t
s
Settling time  
25°C  
µs  
V
(STEP)PP  
A
= −1,  
V
C
R
= 56 pF,  
= 10 kΩ  
L
L
0.01%  
φ
m
Phase margin  
Gain margin  
25°C  
25°C  
68°  
R
R
= 10 k,  
= 10 k,  
C
C
= 1000 pF  
L
L
L
L
23  
dB  
= 1000 pF  
Full range is −40°C to 125°C for Q suffix. If not specified, full range is 40°C to 125°C.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢋꢇꢈ ꢉ  
ꢘ ꢎꢞ ꢘꢇꢟ ꢚ ꢎ ꢂꢠ ꢐꢜꢠ ꢚꢋꢀꢎ ꢐ ꢛꢋ ꢁ ꢋꢍ ꢜꢁ ꢎ ꢌꢎ ꢠ ꢚꢡ  
µ
SGLS180A − AUGUST 2003 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
V
Input offset voltage  
vs Common-mode input voltage  
vs Free-air temperature  
1, 2  
IO  
I
Input bias current  
IB  
IO  
3, 4  
I
Input offset current  
V
V
High-level output voltage  
Low-level output voltage  
Output impedance  
vs High-level output current  
vs Low-level output current  
vs Frequency  
5, 7  
6, 8  
OH  
OL  
o
Z
9
I
Supply current  
vs Supply voltage  
vs Frequency  
10  
DD  
PSRR  
CMRR  
Power supply rejection ratio  
Common-mode rejection ratio  
Equivalent input noise voltage  
Maximum peak-to-peak output voltage  
Differential voltage gain and phase  
Phase margin  
11  
vs Frequency  
12  
V
V
vs Frequency  
13  
n
vs Frequency  
14, 15  
16, 17  
18, 19  
20, 21  
22  
O(PP)  
A
vs Frequency  
VD  
φ
vs Load capacitance  
vs Load capacitance  
vs Supply voltage  
vs Supply voltage  
vs Free-air temperature  
vs Frequency  
m
Gain margin  
Gain-bandwidth product  
23  
SR  
Slew rate  
24, 25  
26  
Crosstalk  
THD+N  
Total harmonic distortion + noise  
Large and small signal follower  
vs Frequency  
27, 28  
29 − 32  
V
O
vs Time  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇꢈ ꢉ ꢊ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢋ ꢇꢈ ꢉ  
ꢒ ꢋꢓ ꢔꢕ ꢃ ꢖꢗ ꢇꢍ ꢘꢙ ꢚꢋꢎ ꢁ ꢇꢀꢐ ꢇꢚꢋꢎ ꢁ ꢎꢛ ꢜꢝꢀꢓ ꢐ ꢝ ꢀꢜ ꢝꢀ  
ꢘꢎ ꢞꢘ ꢇꢟꢚꢎꢂ ꢠ ꢐ ꢜꢠꢚ ꢋꢀ ꢎꢐ ꢛꢋꢁ ꢋꢍ ꢜ ꢁꢎ ꢌꢎ ꢠꢚ ꢡ  
ꢌꢋ  
ꢁꢏ  
µ
SGLS180A − AUGUST 2003 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
INPUT BIAS AND INPUT OFFSET  
INPUT OFFSET VOLTAGE  
INPUT OFFSET VOLTAGE  
vs  
CURRENTS  
vs  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
FREE-AIR TEMPERATURE  
600  
600  
50  
40  
30  
20  
10  
0
V
=3 V  
DD  
V
=5 V  
V
=3 V  
DD  
DD  
400  
200  
400  
T
A
=25 °C  
T
A
=25° C  
200  
0
I
IB  
0
−200  
−400  
−600  
−800  
−200  
−400  
−600  
−800  
I
IO  
−10  
−0.5  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5  
−55 −35 −15  
5
25 45 65 85 105 125  
V
− Common-Mode Input Voltage − V  
V
− Common-Mode Input Voltage − V  
ICR  
T
− Free-Air Temperature − °C  
ICR  
A
Figure 2  
Figure 1  
Figure 3  
INPUT BIAS AND INPUT OFFSET  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
CURRENTS  
vs  
LOW-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
FREE-AIR TEMPERATURE  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
50  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
V
=5 V  
V
=3 V  
DD  
DD  
V
=3 V  
DD  
40  
30  
20  
10  
0
T
=125°C  
A
T
=85°C  
=25°C  
A
T
A
T
=−40°C  
A
T
=125°C  
=85°C  
I
A
IB  
T
A
T
=25°C  
A
I
IO  
T
=−40°C  
A
−10  
−55 −35 −15  
0
10  
20  
30  
40  
50  
5
25 45 65 85 105 125  
0
10  
20  
30  
40  
50  
60  
I
− Low-Level Output Current − mA  
T
− Free-Air Temperature − °C  
OL  
I
− High-Level Output Current − mA  
A
OH  
Figure 4  
Figure 6  
Figure 5  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
OUTPUT IMPEDANCE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
FREQUENCY  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.0  
1000  
100  
V
=3 & 5 V  
T
=125°C  
DD  
=25°C  
A
V
=5 V  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
DD  
T
A
T
=85°C  
A
AV=100  
T
=25°C  
A
10  
1
T
=−40°C  
AV=10  
A
T
=125°C  
A
T
=85°C  
A
AV=1  
0.1  
T
=25°C  
A
T
=−40°C  
A
V
=5 V  
DD  
0.01  
0
20 40 60 80 100 120 140 160  
0
20  
40  
60  
80 100 120 140  
100  
1k  
10k  
100k  
1M  
10M  
I
− High-Level Output Current − mA  
I
− Low-Level Output Current − mA  
f − Frequency − Hz  
OH  
OL  
Figure 8  
Figure 9  
Figure 7  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢋꢇꢈ ꢉ  
ꢘ ꢎꢞ ꢘꢇꢟ ꢚ ꢎ ꢂꢠ ꢐꢜꢠ ꢚꢋꢀꢎ ꢐ ꢛꢋ ꢁ ꢋꢍ ꢜꢁ ꢎ ꢌꢎ ꢠ ꢚꢡ  
µ
SGLS180A − AUGUST 2003 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
POWER SUPPLY REJECTION RATIO  
SUPPLY CURRENT  
COMMON-MODE REJECTION RATIO  
vs  
FREQUENCY  
100  
vs  
SUPPLY VOLTAGE  
1.0  
vs  
FREQUENCY  
130  
V
R
=3 & 5 V  
=5 kΩ  
PSRR+  
DD  
F
I
T
=125°C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
A
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
T
=85°C  
A
R =50 Ω  
T
=25°C  
A
PSRR−  
T
=25°C  
A
V
V
=5 V  
DD  
=2.5 V  
90  
80  
70  
60  
50  
IC  
T
=−40°C  
A
V
V
=3 V  
DD  
=1.5 V  
A
= 1  
SHDN= V  
IC  
V
DD  
Per Channel  
10  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
f − Frequency − Hz  
f − Frequency − Hz  
V
− Supply Voltage − V  
DD  
Figure 11  
Figure 12  
Figure 10  
MAXIMUM PEAK-TO-PEAK  
OUTPUT VOLTAGE  
vs  
MAXIMUM PEAK-TO-PEAK  
OUTPUT VOLTAGE  
vs  
EQUIVALENT NOISE VOLTAGE  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
5.5  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
80  
THD+N 2.0%  
THD+N 2.0%  
V
A
V
T
=3 & 5 V  
= 10  
DD  
V
IN  
A
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
R =600 Ω  
R =10 kΩ  
70  
60  
50  
40  
30  
20  
10  
0
L
A
L
A
T
=25°C  
T
=25°C  
= V /2  
V
=5 V  
O(PP)  
DD  
=25°C  
V
=5 V  
O(PP)  
V
=3 V  
O(PP)  
V
=3 V  
O(PP)  
10k  
100k  
1M  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 14  
Figure 15  
Figure 13  
DIFFERENTIAL VOLTAGE GAIN AND PHASE  
DIFFERENTIAL VOLTAGE GAIN AND PHASE  
vs  
vs  
FREQUENCY  
FREQUENCY  
100  
45  
100  
45  
V
= 3  
DD  
L
L
V
= 5  
DD  
L
L
80  
60  
40  
20  
0
R =600 Ω  
C =0  
80  
60  
40  
20  
0
R =600 Ω  
C =0  
T
=25°C  
A
T
=25°C  
−45  
−90  
−135  
−45  
−90  
−135  
A
0
−180  
−225  
0
−180  
−225  
−20  
−20  
−40  
100  
−270  
100M  
−40  
100  
−270  
100M  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
Frequency − Hz  
Frequency − Hz  
Figure 16  
Figure 17  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇꢈ ꢉ ꢊ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢋ ꢇꢈ ꢉ  
ꢒ ꢋꢓ ꢔꢕ ꢃ ꢖꢗ ꢇꢍ ꢘꢙ ꢚꢋꢎ ꢁ ꢇꢀꢐ ꢇꢚꢋꢎ ꢁ ꢎꢛ ꢜꢝꢀꢓ ꢐ ꢝ ꢀꢜ ꢝꢀ  
ꢘꢎ ꢞꢘ ꢇꢟꢚꢎꢂ ꢠ ꢐ ꢜꢠꢚ ꢋꢀ ꢎꢐ ꢛꢋꢁ ꢋꢍ ꢜ ꢁꢎ ꢌꢎ ꢠꢚ ꢡ  
µ
SGLS180A − AUGUST 2003 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
PHASE MARGIN  
vs  
PHASE MARGIN  
vs  
GAIN MARGIN  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
0
V =3V  
DD  
V
=3 V  
Rnull=50  
V
=5V  
DD  
R =10 kΩ  
DD  
R =10 kΩ  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
R =10 kΩ  
L
Rnull=50  
L
L
T
=25°C  
5
T
=25°C  
A
T
=25°C  
A
A
Rnull=0  
See Figure 42  
See Figure 42  
Rnull=100  
10  
15  
Rnull=100  
Rnull=20  
Rnull=100  
Rnull=20  
20  
Rnull=20  
10k  
25  
30  
Rnull=50  
1k  
Rnull=0  
1k  
Rnull=0  
1k  
100  
10k  
100k  
100  
100k  
100  
10k  
100k  
C
− Load Capacitance − pF  
C
− Load Capacitance − pF  
C − Load Capacitance − pF  
L
L
L
Figure 18  
Figure 19  
Figure 20  
SLEW RATE  
vs  
GAIN MARGIN  
vs  
GAIN-BANDWIDTH PRODUCT  
vs  
SUPPLY VOLTAGE  
LOAD CAPACITANCE  
SUPPLY VOLTAGE  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
5
SR−  
SR+  
R =10 kΩ  
L
Rnull=0  
10  
15  
R =600 Ω  
L
Rnull=20  
20  
25  
C =11 pF  
L
Rnull=100  
Rnull=50  
f=10 kHz  
V
A
=1.5 V  
O(PP)  
T
=25°C  
A
=−1  
V
V
=5V  
DD  
R =10 kΩ  
R =10 kΩ  
C =150 pF  
L
30  
35  
L
L
T
=25°C  
A
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
100  
1k  
10k  
100k  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
V
− Supply Voltage − V  
DD  
C
− Load Capacitance − pF  
V
− Supply Voltage − V  
DD  
L
Figure 23  
Figure 21  
Figure 22  
SLEW RATE  
SLEW RATE  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
SR−  
SR+  
SR+  
SR−  
V
=5 V  
DD  
L
L
V
V
=3 V  
R =10 kΩ  
C =150 pF  
DD  
L
L
V
R =10 kΩ  
C =150 pF  
A
=−1  
A
=−1  
−55 −35 −15  
5
25 45 65 85 105 125  
−55 −35 −15  
5
25 45 65 85 105 125  
T
− Free-Air Temperature − °C  
T
− Free-Air Temperature − °C  
A
A
Figure 24  
Figure 25  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢋꢇꢈ ꢉ  
ꢘ ꢎꢞ ꢘꢇꢟ ꢚ ꢎ ꢂꢠ ꢐꢜꢠ ꢚꢋꢀꢎ ꢐ ꢛꢋ ꢁ ꢋꢍ ꢜꢁ ꢎ ꢌꢎ ꢠ ꢚꢡ  
µ  
SGLS180A − AUGUST 2003 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC  
DISTORTION PLUS NOISE  
vs  
TOTAL HARMONIC  
DISTORTION PLUS NOISE  
vs  
CROSSTALK  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
0
V
A
R
= 3V & 5V  
= 1  
1
1
0.1  
DD  
V
L
A
= 100  
V
A
= 100  
−20  
V
= 600Ω  
V
=2V  
I(PP)  
−40  
−60  
All Channels  
A
A
= 10  
= 1  
V
V
A
A
= 10  
= 1  
V
V
0.1  
0.01  
−80  
−100  
−120  
−140  
0.01  
0.001  
V
R
V
= 3 V  
V
R
V
= 5 V  
= 10 kΩ  
= 4 V  
DD  
DD  
= 10 kΩ  
L
0
A
L
0
A
= 2 V  
PP  
PP  
T
= 25°C  
T
= 25°C  
0.001  
−160  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1 k  
10 k  
100 k  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 26  
Figure 27  
Figure 28  
LARGE SIGNAL FOLLOWER  
LARGE SIGNAL FOLLOWER  
SMALL SIGNAL FOLLOWER  
PULSE RESPONSE  
PULSE RESPONSE  
PULSE RESPONSE  
vs  
vs  
vs  
TIME  
TIME  
TIME  
V (2 V/DIV)  
I
V (50 mV/DIV)  
I
V (2 V/DIV)  
I
V
R
C
= 3 V  
= 10 kΩ  
= 8 pF  
DD  
L
L
f = 1 MHz  
= 25°C  
V
(1 V/DIV)  
T
O
A
V
(1 V/DIV)  
O
V
= 5 V  
DD  
V
R
C
= 3 V  
= 10 kΩ  
= 8 pF  
DD  
L
L
R
C
= 10 kΩ  
= 8 pF  
L
L
V
(50 mV/DIV)  
O
f = 85 kHz  
= 25°C  
f = 85 kHz  
= 25°C  
T
T
A
A
0
100  
200  
300  
400  
500  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
t − Time − µs  
t − Time − µs  
t − Time − µs  
Figure 29  
Figure 30  
Figure 31  
SMALL SIGNAL FOLLOWER  
PULSE RESPONSE  
vs  
TIME  
V (50 mV/DIV)  
I
V
R
C
= 5 V  
= 10 kΩ  
= 8 pF  
DD  
L
L
f = 1 MHz  
T
A
= 25°C  
V
(50 mV/DIV)  
O
0
100  
200  
300  
400  
500  
t − Time − µs  
Figure 32  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇꢈ ꢉ ꢊ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢋ ꢇꢈ ꢉ  
ꢒ ꢋꢓ ꢔꢕ ꢃ ꢖꢗ ꢇꢍ ꢘꢙ ꢚꢋꢎ ꢁ ꢇꢀꢐ ꢇꢚꢋꢎ ꢁ ꢎꢛ ꢜꢝꢀꢓ ꢐ ꢝ ꢀꢜ ꢝꢀ  
ꢘꢎ ꢞꢘ ꢇꢟꢚꢎꢂ ꢠ ꢐ ꢜꢠꢚ ꢋꢀ ꢎꢐ ꢛꢋꢁ ꢋꢍ ꢜ ꢁꢎ ꢌꢎ ꢠꢚ ꢡ  
µ
SGLS180A − AUGUST 2003 − REVISED OCTOBER 2004  
PARAMETER MEASUREMENT INFORMATION  
R
_
+
null  
R
L
C
L
Figure 33  
APPLICATION INFORMATION  
driving a capacitive load  
When the amplifier is configured in this manner, capacitive loading directly on the output decreases the device’s  
phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than  
10 pF, it is recommended that a resistor be placed in series (R  
) with the output of the amplifier, as shown  
NULL  
in Figure 34. A minimum value of 20 should work well for most applications.  
R
F
R
G
R
_
+
NULL  
Input  
Output  
LOAD  
C
Figure 34. Driving a Capacitive Load  
offset voltage  
The output offset voltage, (V ) is the sum of the input offset voltage (V ) and both input bias currents (I ) times  
OO  
IO  
IB  
the corresponding gains. The following schematic and formula can be used to calculate the output offset  
voltage.  
R
F
I
IB−  
R
G
+
+
V
I
V
O
R
S
I
IB+  
R
R
F
F
V
+ V  
1 ) ǒ Ǔ " I  
R
1 ) ǒ Ǔ " I  
R
ǒ Ǔ ǒ Ǔ  
OO  
IO  
IB)  
S
IB–  
F
R
R
G
G
Figure 35. Output Offset Voltage Model  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢋꢇꢈ ꢉ  
ꢘ ꢎꢞ ꢘꢇꢟ ꢚ ꢎ ꢂꢠ ꢐꢜꢠ ꢚꢋꢀꢎ ꢐ ꢛꢋ ꢁ ꢋꢍ ꢜꢁ ꢎ ꢌꢎ ꢠ ꢚꢡ  
ꢒ ꢋꢓ ꢔ ꢕ ꢃ ꢖ ꢗ ꢇꢍꢘꢙ ꢚꢋ ꢎ ꢁꢇꢀꢐ ꢇꢚꢋꢎ ꢁ ꢎꢛ ꢜꢝꢀ ꢓꢐ ꢝꢀ ꢜꢝ ꢀ  
µ  
SGLS180A − AUGUST 2003 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
general configurations  
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often  
required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier  
(see Figure 36).  
R
R
F
G
V
1
O
+
V
I
R1  
V
C1  
f
+
–3dB  
2pR1C1  
R
O
F
1
ǒ
Ǔ
+
ǒ
1 )  
Ǔ
V
R
1 ) sR1C1  
I
G
Figure 36. Single-Pole Low-Pass Filter  
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this  
task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.  
Failure to do this can result in phase shift of the amplifier.  
C1  
R1 = R2 = R  
C1 = C2 = C  
Q = Peaking Factor  
(Butterworth Q = 0.707)  
+
_
V
I
1
R1  
R2  
f
+
–3dB  
2pRC  
C2  
R
F
1
R
=
G
R
F
2 −  
)
R
(
Q
G
Figure 37. 2-Pole Low-Pass Sallen-Key Filter  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇꢈ ꢉ ꢊ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢋ ꢇꢈ ꢉ  
ꢒ ꢋꢓ ꢔꢕ ꢃ ꢖꢗ ꢇꢍ ꢘꢙ ꢚꢋꢎ ꢁ ꢇꢀꢐ ꢇꢚꢋꢎ ꢁ ꢎꢛ ꢜꢝꢀꢓ ꢐ ꢝ ꢀꢜ ꢝꢀ  
ꢘꢎ ꢞꢘ ꢇꢟꢚꢎꢂ ꢠ ꢐ ꢜꢠꢚ ꢋꢀ ꢎꢐ ꢛꢋꢁ ꢋꢍ ꢜ ꢁꢎ ꢌꢎ ꢠꢚ ꢡ  
ꢌꢋ  
ꢁꢏ  
µ  
SGLS180A − AUGUST 2003 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
circuit layout considerations  
To achieve the levels of high performance of the TLV247x, follow proper printed-circuit board design techniques.  
A general set of guidelines is given in the following.  
D
Ground planes − It is highly recommended that a ground plane be used on the board to provide all  
components with a low inductive ground connection. However, in the areas of the amplifier inputs and  
output, the ground plane can be removed to minimize the stray capacitance.  
D
Proper power supply decoupling − Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic  
capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers  
depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal  
of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply  
terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less  
effective. The designer should strive for distances of less than 0.1 inches between the device power  
terminals and the ceramic capacitors.  
D
D
Sockets − Sockets can be used but are not recommended. The additional lead inductance in the socket pins  
often leads to stability problems. Surface-mount packages soldered directly to the printed-circuit board is  
the best implementation.  
Short trace runs/compact part placements − Optimum high performance is achieved when stray series  
inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,  
thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of  
the amplifier. Its length should be kept as short as possible. This helps to minimize stray capacitance at the  
input of the amplifier.  
D
Surface-mount passive components − Using surface-mount passive components is recommended for high  
performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of  
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small  
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray  
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be  
kept as short as possible.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢋꢇꢈ ꢉ  
ꢘ ꢎꢞ ꢘꢇꢟ ꢚ ꢎ ꢂꢠ ꢐꢜꢠ ꢚꢋꢀꢎ ꢐ ꢛꢋ ꢁ ꢋꢍ ꢜꢁ ꢎ ꢌꢎ ꢠ ꢚꢡ  
ꢒ ꢋꢓ ꢔ ꢕ ꢃ ꢖ ꢗ ꢇꢍꢘꢙ ꢚꢋ ꢎ ꢁꢇꢀꢐ ꢇꢚꢋꢎ ꢁ ꢎꢛ ꢜꢝꢀ ꢓꢐ ꢝꢀ ꢜꢝ ꢀ  
µ
SGLS180A − AUGUST 2003 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
general PowerPADdesign considerations  
The TLV247x is available in a thermally-enhanced PowerPAD family of packages. These packages are  
constructed using a downset leadframe upon which the die is mounted [see Figure 38(a) and Figure 38(b)]. This  
arrangement results in the lead frame being exposed as a thermal pad on the underside of the package [see  
Figure 38(c)]. Because this thermal pad has direct thermal contact with the die, excellent thermal performance  
can be achieved by providing a good thermal path away from the thermal pad.  
The PowerPAD package allows for both assembly and thermal management in one manufacturing operation.  
During the surface-mount solder operation (when the leads are being soldered), the thermal pad can also be  
soldered to a copper area underneath the package. Through the use of thermal paths within this copper area,  
heat can be conducted away from the package into either a ground plane or other heat dissipating device.  
The PowerPAD package represents a breakthrough in combining the small area and ease of assembly of  
surface mount with the, heretofore, awkward mechanical methods of heatsinking.  
DIE  
Side View (a)  
Thermal  
Pad  
DIE  
End View (b)  
Bottom View (c)  
NOTE A: The thermal pad is electrically isolated from all terminals in the package.  
Figure 38. Views of Thermally Enhanced DGN Package  
Although there are many ways to properly heatsink the PowerPAD package, the following steps illustrate the  
recommended approach.  
Thermal Pad Area  
Quad  
Single or Dual  
68 mils x 70 mils) with 5 vias  
78 mils x 94 mils) with 9 vias  
(Via diameter = 13 mils  
(Via diameter = 13 mils)  
Figure 39. PowerPAD PCB Etch and Via Pattern  
PowerPAD is a trademark of Texas Instruments Incorporated.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇꢈ ꢉ ꢊ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢋ ꢇꢈ ꢉ  
ꢒ ꢋꢓ ꢔꢕ ꢃ ꢖꢗ ꢇꢍ ꢘꢙ ꢚꢋꢎ ꢁ ꢇꢀꢐ ꢇꢚꢋꢎ ꢁ ꢎꢛ ꢜꢝꢀꢓ ꢐ ꢝ ꢀꢜ ꢝꢀ  
ꢘꢎ ꢞꢘ ꢇꢟꢚꢎꢂ ꢠ ꢐ ꢜꢠꢚ ꢋꢀ ꢎꢐ ꢛꢋꢁ ꢋꢍ ꢜ ꢁꢎ ꢌꢎ ꢠꢚ ꢡ  
ꢁꢏ  
µ  
SGLS180A − AUGUST 2003 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
general PowerPAD design considerations (continued)  
1. Prepare the PCB with a top side etch pattern as shown in Figure 39. There should be etch for the leads as  
well as etch for the thermal pad.  
2. Place five holes (dual) or nine holes (quad) in the area of the thermal pad. These holes should be 13 mils  
in diameter. Keep them small so that solder wicking through the holes is not a problem during reflow.  
3. Additional vias may be placed anywhere along the thermal plane outside of the thermal pad area. This helps  
dissipate the heat generated by the TLV247x IC. These additional vias may be larger than the 13-mil  
diameter vias directly under the thermal pad. They can be larger because they are not in the thermal pad  
area to be soldered so that wicking is not a problem.  
4. Connect all holes to the internal ground plane.  
5. When connecting these holes to the ground plane, do not use the typical web or spoke via connection  
methodology. Web connections have a high thermal resistance connection that is useful for slowing the heat  
transfer during soldering operations. This makes the soldering of vias that have plane connections easier.  
In this application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore,  
the holes under the TLV247x PowerPAD package should make their connection to the internal ground plane  
with a complete connection around the entire circumference of the plated-through hole.  
6. The top-side solder mask should leave the terminals of the package and the thermal pad area with its five  
holes (dual) or nine holes (quad) exposed. The bottom-side solder mask should cover the five or nine holes  
of the thermal pad area. This prevents solder from being pulled away from the thermal pad area during the  
reflow process.  
7. Apply solder paste to the exposed thermal pad area and all of the IC terminals.  
8. With these preparatory steps in place, the TLV247x IC is simply placed in position and run through the solder  
reflow operation as any standard surface-mount component. This results in a part that is properly installed.  
For a given θ , the maximum power dissipation is shown in Figure 40 and is calculated by the following formula:  
JA  
T
–T  
MAX  
A
P
+
ǒ Ǔ  
D
q
JA  
Where:  
P
= Maximum power dissipation of TLV247x IC (watts)  
= Absolute maximum junction temperature (150°C)  
= Free-ambient air temperature (°C)  
D
T
MAX  
T
A
θ
= θ + θ  
JA  
JC CA  
θ
θ
= Thermal coefficient from junction to case  
JC  
= Thermal coefficient from case to ambient air (°C/W)  
CA  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
µ  
ꢘ ꢎꢞ ꢘꢇꢟ ꢚ ꢎ ꢂꢠ ꢐꢜꢠ ꢚꢋꢀꢎ ꢐ ꢛꢋ ꢁ ꢋꢍ ꢜꢁ ꢎ ꢌꢎ ꢠ ꢚꢡ  
SGLS180A − AUGUST 2003 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
general PowerPAD design considerations (continued)  
MAXIMUM POWER DISSIPATION  
vs  
FREE-AIR TEMPERATURE  
7
6
5
4
3
2
PWP Package  
T
= 150°C  
J
Low-K Test PCB  
= 29.7°C/W  
θ
JA  
SOT-23 Package  
Low-K Test PCB  
= 324°C/W  
θ
JA  
DGN Package  
Low-K Test PCB  
θ
= 52.3°C/W  
JA  
SOIC Package  
Low-K Test PCB  
θ
= 176°C/W  
JA  
1
0
−55 −40 −25 −10  
5
20 35 50 65 80 95 110 125  
T
A
− Free-Air Temperature − °C  
NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.  
Figure 40.  
The next consideration is the package constraints. The two sources of heat within an amplifier are quiescent  
power and output power. The designer should never forget about the quiescent heat generated within the  
device, especially multi-amplifier devices. Because these devices have linear output stages (Class A-B), most  
of the heat dissipation is at low output voltages with high output currents. Figure 41 to Figure 46 show this effect,  
along with the quiescent heat, with an ambient air temperature of 70°C and 125°C. When using V  
= 3 V, there  
= 5 V, the  
DD  
is generally not a heat problem with an ambient air temperature of 70°C. But, when using V  
DD  
packages are severely limited in the amount of heat it can dissipate. The other key factor when looking at these  
graphs is how the devices are mounted on the PCB. The PowerPAD devices are extremely useful for heat  
dissipation. But, the device should always be soldered to a copper plane to fully use the heat dissipation  
properties of the PowerPAD. The SOIC package, on the other hand, is highly dependent on how it is mounted  
on the PCB. As more trace and copper area is placed around the device, θ decreases and the heat dissipation  
JA  
capability increases. The currents and voltages shown in these graphs are for the total package. For the dual  
or quad amplifier packages, the sum of the RMS output currents and voltages should be used to choose the  
proper package.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇꢈ ꢉ ꢊ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢋ ꢇꢈ ꢉ  
ꢒ ꢋꢓ ꢔꢕ ꢃ ꢖꢗ ꢇꢍ ꢘꢙ ꢚꢋꢎ ꢁ ꢇꢀꢐ ꢇꢚꢋꢎ ꢁ ꢎꢛ ꢜꢝꢀꢓ ꢐ ꢝ ꢀꢜ ꢝꢀ  
ꢘꢎ ꢞꢘ ꢇꢟꢚꢎꢂ ꢠ ꢐ ꢜꢠꢚ ꢋꢀ ꢎꢐ ꢛꢋꢁ ꢋꢍ ꢜ ꢁꢎ ꢌꢎ ꢠꢚ ꢡ  
ꢌꢋ  
ꢁꢏ  
µ  
SGLS180A − AUGUST 2003 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
general PowerPAD design considerations (continued)  
TLV2471  
TLV2471  
MAXIMUM RMS OUTPUT CURRENT  
MAXIMUM RMS OUTPUT CURRENT  
vs  
vs  
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS  
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS  
180  
160  
140  
120  
100  
180  
160  
140  
120  
100  
Maximum Output  
Current Limit Line  
Maximum Output  
Current Limit Line  
B
Packages With  
B
θ
JA  
110°C/W  
at T = 125°C  
A
or  
A
θ
355°C/W  
JA  
at T = 70°C  
A
80  
60  
40  
80  
60  
40  
A
Packages With  
Safe Operating Area  
θ
210°C/W  
JA  
at T = 70°C  
A
V
T
T
A
=
3 V  
DD  
J
V
=
5 V  
DD  
= 150°C  
= 125°C  
20  
0
20  
0
T
T
= 150°C  
= 125°C  
J
Safe Operating Area  
1.5 2.5  
A
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
0
0.5  
1
2
| V | − RMS Output Voltage − V  
O
| V | − RMS Output Voltage − V  
O
Figure 41  
Figure 42  
TLV2472  
TLV2472  
MAXIMUM RMS OUTPUT CURRENT  
vs  
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS  
MAXIMUM RMS OUTPUT CURRENT  
vs  
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS  
180  
160  
140  
120  
100  
180  
160  
140  
120  
100  
Maximum Output  
Current Limit Line  
Maximum Output  
Current Limit Line  
B
Packages With  
C
θ
JA  
55°C/W  
at T = 125°C  
A
or  
C
80  
60  
40  
80  
60  
40  
θ
178°C/W  
JA  
at T = 70°C  
B
A
Packages With  
θ
105°C/W  
JA  
at T = 70°C  
A
Safe Operating Area  
V
T
T
A
=
3 V  
DD  
J
V
=
5 V  
DD  
= 150°C  
= 125°C  
20  
0
20  
0
T
T
= 150°C  
= 125°C  
J
Safe Operating Area  
1.5 2.5  
A
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
0
0.5  
1
2
| V | − RMS Output Voltage − V  
O
| V | − RMS Output Voltage − V  
O
Figure 43  
Figure 44  
A − SOT23(5); B − SOIC (8); C − SOIC (14); D − TSSOP PP (14)  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇꢈꢉ ꢊ ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢋꢇꢈ ꢉ  
ꢘ ꢎꢞ ꢘꢇꢟ ꢚ ꢎ ꢂꢠ ꢐꢜꢠ ꢚꢋꢀꢎ ꢐ ꢛꢋ ꢁ ꢋꢍ ꢜꢁ ꢎ ꢌꢎ ꢠ ꢚꢡ  
ꢒ ꢋꢓ ꢔ ꢕ ꢃ ꢖ ꢗ ꢇꢍꢘꢙ ꢚꢋ ꢎ ꢁꢇꢀꢐ ꢇꢚꢋꢎ ꢁ ꢎꢛ ꢜꢝꢀ ꢓꢐ ꢝꢀ ꢜꢝ ꢀ  
µ  
SGLS180A − AUGUST 2003 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
general PowerPAD design considerations (continued)  
TLV2474  
TLV2474  
MAXIMUM RMS OUTPUT CURRENT  
MAXIMUM RMS OUTPUT CURRENT  
vs  
vs  
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS  
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS  
180  
160  
140  
120  
100  
180  
160  
140  
120  
100  
Maximum Output  
Current Limit Line  
Maximum Output  
Current Limit Line  
D
D
Packages With  
80  
60  
40  
80  
60  
40  
θ
88°C/W  
V
T
T
A
=
5 V  
JA  
at T = 70°C  
C
DD  
J
C
= 150°C  
= 125°C  
A
Packages With  
V
= 3 V  
= 150°C  
= 125°C  
DD  
20  
0
20  
0
θ
JA  
52°C/W  
T
J
T
Safe Operating Area  
0.75 1.25  
at T = 70°C  
Safe Operating Area  
A
A
0
0.25  
0.5  
1
1.5  
0
0.5  
1
1.5  
2
2.5  
| V | − RMS Output Voltage − V  
O
| V | − RMS Output Voltage − V  
O
Figure 45  
Figure 46  
A − SOT23(5); B − SOIC (8); C − SOIC (14); D − TSSOP PP (14)  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇꢈ ꢉ ꢊ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢋ ꢇꢈ ꢉ  
ꢒ ꢋꢓ ꢔꢕ ꢃ ꢖꢗ ꢇꢍ ꢘꢙ ꢚꢋꢎ ꢁ ꢇꢀꢐ ꢇꢚꢋꢎ ꢁ ꢎꢛ ꢜꢝꢀꢓ ꢐ ꢝ ꢀꢜ ꢝꢀ  
ꢘꢎ ꢞꢘ ꢇꢟꢚꢎꢂ ꢠ ꢐ ꢜꢠꢚ ꢋꢀ ꢎꢐ ꢛꢋꢁ ꢋꢍ ꢜ ꢁꢎ ꢌꢎ ꢠꢚ ꢡ  
ꢌꢋ  
ꢁꢏ  
µ  
SGLS180A − AUGUST 2003 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using Microsim Parts, the model generation software used  
with Microsim PSpice. The Boyle macromodel (see Note 1) and subcircuit in Figure 47 are generated using  
the TLV247x typical electrical and operating characteristics at T = 25°C. Using this information, output  
A
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):  
D
D
D
D
D
D
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
D
D
D
D
D
D
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
Quiescent power dissipation  
Input bias current  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
NOTE 1: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal  
of Solid-State Circuits, SC-9, 353 (1974).  
3
99  
V
DD  
+
egnd  
rd1  
11  
rd2  
12  
rss  
ro2  
css  
fb  
rp  
c1  
7
+
c2  
vlim  
8
1
2
+
r2  
9
6
IN+  
IN−  
vc  
D
S
D
S
+
vb  
ga  
G
G
ro1  
gcm  
ioff  
53  
OUT  
dp  
5
dlp  
dln  
91  
90  
92  
10  
+
+
iss  
dc  
vlp  
hlim  
vln  
+
GND  
+ 54  
4
de  
ve  
* TLV247x operational amplifier ”macromodel” subcircuit  
* created using Parts release 8.0 on 4/27/99 at 14:31  
* Parts is a MicroSim product.  
iss  
hlim  
ioff  
j1  
10  
90  
0
4
dc  
10.714E−6  
75E−9  
0
vlim 1K  
dc  
6
*
11  
12  
6
2
10 jx1  
10 jx2  
* connections: non−inverting input  
j2  
1
*
*
*
*
*
| inverting input  
r2  
9
100.00E3  
12.527E3  
12.527E3  
10  
| | positive power supply  
| | | negative power supply  
| | | | output  
rd1  
rd2  
ro1  
ro2  
rp  
3
11  
12  
5
3
8
| | | | |  
7
99  
4
10  
.subckt TLV247x 1 2 3 4 5  
*
3
3.8023E3  
18.667E6  
dc 0  
rss  
vb  
vc  
ve  
vlim  
vlp  
vln  
.model  
.model  
.model  
.model  
.ends  
*$  
10  
9
99  
0
c1  
11  
6
12  
7
99  
53  
5
91  
90  
3
0
99  
1.1094E−12  
c2  
5.5000E−12  
3
53  
4
dc .842  
dc .842  
dc 0  
dc 110  
dc 110  
css  
dc  
de  
dlp  
dln  
dp  
egnd  
fb  
10  
5
556.53E−15  
54  
7
dy  
dy  
dx  
dx  
dx  
8
54  
90  
92  
4
91  
0
0
92  
dx  
dy  
jx1  
jx2  
D(Is=800.00E−18)  
D(Is=800.00E−18 Rs=1m Cjo=10p)  
99  
7
poly(2) (3,0) (4,0) 0 .5 .5  
poly(5) vb vc ve vlp vln 0  
NJF(Is=1.0825E−12 Beta=594.78E−06 + Vto=−1)  
NJF(Is=1.0825E−12 Beta=594.78E−06 + Vto=−1)  
+ 39.614E6 −1E3 1E3 40E6 −40E6  
ga  
gcm  
6
0
0
6
11  
10  
12 79.828E−6  
99 32.483E−9  
Figure 47. Boyle Macromodel and Subcircuit  
PSpice and Parts are trademarks of MicroSim Corporation.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Feb-2005  
PACKAGING INFORMATION  
Orderable Device  
TLV2471AQDRQ1  
TLV2471QDBVRQ1  
TLV2472AQDRQ1  
TLV2472QDRQ1  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
5
8
8
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-250C-1 YEAR/  
Level-1-235C-UNLIM  
SOT-23  
SOIC  
DBV  
D
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-250C-1 YEAR/  
Level-1-235C-UNLIM  
SOIC  
D
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-250C-1 YEAR/  
Level-1-235C-UNLIM  
TLV2474APWPRQ1  
TLV2474AQDRQ1  
ACTIVE  
ACTIVE  
HTSSOP  
SOIC  
PWP  
D
14  
14  
2000  
2500  
None  
Call TI  
Level-1-220C-UNLIM  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-250C-1 YEAR/  
Level-1-235C-UNLIM  
TLV2474QDRQ1  
ACTIVE  
ACTIVE  
SOIC  
D
14  
14  
2500  
2000  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-250C-1 YEAR/  
Level-1-235C-UNLIM  
TLV2474QPWPRQ1  
HTSSOP  
PWP  
None  
Call TI  
Level-1-220C-UNLIM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional  
product content details.  
None: Not yet available Lead (Pb-Free).  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,  
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

TLV2474CD

FAMILY OF 600-mA/Ch 2.8-MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2474CDG4

FAMILY OF 600mA/Ch 2.8MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2474CDR

FAMILY OF 600-mA/Ch 2.8-MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2474CDRG4

FAMILY OF 600-mA/Ch 2.8-MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2474CN

FAMILY OF 600-mA/Ch 2.8-MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2474CNE4

FAMILY OF 600-mA/Ch 2.8-MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2474CPWP

FAMILY OF 600-mA/Ch 2.8-MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2474CPWPG4

FAMILY OF 600mA/Ch 2.8MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2474CPWPR

FAMILY OF 600-mA/Ch 2.8-MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2474CPWPRG4

FAMILY OF 600-mA/Ch 2.8-MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2474ID

FAMILY OF 600-mA/Ch 2.8-MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2474IDG4

FAMILY OF 600mA/Ch 2.8MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI