TLV2474IDG4 [TI]

FAMILY OF 600mA/Ch 2.8MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN; 家庭为600mA /通道2.8MHz轨到轨输入/输出高驱动运算放大器,带有关断
TLV2474IDG4
型号: TLV2474IDG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

FAMILY OF 600mA/Ch 2.8MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
家庭为600mA /通道2.8MHz轨到轨输入/输出高驱动运算放大器,带有关断

运算放大器 输出元件 输入元件 驱动
文件: 总53页 (文件大小:2328K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV2470, TLV2471  
®
TLV2472, TLV2473  
®
TLV2474, TLV2475, TLV247xA  
www.ti.com  
SLOS232DJUNE 1999REVISED FEBRUARY 2007  
FAMILY OF 600µA/Ch 2.8MHz RAIL-TO-RAIL INPUT/OUTPUT  
HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN  
FEATURES  
DESCRIPTION  
CMOS Rail-To-Rail Input/Output  
The TLV247x is a family of CMOS rail-to-rail input/  
output operational amplifiers that establishes a new  
performance point for supply current versus ac  
Input Bias Current: 2.5pA  
Low Supply Current: 600µA/Channel  
performance.  
600µA/channel  
These  
while  
devices  
offering  
consume  
2.8MHz  
just  
of  
Ultra-Low Power Shutdown Mode  
IDD(SHDN): 350nA/ch at 3V  
IDD(SHDN): 1000nA/ch at 5V  
gain-bandwidth product. Along with increased ac  
performance, the amplifier provides high output drive  
capability, solving a major shortcoming of older  
micropower operational amplifiers. The TLV247x can  
swing to within 180mV of each supply rail while  
driving a 10mA load. For non-RRO applications, the  
TLV247x can supply ±35mA at 500mV off the rail.  
Both the inputs and outputs swing rail-to-rail for  
increased dynamic range in low-voltage applications.  
This performance makes the TLV247x family ideal  
for sensor interface, portable medical equipment,  
and other data acquisition circuits.  
Gain-Bandwidth Product: 2.8MHz  
High Output Drive Capability  
±10mA at 180mV  
±35mA at 500mV  
Input Offset Voltage: 250µV (typ)  
Supply Voltage Range: 2.7V to 6V  
Ultra-Small Packaging  
SOT23-5 or -6 (TLV2470/1)  
MSOP-8 or -10 (TLV2472/3)  
FAMILY PACKAGE TABLE  
PACKAGE TYPES  
NUMBER OF  
CHANNELS  
DEVICE  
SHUTDOWN  
UNIVERSAL EVM BOARD  
PDIP  
8
SOIC  
8
SOT23  
TSSOP  
MSOP  
TLV2470  
TLV2471  
TLV2472  
TLV2473  
TLV2474  
TLV2475  
1
1
2
2
4
4
6
14  
16  
Yes  
8
8
5
8
8
8
Refer to the EVM Selection  
Guide (SLOU060)  
14  
14  
16  
14  
14  
16  
10  
Yes  
Yes  
A SELECTION OF SINGLE-SUPPLY OPERATIONAL AMPLIFIER PRODUCTS(1)  
VDD  
(V)  
VIO  
(µV)  
BW  
(MHz)  
SLEW RATE  
IDD (per channel)  
DEVICE  
OUTPUT DRIVE  
RAIL-TO-RAIL  
(V/µs)  
(µA)  
TLV247X  
TLV245X  
TLV246X  
TLV277X  
2.7 – 6.0  
2.7 – 6.0  
2.7 – 6.0  
2.5 – 6.0  
250  
20  
2.8  
0.22  
6.4  
1.5  
0.11  
1.6  
600  
23  
±35mA  
±10mA  
±90mA  
±10mA  
I/O  
I/O  
I/O  
O
150  
360  
550  
1000  
5.1  
10.5  
(1) All specifications measured at 5 V.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments.  
Microsim PARTS is a trademark of MicroSim Corporation.  
Microsim PSpice is a registered trademark of MicroSim Corporation.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 1999–2007, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
TLV2470, TLV2471  
TLV2472, TLV2473  
TLV2474, TLV2475, TLV247xA  
www.ti.com  
SLOS232DJUNE 1999REVISED FEBRUARY 2007  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be  
more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
TLV2470 and TLV2471 AVAILABLE OPTIONS  
PACKAGED DEVICES  
TA  
SOT23  
SMALL OUTLINE (D)(1)  
PLASTIC DIP (P)  
(DBV)(1)  
SYMBOL  
TLV2470CD  
TLV2471CD  
TLV2470CDBV  
TLV2471CDBV  
VAUC  
VAVC  
TLV2470CP  
TLV2471CP  
0°C to +70°C  
TLV2470ID  
TLV2471ID  
TLV2470IDBV  
TLV2471IDBV  
VAUI  
VAVI  
TLV2470IP  
TLV2471IP  
–40°C to +125°C  
TLV2470AID  
TLV2471AID  
TLV2470AIP  
TLV2471AIP  
——  
——  
(1) This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2470CDR).  
TLV2472 AND TLV2473 AVAILABLE OPTIONS  
PACKAGED DEVICES  
SMALL  
OUTLINE  
(D)(1)  
MSOP  
MSOP  
TA  
PLASTIC DIP PLASTIC DIP  
(DGN)(1)  
SYMBOL(2)  
(DGQ)(1)  
SYMBOL(2)  
(N)  
(P)  
TLV2472CD  
TLV2473CD  
TLV2472CDGN  
xxTIABU  
TLV2472CP  
0°C to +70°C  
–40°C to +125°C  
TLV2473CDGQ  
xxTIABW  
TLV2473CN  
TLV2472ID  
TLV2473ID  
TLV2472IDGN  
xxTIABV  
xxTIABX  
TLV2472IP  
TLV2473IDGQ  
TLV2473IN  
TLV2472AID  
TLV2473AID  
TLV2472AIP  
——  
——  
——  
——  
TLV2473AIN  
(1) This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2472CDR).  
(2) xx represents the device date code.  
TLV2474 and TLV2475 AVAILABLE OPTIONS  
PACKAGED DEVICES  
TA  
SMALL OUTLINE (D)(1)  
PLASTIC DIP (N)  
TSSOP (PWP)(1)  
TLV2474CD  
TLV2475CD  
TLV2474CN  
TLV2475CN  
TLV2474CPWP  
TLV2475CPWP  
0°C to +70°C  
TLV2474ID  
TLV2475ID  
TLV2474IN  
TLV2475IN  
TLV2474IPWP  
TLV2475IPWP  
–40°C to +125°C  
TLV2474AID  
TLV2475AID  
TLV2474AIN  
TLV2475AIN  
TLV2474AIPWP  
TLV2475AIPWP  
(1) This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2474CDR).  
2
Submit Documentation Feedback  
TLV2470, TLV2471  
TLV2472, TLV2473  
TLV2474, TLV2475, TLV247xA  
www.ti.com  
SLOS232DJUNE 1999REVISED FEBRUARY 2007  
TLV247X PACKAGE PINOUTS  
TLV2470  
D OR P PACKAGE  
(TOP VIEW)  
TLV2470  
DBV PACKAGE  
(TOP VIEW)  
TLV2471  
DBV PACKAGE  
(TOP VIEW)  
1
2
3
V
5
V
DD  
OUT  
GND  
IN+  
OUT  
GND  
IN+  
1
2
6
5
NC  
IN−  
IN+  
SHDN  
DD  
1
2
3
4
8
7
6
5
V
DD  
SHDN  
IN−  
OUT  
NC  
GND  
4
IN−  
3
4
TLV2473  
DGQ PACKAGE  
(TOP VIEW)  
TLV2471  
D OR P PACKAGE  
(TOP VIEW)  
TLV2472  
D, DGN, OR P PACKAGE  
(TOP VIEW)  
1
1OUT  
1IN−  
1IN+  
GND  
1SHDN  
V
2OUT  
2IN−  
2IN+  
2SHDN  
10  
DD  
NC  
IN−  
IN+  
NC  
1OUT  
1IN−  
1IN+  
GND  
V
DD  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
2
3
4
5
9
8
7
6
V
DD  
2OUT  
2IN−  
2IN+  
OUT  
NC  
GND  
TLV2474  
TLV2475  
TLV2473  
D, N, OR PWP PACKAGE  
D, N, OR PWP PACKAGE  
D OR N PACKAGE  
(TOP VIEW)  
(TOP VIEW)  
(TOP VIEW)  
1OUT  
1IN−  
1IN+  
4OUT  
4IN−  
4IN+  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1OUT  
1IN−  
1IN+  
GND  
NC  
V
1OUT  
1IN−  
1IN+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
4OUT  
4IN−  
4IN+  
GND  
3IN+  
3IN−  
3OUT  
DD  
2OUT  
2IN−  
2IN+  
NC  
V
DD  
GND  
3IN+  
V
DD  
2IN+  
2IN−  
2IN+  
2IN−  
3IN−  
1SHDN  
NC  
2SHDN  
NC  
2OUT  
1/2SHDN  
3OUT  
3/4SHDN  
8
8
2OUT  
NC − No internal connection  
TYPICAL PIN 1 INDICATORS  
Pin 1  
Printed or  
Molded Dot  
Pin 1  
Pin 1  
Pin 1  
Stripe  
Beveled Edges  
Molded U Shape  
3
Submit Documentation Feedback  
TLV2470, TLV2471  
TLV2472, TLV2473  
TLV2474, TLV2475, TLV247xA  
www.ti.com  
SLOS232DJUNE 1999REVISED FEBRUARY 2007  
DESCRIPTION (CONTINUED)  
Three members of the family (TLV2470/3/5) offer a shutdown terminal for conserving battery life in portable  
applications. During shutdown, the outputs are placed in a high-impedance state and the amplifier consumes  
only 350nA/channel. The family is fully specified at 3V and 5V across an expanded industrial temperature range  
(–40°C to +125°C). The singles and duals are available in the SOT23 and MSOP packages, while the quads are  
available in TSSOP. The TLV2470 offers an amplifier with shutdown functionality all in a SOT23-6 package,  
making it perfect for high-density power-sensitive circuits.  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
UNIT  
(2)  
Supply voltage, VDD  
7 V  
±VDD  
Differential input voltage, VID  
Continuous total power dissipation  
Operating free-air temperature range, TA  
See Dissipation Rating table  
0°C to +70°C  
–40°C to +125°C  
+150°C  
C suffix  
I suffix  
Maximum junction temperature, TJ  
Storage temperature range, Tstg  
–65°C to +150°C  
+260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated underrecommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential voltages, are with respect to GND.  
DISSIPATION RATING TABLE  
θJC  
(°C/W)  
θJA  
(°C/W)  
TA +25°C  
POWER RATING  
PACKAGE  
D (8)  
D (14)  
38.3  
26.9  
25.7  
55  
176  
122.3  
114.7  
324.1  
294.3  
52.7  
52.3  
78  
710mW  
1022mW  
1090mW  
385mW  
D (16)  
DBV (5)  
DBV (6)  
DGN (8)  
DGQ (10)  
N (14, 16)  
P (8)  
55  
425mW  
4.7  
2.37W  
4.7  
2.39W  
32  
1600mW  
1200mW  
4.07W  
41  
104  
PWP (14)  
PWP (16)  
2.07  
2.07  
30.7  
29.7  
4.21W  
RECOMMENDED OPERATING CONDITIONS  
MIN  
2.7  
±1.35  
0
MAX  
6
UNIT  
V
Single supply  
Supply voltage, VDD  
Split supply  
±3  
Common-mode input voltage range, VICR  
Operating free-air temperature, TA  
VDD  
+70  
+125  
V
C-suffix  
I-suffix  
VIH  
0
°C  
–40  
2
Shutdown on/off voltage level(1)  
(1) Relative to GND  
V
VIL  
0.8  
4
Submit Documentation Feedback  
 
TLV2470, TLV2471  
TLV2472, TLV2473  
TLV2474, TLV2475, TLV247xA  
www.ti.com  
SLOS232DJUNE 1999REVISED FEBRUARY 2007  
ELECTRICAL CHARACTERISTICS  
At specified free-air temperature, VDD = 3V, unless otherwise noted.  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX  
2200  
2400  
1600  
1800  
UNIT  
25°C  
250  
TLV247x  
Full range  
25°C  
VIO  
Input offset voltage  
µV  
250  
TLV247xA  
Full range  
Temperature coefficient of  
input offset voltage  
αVIO  
0.4  
1.5  
µV/°C  
VIC = VDD/2,  
VO = VDD/2, RS = 50Ω  
25°C  
Full range  
Full range  
25°C  
50  
100  
300  
50  
IIO  
Input offset current  
Input bias current  
TLV247xC  
TLV247xI  
pA  
2
IIB  
TLV247xC  
TLV247xI  
Full range  
Full range  
25°C  
100  
300  
2.85  
2.8  
2.6  
2.5  
2.94  
2.74  
0.07  
0.2  
IOH = –2.5mA  
IOH = –10mA  
IOL = 2.5mA  
IOL = 10mA  
Full range  
25°C  
VOH  
High-level output voltage  
Low-level output voltage  
VIC = VDD/2  
V
V
Full range  
25°C  
0.15  
0.2  
Full range  
25°C  
VOL  
VIC = VDD/2  
Sourcing  
0.35  
0.5  
Full range  
25°C  
30  
20  
62  
60  
59  
30  
20  
62  
60  
59  
Full range  
25°C  
TLV247xC  
TLV247xI  
Full range  
Full range  
25°C  
Sourcing,  
Outside of rails(2)  
IOS  
Short-circuit output current  
mA  
Sinking  
Full range  
25°C  
TLV247xC  
TLV247xI  
Full range  
Full range  
25°C  
Sinking,  
Outside of rails(2)  
IO  
Output current  
VO = 0.5V from rail  
±22  
mA  
dB  
25°C  
90  
88  
116  
Large-signal differential  
voltage amplification  
AVD  
VO(PP) = 1V, RL = 10kΩ  
Full range  
25°C  
ri(d)  
CIC  
Differential input resistance  
1012  
19.3  
Common-mode input  
capacitance  
f = 10kHz  
25°C  
25°C  
pF  
Closed-loop output  
impedance  
zo  
f = 10kHz, AV = 10  
2
25°C  
61  
59  
58  
78  
CMRR  
Common-mode rejection ratio  
TLV247xC  
TLV247xI  
Full range  
Full range  
dB  
VIC = 0V to 3V,  
RS = 50Ω  
(1) Full range is 0°C to +70°C for C-suffix and –40°C to +125°C for I-suffix. If not specified, full range is –40°C to +125°C.  
(2) Depending on package dissipation rating.  
5
Submit Documentation Feedback  
TLV2470, TLV2471  
TLV2472, TLV2473  
TLV2474, TLV2475, TLV247xA  
www.ti.com  
SLOS232DJUNE 1999REVISED FEBRUARY 2007  
ELECTRICAL CHARACTERISTICS (continued)  
At specified free-air temperature, VDD = 3V, unless otherwise noted.  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
74  
TYP  
MAX  
UNIT  
25°C  
Full range  
25°C  
90  
VDD = 2.7V to 6V, VIC = VDD/2, No load  
66  
Supply voltage rejection ratio  
kSVR  
dB  
(VDD/VIO  
)
77  
92  
550  
350  
VDD = 3V to 5V, VIC = VDD/2, No load  
Full range  
25°C  
68  
750  
800  
IDD  
Supply current (per channel) VO = 1.5V, No load  
µA  
Full range  
25°C  
1500  
2000  
4000  
Supply current in shutdown  
mode (TLV2470, TLV2473,  
TLV2475) (per channel)  
IDD(SHDN)  
TLV247xC  
TLV247xI  
Full range  
Full range  
nA  
SHDN = 0V  
(1) Full range is 0°C to +70°C for C-suffix and –40°C to +125°C for I-suffix. If not specified, full range is –40°C to +125°C.  
OPERATING CHARACTERISTICS  
At specified free-air temperature, VDD = 3V, unless otherwise noted.  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
1.1  
TYP  
MAX  
UNIT  
25°C  
1.4  
SR  
Slew rate at unity gain VO(PP) = 0.8V, CL = 150pF, RL= 10kΩ  
V/µs  
Full range  
25°C  
0.6  
f = 100Hz  
f = 1kHz  
28  
15  
Equivalent input noise  
voltage  
Vn  
In  
nV/Hz  
pA/Hz  
25°C  
Equivalent input noise  
current  
f = 1kHz  
25°C  
0.405  
AV = 1  
0.02%  
0.1%  
0.5%  
5
VO(PP) = 2V,  
RL= 10k,  
f = 1kHz  
Total harmonic  
distortion plus noise  
THD+N  
AV = 10  
AV = 100  
25°C  
t(on)  
t(off)  
Amplifier turn-on time  
Amplifier turn-off time  
25°C  
25°C  
µs  
RL= OPEN(2)  
250  
ns  
Gain-bandwidth  
product  
f = 10kHz, RL = 600Ω  
25°C  
2.8  
MHz  
V(STEP)PP = 2V,  
AV = –1, CL = 10pF,  
RL = 10kΩ  
0.1%  
1.5  
3.9  
1.6  
4
0.01%  
0.1%  
ts  
Settling time  
25°C  
µs  
V(STEP)PP = 2V,  
AV = –1, CL = 56pF,  
RL = 10kΩ  
0.01%  
φm  
Phase margin  
Gain margin  
RL = 10k, CL = 1000pF  
RL = 10k, CL = 1000pF  
25°C  
25°C  
61°  
15  
dB  
(1) Full range is 0°C to +70°C for C-suffix and –40°C to +125°C for I-suffix. If not specified, full range is –40°C to +125°C.  
(2) Disable and enable time are defined as the interval between application of logic signal to SHDN and the point at which the supply  
current has reached half its final value.  
6
Submit Documentation Feedback  
TLV2470, TLV2471  
TLV2472, TLV2473  
TLV2474, TLV2475, TLV247xA  
www.ti.com  
SLOS232DJUNE 1999REVISED FEBRUARY 2007  
ELECTRICAL CHARACTERISTICS  
At specified free-air temperature, VDD = 5V, unless otherwise noted.  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP MAX UNIT  
25°C  
250 2200  
TLV247x  
Full range  
25°C  
2400  
µV  
VIO  
Input offset voltage  
250 1600  
TLV247xA  
Full range  
2000  
Temperature coefficient of input  
offset voltage  
VIC = VDD/2,  
VO = VDD/2,  
RS = 50Ω  
αVIO  
0.4  
1.7  
µV/°C  
25°C  
Full range  
Full range  
25°C  
50  
100  
300  
50  
IIO  
Input offset current  
Input bias current  
TLV247xC  
TLV247xI  
pA  
2.5  
IIB  
TLV247xC  
TLV247xI  
Full range  
Full range  
25°C  
100  
300  
4.85  
4.8  
4.96  
4.82  
IOH = –2.5mA  
IOH = –10mA  
IOL = 2.5mA  
IOL = 10mA  
Full range  
25°C  
VOH  
High-level output voltage  
Low-level output voltage  
VIC = VDD/2  
V
V
4.72  
4.65  
Full range  
25°C  
0.07 0.15  
0.2  
Full range  
25°C  
VOL  
VIC = VDD/2  
Sourcing  
0.178 0.28  
0.35  
Full range  
25°C  
110  
60  
63  
61  
58  
90  
60  
63  
61  
58  
Full range  
25°C  
TLV247xC  
TLV247xI  
Full range  
Full range  
25°C  
Sourcing,  
Outside of rails(2)  
IOS  
Short-circuit output current  
mA  
Sinking  
Full range  
25°C  
TLV247xC  
TLV247xI  
Full range  
Full range  
25°C  
Sinking,  
Outside of rails(2)  
IO  
Output current  
VO = 0.5V from rail  
±35  
mA  
dB  
25°C  
92  
91  
120  
Large-signal differential voltage  
amplification  
AVD  
VO(PP) = 3V, RL = 10kΩ  
Full range  
25°C  
ri(d)  
CIC  
zo  
Differential input resistance  
1012  
18.9  
1.8  
pF  
Common-mode input capacitance f = 10kHz  
25°C  
Closed-loop output impedance  
f = 10kHz, AV = 10  
25°C  
25°C  
64  
63  
58  
74  
66  
77  
66  
84  
CMRR  
Common-mode rejection ratio  
TLV247xC  
TLV247xI  
Full range  
Full range  
25°C  
dB  
VIC = 0V to 5V,  
RS = 50Ω  
90  
92  
VDD = 2.7V to 6V, VIC = VDD/2,  
No load  
Full range  
25°C  
Supply voltage rejection ratio  
kSVR  
dB  
(VDD/VIO  
)
VDD = 3V to 5V, VIC = VDD/2,  
No load  
Full range  
25°C  
600 900  
1000  
IDD  
Supply current (per channel)  
VO = 2.5V, No load  
µA  
Full range  
(1) Full range is 0°C to +70°C for C-suffix and –40°C to +125°C for I-suffix. If not specified, full range is –40°C to +125°C.  
(2) Depending on package dissipation rating  
7
Submit Documentation Feedback  
TLV2470, TLV2471  
TLV2472, TLV2473  
TLV2474, TLV2475, TLV247xA  
www.ti.com  
SLOS232DJUNE 1999REVISED FEBRUARY 2007  
ELECTRICAL CHARACTERISTICS (continued)  
At specified free-air temperature, VDD = 5V, unless otherwise noted.  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP MAX UNIT  
25°C  
1000 2500  
nA  
Supply current in shutdown mode  
IDD(SHDN) (TLV2470, TLV2473, TLV2475)  
(per channel)  
SHDN = 0V  
TLV247xC  
TLV247xI  
Full range  
Full range  
3000  
6000  
nA  
(1) Full range is 0°C to +70°C for C-suffix and –40°C to +125°C for I-suffix. If not specified, full range is –40°C to +125°C.  
OPERATING CHARACTERISTICS  
At specified free-air temperature, VDD = 5V, unless otherwise noted.  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
1.1  
TYP  
MAX  
UNIT  
25°C  
1.5  
SR  
Slew rate at unity gain VO(PP) = 2V, CL = 150pF, RL= 10kΩ  
V/µs  
Full range  
25°C  
0.7  
f = 100Hz  
f = 1kHz  
28  
15  
Equivalent input noise  
voltage  
Vn  
In  
nV/Hz  
pA/Hz  
25°C  
Equivalent input noise  
current  
f = 1kHz  
25°C  
0.39  
AV = 1  
0.01%  
0.05%  
0.3%  
5
VO(PP) = 4V,  
RL= 10k,  
f = 1kHz  
Total harmonic  
distortion plus noise  
THD + N  
AV = 10  
AV = 100  
25°C  
t(on)  
t(off)  
Amplifier turn-on time  
Amplifier turn-off time  
25°C  
25°C  
µs  
RL= OPEN(2)  
250  
ns  
Gain-bandwidth  
product  
f = 10kHz, RL = 600Ω  
25°C  
2.8  
MHz  
V(STEP)PP = 2V,  
AV = –1, CL = 10pF,  
RL = 10kΩ  
0.1%  
1.8  
3.3  
1.7  
3
0.01%  
0.1%  
ts  
Settling time  
25°C  
µs  
V(STEP)PP = 2V,  
AV = –1, CL = 56pF,  
RL = 10kΩ  
0.01%  
φm  
Phase margin  
Gain margin  
RL = 10k, CL = 1000pF  
RL = 10k, CL = 1000pF  
25°C  
25°C  
68  
23  
°C  
dB  
(1) Full range is 0°C to +70°C for C suffix and –40°C to +125°C for I suffix. If not specified, full range is –40°C to +125°C.  
(2) Disable and enable time are defined as the interval between application of logic signal to SHDN and the point at which the supply  
current has reached half its final value.  
8
Submit Documentation Feedback  
TLV2470, TLV2471  
TLV2472, TLV2473  
TLV2474, TLV2475, TLV247xA  
www.ti.com  
SLOS232DJUNE 1999REVISED FEBRUARY 2007  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
VIO  
Input offset voltage  
vs Common-mode input voltage  
vs Free-air temperature  
Figure 1, Figure 2  
IIB  
Input bias current  
Figure 3, Figure 4  
IIO  
Input offset current  
VOH  
VOL  
Zo  
High-level output voltage  
Low-level output voltage  
Output impedance  
vs High-level output current  
vs Low-level output current  
vs Frequency  
Figure 5, Figure 7  
Figure 6, Figure 8  
Figure 9  
IDD  
Supply current  
