TLV2762CDGKT [TI]

IC OP-AMP, Operational Amplifier;
TLV2762CDGKT
型号: TLV2762CDGKT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

IC OP-AMP, Operational Amplifier

放大器
文件: 总43页 (文件大小:1760K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢋ  
ꢌꢍꢎ ꢏ ꢁꢐ ꢑ ꢌ ꢈ ꢒꢓ ꢂ ꢎ ꢏꢔꢕꢑ ꢖ ꢑꢗ ꢘꢕ ꢕꢍꢏ ꢁ ꢙꢀꢑ ꢙꢕꢍꢏ ꢁ ꢏꢚ ꢖꢛꢀꢜ ꢑ ꢛ ꢀꢖ ꢛꢀ  
SLOS326E − JUNE 2000 − REVISED JANUARY 2005  
Operational Amplifier  
D
D
D
Low Supply Voltage . . . 1.8 V to 3.6 V  
Very Low Supply Current . . . 20 µA (per  
channel)  
+
Ultralow Power Shut-Down Mode  
− I  
= 10 nA/Channel  
DD(SHDN)  
D
CMOS Rail-to-Rail Input/Output  
D
Input Common-Mode Voltage  
SUPPLY CURRENT  
vs  
Range . . . −0.2 V to V  
+ 0.2 V  
DD  
SUPPLY VOLTAGE  
D
D
D
D
Input Offset Voltage . . . 550 µV  
Wide Bandwidth . . . 500 kHz  
Slew Rate . . . 0.20 V/µs  
Specified Temperature Range:  
0°C to 70°C . . . Commercial Grade  
−40°C to 85°C . . . Industrial Grade  
Ultrasmall Packaging  
5 or 6 Pin SOT-23 (TLV2760/1)  
8 or 10 Pin MSOP (TLV2762/3)  
20  
18  
16  
14  
12  
A
V
= 1  
V
IC  
= V  
DD/2  
T
A
= 25° C  
10  
8
6
4
D
D
2
0
Universal Op-Amp EVM  
0
0.6  
1.2  
1.8  
2.4  
3
3.6  
V
− Supply Voltage − V  
DD  
description  
The TLV276x single supply operational amplifiers provide 500 kHz bandwidth from only 20 µA while operating  
down to 1.8 V over the industrial temperature range. The maximum recommended supply voltage is 3.6 V, which  
allows the devices to be operated from ("1.8 V supplies down to "0.9 V) two AA or AAA cells. The devices  
have been characterized at 1.8 V (end of life of 2 AA(A) cells) and at 2.4 V (nominal voltage of 2 NiCd/NiMH  
cells). The TLV276x have rail-to-rail input and output capability which is a necessity at 1.8 V.  
The low supply current is coupled with extremely low input bias currents enabling them to be used with  
mega-ohm resistors. Low shutdown current of only 10 nA make these devices ideal for low frequency  
measurement applications desiring long active battery life.  
All members are available in PDIP and SOIC with the singles in the small SOT-23 package, duals in the MSOP,  
and quads in the TSSOP package.  
SELECTION OF SINGLE SUPPLY AMPLIFIER PRODUCTS  
V
(V)  
V
I
/Ch  
I
GBW  
(MHz)  
SR  
(V/µs)  
Vn,1kHz  
(nV/Hz)  
I
O
SHUT-  
DOWN  
RAIL-TO-  
RAIL  
DD  
IO  
DD  
(µA)  
IB  
DEVICE  
(µV)  
600  
450  
550  
20  
(pA)  
100  
1
(mA)  
0.2  
0.4  
5
TLV224x  
TLV2211  
2.5 − 12  
2.7 − 10  
1.8 − 3.6  
2.7 − 6  
1
0.0055  
0.065  
0.5  
0.002  
0.025  
0.23  
0.11  
1.6  
NA  
21  
95  
49  
11  
Y
I/O  
O
13  
TLV276x  
20  
3
I/O  
I/O  
I/O  
I/O  
TLV245x(A)  
TLV246x(A)  
TLV278x(A)  
23  
500  
1300  
2.5  
0.22  
6.4  
2.5  
25  
Y
2.7 − 6  
150  
250  
550  
650  
Y
1.8 − 3.6  
8
5
18  
10  
Y
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢀꢫ  
Copyright 2000−2005, Texas Instruments Incorporated  
ꢧ ꢫ ꢨ ꢧꢠ ꢡꢴ ꢣꢢ ꢦ ꢮꢮ ꢬꢦ ꢤ ꢦ ꢥ ꢫ ꢧ ꢫ ꢤ ꢨ ꢒ  
ꢦꢤ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢑ  
ꢖꢁ  
SLOS326E − JUNE 2000 − REVISED JANUARY 2005  
(1)  
TLV2760 and TLV2761 AVAILABLE OPTIONS  
PACKAGED DEVICES  
V
max  
IO  
SOT-23  
T
A
SMALL OUTLINE  
PLASTIC DIP  
(P)  
AT 25°C  
(D)  
(DBV)  
SYMBOL  
TLV2760CD  
TLV2761CD  
0°C to 70°C  
3500 µV  
3500 µV  
TLV2760ID  
TLV2761ID  
TLV2760IDBV  
TLV2761IDBV  
VANI  
VAXI  
TLV2760IP  
TLV2761IP  
40°C to 85°C  
This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2760CDR).  
This package is only available taped and reeled. For standard quantities (3,000 pieces per reel), add an R suffix (i.e., TLV2760CDBVR). For  
smaller quantities (250 pieces per mini-reel), add a T suffix to the part number (e.g. TLV2760CDBVT).  
(1)  
TLV2762 and TLV2763 AVAILABLE OPTIONS  
PACKAGED DEVICES  
V
max  
SMALL  
PLASTIC  
DIP  
PLASTIC  
DIP  
MSOP  
SYMBOL  
IO  
T
A
AT 25°C  
OUTLINE  
DGK  
DGS  
SYMBOL  
(D)  
(N)  
(P)  
TLV2762CD  
TLV2763CD  
0°C to 70°C  
3500 µV  
3500 µV  
TLV2762ID  
TLV2763ID  
TLV2762IDGK  
xxTIAJP  
xxTIAJR  
TLV2762IP  
40°C to 85°C  
TLV2763IDGS  
TLV2763IN  
This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2762CDR).  
(1)  
TLV2764 and TLV2765 AVAILABLE OPTIONS  
PACKAGED DEVICES  
V
max  
IO  
T
A
SMALL OUTLINE  
PLASTIC DIP  
(N)  
TSSOP  
(PW)  
AT 25°C  
3500 µV  
3500 µV  
(D)  
TLV2764CD  
TLV2765CD  
0°C to 70°C  
TLV2764ID  
TLV2765ID  
TLV2764IN  
TLV2765IN  
TLV2764IPW  
TLV2765IPW  
40°C to 85°C  
This package is available taped and reeled. To order this packaging option, add an R suffix to the part  
number (e.g., TLV2764CDR).  
1. For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website  
at www.ti.com.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢋ  
ꢌꢍꢎ ꢏ ꢁꢐ ꢑ ꢌ ꢈ ꢒꢓ ꢂ ꢎ ꢏꢔꢕꢑ ꢖ ꢑꢗ ꢘꢕ ꢕꢍꢏ ꢁ ꢙꢀꢑ ꢙꢕꢍꢏ ꢁ ꢏꢚ ꢖꢛꢀꢜ ꢑ ꢛ ꢀꢖ ꢛꢀ  
ꢑ ꢖꢘꢕ ꢍꢀ ꢏꢑ ꢚꢍꢁ ꢍꢎ ꢖꢁ ꢏꢌ ꢏꢘ ꢕꢝ ꢗ ꢏꢀ ꢞ ꢝꢞꢛ ꢀꢟ ꢑ ꢗꢚ  
SLOS326E − JUNE 2000 − REVISED JANUARY 2005  
TLV276x PACKAGE PINOUTS  
TLV2760  
D OR P PACKAGE  
(TOP VIEW)  
TLV2761  
DBV PACKAGE  
(TOP VIEW)  
TLV2760  
DBV PACKAGE  
(TOP VIEW)  
1
2
3
1
2
3
5
6
5
4
V
V
OUT  
GND  
IN+  
OUT  
GND  
IN+  
NC  
IN−  
SHDN  
1
2
3
4
8
7
6
5
DD  
DD  
V
DD  
SHDN  
IN−  
IN+  
OUT  
NC  
GND  
4
IN−  
TLV2761  
D OR P PACKAGE  
(TOP VIEW)  
TLV2763  
DGS PACKAGE  
(TOP VIEW)  
TLV2762  
D, DGK, OR P PACKAGE  
(TOP VIEW)  
1
1OUT  
1IN−  
1IN+  
GND  
1SHDN  
V
DD  
2OUT  
2IN−  
2IN+  
NC  
IN−  
NC  
1
2
3
4
8
7
6
5
10  
1OUT  
1IN−  
1IN+  
GND  
V
1
2
3
4
8
7
6
5
DD  
2
3
4
5
9
8
7
6
V
2OUT  
2IN−  
2IN+  
DD  
IN+  
OUT  
NC  
GND  
2SHDN  
TLV2764  
TLV2763  
TLV2765  
D, N, OR PW PACKAGE  
D OR N PACKAGE  
D, N, OR PW PACKAGE  
(TOP VIEW)  
(TOP VIEW)  
(TOP VIEW)  
1OUT  
1IN−  
1IN+  
4OUT  
4IN−  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1OUT  
1IN−  
1IN+  
GND  
NC  
V
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1OUT  
1IN−  
1IN+  
4OUT  
4IN−  
4IN+  
GND  
3IN+  
3IN−  
3OUT  
DD  
2OUT  
2IN−  
2IN+  
NC  
4IN+  
V
GND  
V
DD  
DD  
2IN+  
2IN−  
3IN+  
2IN+  
2IN−  
3IN−  
1SHDN  
NC  
2SHDN  
NC  
2OUT  
3OUT  
3/4SHDN  
8
8
2OUT  
1/2SHDN  
NC − No internal connection  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢑ  
ꢖꢁ  
SLOS326E − JUNE 2000 − REVISED JANUARY 2005  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
Differential input voltage range, V  
Input current range, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 mA  
Output current range, I  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 V  
DD  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V
ID  
DD  
I
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 mA  
O
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : C-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
Maximum junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values, except differential voltages, are with respect to GND  
DISSIPATION RATING TABLE  
Θ
Θ
T
25°C  
T = 85°C  
A
POWER RATING  
JC  
JA  
A
PACKAGE  
POWER RATING  
(°C/W)  
(°C/W)  
D (8)  
38.3  
176  
710 mW  
369 mW  
D (14)  
D (16)  
26.9  
25.7  
55  
122  
114  
324  
294  
260  
1022 mW  
1090 mW  
385 mW  
425 mW  
481 mW  
531 mW  
567 mW  
201 mW  
221 mW  
250 mW  
DBV (5)  
DBV (6)  
DGK(8)  
55  
54.2  
DGS(10)  
N (14,16)  
P
54.1  
32  
258  
78  
485 mW  
1600 mW  
1200 mW  
720 mW  
774 mW  
252 mW  
833 mW  
625 mW  
374 mW  
403 mW  
41  
104  
174  
161  
PW (14)  
PW (16)  
29.3  
28.7  
recommended operating conditions  
MIN  
1.8  
0.8  
−0.2  
0
MAX  
3.6  
UNIT  
Single supply  
Supply voltage, V  
DD  
V
V
Split supply  
1.8  
Common-mode input voltage range, V  
ICR  
V
+0.2  
70  
DD  
C-suffix  
I-suffix  
Operating free-air temperature, T  
°C  
A
40  
85  
V
V
< 2.7 V  
0.75 V  
DD  
DD  
2
V
V
IH  
= 2.7 to 3.6 V  
Shutdown on/off voltage level (see Note 2)  
NOTE 2: Relative to GND  
V
DD  
0.6  
IL  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢋ  
ꢌꢍꢎ ꢏ ꢁꢐ ꢑ ꢌ ꢈ ꢒꢓ ꢂ ꢎ ꢏꢔꢕꢑ ꢖ ꢑꢗ ꢘꢕ ꢕꢍꢏ ꢁ ꢙꢀꢑ ꢙꢕꢍꢏ ꢁ ꢏꢚ ꢖꢛꢀꢜ ꢑ ꢛ ꢀꢖ ꢛꢀ  
ꢑ ꢖꢘꢕ ꢍꢀ ꢏꢑ ꢚꢍꢁ ꢍꢎ ꢖꢁ ꢏꢌ ꢏꢘ ꢕꢝ ꢗ ꢏꢀ ꢞ ꢝꢞꢛ ꢀꢟ ꢑ ꢗꢚ  
SLOS326E − JUNE 2000 − REVISED JANUARY 2005  
electrical characteristics at recommended operating conditions, V  
otherwise noted)  
= 1.8 V, 2.4 V (unless  
DD  
dc performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
3500  
6800  
T
A
UNIT  
V
V
= V /2,  
DD  
= V /2,  
25°C  
550  
IC  
V
Input offset voltage  
Offset voltage drift  
TLV276x  
µV  
µV/°C  
dB  
IO  
O
DD  
Full range  
R
R
= 300 kΩ,  
= 50 Ω  
L
α
VIO  
9
S
25°C  
Full range  
25°C  
50  
48  
53  
50  
70  
V
DD  
V
DD  
V
DD  
V
DD  
= 1.8 V  
72  
76  
dB  
dB  
V
R
= 0 V to V  
DD  
,
ICR  
= 2.4 V  
= 50 Ω  
Full range  
S
CMRR Common-mode rejection ratio  
25°C  
Full range  
25°C  
55  
55  
63  
60  
20  
18  
28  
23  
45  
37  
= 3.6 V  
dB  
dB  
82  
V
R
= 1.2 V to V  
,
ICR  
DD  
= 2.4 V, 3.6 V  
= 50 Ω  
Full range  
25°C  
S
60  
V
DD  
V
DD  
V
DD  
= 1.8 V  
= 2.4 V  
= 3.6 V  
Full range  
25°C  
V/mV  
V/mV  
78  
Large-signal differential voltage  
amplification  
R
V
= 10 k,  
= V /2  
L
A
VD  
Full range  
25°C  
O(PP)  
DD  
120  
Full range  
Full range is 0°C to 70°C for the C-suffix and −40°C to 85°C for the I-suffix. If not specified, full range is 40°C to 85°C.  
input characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
15  
T
A
UNIT  
25°C  
Full range  
Full range  
25°C  
3
TLV276xC  
TLV276xI  
100  
200  
15  
I
I
Input offset current  
pA  
IO  
IB  
V
V
= V /2,  
DD  
= V /2,  
IC  
O
DD  
R
R
= 300 kΩ,  
= 50 Ω  
3
L
S
TLV276xC  
TLV276xI  
Full range  
Full range  
25°C  
100  
200  
Input bias current  
pA  
r
Differential input resistance  
1000  
10  
GΩ  
i(d)  
c
Common-mode input capacitance  
f = 16 kHz  
25°C  
pF  
i(c)  
Full range is 0°C to 70°C for the C-suffix and −40°C to 85°C for the I-suffix. If not specified, full range is 40°C to 85°C.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢑ  
ꢖꢁ  
SLOS326E − JUNE 2000 − REVISED JANUARY 2005  
electrical characteristics at recommended operating conditions, V  
otherwise noted) (continued)  
= 1.8 V, 2.4 V (unless  
DD  
output characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
1.77  
1.76  
2.38  
2.37  
3.58  
3.57  
1.725  
1.7  
TYP  
MAX  
T
A
UNIT  
25°C  
Full range  
25°C  
1.79  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
= 1.8V  
= 2.4V  
= 3.6V  
= 1.8V  
= 2.4V  
= 3.6V  
2.39  
3.59  
1.75  
2.35  
3.55  
10  
V
I
= V /2,  
DD  
IC  
OH  
= 100 µA  
Full range  
25°C  
Full range  
25°C  
V
OH  
High-level output voltage  
V
Full range  
25°C  
2.325  
2.3  
V
= V /2,  
DD  
= 500 µA  
IC  
I
Full range  
25°C  
OH  
3.525  
3.5  
Full range  
25°C  
20  
30  
V
V
= V /2,  
DD  
I
= 100 µA  
= 500 µA  
IC  
OL  
Full range  
25°C  
V
OL  
Low-level output voltage  
Output current  
mV  
mA  
mA  
50  
75  
= V /2,  
DD  
I
IC  
OL  
Full range  
100  
Positive rail  
Negative rail  
Positive rail  
Negative rail  
Sourcing  
4.8  
7.2  
7.3  
10.2  
7
V
V
= 1.8 V,  
= 0.5 V from  
DD  
O
25°C  
25°C  
25°C  
25°C  
I
O
V
V
= 2.4 V,  
= 0.5 V from  
DD  
O
V
DD  
= 1.8 V  
= 2.4 V  
Sinking  
10  
I
Short-circuit output current  
OS  
Sourcing  
15  
V
DD  
Sinking  
19  
Full range is 0°C to 70°C for the C-suffix and −40°C to 85°C for the I-suffix. If not specified, full range is 40°C to 85°C.  
power supply, V  
= 1.8 V, 2.4 V, 3.6 V (unless otherwise noted)  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
28  
T
A
UNIT  
25°C  
Full range  
25°C  
20  
I
Supply current (per channel)  
V
= V /2,  
µA  
DD  
O
DD  
SHDN = V  
DD  
30  
65  
63  
65  
63  
65  
63  
85  
85  
85  
V
DD  
V
IC  
= 1.8 V to 2.4 V,  
= V  
/2  
Full range  
25°C  
DD  
Supply voltage rejection ratio  
V
DD  
V
IC  
= 2.4 V to 3.6 V,  
k
No load  
dB  
SVR  
(V  
DD  
/V  
IO  
)
= V  
/2  
Full range  
25°C  
DD  
V
V
= 1.8 V to 3.6 V,  
DD  
IC  
= V  
/2  
Full range  
DD  
Full range is 0°C to 70°C for the C-suffix and −40°C to 85°C for the I-suffix. If not specified, full range is 40°C to 85°C.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢋ  
ꢌꢍꢎ ꢏ ꢁꢐ ꢑ ꢌ ꢈ ꢒꢓ ꢂ ꢎ ꢏꢔꢕꢑ ꢖ ꢑꢗ ꢘꢕ ꢕꢍꢏ ꢁ ꢙꢀꢑ ꢙꢕꢍꢏ ꢁ ꢏꢚ ꢖꢛꢀꢜ ꢑ ꢛ ꢀꢖ ꢛꢀ  
ꢑ ꢖꢘꢕ ꢍꢀ ꢏꢑ ꢚꢍꢁ ꢍꢎ ꢖꢁ ꢏꢌ ꢏꢘ ꢕꢝ ꢗ ꢏꢀ ꢞ ꢝꢞꢛ ꢀꢟ ꢑ ꢗꢚ  
SLOS326E − JUNE 2000 − REVISED JANUARY 2005  
electrical characteristics at recommended operating conditions, V  
otherwise noted) (continued)  
= 1.8 V, 2.4 V (unless  
DD  
dynamic performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
500  
MAX  
T
A
UNIT  
UGBW Unity gain bandwidth  
25°C  
25°C  
kHz  
R
= 300 k,  
C
= 10 pF  
L
L
0.11  
0.09  
0.11  
0.09  
0.11  
0.09  
0.08  
0.07  
0.10  
0.09  
0.10  
0.09  
0.20  
V
V
V
V
V
V
= 1.8 V  
= 2.4 V  
= 3.6 V  
= 1.8 V  
= 2.4 V  
= 3.6 V  
= 100 pF  
DD  
Full range  
25°C  
V/µs  
V/µs  
V/µs  
V/µs  
0.22  
0.23  
0.15  
0.18  
0.22  
Positive slew rate at  
unity gain  
V
C
= 1 V, R = 300 kΩ,  
O(PP) L  
SR+  
DD  
DD  
DD  
DD  
DD  
= 50 pF,  
Full range  
25°C  
L
Full range  
25°C  
Full range  
25°C  
Negative slew rate at  
unity gain  
V
C
= 1 V, R = 300 kΩ,  
O(PP) L  
SR−  
= 50 pF,  
Full range  
25°C  
L
Full range  
25°C  
φ
m
Phase margin  
Gain margin  
63  
20  
°
R
= 300 k,  
C
L
L
25°C  
dB  
0.1%  
6.4  
13.7  
6
V
A
= 1.8 V, V  
= 1 V,  
DD  
V
(STEP)PP  
= 10 pF, R = 300 kΩ  
= −1,  
C
L
0.01%  
0.1%  
L
t
s
Settling time  
25°C  
µs  
V
A
= 2.4 V,  
V
= 1 V,  
DD  
(STEP)PP  
= 10 pF, R = 300 kΩ  
= −1,  
C
0.01%  
13.9  
V
L
L
Full range is 0°C to 70°C for the C-suffix and −40°C to 85°C for the I-suffix. If not specified, full range is 40°C to 85°C.  
noise/distortion  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
T
A
A
= 1  
0.08%  
0.10%  
0.27%  
0.06%  
0.08%  
0.24%  
95  
V
V
R
= 1.8 V,  
V
DD  
O(PP)  
= 300 k,  
= V /2 V,  
DD  
A
V
= 10  
= 100  
= 1  
25°C  
25°C  
L
A
V
f = 1 kHz  
THD + N Total harmonic distortion plus noise  
A
V
V
V
R
= 2.4 V,  
DD  
O(PP)  
= V /2 V,  
DD  
A
V
= 10  
= 100  
= 300 k,  
L
A
V
f = 1 kHz  
f = 1 kHz  
f = 10 kHz  
25°C  
25°C  
25°C  
nV/Hz  
fA/Hz  
V
I
Equivalent input noise voltage  
Equivalent input noise current  
n
75  
f = 1 kHz  
0.8  
n
shutdown characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
50  
UNIT  
T
A
25°C  
Full range  
25°C  
10  
Supply current, all channels in shutdown mode  
(TLV2760, TLV2763, TLV2765) (per channel)  
SHDN = 0 V  
I
nA  
DD(SHDN)  
400  
t
t
Amplifier turnon time (see Note 3)  
Amplifier turnoff time (see Note 3)  
R
R
= 300 kΩ  
= 300 kΩ  
5
µs  
µs  
(on)  
L
L
25°C  
0.8  
(off)  
Full range is 0°C to 70°C for the C-suffix and −40°C to 85°C for the I-suffix. If not specified, full range is 40°C to 85°C.  
NOTE 3: Disable time and enable time are defined as the interval between application of the logic signal to SHDN and the point at which the supply  
current has reached half its final value.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢑ  
SLOS326E − JUNE 2000 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
1, 2  
3
V
Input offset voltage  
vs Common-mode input voltage  
vs Frequency  
IO  
CMRR  
Common-mode rejection ratio  
High-level output voltage  
Low-level output voltage  
Maximum peak-to-peak output voltage  
Supply current  
V
V
V
vs High-level output current  
vs Low-level output current  
vs Frequency  
4, 6  
5, 7  
8
OH  
OL  
O(PP)  
I
I
vs Supply voltage  
vs Free-air temperature  
vs Frequency  
9
DD  
Supply current  
10  
DD  
PSRR  
Power supply rejection ratio  
Differential voltage amplification & phase  
11  
A
VD  
vs Frequency  
12  
vs Temperature  
vs Supply voltage  
vs Supply voltage  
vs Free-air temperature  
vs Load capacitance  
vs Frequency  
13  
Gain-bandwidth product  
Slew rate  
14  
15  
SR  
16, 17  
18  
φ
m
Phase margin  
V
n
Equivalent input noise voltage  
Supply current and output voltage  
Voltage-follower large-signal pulse response  
Voltage-follower small-signal pulse response  
Inverting large-signal response  
Inverting small-signal response  
Crosstalk  
19  
vs Time  
20  
vs Time  
21  
vs Time  
22  
vs Time  
23  
vs Time  
24  
vs Frequency  
25  
Shutdown forward & reverse isolation  
Shutdown supply current  
vs Frequency  
26  
I
I
I
I
vs Supply voltage  
vs Free-air temperature  
vs Shutdown pin voltage  
vs Time  
27  
DD(SHDN)  
DD(SHDN)  
DD(SHDN)  
DD(SHDN)  
Shutdown supply current  
28  
Shutdown pin leakage current  
Shutdown supply current/output voltage  
29  
30  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢋ  
ꢌꢍꢎ ꢏ ꢁꢐ ꢑ ꢌ ꢈ ꢒꢓ ꢂ ꢎ ꢏꢔꢕꢑ ꢖ ꢑꢗ ꢘꢕ ꢕꢍꢏ ꢁ ꢙꢀꢑ ꢙꢕꢍꢏ ꢁ ꢏꢚ ꢖꢛꢀꢜ ꢑ ꢛ ꢀꢖ ꢛꢀ  
ꢑ ꢖꢘꢕ ꢍꢀ ꢏꢑ ꢚꢍꢁ ꢍꢎ ꢖꢁ ꢏꢌ ꢏꢘ ꢕꢝ ꢗ ꢏꢀ ꢞ ꢝꢞꢛ ꢀꢟ ꢑ ꢗꢚ  
SLOS326E − JUNE 2000 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
INPUT OFFSET VOLTAGE  
vs  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE REJECTION RATIO  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
FREQUENCY  
300  
350  
140  
V
=1.8 V  
V
=2.4 V  
DD  
=25° C  
DD  
130  
120  
110  
100  
300  
250  
200  
T
T
A
=25 °C  
A
250  
200  
150  
100  
50  
V
= 2.4 V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
150  
100  
DD  
50  
0
V
= 1.8 V  
DD  
−50  
0
−100  
−50  
−0.2  
−0.2  
0
0.2 0.4 0.6 0.8  
1 1.2 1.4 1.6 1.8 2  
0.2  
0.6  
1
1.4 1.8  
2.2 2.6  
1
10  
100  
1k  
10k  
100k 1M  
V
− Common-Mode Input Voltage − V  
V
− Common-Mode Input Voltage − V  
f − Frequency − Hz  
ICR  
ICR  
Figure 2  
Figure 1  
Figure 3  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2.4  
1.8  
V
= 2.4 V  
V
=1.8 V  
DD  
DD  
V
=1.8 V  
DD  
2.1  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.8  
1.5  
1.2  
0.9  
T
T
=85°C  
=70°C  
A
A
T
T
=85°C  
=70°C  
A
A
T
T
=85°C  
=70°C  
A
A
T
=25°C  
=0°C  
A
T
A
T
T
=25°C  
A
T
A
=−40°C  
=0°C  
A
T
=−40°C  
T
A
=25°C  
A
0.6  
0.3  
T
A
=0°C  
T
A
=−40°C  
0
0
2
4
6
8
10 12 14 16 18 20  
0
1
2
3
4
5
6
7
8
9 10 11 12  
0
1
2
3
4
5
6
7
8
I
− Low-Level Output Current − mA  
I
− High-Level Output Current − mA  
I
− High-Level Output Current − mA  
OL  
OH  
OH  
Figure 5  
Figure 4  
Figure 6  
MAXIMUM PEAK-TO-PEAK  
OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
FREQUENCY  
2.4  
2.1  
1.8  
2.8  
2.6  
V
= 2.4 V  
DD  
2.4  
2.2  
V
= 2.4 V  
O(PP)  
T
=85°C  
A
2.0  
T
T
= 70°C  
A
A
T
1.5  
1.2  
1.8  
1.6  
1.4  
1.2  
=25°C  
=0°C  
V
= 1.8 V  
O(PP)  
A
T
A
=−40°C  
0.9  
0.6  
1.0  
0.8  
0.6  
0.4  
0.2  
A
= −10  
R =300 kΩ  
= 10 pF  
V
L
L
0.3  
0.0  
C
T
A
= 25° C  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
10  
100  
1k  
10k  
100k  
1M  
I
− Low-Level Output Current − mA  
OL  
f − Frequency − Hz  
Figure 8  
Figure 7  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢑ  
ꢖꢁ  
SLOS326E − JUNE 2000 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
POWER SUPPLY REJECTION RATIO  
SUPPLY CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
SUPPLY VOLTAGE  
20  
24  
100  
80  
V
T
=2.4 V  
A
V
= 1  
DD  
=25°C  
V
IC  
18  
16  
14  
12  
= V  
DD/2  
A
22  
T
= 85°C  
A
V
= 3.6 V  
DD  
20  
18  
60  
40  
T
= 25°C  
A
V
= 2.4 V  
DD  
T
= 0°C  
10  
8
A
V
= 1.8 V  
16  
14  
DD  
T
= −40°C  
A
20  
6
T
= 70°C  
A
4
0
12  
2
−20  
0
10  
−40  
0
0.6  
1.2  
1.8  
2.4  
3
3.6  
10  
100  
1k  
10k  
100k  
1M  
−15  
10  
35  
60  
85  
T
− Free-Air Temperature − °C  
V
− Supply Voltage − V  
f − Frequency − Hz  
A
DD  
Figure 9  
Figure 10  
Figure 11  
DIFFERENTIAL VOLTAGE GAIN AND PHASE  
GAIN BANDWIDTH PRODUCT  
vs  
vs  
FREQUENCY  
TEMPERATURE  
180  
150  
120  
90  
100  
80  
700  
R
C
= 300 kΩ  
= 10 pF  
L
L
V
= 2.4 V  
DD  
600  
500  
400  
300  
200  
f = 10 kHz  
60  
Phase  
60  
30  
40  
20  
0
V
= 1.8 V  
DD  
−30  
−60  
Gain  
V
= 1.8 V & 2.4 V  
DD  
R = 300 kΩ  
0
−90  
L
L
−120  
C
= 10 pF  
= 25° C  
100  
0
−20  
T
A
−150  
−180  
1M  
−40  
−40 −25 −10  
5
20 35 50 65 80 85  
10  
100  
1k  
10k  
100k  
f − Frequency − Hz  
T
− Temperature − °C  
A
Figure 13  
Figure 12  
GAIN-BANDWIDTH PRODUCT  
SLEW RATE  
vs  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
560  
540  
0.36  
0.32  
R
C
= 300 kΩ  
= 10 pF  
L
L
f = 10 kHz  
Ta = 25°C  
0.28  
0.24  
520  
500  
480  
460  
SR+  
SR−  
0.20  
0.16  
A
R
C
= 1  
V
L
L
= 300 kΩ  
=50 pF  
= 25° C  
0.12  
0.08  
440  
420  
400  
T
A
0.04  
0.00  
1 1.2 1.4 1.61.8 2 2.2 2.42.62.8 3 3.2 3.4 3.6  
− Supply Voltage − V  
1.8  
2
2.2 2.4 2.6 2.8  
3
3.2 3.4 3.6  
V
V
DD  
− Supply Voltage − V  
DD  
Figure 14  
Figure 15  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢋ  
ꢌꢍꢎ ꢏ ꢁꢐ ꢑ ꢌ ꢈ ꢒꢓ ꢂ ꢎ ꢏꢔꢕꢑ ꢖ ꢑꢗ ꢘꢕ ꢕꢍꢏ ꢁ ꢙꢀꢑ ꢙꢕꢍꢏ ꢁ ꢏꢚ ꢖꢛꢀꢜ ꢑ ꢛ ꢀꢖ ꢛꢀ  
ꢑ ꢖꢘꢕ ꢍꢀ ꢏꢑ ꢚꢍꢁ ꢍꢎ ꢖꢁ ꢏꢌ ꢏꢘ ꢕꢝ ꢗ ꢏꢀ ꢞ ꢝꢞꢛ ꢀꢟ ꢑ ꢗꢚ  
SLOS326E − JUNE 2000 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
SLEW RATE  
vs  
SLEW RATE  
vs  
PHASE MARGIN  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
LOAD CAPACITANCE  
0.32  
0.28  
0.32  
90  
Rnull=0 Ω  
80  
0.28  
0.24  
0.20  
0.16  
SR+  
SR−  
SR+  
SR−  
70  
0.24  
0.20  
60  
Rnull=100 Ω  
50  
40  
30  
0.16  
0.12  
0.12  
0.08  
0.04  
0.00  
V
A
= 1.8 V  
DD  
= 1  
V
A
= 2.4 V  
= 1  
DD  
V
L
L
V
0.08  
V
R
A
= 2.4 V  
= 300 kΩ  
= Open Loop  
= 25°C  
DD  
L
V
R = 300 kΩ  
C
V
R =300 kΩ  
L
20  
10  
0
= 50 pF  
= V /2  
DD  
C =50 pF  
L
IC  
0.04  
0.00  
IC  
V
= V /2  
DD  
T
A
−40 −25 −10  
5
20 35 50 65 8085  
−40  
−15  
10  
35  
60  
85  
10  
100  
1k  
T
− Free-Air Temperature − °C  
A
T
− Free-Air Temperature − °C  
C
− Load Capacitance − pF  
L
A
Figure 16  
Figure 17  
Figure 18  
SUPPLY CURRENT AND OUTPUT VOLTAGE  
vs  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
TIME  
FREQUENCY  
20  
500  
15  
T
= 25°C  
A
450  
400  
350  
300  
250  
200  
150  
100  
50  
I
DD  
10  
5
V
= 2.4 V  
DD  
0
2
1.5  
1
V
= 3.6 V  
DD  
= 1  
V
O
0
A
V
V
R
C
= V /2  
IN  
L
L
DD  
0.5  
0
= 300 kΩ  
= 10 pF  
= 25°C  
V
= 1.8 V  
100  
DD  
T
A
−0.5  
0
1
2
3
4
5
10  
1k  
10k  
100k  
t − Time − µs  
f − Frequency − Hz  
Figure 19  
Figure 20  
VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE  
vs  
VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE  
vs  
TIME  
TIME  
1.26  
2.5  
1.24  
2
1.22  
1.20  
1.18  
1.16  
1.14  
V
I
1.5  
V
I
V
A
R
= 2.4 V  
DD  
=1  
1
V
= 300 kΩ  
= 10 pF  
= 25°C  
L
L
0.5  
C
T
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
2.5  
0
A
2
V
= 2.4 V  
DD  
= 1  
V
V
O
O
1.5  
A
V
R
= 300 kΩ  
= 10 pF  
= 25°C  
L
L
1
C
T
0.5  
A
0
0
1
2
3
4
5
6
7
8
0
0.2 0.4 0.6 0.8  
1 1.2 1.4 1.6 1.8  
t − Time − µs  
t − Time − µs  
Figure 21  
Figure 22  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢑ  
ꢖꢁ  
SLOS326E − JUNE 2000 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
INVERTING SMALL-SIGNAL PULSE RESPONSE  
vs  
INVERTING LARGE-SIGNAL RESPONSE  
vs  
TIME  
TIME  
1.28  
2.5  
2
1.24  
1.20  
1.5  
V
I
V
I
1
1.16  
1.12  
0.5  
V
R
C
= 2.4 V  
= 300 kΩ  
= 10 pF  
= 1  
DD  
L
L
1.28  
1.24  
1.20  
0
2.5  
V
= 2.4 V  
= 1  
= 300 kΩ  
= 10 pF  
= 25°C  
DD  
A
V
2
A
V
T
A
R
C
T
A
L
L
= 25°C  
1.5  
V
V
5
1
O
O
1.16  
1.12  
0.5  
0
0
10 15 20 25 30 35 40 45  
0
10 20 30 40 50 60 70 80 90  
t − Time − µs  
t − Time − µs  
Figure 23  
Figure 24  
SHUTDOWN FORWARD AND  
REVERSE ISOLATION  
vs  
CROSSTALK  
vs  
FREQUENCY  
FREQUENCY  
0
100  
90  
80  
70  
60  
50  
40  
V
= 1.8 V & 2.4 V  
DD  
V = V /2  
I
V
DD  
−20  
Forward and Reverse Isolation  
A
= 1  
R = 300 kΩ  
L
T
= 25°C  
−40  
−60  
A
All Channels  
Crosstalk in Shutdown  
−80  
V
= 1.8 & 2.4 V  
DD  
V = V  
/2  
I
DD  
= 300 kΩ  
30  
20  
10  
0
−100  
−120  
−140  
R
L
C = 10 pF  
L
A
= +1  
V
T
A
= 25°C  
Crosstalk/No Shutdown  
1k 10k  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
100k  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 25  
Figure 26  
SHUTDOWN PIN LEAKAGE CURRENT  
vs  
SHUTDOWN SUPPLY CURRENT  
SHUTDOWN SUPPLY CURRENT  
vs  
vs  
SHUTDOWN PIN VOLTAGE  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
.12  
.10  
.08  
.06  
.04  
.02  
0
20  
.014  
.012  
V
T
= 3.6 V  
SHDN = 0 V  
= V /2  
IN DD  
= 1  
V
= 1.8, 2.4, 3.6 V  
DD  
= 85°C  
DD  
SHDN = 0V  
15  
V
A
A
V
= V /2  
DD  
V
IN  
A
V
= 1  
10  
5
.010  
.008  
.006  
.004  
T
A
= 25°C  
0
T
A
= 0°C  
−5  
T
A
= −40°C  
−10  
−15  
.002  
0
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
−40 −25 −10  
5
20 35 50 65 80 85  
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
V
− Supply Voltage − V  
T
− Free-Air Temperature − °C  
Shutdown Pin Voltage − V  
DD  
A
Figure 27  
Figure 28  
Figure 29  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢋ  
ꢌꢍꢎ ꢏ ꢁꢐ ꢑ ꢌ ꢈ ꢒꢓ ꢂ ꢎ ꢏꢔꢕꢑ ꢖ ꢑꢗ ꢘꢕ ꢕꢍꢏ ꢁ ꢙꢀꢑ ꢙꢕꢍꢏ ꢁ ꢏꢚ ꢖꢛꢀꢜ ꢑ ꢛ ꢀꢖ ꢛꢀ  
ꢑ ꢖꢘꢕ ꢍꢀ ꢏꢑ ꢚꢍꢁ ꢍꢎ ꢖꢁ ꢏꢌ ꢏꢘ ꢕꢝ ꢗ ꢏꢀ ꢞ ꢝꢞꢛ ꢀꢟ ꢑ ꢗꢚ  
SLOS326E − JUNE 2000 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
SHUTDOWN SUPPLY CURRENT / OUTPUT VOLTAGE  
vs  
TIME  
3.0  
2.5  
2.0  
1.5  
SHDN  
1.0  
0.5  
0.0  
−0.5  
1.5  
1.3  
1.0  
0.8  
0.5  
0.3  
0.0  
V
O
V
= 2.4 V  
−0.3  
DD  
= 1  
A
V
18  
16  
14  
12  
10  
8
R
C
= 300 kΩ  
= 10 pF  
L
L
V
T
A
= V /2  
IC  
DD  
= 25° C  
6
4
I
DD(SHDN = 0)  
2
0
−2  
20  
40  
60  
80  
100  
120  
140  
160  
t − Time − µs  
Figure 30  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢑ  
ꢖꢁ  
SLOS326E − JUNE 2000 − REVISED JANUARY 2005  
APPLICATION INFORMATION  
driving a capacitive load  
When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the  
device’s phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater  
than 10 pF, it is recommended that a resistor be placed in series (R  
) with the output of the amplifier, as  
NULL  
shown in Figure 31. A minimum value of 20 should work well for most applications.  
R
F
R
G
R
NULL  
+
Input  
Output  
LOAD  
C
V
DD  
/2  
Figure 31. Driving a Capacitive Load  
offset voltage  
The output offset voltage, (V ) is the sum of the input offset voltage (V ) and both input bias currents (I ) times  
OO  
IO  
IB  
the corresponding gains. The following schematic and formula can be used to calculate the output offset  
voltage:  
R
F
I
IB−  
R
G
+
+
V
I
V
O
R
S
I
IB+  
V
+ V  
1 ) ǒRFǓ " I  
R
IOǒ Ǔ ǒ Ǔ  
1 ) ǒRFǓ " I  
R
OO  
IB)  
S
IB–  
F
R
R
G
G
Figure 32. Output Offset Voltage Model  
general configurations  
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often  
required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier  
(see Figure 33).  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢋ  
ꢌꢍꢎ ꢏ ꢁꢐ ꢑ ꢌ ꢈ ꢒꢓ ꢂ ꢎ ꢏꢔꢕꢑ ꢖ ꢑꢗ ꢘꢕ ꢕꢍꢏ ꢁ ꢙꢀꢑ ꢙꢕꢍꢏ ꢁ ꢏꢚ ꢖꢛꢀꢜ ꢑ ꢛ ꢀꢖ ꢛꢀ  
ꢑ ꢖꢘꢕ ꢍꢀ ꢏꢑ ꢚꢍꢁ ꢍꢎ ꢖꢁ ꢏꢌ ꢏꢘ ꢕꢝ ꢗ ꢏꢀ ꢞ ꢝꢞꢛ ꢀꢟ ꢑ ꢗꢚ  
SLOS326E − JUNE 2000 − REVISED JANUARY 2005  
APPLICATION INFORMATION  
general configurations (continued)  
R
R
F
G
V
DD  
/2  
V
1
O
+
V
I
R1  
C1  
f
+
–3dB  
2pR1C1  
V
R
O
F
1
ǒ1 ) 2pfR1C1Ǔ  
+
ǒ
1 )  
Ǔ
V
R
I
G
Figure 33. Single-Pole Low-Pass Filter  
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this  
task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.  
Failure to do this can result in phase shift of the amplifier.  
C1  
R1 = R2 = R  
C1 = C2 = C  
Q = Peaking Factor  
(Butterworth Q = 0.707)  
+
_
V
I
1
R1  
R2  
f
+
–3dB  
2pRC  
C2  
R
F
1
R
=
G
R
F
2 −  
)
R
(
Q
G
V
DD  
/2  
Figure 34. 2-Pole Low-Pass Sallen-Key Filter  
circuit layout considerations  
To achieve the levels of high performance of the TLV276x, follow proper printed-circuit board design techniques.  
A general set of guidelines is given in the following.  
D
Ground planes—It is highly recommended that a ground plane be used on the board to provide all  
components with a low inductive ground connection. However, in the areas of the amplifier inputs and  
output, the ground plane can be removed to minimize the stray capacitance.  
D
Proper power supply decoupling—Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic  
capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers  
depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal  
of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply  
terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less  
effective. The designer should strive for distances of less than 0.1 inches between the device power  
terminals and the ceramic capacitors.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢑ  
SLOS326E − JUNE 2000 − REVISED JANUARY 2005  
APPLICATION INFORMATION  
circuit layout considerations (continued)  
D
D
Sockets—Sockets can be used but are not recommended. The additional lead inductance in the socket pins  
will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board  
is the best implementation.  
Short trace runs/compact part placements—Optimum high performance is achieved when stray series  
inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,  
thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of  
the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at  
the input of the amplifier.  
D
Surface-mount passive components—Using surface-mount passive components is recommended for high  
performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of  
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small  
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray  
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be  
kept as short as possible.  
shutdown function  
Three members of the TLV276x family (TLV2760/3/5) have a shutdown terminal for conserving battery life in  
portable applications. When the shutdown terminal is pulled low, the supply current is reduced to 10 nA/channel,  
the amplifier is disabled, and the outputs are placed in a high impedance mode. To enable the amplifier, the  
shutdown terminal must be pulled high. The shutdown terminal should never be left floating. If the shutdown  
feature is not desired, directly tie the shutdown terminal to the positive rail. The shutdown terminal threshold  
is always referenced to the GND terminal of the device. Therefore, when operating the device with split supply  
voltages (e.g. 1.8 V), the shutdown terminal needs to be pulled to the negative rail, not the system ground,  
to disable the operational amplifier.  
The amplifier is powered with a single 2.4-V supply and configured as a noninverting configuration with a unity  
gain. Turnon and turnoff times are defined as the interval between application of the logic signal to the shutdown  
pin and the point at which the supply current has reached half its final value. The times for the single, dual, and  
quad are listed in the data tables.  
general power dissipation considerations  
For a given θ , the maximum power dissipation is shown in Figure 35 and is calculated by the following formula:  
JA  
T
* T  
A
P
+
ǒ MAX Ǔ  
D
q
JA  
Where:  
P
= Maximum power dissipation of TLV276x IC (watts)  
= Absolute maximum junction temperature (150°C)  
= Free-ambient air temperature (°C)  
D
T
MAX  
T
A
θ
= θ + θ  
JA  
JC CA  
θ
θ
= Thermal coefficient from junction to case  
JC  
= Thermal coefficient from case to ambient air (°C/W)  
CA  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ ꢇ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢊ ꢇ ꢀꢁꢂ ꢃꢄ ꢅꢋ  
ꢌꢍꢎ ꢏ ꢁꢐ ꢑ ꢌ ꢈ ꢒꢓ ꢂ ꢎ ꢏꢔꢕꢑ ꢖ ꢑꢗ ꢘꢕ ꢕꢍꢏ ꢁ ꢙꢀꢑ ꢙꢕꢍꢏ ꢁ ꢏꢚ ꢖꢛꢀꢜ ꢑ ꢛ ꢀꢖ ꢛꢀ  
ꢑ ꢖꢘꢕ ꢍꢀ ꢏꢑ ꢚꢍꢁ ꢍꢎ ꢖꢁ ꢏꢌ ꢏꢘ ꢕꢝ ꢗ ꢏꢀ ꢞ ꢝꢞꢛ ꢀꢟ ꢑ ꢗꢚ  
SLOS326E − JUNE 2000 − REVISED JANUARY 2005  
APPLICATION INFORMATION  
general power dissipation considerations (continued)  
MAXIMUM POWER DISSIPATION  
vs  
FREE-AIR TEMPERATURE  
2
1.75  
1.5  
T
= 150°C  
PDIP Package  
Low-K Test PCB  
J
θ
= 104°C/W  
JA  
MSOP Package  
Low-K Test PCB  
SOIC Package  
Low-K Test PCB  
θ
= 260°C/W  
JA  
1.25  
1
θ
= 176°C/W  
JA  
0.75  
0.5  
SOT-23 Package  
Low-K Test PCB  
0.25  
0
θ
= 324°C/W  
JA  
−5540 −25 −10  
5
20 35 50 65 80 95 110 125  
T
A
− Free-Air Temperature − °C  
NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.  
Figure 35. Maximum Power Dissipation vs Free-Air Temperature  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢑ  
ꢖꢁ  
SLOS326E − JUNE 2000 − REVISED JANUARY 2005  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using Microsim PartsRelease 9.1, the model generation  
software used with Microsim PSpice. The Boyle macromodel (see Note 4) and subcircuit in Figure 36 are  
generated using TLV276x typical electrical and operating characteristics at T = 25°C. Using this information,  
A
output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):  
D
D
D
D
D
D
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
D
D
D
D
D
D
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
Quiescent power dissipation  
Input bias current  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
NOTE 4: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal  
of Solid-State Circuits, SC-9, 353 (1974).  
3
99  
V
DD  
+
egnd  
rd1  
11  
rd2  
12  
rss  
ro2  
css  
fb  
rp  
c1  
7
+
c2  
vlim  
8
1
2
+
r2  
9
6
IN+  
IN−  
vc  
D
S
D
S
+
vb  
ga  
G
G
ro1  
gcm  
ioff  
53  
OUT  
dp  
5
dlp  
dln  
91  
90  
92  
10  
+
+
iss  
dc  
vlp  
hlim  
vln  
+
GND  
+ 54  
4
de  
ve  
*DEVICE=amp_tlv276x_highVdd,OPAMP,NJF,INT  
ga  
6
0
11 12 16.272E−6  
10 99 6.8698E−9  
dc 1.3371E−6  
vlim 1K  
* amp_tlv_276x_highVdd operational amplifier ”macromodel”  
gcm  
iss  
0
6
* subcircuit updated using Model Editor release 9.1 on 05/15/00  
* at 14:40 Model Editor is an OrCAD product.  
*
10  
90  
11  
12  
6
4
hlim  
j1  
J2  
r2  
rd1  
rd2  
ro1  
ro2  
rp  
rss  
vb  
vc  
ve  
vlim  
vlp  
vln  
.model  
.model dy  
.model jx1  
.model jx2  
.ends  
0
2
10 jx1  
* connections:  
non-inverting input  
| inverting input  
1
10 jx2  
*
*
*
*
*
9
100.00E3  
61.456E3  
61.456E3  
10  
| | positive power supply  
| | | negative power supply  
| | | | output  
3
11  
12  
5
3
8
| | | | |  
7
99  
4
10  
.subckt amp_tlv276x_highVdd 1 2 3 4 5  
*
3
150.51E3  
149.58E6  
dc 0  
10  
9
99  
0
c1  
11  
6
12 457.48E−15  
c2  
7
5.0000E−12  
3
53  
4
dc .78905  
dc .78905  
dc 0  
dc 14.200  
dc 14.200  
css  
dc  
10  
5
99 1.1431E−12  
53 dy  
54  
7
8
de  
54  
90  
92  
4
99  
7
5
dy  
91  
0
0
dlp  
dln  
dp  
egnd  
fb  
91 dx  
90 dx  
92  
dx  
D(Is=800.00E−18)  
3
0
dx  
D(Is=800.00E−18 Rs=1m Cjo=10p)  
poly(2) (3,0) (4,0) 0 .5 .5  
NJF(Is=500.00E−15 Beta=198.03E−6 Vto=−1)  
NJF(Is=500.00E−15 Beta=198.03E−6 Vto=−1)  
99 poly(5) vb vc ve vlp vln 0  
176.02E6 −1E3 1E3 180E6  
−180E6  
Figure 36. Boyle Macromodel and Subcircuit  
PSpice and Parts are trademarks of MicroSim Corporation.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jul-2013  
PACKAGING INFORMATION  
Orderable Device  
TLV2760ID  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
0 to 70  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
ACTIVE  
SOIC  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOIC  
D
8
6
6
6
6
8
8
8
8
8
8
5
5
5
5
8
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
T2760I  
TLV2760IDBVR  
TLV2760IDBVRG4  
TLV2760IDBVT  
TLV2760IDBVTG4  
TLV2760IDG4  
TLV2760IP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DBV  
DBV  
DBV  
DBV  
D
3000  
3000  
250  
250  
75  
Green (RoHS  
& no Sb/Br)  
VANI  
Green (RoHS  
& no Sb/Br)  
VANI  
Green (RoHS  
& no Sb/Br)  
VANI  
Green (RoHS  
& no Sb/Br)  
VANI  
Green (RoHS  
& no Sb/Br)  
T2760I  
T2760I  
T2760I  
T2761C  
T2761C  
T2761I  
VAXI  
PDIP  
P
50  
Pb-Free  
(RoHS)  
TLV2760IPE4  
TLV2761CD  
PDIP  
P
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
SOIC  
D
75  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
TLV2761CDG4  
TLV2761ID  
SOIC  
D
75  
Green (RoHS  
& no Sb/Br)  
0 to 70  
SOIC  
D
75  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
TLV2761IDBVR  
TLV2761IDBVRG4  
TLV2761IDBVT  
TLV2761IDBVTG4  
TLV2761IDG4  
TLV2761IP  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
DBV  
DBV  
D
3000  
3000  
250  
250  
75  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
VAXI  
Green (RoHS  
& no Sb/Br)  
VAXI  
Green (RoHS  
& no Sb/Br)  
VAXI  
Green (RoHS  
& no Sb/Br)  
T2761I  
T2761I  
PDIP  
P
50  
Pb-Free  
(RoHS)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jul-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
0 to 70  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
TLV2761IPE4  
TLV2762CD  
ACTIVE  
PDIP  
SOIC  
SOIC  
P
8
8
8
50  
Pb-Free  
(RoHS)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
N / A for Pkg Type  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
T2761I  
ACTIVE  
ACTIVE  
D
D
75  
75  
Green (RoHS  
& no Sb/Br)  
2762C  
2762C  
TLV2762CDG4  
Green (RoHS  
& no Sb/Br)  
0 to 70  
TLV2762CDGKT  
TLV2762CDR  
PREVIEW  
ACTIVE  
VSSOP  
SOIC  
DGK  
D
8
8
250  
TBD  
Call TI  
Call TI  
0 to 70  
0 to 70  
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
2762C  
2762C  
2762I  
2762I  
AJP  
TLV2762CDRG4  
TLV2762ID  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
2500  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
0 to 70  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
0 to 70  
Green (RoHS  
& no Sb/Br)  
TLV2762IDG4  
TLV2762IDGK  
TLV2762IDGKG4  
TLV2762IDGKR  
TLV2762IDGKRG4  
TLV2762IDR  
SOIC  
D
8
75  
Green (RoHS  
& no Sb/Br)  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
8
80  
Green (RoHS  
& no Sb/Br)  
8
80  
Green (RoHS  
& no Sb/Br)  
AJP  
8
2500  
2500  
2500  
2500  
2500  
2500  
80  
Green (RoHS  
& no Sb/Br)  
AJP  
8
Green (RoHS  
& no Sb/Br)  
AJP  
8
Green (RoHS  
& no Sb/Br)  
2762I  
2762I  
TLV2763C  
TLV2763C  
AJR  
TLV2762IDRG4  
TLV2763CDR  
SOIC  
D
8
Green (RoHS  
& no Sb/Br)  
SOIC  
D
14  
14  
10  
10  
Green (RoHS  
& no Sb/Br)  
TLV2763CDRG4  
TLV2763IDGS  
TLV2763IDGSG4  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
0 to 70  
VSSOP  
VSSOP  
DGS  
DGS  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
-40 to 85  
80  
Green (RoHS  
& no Sb/Br)  
AJR  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jul-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
0 to 70  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
TLV2763IDGSR  
TLV2763IDGSRG4  
TLV2763IDR  
ACTIVE  
VSSOP  
VSSOP  
SOIC  
DGS  
10  
10  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
AJR  
AJR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DGS  
D
2500  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
TLV2763I  
TLV2763I  
TLV2764C  
TLV2764C  
TLV2764C  
TLV2764C  
TLV2764I  
TLV2764I  
TLV2764I  
TLV2764I  
TLV2764I  
TLV2764I  
2764I  
TLV2763IDRG4  
TLV2764CD  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
TLV2764CDG4  
TLV2764CDR  
TLV2764CDRG4  
TLV2764ID  
SOIC  
D
50  
Green (RoHS  
& no Sb/Br)  
0 to 70  
SOIC  
D
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
0 to 70  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
0 to 70  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
TLV2764IDG4  
TLV2764IDR  
SOIC  
D
50  
Green (RoHS  
& no Sb/Br)  
SOIC  
D
2500  
2500  
25  
Green (RoHS  
& no Sb/Br)  
TLV2764IDRG4  
TLV2764IN  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
PDIP  
N
Pb-Free  
(RoHS)  
TLV2764INE4  
TLV2764IPW  
PDIP  
N
25  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
90  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
TLV2764IPWG4  
TLV2764IPWR  
TLV2764IPWRG4  
90  
Green (RoHS  
& no Sb/Br)  
2764I  
2000  
2000  
Green (RoHS  
& no Sb/Br)  
2764I  
Green (RoHS  
& no Sb/Br)  
2764I  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jul-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 70  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
TLV2765CD  
TLV2765CDG4  
TLV2765CDR  
TLV2765CDRG4  
TLV2765ID  
ACTIVE  
SOIC  
SOIC  
D
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
40  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
TLV2765C  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
D
D
40  
2500  
2500  
40  
Green (RoHS  
& no Sb/Br)  
0 to 70  
TLV2765C  
TLV2765C  
TLV2765C  
TLV2765I  
TLV2765I  
TLV2765I  
TLV2765I  
2765I  
SOIC  
Green (RoHS  
& no Sb/Br)  
0 to 70  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
0 to 70  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
TLV2765IDG4  
TLV2765IDR  
SOIC  
D
40  
Green (RoHS  
& no Sb/Br)  
SOIC  
D
2500  
2500  
90  
Green (RoHS  
& no Sb/Br)  
TLV2765IDRG4  
TLV2765IPW  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
Green (RoHS  
& no Sb/Br)  
TLV2765IPWG4  
TLV2765IPWR  
TLV2765IPWRG4  
90  
Green (RoHS  
& no Sb/Br)  
2765I  
2000  
2000  
Green (RoHS  
& no Sb/Br)  
2765I  
Green (RoHS  
& no Sb/Br)  
2765I  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Addendum-Page 4  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jul-2013  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 5  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Nov-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV2760IDBVR  
TLV2760IDBVT  
TLV2761IDBVR  
TLV2761IDBVT  
TLV2762CDR  
TLV2762IDGKR  
TLV2762IDGKR  
TLV2762IDR  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
DBV  
DBV  
D
6
6
3000  
250  
180.0  
180.0  
180.0  
180.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
9.0  
3.15  
3.15  
3.15  
3.15  
6.4  
5.3  
5.3  
6.4  
6.5  
5.3  
5.3  
6.5  
6.5  
6.5  
6.9  
6.5  
6.5  
6.9  
3.2  
3.2  
3.2  
3.2  
5.2  
3.4  
3.4  
5.2  
9.0  
3.4  
3.4  
9.0  
9.0  
9.0  
5.6  
10.3  
10.3  
5.6  
1.4  
1.4  
1.4  
1.4  
2.1  
1.4  
1.4  
2.1  
2.1  
1.4  
1.4  
2.1  
2.1  
2.1  
1.6  
2.1  
2.1  
1.6  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
9.0  
8.0  
5
3000  
250  
9.0  
8.0  
5
9.0  
8.0  
8
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2000  
2500  
2500  
2000  
12.4  
12.4  
12.4  
12.4  
16.4  
12.4  
12.4  
16.4  
16.4  
16.4  
12.4  
16.4  
16.4  
12.4  
12.0  
12.0  
12.0  
12.0  
16.0  
12.0  
12.0  
16.0  
16.0  
16.0  
12.0  
16.0  
16.0  
12.0  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
TLV2763CDR  
TLV2763IDGSR  
TLV2763IDGSR  
TLV2763IDR  
SOIC  
D
14  
10  
10  
14  
14  
14  
14  
16  
16  
16  
VSSOP  
VSSOP  
SOIC  
DGS  
DGS  
D
TLV2764CDR  
TLV2764IDR  
SOIC  
D
SOIC  
D
TLV2764IPWR  
TLV2765CDR  
TLV2765IDR  
TSSOP  
SOIC  
PW  
D
SOIC  
D
TLV2765IPWR  
TSSOP  
PW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Nov-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV2760IDBVR  
TLV2760IDBVT  
TLV2761IDBVR  
TLV2761IDBVT  
TLV2762CDR  
TLV2762IDGKR  
TLV2762IDGKR  
TLV2762IDR  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
DBV  
DBV  
D
6
6
3000  
250  
182.0  
182.0  
182.0  
182.0  
340.5  
364.0  
358.0  
340.5  
367.0  
358.0  
366.0  
367.0  
333.2  
333.2  
367.0  
333.2  
333.2  
367.0  
182.0  
182.0  
182.0  
182.0  
338.1  
364.0  
335.0  
338.1  
367.0  
335.0  
364.0  
367.0  
345.9  
345.9  
367.0  
345.9  
345.9  
367.0  
20.0  
20.0  
20.0  
20.0  
20.6  
27.0  
35.0  
20.6  
38.0  
35.0  
50.0  
38.0  
28.6  
28.6  
35.0  
28.6  
28.6  
35.0  
5
3000  
250  
5
8
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2000  
2500  
2500  
2000  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
TLV2763CDR  
TLV2763IDGSR  
TLV2763IDGSR  
TLV2763IDR  
SOIC  
D
14  
10  
10  
14  
14  
14  
14  
16  
16  
16  
VSSOP  
VSSOP  
SOIC  
DGS  
DGS  
D
TLV2764CDR  
TLV2764IDR  
SOIC  
D
SOIC  
D
TLV2764IPWR  
TLV2765CDR  
TLV2765IDR  
TSSOP  
SOIC  
PW  
D
SOIC  
D
TLV2765IPWR  
TSSOP  
PW  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

TLV2762CDR

FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN
TI

TLV2762CDRG4

DUAL OP-AMP, 6800uV OFFSET-MAX, 0.5MHz BAND WIDTH, PDSO8, GREEN, PLASTIC, SOIC-8
TI

TLV2762ID

FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN
TI

TLV2762IDGK

FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN
TI

TLV2762IDGKG4

Dual 1.8-V, Micro-power, Rail-to-Rail, Single Supply Amplifier 8-VSSOP -40 to 85
TI

TLV2762IDGKR

FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN
TI

TLV2762IDGKRG4

Dual 1.8-V, Micro-power, Rail-to-Rail, Single Supply Amplifier 8-VSSOP -40 to 85
TI

TLV2762IDR

FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN
TI

TLV2762IP

FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN
TI

TLV2762IPE4

DUAL OP-AMP, 6800uV OFFSET-MAX, 0.5MHz BAND WIDTH, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8
TI

TLV2762IPR

DUAL OP-AMP, 6800uV OFFSET-MAX, 0.5MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8
TI

TLV2763

FAMILY OF 1.8 V MICROPOWER RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUT DOWN
TI