vs Supply voltage  
vs Frequency  
Figure 10  
PSRR  
CMRR  
Vn  
Power-supply rejection ratio  
Common-mode rejection ratio  
Equivalent input noise voltage  
Maximum peak-to-peak output voltage  
Differential voltage gain and phase  
Phase margin  
Figure 11  
vs Frequency  
Figure 12  
vs Frequency  
Figure 13  
VO(PP)  
AVD  
φm  
vs Frequency  
Figure 14, Figure 15  
Figure 16, Figure 17  
Figure 18, Figure 19  
Figure 20, Figure 21  
Figure 22  
vs Frequency  
vs Load capacitance  
vs Load capacitance  
vs Supply voltage  
vs Supply voltage  
vs Free-air temperature  
vs Frequency  
Gain margin  
Gain-bandwidth product  
Figure 23  
SR  
Slew rate  
Figure 24, Figure 25  
Figure 26  
Crosstalk  
THD+N  
VO  
Total harmonic distortion + noise  
Large and small signal follower  
Shutdown pulse response  
Shutdown forward and reverse isolation  
Shutdown supply current  
Shutdown supply current  
Shutdown pulse current  
vs Frequency  
Figure 27, Figure 28  
Figure 29Figure 32  
Figure 33, Figure 34  
Figure 35, Figure 36  
Figure 37  
vs Time  
vs Time  
vs Frequency  
IDD(SHDN)  
IDD(SHDN)  
IDD(SHDN)  
vs Supply voltage  
vs Free-air temperature  
vs Time  
Figure 38  
Figure 39, Figure 40  
9
Submit Documentation Feedback  
TLV2470, TLV2471  
TLV2472, TLV2473  
TLV2474, TLV2475, TLV247xA  
www.ti.com  
SLOS232DJUNE 1999REVISED FEBRUARY 2007  
TYPICAL CHARACTERISTICS  
INPUT BIAS AND INPUT OFFSET  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
CURRENTS  
vs  
FREE-AIR TEMPERATURE  
50  
40  
30  
20  
10  
0
600  
600  
V
= 3V  
V
= 3V  
DD  
DD  
V
= 5V  
DD  
400  
200  
400  
200  
T
A
= +25° C  
T
A
= +25 °C  
I
IB  
0
0
−200  
−400  
−600  
−800  
−200  
−400  
−600  
−800  
I
IO  
−10  
−55 −35 −15  
5
25 45 65 85 105 125  
−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5  
−0.5  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
T
A
− Free-Air Temperature − °C  
V
− Common-Mode Input Voltage − V  
V
− Common-Mode Input Voltage − V  
ICR  
ICR  
Figure 1.  
Figure 2.  
Figure 3.  
INPUT BIAS AND INPUT OFFSET  
CURRENTS  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
FREE-AIR TEMPERATURE  
50  
40  
30  
20  
10  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
V
= 5V  
V
= 3V  
DD  
DD  
V
= 3V  
DD  
T
A
= +125°C  
T
A
= +85°C  
T
= +25°C  
= −40°C  
A
T
T
= +125°C  
A
I
A
IB  
T
= +85°C  
A
T
T
= +25°C  
= −40°C  
A
I
IO  
A
−10  
−55 −35 −15  
5
25 45 65 85 105 125  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
T
A
− Free-Air Temperature − °C  
I
− High-Level Output Current − mA  
I
− Low-Level Output Current − mA  
OL  
OH  
Figure 4.  
Figure 5.  
Figure 6.  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
OUTPUT IMPEDANCE  
vs  
FREQUENCY  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1000  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
V
= 3V, 5V  
= +25°C  
DD  
T
= +125°C  
A
V
= 5V  
T
A
DD  
T
= +85°C  
A
100  
AV = 100  
T
T
= +25°C  
= −40°C  
A
10  
1
A
AV = 10  
T
= +125°C  
A
T
= +85°C  
A
AV = 1  
0.1  
T
A
= +25°C  
A
T
= −40°C  
V
= 5V  
DD  
0.01  
0
20  
40  
60  
80 100 120 140  
0
20 40 60 80 100 120 140 160  
100  
1k  
10k  
100k  
1M  
10M  
I
− Low-Level Output Current − mA  
I
− High-Level Output Current − mA  
f − Frequency − Hz  
OL  
OH  
Figure 7.  
Figure 8.  
Figure 9.  
10  
Submit Documentation Feedback  
TLV2470, TLV2471  
TLV2472, TLV2473  
TLV2474, TLV2475, TLV247xA  
www.ti.com  
SLOS232DJUNE 1999REVISED FEBRUARY 2007  
TYPICAL CHARACTERISTICS (continued)  
POWER-SUPPLY REJECTION  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
RATIO  
vs  
COMMON-MODE REJECTION RATIO  
vs  
FREQUENCY  
FREQUENCY  
1.0  
0.9  
100  
90  
80  
70  
60  
50  
40  
30  
130  
V
R
= 3V, 5V  
= 5k  
DD  
F
I
T
= +125°C  
PSRR+  
A
120  
110  
100  
90  
T
= +85°C  
A
R = 50Ω  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
T
A
= +25°C  
PSRR−  
T
A
= +25°C  
V
V
= 5V  
DD  
= 2.5V  
IC  
T
= −40°C  
A
80  
V
V
= 3V  
DD  
70  
A
= 1  
= 1.5V  
V
IC  
SHDN = V  
Per Channel  
60  
DD  
50  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
10  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
V
− Supply Voltage − V  
f − Frequency − Hz  
DD  
f − Frequency − Hz  
Figure 10.  
Figure 11.  
Figure 12.  
MAXIMUM PEAK-TO-PEAK  
OUTPUT VOLTAGE  
vs  
MAXIMUM PEAK-TO-PEAK  
OUTPUT VOLTAGE  
vs  
EQUIVALENT NOISE VOLTAGE  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
80  
70  
60  
50  
40  
30  
20  
10  
0
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.5  
V
A
V
= 3V, 5V  
= 10  
DD  
V
IN  
THD+N 2.0%  
THD+N 2.0%  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
R
L
= 10kΩ  
= +25°C  
R
L
= 600Ω  
= +25°C  
= V /2  
DD  
T
A
T
A
V
= 5V  
O(PP)  
T
A
= +25°C  
V
= 5V  
O(PP)  
V
= 3V  
O(PP)  
V
= 3V  
O(PP)  
10  
100  
1k  
10k  
100k  
10k  
100k  
1M  
10k  
100k  
1M  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 13.  
Figure 14.  
Figure 15.  
DIFFERENTIAL VOLTAGE GAIN  
DIFFERENTIAL VOLTAGE GAIN  
AND PHASE  
vs  
AND PHASE  
vs  
FREQUENCY  
FREQUENCY  
100  
45  
100  
45  
V
= ±3  
= 600Ω  
= 0  
V
= ±5  
= 600Ω  
= 0  
DD  
L
L
DD  
L
L
R
C
T
R
C
T
80  
60  
40  
20  
0
80  
60  
40  
20  
0
= +25°C  
= +25°C  
A
A
−45  
−90  
−135  
−45  
−90  
−135  
0
−180  
−225  
0
−180  
−225  
−20  
−20  
−40  
100  
−270  
100M  
−40  
100  
−270  
100M  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
Frequency − Hz  
Frequency − Hz  
Figure 16.  
Figure 17.  
11  
Submit Documentation Feedback  
TLV2470, TLV2471  
TLV2472, TLV2473  
TLV2474, TLV2475, TLV247xA  
www.ti.com  
SLOS232DJUNE 1999REVISED FEBRUARY 2007  
TYPICAL CHARACTERISTICS (continued)  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
GAIN MARGIN  
vs  
LOAD CAPACITANCE  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
V
R
= 3V  
= 10kΩ  
= +25°C  
DD  
L
V
R
= 5V  
= 10k  
= +25°C  
V
R
T
= 3V  
= 10k  
= +25°C  
DD  
L
DD  
L
A
RNULL = 50  
RNULL = 50  
T
A
T
A
5
See Figure 42  
See Figure 42  
RNULL = 0  
RNULL = 100  
10  
15  
RNULL = 100  
RNULL = 20  
RNULL = 100  
RNULL = 20  
20  
RNULL = 20  
25  
30  
RNULL = 50  
RNULL = 0  
RNULL = 0  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
C
L
− Load Capacitance − pF  
C
L
− Load Capacitance − pF  
C − Load Capacitance − pF  
L
Figure 18.  
Figure 19.  
Figure 20.  
GAIN MARGIN  
vs  
LOAD CAPACITANCE  
GAIN-BANDWIDTH PRODUCT  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
vs  
SUPPLY VOLTAGE  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
5
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
SR−  
SR+  
R
= 10k  
L
RNULL = 0  
10  
15  
R
L
= 600Ω  
RNULL = 20  
20  
25  
C
= 11pF  
f = 10kHz  
= +25°C  
RNULL = 100  
L
RNULL = 50  
T
A
V
A
R
C
= 1.5V  
= −1  
= 10k  
= 150pF  
O(PP)  
V
L
L
V
R
= 5V  
= 10k  
= +25°C  
DD  
L
30  
35  
T
A
100  
1k  
10k  
100k  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
C
L
− Load Capacitance − pF  
V
− Supply Voltage − V  
V − Supply Voltage − V  
DD  
DD  
Figure 21.  
Figure 22.  
Figure 23.  
SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
SR−  
SR+  
SR+  
SR−  
V
R
C
A
= 5V  
= 10k  
= 150pF  
= −1  
DD  
V
R
C
A
= 3V  
= 10k  
= 150pF  
= −1  
DD  
L
L
V
L
L
V
0.25  
0.00  
0.25  
0.00  
−55 −35 −15  
5
25 45 65 85 105 125  
−55 −35 −15  
5
25 45 65 85 105 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 24.  
Figure 25.  
12  
Submit Documentation Feedback  
TLV2470, TLV2471  
TLV2472, TLV2473  
TLV2474, TLV2475, TLV247xA  
www.ti.com  
SLOS232DJUNE 1999REVISED FEBRUARY 2007  
TYPICAL CHARACTERISTICS (continued)  
TOTAL HARMONIC  
DISTORTION PLUS NOISE  
vs  
TOTAL HARMONIC  
DISTORTION PLUS NOISE  
vs  
CROSSTALK  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
0
1
0.1  
V
A
R
= 3V, 5V  
DD  
= 1  
1
0.1  
A
= 100  
A
= 100  
V
V
−20  
V
=
600  
L
V
= 2V  
I(PP)  
−40  
−60  
All Channels  
A
A
= 10  
= 1  
V
V
A
A
= 10  
= 1  
V
V
−80  
−100  
−120  
−140  
0.01  
0.001  
0.01  
0.001  
V
R
V
= 5V  
= 10k  
DD  
V
R
V
= 3V  
= 10k  
DD  
L
0
L
0
=
4V  
PP  
=
2V  
PP  
T
A
= +25°C  
T
A
= +25°C  
−160  
10  
100  
1k  
10k  
100k  
10  
100  
1 k  
10 k  
100 k  
10  
100  
1k  
10k  
100k  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 26.  
Figure 27.  
Figure 28.  
LARGE-SIGNAL FOLLOWER  
LARGE-SIGNAL FOLLOWER  
SMALL-SIGNAL FOLLOWER  
PULSE RESPONSE  
PULSE RESPONSE  
PULSE RESPONSE  
vs  
TIME  
vs  
TIME  
vs  
TIME  
V (2V/DIV)  
I
V (50mV/DIV)  
I
V (2V/DIV)  
I
V
R
C
= 3V  
= 10k  
= 8pF  
DD  
L
L
f = 1MHz  
= +25°C  
V
(1V/DIV)  
T
O
A
V
(1V/DIV)  
O
V
R
C
= 5V  
DD  
V
R
C
= 3V  
= 10k  
= 8pF  
DD  
= 10k  
L
L
L
L
V
(50mV/DIV)  
200  
O
= 8pF  
f = 85kHz  
= +25°C  
f = 85kHz  
= +25°C  
T
T
A
A
0
100  
300  
400  
500  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
t − Time − µs  
t − Time − µs  
t − Time − µs  
Figure 29.  
Figure 30.  
Figure 31.  
SMALL-SIGNAL FOLLOWER  
SHUTDOWN (ON AND OFF)  
SHUTDOWN (ON AND OFF)  
PULSE RESPONSE  
PULSE RESPONSE  
PULSE RESPONSE  
vs  
TIME  
vs  
TIME  
vs  
TIME  
V
(2V/DIV)  
SHDN  
V (50mV/DIV)  
I
V
R
C
= 5V  
= 10k  
= 8pF  
V
(2V/DIV)  
SHDN  
DD  
L
R
L
= 600  
R
L
= 600  
L
f = 1MHz  
= +25°C  
R
L
= 10kΩ  
R
L
= 10kΩ  
T
A
V
(500mV/DIV)  
V
(1V/DIV)  
O
O
V
(50mV/DIV)  
200  
O
V
C
T
A
= 3V  
= 8pF  
= +25°C  
DD  
V
C
= 5V  
= 8pF  
DD  
L
L
T
A
= +25°C  
0
2
4
6
8
10 12 14 16  
0
2
4
6
8
10 12 14 16 18  
0
100  
300  
400  
500  
t − Time − µs  
t − Time − µs  
t − Time − µs  
Figure 32.  
Figure 33.  
Figure 34.  
13  
Submit Documentation Feedback  
 
TLV2470, TLV2471  
TLV2472, TLV2473  
TLV2474, TLV2475, TLV247xA  
www.ti.com  
SLOS232DJUNE 1999REVISED FEBRUARY 2007  
TYPICAL CHARACTERISTICS (continued)  
SHUTDOWN FORWARD  
ISOLATION  
SHUTDOWN REVERSE ISOLATION  
SHUTDOWN SUPPLY CURRENT  
vs  
vs  
vs  
FREQUENCY  
FREQUENCY  
SUPPLY VOLTAGE  
120  
100  
120  
100  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
V
C
= 3V, 5V  
DD  
= 0pF  
L
A
= 1  
V
V
= 0.1V, 1.5V, 3V  
I(PP)  
T
= +125°C  
= +85°C  
A
80  
60  
80  
60  
T
A
R
L
= 600  
R
L
= 600  
R
= 10kΩ  
L
T
= +25°C  
= −40°C  
A
R
= 10kΩ  
L
T
A
40  
20  
40  
20  
V
= 3V, 5V  
= 10kΩ  
= 0pF  
DD  
R
L
C
L
Shutdown On  
= OPEN  
R
L
A
= 1  
V
V = V  
I DD/2  
V
= 0.1VPP, 1.5VPP, 3VPP  
IN  
0
0
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
f − Frequency − Hz  
f − Frequency − Hz  
V
− Supply Voltage − V  
DD  
Figure 35.  
Figure 36.  
Figure 37.  
SHUTDOWN SUPPLY CURRENT  
vs  
SHUTDOWN PULSE CURRENT  
SHUTDOWN PULSE CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
TIME  
TIME  
2.00  
1.75  
1.50  
4
2.00  
6
1.6  
Shutdown Pulse  
3
SD MODE Channel 1 and 2  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
4
A
V
= 1  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Shutdown Pulse  
2
1
0
R
L
= OPEN  
2
0
V
= V  
DD/2  
IN  
1.25  
1.00  
0.75  
0.50  
0.25  
0
I
R
L
= 10k  
DD  
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
I
R
R
= 10k  
= 600Ω  
DD  
L
−2  
V
= 5V  
DD  
−4  
I
I
R
L
= 600Ω  
DD  
L
DD  
−6  
−8  
V
= 5V  
V
= 3V  
DD  
DD  
V
= 3V  
DD  
C
T
= 8pF  
= +25°C  
C
T
= 8pF  
= +25°C  
L
L
−10  
−12  
−0.25  
−0.50  
−0.25  
−0.50  
A
A
0
4
8
12 16 20 24 28 30  
0
4
8
12 16 20 24 28 30  
−55 −35 −15  
5
25 45 65 85 105 125  
t − Time − µs  
t − Time − µs  
T
A
− Free-Air Temperature − °C  
Figure 38.  
Figure 39.  
Figure 40.  
14  
Submit Documentation Feedback  
 
TLV2470, TLV2471  
TLV2472, TLV2473  
TLV2474, TLV2475, TLV247xA  
www.ti.com  
SLOS232DJUNE 1999REVISED FEBRUARY 2007  
PARAMETER MEASUREMENT INFORMATION  
RNULL  
_
+
R
L
C
L
Figure 41.  
APPLICATION INFORMATION  
DRIVING A CAPACITIVE LOAD  
When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the  
device phase margin leading to high-frequency ringing or oscillations. Therefore, for capacitive loads of greater  
than 10pF, it is recommended that a resistor be placed in series (RNULL) with the output of the amplifier, as  
shown in Figure 42. A minimum value of 20should work well for most applications.  
R
F
R
G
R
NULL  
_
+
Input  
Output  
C
LOAD  
Figure 42. Driving a Capacitive Load  
OFFSET VOLTAGE  
The output offset voltage (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times  
the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage:  
R
F
I
IB−  
R
G
+
+
V
I
V
O
R
S
I
IB+  
RF  
RG  
RF  
RG  
ǒ Ǔ  
ǒ Ǔ  
ǒ1 ) Ǔ" I ǒ1 ) Ǔ" I  
VOO + VIO  
IB) RS  
IB* RF  
Figure 43. Output Offset Voltage Model  
15  
Submit Documentation Feedback  
 
TLV2470, TLV2471  
TLV2472, TLV2473  
TLV2474, TLV2475, TLV247xA  
www.ti.com  
SLOS232DJUNE 1999REVISED FEBRUARY 2007  
APPLICATION INFORMATION (continued)  
GENERAL CONFIGURATIONS  
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often  
required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier  
(see Figure 44).  
R
G
R
F
+
V
1
O
V
I
R1  
V
C1  
f
+
–3dB  
2pR1C1  
R
O
F
1
ǒ
Ǔ
+
ǒ
1 )  
Ǔ
V
R
1 ) sR1C1  
I
G
Figure 44. Single-Pole Low-Pass Filter  
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this  
task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.  
Failure to do this can result in phase shift of the amplifier.  
C1  
R1 = R2 = R  
C1 = C2 = C  
Q = Peaking Factor  
(Butterworth Q = 0.707)  
+
_
V
I
1
R1  
R2  
f
+
–3dB  
2pRC  
C2  
R
F
R
G
=
1
R
F
2 –  
)
(
R
G
Q
Figure 45. 2-Pole Low-Pass Sallen-Key Filter  
SHUTDOWN FUNCTION  
Three members of the TLV247x family (TLV2470/3/5) have a shutdown terminal for conserving battery life in  
portable applications. When the shutdown terminal is tied low, the supply current is reduced to 350nA/channel,  
the amplifier is disabled, and the outputs are placed in a high impedance mode. To enable the amplifier, the  
shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left floating, care  
should be taken to ensure that parasitic leakage current at the shutdown terminal does not inadvertently place  
the operational amplifier into shutdown. The shutdown terminal threshold is always referenced to VDD/2.  
Therefore, when operating the device with split supply voltages (e.g., ±2.5V), the shutdown terminal needs to be  
pulled to VDD– (not GND) to disable the operational amplifier.  
The amplifier's output with a shutdown pulse is shown in Figure 33 and Figure 34. The amplifier is powered with  
a single 5V supply and configured as a noninverting configuration with a gain of 5. The amplifier turn-on and  
turn-off times are measured from the 50% point of the shutdown pulse to the 50% point of the output waveform.  
The times for the single, dual, and quad versions are listed in the data tables.  
16  
Submit Documentation Feedback  
 
TLV2470, TLV2471  
TLV2472, TLV2473  
TLV2474, TLV2475, TLV247xA  
www.ti.com  
SLOS232DJUNE 1999REVISED FEBRUARY 2007  
APPLICATION INFORMATION (continued)  
Figure 35 and Figure 36 show the amplifier's forward and reverse isolation in shutdown. The operational  
amplifier is powered by ±1.35V supplies and configured as a voltage follower (AV= 1). The isolation performance  
is plotted across frequency using 0.1VPP, 1.5VPP, and 2.5VPP input signals. During normal operation, the  
amplifier would not be able to handle a 2.5VPP input signal with a supply voltage of ±1.35V since it exceeds the  
common-mode input voltage range (VICR). However, this curve illustrates that the amplifier remains in shutdown  
even under a worst case scenario.  
CIRCUIT LAYOUT CONSIDERATIONS  
To achieve the levels of high performance of the TLV247x, follow proper printed-circuit board (PCB) design  
techniques. A general set of guidelines is given in the following.  
Ground planes—It is highly recommended that a ground plane be used on the board to provide all  
components with a low inductive ground connection. However, in the areas of the amplifier inputs and output,  
the ground plane can be removed to minimize the stray capacitance.  
Proper power supply decoupling—Use a 6.8µF tantalum capacitor in parallel with a 0.1µF ceramic capacitor  
on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the  
application, but a 0.1µF ceramic capacitor should always be used on the supply terminal of every amplifier. In  
addition, the 0.1µF capacitor should be placed as close as possible to the supply terminal. As this distance  
increases, the inductance in the connecting trace makes the capacitor less effective. The designer should  
strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors.  
Sockets—Sockets can be used but are not recommended. The additional lead inductance in the socket pins  
will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board is  
the best implementation.  
Short trace runs/compact part placements—Optimum high performance is achieved when stray series  
inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,  
thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the  
amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at the  
input of the amplifier.  
Surface-mount passive components—Using surface-mount passive components is recommended for high  
performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of  
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small  
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray  
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be kept  
as short as possible.  
GENERAL PowerPAD™ DESIGN CONSIDERATIONS  
The TLV247x is available in a thermally-enhanced PowerPAD family of packages. These packages are  
constructed using a downset leadframe upon which the die is mounted (see Figure 46a and Figure 46b). This  
arrangement results in the lead frame being exposed as a thermal pad on the underside of the package (see  
Figure 46c). Because this thermal pad has direct thermal contact with the die, excellent thermal performance  
can be achieved by providing a good thermal path away from the thermal pad.  
The PowerPAD package allows for both assembly and thermal management in one manufacturing operation.  
During the surface-mount solder operation (when the leads are being soldered), the thermal pad must be  
soldered to a copper area underneath the package. Through the use of thermal paths within this copper area,  
heat can be conducted away from the package into either a ground plane or other heat dissipating device.  
Soldering the PowerPAD to the PCB is always recommended, even with applications that have low power  
dissipation. It provides the necessary mechanical and thermal connection between the lead frame die pad and  
the PCB.  
The PowerPAD package represents a breakthrough in combining the small area and ease of assembly of  
surface mount with the, heretofore, awkward mechanical methods of heatsinking.  
17  
Submit Documentation Feedback  
TLV2470, TLV2471  
TLV2472, TLV2473  
TLV2474, TLV2475, TLV247xA  
www.ti.com  
SLOS232DJUNE 1999REVISED FEBRUARY 2007  
APPLICATION INFORMATION (continued)  
DIE  
Side View (a)  
Thermal  
Pad  
DIE  
End View (b)  
Bottom View (c)  
The thermal pad is electrically isolated from all terminals in the package.  
Figure 46. Views of Thermally Enhanced DGN Package  
Although there are many ways to properly heatsink the PowerPAD package, the following steps illustrate the  
recommended approach.  
1. The thermal pad must be connected to the most negative supply voltage on the device (GND pin).  
2. Prepare the PCB with a top side etch pattern as illustrated in the thermal land pattern mechanical drawing  
at the end of this document. There should be etch for the leads as well as etch for the thermal pad.  
3. Place holes in the area of the thermal pad as illustrated in the land pattern mechanical drawing at the end  
of this document. These holes should be 13mils in diameter. Keep them small so that solder wicking  
through the holes is not a problem during reflow.  
4. Additional vias may be placed anywhere along the thermal plane outside of the thermal pad area. This  
helps dissipate the heat generated by the TLV247x IC. These additional vias may be larger than the 13mil  
diameter vias directly under the thermal pad. They can be larger because they are not in the thermal pad  
area to be soldered so that wicking is not a problem.  
5. Connect all holes to the internal ground plane that is at the same voltage potential as the device GND pin.  
6. When connecting these holes to the ground plane, do not use the typical web or spoke via connection  
methodology. Web connections have a high thermal resistance connection that is useful for slowing the  
heat transfer during soldering operations. This makes the soldering of vias that have plane connections  
easier. In this application, however, low thermal resistance is desired for the most efficient heat transfer.  
Therefore, the holes under the TLV247x PowerPAD package should make their connection to the internal  
ground plane with a complete connection around the entire circumference of the plated-through hole.  
7. The top-side solder mask should leave the terminals of the package and the thermal pad area with its  
holes exposed. The bottom-side solder mask should cover the holes of the thermal pad area. This  
prevents solder from being pulled away from the thermal pad area during the reflow process.  
8. Apply solder paste to the exposed thermal pad area and all of the IC terminals.  
9. With these preparatory steps in place, the TLV247x IC is simply placed in position and run through the  
solder reflow operation as any standard surface-mount component. This results in a part that is properly  
installed.  
For a given θJA, the maximum power dissipation is shown in Figure 47 and is calculated by Equation 1:  
TMAX * TA  
qJA  
P + ǒ Ǔ  
D
(1)  
Where:  
PD = Maximum power dissipation of TLV247x IC (watts)  
TMAX = Absolute maximum junction temperature (+150°C)  
TA = Free-ambient air temperature (°C)  
θJA = θJC + θCA  
θJC = Thermal coefficient from junction to case  
θCA = Thermal coefficient from case to ambient air (°C/W)  
18  
Submit Documentation Feedback  
 
TLV2470, TLV2471  
TLV2472, TLV2473  
TLV2474, TLV2475, TLV247xA  
www.ti.com  
SLOS232DJUNE 1999REVISED FEBRUARY 2007  
APPLICATION INFORMATION (continued)  
MAXIMUM POWER DISSIPATION  
vs  
FREE-AIR TEMPERATURE  
7
6
5
4
3
2
PWP Package  
Low-K Test PCB  
T
= +150°C  
J
θ
= 29.7°C/W  
JA  
SOT-23 Package  
Low-K Test PCB  
= 324°C/W  
θ
JA  
DGN Package  
Low-K Test PCB  
θ
= 52.3°C/W  
JA  
SOIC Package  
Low-K Test PCB  
θ
= 176°C/W  
JA  
PDIP Package  
Low-K Test PCB  
θ
= 104°C/W  
JA  
1
0
−55 −40 −25 −10  
5
20 35 50 65 80 95 110 125  
T
A
− Free-Air Temperature − °C  
Results are with no air flow and using JEDEC Standard Low-K test PCB.  
Figure 47. Maximum Power Dissipation vs Free-Air Temperature  
The next consideration is the package constraints. The two sources of heat within an amplifier are quiescent  
power and output power. The designer should never forget about the quiescent heat generated within the  
device, especially multi-amplifier devices. Because these devices have linear output stages (Class A-B), most of  
the heat dissipation is at low output voltages with high output currents. Figure 48 to Figure 53 show this effect,  
along with the quiescent heat, with an ambient air temperature of +70°C and +125°C. When using VDD = 3V,  
there is generally not a heat problem with an ambient air temperature of +70°C. But, when using VDD = 5V, the  
packages are severely limited in the amount of heat it can dissipate. The other key factor when looking at these  
graphs is how the devices are mounted on the PCB. The PowerPAD devices are extremely useful for heat  
dissipation. But, the device should always be soldered to a copper plane to fully use the heat dissipation  
properties of the PowerPAD. The SOIC package, on the other hand, is highly dependent on how it is mounted  
on the PCB. As more trace and copper area is placed around the device,θJA decreases and the heat dissipation  
capability increases. The currents and voltages shown in these graphs are for the total package. For the dual or  
quad amplifier packages, the sum of the RMS output currents and voltages should be used to choose the proper  
package.  
19  
Submit Documentation Feedback  
TLV2470, TLV2471  
TLV2472, TLV2473  
TLV2474, TLV2475, TLV247xA  
www.ti.com  
SLOS232DJUNE 1999REVISED FEBRUARY 2007  
APPLICATION INFORMATION (continued)  
TLV2470, TLV2471(1)  
MAXIMUM RMS OUTPUT CURRENT  
vs  
TLV2470, TLV2471(1)  
MAXIMUM RMS OUTPUT CURRENT  
vs  
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS  
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS  
180  
180  
Maximum Output  
Current Limit Line  
Maximum Output  
Current Limit Line  
160  
140  
120  
100  
160  
140  
120  
100  
Packages With  
110°C/W  
C
B
G
C
θ
JA  
B
at T = +125°C  
A
or  
A
θ
355°C/W  
JA  
A
80  
60  
40  
80  
60  
40  
at T = +70°C  
A
Packages With  
210°C/W  
Safe Operating Area  
θ
JA  
at T = +70°C  
A
V
T
T
A
= ±3V  
= +150°C  
= +125°C  
DD  
V
= ± 5V  
= +150°C  
= +125°C  
DD  
20  
0
20  
0
J
T
J
Safe Operating Area  
T
A
0
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
0
0.5  
1.0  
1.5  
2.0  
2.5  
| V | − RMS Output Voltage − V  
O
| V | − RMS Output Voltage − V  
O
Figure 48.  
Figure 49.  
TLV2472, TLV2473(1)  
TLV2472, TLV2473(1)  
MAXIMUM RMS OUTPUT CURRENT  
vs  
MAXIMUM RMS OUTPUT CURRENT  
vs  
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS  
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS  
180  
180  
Maximum Output  
Current Limit Line  
Maximum Output  
Current Limit Line  
160  
140  
120  
100  
160  
140  
120  
100  
G
D
C
H
F
Packages With  
55°C/W  
G
θ
JA  
at T = +125°C  
A
H
or  
D
80  
60  
40  
80  
60  
40  
θ
178°C/W  
JA  
C
at T = +70°C  
A
Packages With  
θ
105°C/W  
JA  
at T = +70°C  
A
Safe Operating Area  
V
T
T
A
= ± 3V  
= +150°C  
= +125°C  
DD  
V
= ± 5V  
= +150°C  
= +125°C  
DD  
20  
0
20  
0
J
T
J
Safe Operating Area  
1.5 2.0 2.5  
T
A
0
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
0
0.5  
1.0  
| V | − RMS Output Voltage − V  
O
| V | − RMS Output Voltage − V  
O
Figure 50.  
Figure 51.  
Note: (1) A - SOT23 (5); B - SOT23 (6); C - SOIC (8); D - SOIC (14); E - SOIC (16); F - MSOP PP (8); G - PDIP  
(8); H - PDIP (14): I - PDIP (16); J - TSSOP PP (14/16)  
20  
Submit Documentation Feedback  
TLV2470, TLV2471  
TLV2472, TLV2473  
TLV2474, TLV2475, TLV247xA  
www.ti.com  
SLOS232DJUNE 1999REVISED FEBRUARY 2007  
APPLICATION INFORMATION (continued)  
TLV2474, TLV2475(1)  
MAXIMUM RMS OUTPUT CURRENT  
vs  
TLV2474, TLV2475(1)  
MAXIMUM RMS OUTPUT CURRENT  
vs  
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS  
RMS OUTPUT VOLTAGE DUE TO THERMAL LIMITS  
180  
180  
Maximum Output  
Current Limit Line  
Maximum Output  
Current Limit Line  
160  
140  
120  
100  
160  
140  
120  
100  
J
J
H and I  
E
H and I  
Packages With  
88°C/W  
80  
60  
40  
80  
60  
40  
E
θ
V
= ±5V  
= +150°C  
= +125°C  
JA  
DD  
D
D
T
J
at T = +70°C  
A
T
A
Packages With  
52°C/W  
V
= ±3V  
= +150°C  
= +125°C  
DD  
θ
20  
0
20  
0
JA  
T
T
J
Safe Operating Area  
0.75 1.00 1.25  
at T = +70°C  
Safe Operating Area  
A
A
0
0.25  
0.50  
1.50  
0
0.5  
1.0  
1.5  
2.0  
2.5  
| V | − RMS Output Voltage − V  
O
| V | − RMS Output Voltage − V  
O
Figure 52.  
Figure 53.  
NOTE: (1) A - SOT23 (5); B - SOT23 (6); C - SOIC (8); D - SOIC (14); E - SOIC (16); F - MSOP PP (8); G -  
PDIP (8); H - PDIP (14): I - PDIP (16); J - TSSOP PP (14/16)  
21  
Submit Documentation Feedback  
TLV2470, TLV2471  
TLV2472, TLV2473  
TLV2474, TLV2475, TLV247xA  
www.ti.com  
SLOS232DJUNE 1999REVISED FEBRUARY 2007  
APPLICATION INFORMATION (continued)  
MACROMODEL INFORMATION  
Macromodel information provided was derived using Microsim PARTS™, the model generation software used  
with Microsim PSpice®. The Boyle macromodel and subcircuit in Figure 54 are generated using the TLV247x  
typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the  
following key parameters can be generated to a tolerance of 20% (in most cases):  
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
Quiescent power dissipation  
Input bias current  
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
3
99  
V
DD  
+
egnd  
rd1  
11  
rd2  
12  
rss  
ro2  
css  
fb  
rp  
c1  
7
+
c2  
vlim  
1
2
+
r2  
9
6
IN+  
IN–  
8
vc  
D
S
D
S
+
vb  
ga  
G
G
ro1  
OUT  
gcm  
ioff  
53  
dp  
5
dlp  
dln  
91  
90  
92  
10  
+
+
iss  
dc  
vlp  
hlim  
vln  
+
GND  
+ 54  
4
de  
ve  
* TLV247x operational amplifier ”macromodel” subcircuit  
* created using Parts release 8.0 on 4/27/99 at 14:31  
* Parts is a MicroSim product.  
iss  
hlim  
ioff  
j1  
10  
90  
0
4
dc  
10.714E–6  
75E–9  
0
vlim 1K  
dc  
6
*
11  
12  
6
2
10 jx1  
10 jx2  
* connections: non–inverting input  
j2  
1
*
*
*
*
*
| inverting input  
r2  
9
100.00E3  
12.527E3  
12.527E3  
10  
| | positive power supply  
| | | negative power supply  
| | | | output  
rd1  
rd2  
ro1  
ro2  
rp  
3
11  
12  
5
3
8
| | | | |  
7
99  
4
10  
.subckt TLV247x 1 2 3 4 5  
*
3
3.8023E3  
18.667E6  
dc 0  
rss  
vb  
vc  
ve  
vlim  
vlp  
vln  
.model  
.model  
.model  
.model  
.ends  
*$  
10  
9
99  
0
c1  
11  
6
12  
7
99  
53  
5
91  
90  
3
0
99  
1.1094E–12  
c2  
5.5000E–12  
3
53  
4
dc .842  
dc .842  
dc 0  
dc 110  
dc 110  
css  
dc  
de  
dlp  
dln  
dp  
egnd  
fb  
10  
5
556.53E–15  
54  
7
dy  
dy  
dx  
dx  
dx  
8
54  
90  
92  
4
91  
0
0
92  
dx  
dy  
jx1  
jx2  
D(Is=800.00E–18)  
D(Is=800.00E–18 Rs=1m Cjo=10p)  
99  
7
poly(2) (3,0) (4,0) 0 .5 .5  
poly(5) vb vc ve vlp vln 0  
NJF(Is=1.0825E–12 Beta=594.78E–06 + Vto=–1)  
NJF(Is=1.0825E–12 Beta=594.78E–06 + Vto=–1)  
+ 39.614E6 –1E3 1E3 40E6 –40E6  
ga  
gcm  
6
0
0
6
11  
10  
12 79.828E–6  
99 32.483E–9  
G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational  
Amplifiers, ”IEEE Journal of Solid-State Circuits, SC-9, 353 (1974).  
Figure 54. Boyle Macromodel and Subcircuit  
22  
Submit Documentation Feedback  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-May-2007  
PACKAGING INFORMATION  
Orderable Device  
TLV2470AID  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
8
8
8
8
8
8
6
6
6
6
8
8
8
8
8
8
6
6
6
6
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2470AIDG4  
TLV2470AIDR  
TLV2470AIDRG4  
TLV2470AIP  
SOIC  
SOIC  
D
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLV2470AIPE4  
TLV2470CD  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
SOIC  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2470CDBVR  
TLV2470CDBVRG4  
TLV2470CDBVT  
TLV2470CDBVTG4  
TLV2470CDG4  
TLV2470CDR  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
DBV  
DBV  
D
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2470CDRG4  
TLV2470CP  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLV2470CPE4  
TLV2470ID  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
SOIC  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2470IDBVR  
TLV2470IDBVRG4  
TLV2470IDBVT  
TLV2470IDBVTG4  
TLV2470IDG4  
TLV2470IDR  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
DBV  
DBV  
D
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2470IDRG4  
TLV2470IP  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-May-2007  
Orderable Device  
TLV2470IPE4  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
PDIP  
P
8
8
8
8
8
8
8
8
5
5
5
5
8
8
8
8
8
8
5
5
5
5
8
8
8
8
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLV2471AID  
SOIC  
SOIC  
D
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2471AIDG4  
TLV2471AIDR  
TLV2471AIDRG4  
TLV2471AIP  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLV2471AIPE4  
TLV2471CD  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
SOIC  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2471CDBVR  
TLV2471CDBVRG4  
TLV2471CDBVT  
TLV2471CDBVTG4  
TLV2471CDG4  
TLV2471CDR  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
DBV  
DBV  
D
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2471CDRG4  
TLV2471CP  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLV2471CPE4  
TLV2471ID  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
SOIC  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2471IDBVR  
TLV2471IDBVRG4  
TLV2471IDBVT  
TLV2471IDBVTG4  
TLV2471IDG4  
TLV2471IDR  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
DBV  
DBV  
D
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2471IDRG4  
TLV2471IP  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-May-2007  
Orderable Device  
TLV2471IPE4  
TLV2472AID  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
PDIP  
P
8
8
8
8
8
8
8
8
8
8
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
D
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2472AIDG4  
TLV2472AIDR  
TLV2472AIDRG4  
TLV2472AIP  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLV2472AIPE4  
TLV2472CD  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2472CDG4  
TLV2472CDGN  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
DGN  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2472CDGNG4  
TLV2472CDGNR  
TLV2472CDGNRG4  
ACTIVE  
ACTIVE  
ACTIVE  
MSOP-  
Power  
PAD  
DGN  
DGN  
DGN  
8
8
8
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2472CDR  
TLV2472CDRG4  
TLV2472CP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
D
D
8
8
8
8
8
8
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLV2472CPE4  
TLV2472ID  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2472IDG4  
TLV2472IDGN  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
DGN  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2472IDGNG4  
TLV2472IDGNR  
ACTIVE  
ACTIVE  
ACTIVE  
MSOP-  
Power  
PAD  
DGN  
DGN  
DGN  
8
8
8
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2472IDGNRG4  
MSOP-  
Power  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-May-2007  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
PAD  
TLV2472IDR  
TLV2472IDRG4  
TLV2472IP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
D
D
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
P
8
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLV2472IPE4  
TLV2473AID  
P
8
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
D
14  
14  
14  
14  
14  
14  
14  
10  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2473AIDG4  
TLV2473AIDR  
TLV2473AIN  
D
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
N
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLV2473AINE4  
TLV2473CD  
N
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
D
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2473CDG4  
TLV2473CDGQ  
D
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
DGQ  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2473CDGQG4  
TLV2473CDGQR  
TLV2473CDGQRG4  
ACTIVE  
ACTIVE  
ACTIVE  
MSOP-  
Power  
PAD  
DGQ  
DGQ  
DGQ  
10  
10  
10  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2473CDR  
TLV2473CDRG4  
TLV2473ID  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
14  
14  
14  
14  
10  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2473IDG4  
TLV2473IDGQ  
D
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
DGQ  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2473IDGQG4  
TLV2473IDGQR  
ACTIVE  
ACTIVE  
MSOP-  
Power  
PAD  
DGQ  
DGQ  
10  
10  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
Addendum-Page 4  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-May-2007  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TLV2473IDGQRG4  
ACTIVE  
MSOP-  
Power  
PAD  
DGQ  
10  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2473IN  
TLV2473INE4  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
N
N
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
25  
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
PDIP  
Pb-Free  
(RoHS)  
TLV2474AID  
SOIC  
D
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2474AIDG4  
TLV2474AIDR  
SOIC  
D
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2474AIDRG4  
TLV2474AIN  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
N
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLV2474AINE4  
TLV2474AIPWP  
TLV2474AIPWPG4  
TLV2474AIPWPR  
TLV2474AIPWPRG4  
TLV2474AIPWR  
TLV2474AIPWRG4  
TLV2474CD  
PDIP  
N
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
TSSOP  
TSSOP  
SOIC  
PWP  
PWP  
PWP  
PWP  
PW  
PW  
D
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2474CDG4  
TLV2474CDR  
SOIC  
D
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2474CDRG4  
TLV2474CN  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
N
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLV2474CNE4  
TLV2474CPWP  
TLV2474CPWPG4  
TLV2474CPWPR  
TLV2474CPWPRG4  
TLV2474ID  
PDIP  
N
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
SOIC  
PWP  
PWP  
PWP  
PWP  
D
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
Addendum-Page 5  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-May-2007  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
no Sb/Br)  
TLV2474IDG4  
TLV2474IDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
14  
14  
14  
14  
14  
14  
14  
14  
14  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2474IDRG4  
TLV2474IN  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
N
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLV2474INE4  
PDIP  
N
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLV2474IPWP  
TLV2474IPWPG4  
TLV2474IPWPR  
TLV2474IPWPRG4  
TLV2475AIDR  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
SOIC  
PWP  
PWP  
PWP  
PWP  
D
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2475AIDRG4  
TLV2475AIN  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
N
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLV2475AINE4  
TLV2475AIPWP  
TLV2475AIPWPG4  
TLV2475AIPWPR  
TLV2475AIPWPRG4  
TLV2475CD  
PDIP  
N
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
SOIC  
PWP  
PWP  
PWP  
PWP  
D
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2475CDG4  
TLV2475CDR  
SOIC  
D
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2475CDRG4  
TLV2475CN  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
N
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLV2475CNE4  
TLV2475CPWPR  
TLV2475CPWPRG4  
PDIP  
N
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
HTSSOP  
HTSSOP  
PWP  
PWP  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
Addendum-Page 6  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-May-2007  
Orderable Device  
TLV2475IDR  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
16  
16  
16  
16  
16  
16  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2475IDRG4  
TLV2475IN  
SOIC  
PDIP  
D
N
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLV2475INE4  
PDIP  
N
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
TLV2475IPWPR  
TLV2475IPWPRG4  
HTSSOP  
HTSSOP  
PWP  
PWP  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 7  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-May-2007  
TAPE AND REEL INFORMATION  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-May-2007  
Device  
Package Pins  
Site  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) (mm) Quadrant  
(mm)  
330  
180  
180  
330  
180  
180  
330  
330  
180  
180  
330  
180  
180  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
(mm)  
12  
9
TLV2470AIDR  
TLV2470CDBVR  
TLV2470CDBVT  
TLV2470CDR  
D
8
6
TAI  
LEN  
LEN  
TAI  
6.4  
3.15  
3.15  
6.4  
5.2  
3.2  
3.2  
5.2  
3.2  
3.2  
5.2  
5.2  
3.2  
3.2  
5.2  
3.2  
3.2  
5.2  
5.2  
3.4  
5.2  
3.4  
5.2  
3.4  
3.4  
5.4  
5.6  
5.4  
5.4  
5.4  
5.4  
5.4  
2.1  
1.4  
1.4  
2.1  
1.4  
1.4  
2.1  
2.1  
1.4  
1.4  
2.1  
1.4  
1.4  
2.1  
2.1  
1.4  
2.1  
1.4  
2.1  
1.4  
1.4  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
8
4
4
8
4
4
8
8
4
4
8
4
4
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
12  
8
Q1  
NONE  
NONE  
Q1  
DBV  
DBV  
D
6
9
8
8
12  
9
12  
8
TLV2470IDBVR  
TLV2470IDBVT  
TLV2470IDR  
DBV  
DBV  
D
6
LEN  
LEN  
TAI  
3.15  
3.15  
6.4  
NONE  
NONE  
Q1  
6
9
8
8
12  
12  
9
12  
12  
8
TLV2471AIDR  
TLV2471CDBVR  
TLV2471CDBVT  
TLV2471CDR  
D
8
TAI  
6.4  
Q1  
DBV  
DBV  
D
5
LEN  
LEN  
TAI  
3.15  
3.15  
6.4  
NONE  
NONE  
Q1  
5
9
8
8
12  
9
12  
8
TLV2471IDBVR  
TLV2471IDBVT  
TLV2471IDR  
DBV  
DBV  
D
5
LEN  
LEN  
TAI  
3.15  
3.15  
6.4  
NONE  
NONE  
Q1  
5
9
8
8
12  
12  
8
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
TLV2472AIDR  
TLV2472CDGNR  
TLV2472CDR  
D
8
TAI  
6.4  
Q1  
DGN  
D
8
HNT  
TAI  
5.3  
NONE  
Q1  
8
12  
8
6.4  
TLV2472IDGNR  
TLV2472IDR  
DGN  
D
8
HNT  
TAI  
5.3  
NONE  
Q1  
8
12  
8
6.4  
TLV2473CDGQR  
TLV2473IDGQR  
TLV2474AIPWPR  
TLV2474AIPWR  
TLV2474CPWPR  
TLV2474IPWPR  
TLV2475AIPWPR  
TLV2475CPWPR  
TLV2475IPWPR  
DGQ  
DGQ  
PWP  
PW  
PWP  
PWP  
PWP  
PWP  
PWP  
10  
10  
14  
14  
14  
14  
16  
16  
16  
HNT  
HNT  
TAI  
5.3  
NONE  
NONE  
Q1  
8
5.3  
12  
12  
12  
12  
12  
12  
12  
6.67  
7.0  
MLA  
TAI  
Q1  
6.67  
6.67  
6.67  
6.67  
6.67  
Q1  
TAI  
Q1  
TAI  
Q1  
TAI  
Q1  
TAI  
Q1  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-May-2007  
TAPE AND REEL BOX INFORMATION  
Device  
Package  
Pins  
Site  
Length (mm) Width (mm) Height (mm)  
TLV2470AIDR  
TLV2470CDBVR  
TLV2470CDBVT  
TLV2470CDR  
D
DBV  
DBV  
D
8
6
TAI  
LEN  
LEN  
TAI  
346.0  
182.4  
182.4  
346.0  
182.4  
182.4  
346.0  
346.0  
182.4  
182.4  
346.0  
182.4  
182.4  
346.0  
346.0  
358.0  
346.0  
358.0  
346.0  
358.0  
358.0  
346.0  
342.9  
346.0  
346.0  
346.0  
182.4  
182.4  
346.0  
182.4  
182.4  
346.0  
346.0  
182.4  
182.4  
346.0  
182.4  
182.4  
346.0  
346.0  
335.0  
346.0  
335.0  
346.0  
335.0  
335.0  
346.0  
336.6  
346.0  
346.0  
61.0  
17.3  
17.3  
61.0  
17.3  
17.3  
61.0  
61.0  
17.3  
17.3  
61.0  
17.3  
17.3  
61.0  
61.0  
35.0  
61.0  
35.0  
61.0  
35.0  
35.0  
61.0  
20.6  
61.0  
61.0  
6
8
TLV2470IDBVR  
TLV2470IDBVT  
TLV2470IDR  
DBV  
DBV  
D
6
LEN  
LEN  
TAI  
6
8
TLV2471AIDR  
TLV2471CDBVR  
TLV2471CDBVT  
TLV2471CDR  
D
8
TAI  
DBV  
DBV  
D
5
LEN  
LEN  
TAI  
5
8
TLV2471IDBVR  
TLV2471IDBVT  
TLV2471IDR  
DBV  
DBV  
D
5
LEN  
LEN  
TAI  
5
8
TLV2472AIDR  
TLV2472CDGNR  
TLV2472CDR  
D
8
TAI  
DGN  
D
8
HNT  
TAI  
8
TLV2472IDGNR  
TLV2472IDR  
DGN  
D
8
HNT  
TAI  
8
TLV2473CDGQR  
TLV2473IDGQR  
TLV2474AIPWPR  
TLV2474AIPWR  
TLV2474CPWPR  
TLV2474IPWPR  
DGQ  
DGQ  
PWP  
PW  
PWP  
PWP  
10  
10  
14  
14  
14  
14  
HNT  
HNT  
TAI  
MLA  
TAI  
TAI  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-May-2007  
Device  
Package  
Pins  
Site  
Length (mm) Width (mm) Height (mm)  
TLV2475AIPWPR  
TLV2475CPWPR  
TLV2475IPWPR  
PWP  
PWP  
PWP  
16  
16  
16  
TAI  
TAI  
TAI  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
61.0  
61.0  
61.0  
Pack Materials-Page 4  
MECHANICAL DATA  
MPDI001A – JANUARY 1995 – REVISED JUNE 1999  
P (R-PDIP-T8)  
PLASTIC DUAL-IN-LINE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.325 (8,26)  
0.300 (7,62)  
0.020 (0,51) MIN  
0.015 (0,38)  
Gage Plane  
0.200 (5,08) MAX  
Seating Plane  
0.010 (0,25) NOM  
0.125 (3,18) MIN  
0.100 (2,54)  
0.021 (0,53)  
0.430 (10,92)  
MAX  
0.010 (0,25)  
M
0.015 (0,38)  
4040082/D 05/98  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,  
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.  
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s  
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should  
provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask  
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services  
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such  
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under  
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an  
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service  
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business  
practice. TI is not responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would  
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement  
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications  
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related  
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any  
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its  
representatives against any damages arising out of the use of TI products in such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is  
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in  
connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products  
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any  
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Applications  
Audio  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/audio  
Automotive  
Broadband  
Digital Control  
Military  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
interface.ti.com  
logic.ti.com  
Logic  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
microcontroller.ti.com  
www.ti.com/lpw  
Low Power  
Wireless  
Telephony  
www.ti.com/telephony  
Video & Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

TLV2474IDR

FAMILY OF 600-mA/Ch 2.8-MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2474IDRG4

FAMILY OF 600-mA/Ch 2.8-MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2474IN

FAMILY OF 600-mA/Ch 2.8-MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2474INE4

FAMILY OF 600-mA/Ch 2.8-MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2474IPWP

FAMILY OF 600-mA/Ch 2.8-MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2474IPWPG4

FAMILY OF 600-mA/Ch 2.8-MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2474IPWPR

FAMILY OF 600-mA/Ch 2.8-MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2474IPWPRG4

FAMILY OF 600-mA/Ch 2.8-MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

TLV2474QDRG4Q1

FAMILY OF 600-μA/Ch 2.8-MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS
TI

TLV2474QDRQ1

FAMILY OF 600-uA.CH 2.8-HHz RAIL-TO-RAIL INPUT-OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS
TI

TLV2474QPWPRQ1

FAMILY OF 600-uA.CH 2.8-HHz RAIL-TO-RAIL INPUT-OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS
TI

TLV2475

FAMILY OF 600-mA/Ch 2.8-MHz RAIL-TO-RAIL INPUT/OUTPUT HIGH-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI