TLV320AIC3256_12 [TI]

Ultra Low Power Stereo Audio Codec With Embedded miniDSP; 超低功耗立体声音频编解码器嵌入式miniDSP
TLV320AIC3256_12
型号: TLV320AIC3256_12
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Ultra Low Power Stereo Audio Codec With Embedded miniDSP
超低功耗立体声音频编解码器嵌入式miniDSP

解码器 编解码器
文件: 总44页 (文件大小:1013K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV320AIC3256  
www.ti.com  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
Ultra Low Power Stereo Audio Codec With Embedded miniDSP  
Check for Samples: TLV320AIC3256  
1
FEATURES  
Future 3.5mm x 3.3mm 42-ball WCSP  
2
Stereo Audio DAC with 100dB SNR  
APPLICATIONS  
5.0mW Stereo 48ksps  
Portable Navigation Devices (PND)  
Portable Media Player (PMP)  
Mobile Handsets  
Communication  
Portable Computing  
Acoustic Echo Cancellation (AEC)  
Active Noise Cancellation (ANC)  
Advanced DSP algorithms  
DAC-to-Ground-Centered Headphone Playback  
Stereo Audio ADC with 93dB SNR  
5.2mW Stereo 48ksps ADC Record  
PowerTune™  
Extensive Signal Processing Options  
Embedded miniDSP  
Six Single-Ended or 3 Fully-Differential Analog  
Inputs  
Stereo Analog and Digital Microphone Inputs  
Ground-Centered Stereo Headphone Outputs  
Very Low-Noise PGA  
DESCRIPTION  
The TLV320AIC3256 (sometimes referred to as the  
AIC3256) is a flexible, low-power, low-voltage stereo  
audio codec with programmable inputs and outputs,  
PowerTune capabilities, fully-programmable miniDSP,  
fixed predefined and parameterizable signal  
processing blocks, integrated PLL, and flexible digital  
interfaces.  
Low Power Analog Bypass Mode  
Programmable Microphone Bias  
Programmable PLL  
5mm x 5mm 40-pin QFN Package  
IN1_L  
IN2_L  
IN3_L  
AGC  
DRC  
Vol. Ctrl  
-6...+14dB  
0…+47.5 dB  
+
+
ADC  
Signal  
Proc.  
DAC  
Signal  
Proc.  
HPL  
LOL  
LOR  
+
+
+
+
Left  
ADC  
Left  
DAC  
tpl  
*
*
1dB steps  
-6...+29dB  
Gain Adj.  
0.5 dB  
steps  
-30...0 dB  
1dB steps  
-6...+29dB  
Data  
Interface  
miniDSP  
miniDSP  
-30...0 dB  
1dB steps  
-6...+14dB  
0…  
+47.5 dB  
Gain Adj.  
+
+
ADC  
Signal  
Proc.  
DAC  
Signal  
Proc.  
Right  
ADC  
Right  
DAC  
tpr  
*
*
HPR  
IN3_R  
IN2_R  
IN1_R  
0.5 dB steps  
AGC  
DRC  
1dB steps  
Vol. Ctrl  
GND_Sense  
SPI_Select  
Reset  
SPI / I2C  
Control Block  
Dig Inter  
Mic rupt  
Sec.  
I2S I/F  
Primary  
I2S Interface  
PLL  
VNEG  
Fly_N  
Fly_P  
Charge  
Pump  
MicBias  
MicDet  
Mic  
Bias  
Supplies  
Pin Muxing/ Clock Routing  
Ref  
Ref  
Figure 1. Simplified Block Diagram  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
PowerTune is a trademark of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2010, Texas Instruments Incorporated  
 
TLV320AIC3256  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
DESCRIPTION (CONTINUED)  
The TLV320AIC3256 features two fully-programmable miniDSP cores that support application-specific algorithms  
in the record and/or the playback path of the device. The miniDSP cores are fully software controlled. Target  
miniDSP algorithms, such as active noise cancellation, acoustic echo cancellation or advanced DSP filtering are  
loaded into the device after power-up.  
Extensive register-based control of power, input/output channel configuration, gains, effects, pin-multiplexing and  
clocks is included, allowing the device to be precisely targeted to its application. The device can cover operations  
from 8kHz mono voice playback to audio stereo 192kHz DAC playback, making it ideal for portable  
battery-powered audio and telephony applications.  
The record path of the TLV320AIC3256 covers operations from 8kHz mono to 192kHz stereo recording, and  
contains programmable input channel configurations covering single-ended and differential setups, as well as  
floating or mixing input signals. It also includes a digitally-controlled stereo microphone preamplifier and  
integrated microphone bias. Digital signal processing blocks can remove audible noise that may be introduced by  
mechanical coupling, e.g. optical zooming in a digital camera.  
The playback path offers signal-processing blocks for filtering and effects, and supports flexible mixing of DAC  
and analog input signals as well as programmable volume controls. The playback path contains two high-power  
output drivers which eliminate the need for ac coupling capacitors. A built in charge pump generates the negative  
supply for the ground centered high powered output drivers. The high-power outputs can be configured in  
multiple ways, including stereo and mono BTL.  
The device can be programmed to various power-performance trade-offs. Mobile applications frequently have  
multiple use cases requiring very low power operation while being used in a mobile environment. When used in a  
docked environment power consumption typically is less of a concern, while minimizing noise is important. The  
TLV320AIC3256 addresses both cases.  
The device offers single supply operation from 1.5V-1.95V. Digital I/O voltages are supported in the range of  
1.1V-3.6V.  
The required internal clock of the TLV320AIC3256 can be derived from multiple sources, including the MCLK pin,  
the BCLK pin, the GPIO pin or the output of the internal PLL, where the input to the PLL again can be derived  
from the MCLK pin, the BCLK or GPIO pins. Although using the PLL ensures the availability of a suitable clock  
signal, it is not recommended for the lowest power settings. The PLL is highly programmable and can accept  
available input clocks in the range of 512kHz to 50MHz.  
The device is available in the 5mm × 5mm, 40-pin QFN package. A 3.5mm × 3.3mm 42-ball WCSP will soon be  
available.  
2
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TLV320AIC3256  
TLV320AIC3256  
www.ti.com  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
Package and Signal Descriptions  
Packaging/Ordering Information  
PRODUCT  
PACKAGE  
PACKAGE  
DESIGNATOR  
OPERATING  
TEMPERATURE  
RANGE  
ORDERING  
NUMBER  
TRANSPORT MEDIA,  
QUANTITY  
TLV320AIC3256  
QFN  
RSB  
YZF  
–40°C to 85°C  
TLV320AIC3256IRSBT  
TLV320AIC3256IRSBR  
TLV320AIC3256IYZFT  
TLV320AIC3256IYZFR  
Tape and Reel, 250  
Tape and Reel, 3000  
Tape and Reel, 250  
Tape and Reel, 3000  
TLV320AIC3256(1)  
WCSP  
–40°C to 85°C  
(1) Preview information  
Pin Assignments  
IOVss  
DVdd (40)  
SCLK/MFP3  
SCL/SSZ  
SDA/MOSI  
MISO/MFP4  
SPI_SELECT  
IN1_L  
DVdd_CP  
FLY_P  
DVss_CP  
FLY_N  
VNEG  
MICDET  
HPR  
IN1_R  
DRVDD_HP  
HPL  
IN2_L  
IN2_R  
Figure 2. QFN (RSB) Package, Bottom View  
Figure 3. WCSP (YZF) Package, Bottom View  
(Preview)  
Table 1. Ball Layout, YZF Package, Bottom View (Preview)  
G
F
AVdd  
HPL  
AVdd  
DRVdd_HP  
MICDET  
FLY_N  
FLY_P  
DVss  
LOL  
LOR  
MICBIAS  
IN3_R  
AVss  
MISO  
SCLK  
BCLK  
DOUT  
4
REF  
IN3_L  
AVss  
NC  
IN2_R  
IN2_L  
E
D
C
B
A
HPR  
GND_SENSE  
DVss_CP  
SDA/MOSI  
GPIO  
IN1_R  
VNEG  
DVdd_CP  
DVdd  
DVss  
1
IN1_L  
RESET  
IOVss  
DIN  
SPI_SELECT  
SCL/SS  
IOVdd  
MCLK  
WCLK  
2
3
5
6
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): TLV320AIC3256  
TLV320AIC3256  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
www.ti.com  
Table 2. TERMINAL FUNCTIONS  
5x5mm  
40-PIN QFN  
WCSP  
(YZF)  
NAME  
TYPE  
DESCRIPTION  
(RSB) PIN BALL NO.  
NO.  
(Preview)  
1
B2  
A1  
C5  
B3  
DVss  
GND Digital ground. Device substrate.(1)  
GND Digital ground(1)  
2
DVss  
3
RESET  
GPIO  
I
Hardware reset  
Primary  
4
I/O  
General purpose digital IO  
Secondary  
CLKOUT output  
MFP5  
INT1 output  
INT2 output  
Audio serial data bus ADC word clock output  
Audio serial data bus (secondary) bit clock output  
Audio serial data bus (secondary) word clock output  
Digital microphone clock output  
5
6
7
8
A2  
B4  
A3  
A5  
MCLK  
BCLK  
WCLK  
DIN  
I
Master clock input  
I/O  
I/O  
I
Audio serial data bus (primary) bit clock  
Audio serial data bus (primary) word clock  
Primary function  
Audio serial data bus data input  
Secondary function  
MFP1  
Audio serial data bus (secondary) bit clock input  
Audio serial data bus (secondary) word clock input  
Digital Microphone Input  
Clock Input  
General Purpose Input  
9
A4  
DOUT  
MFP2  
O
Primary  
Audio serial data bus data output  
Secondary  
General purpose output  
Clock output  
INT1 output  
INT2 output  
Audio serial data bus (secondary) bit clock output  
Audio serial data bus (secondary) word clock output  
10  
11  
12  
A6  
B5  
C4  
IOVdd  
IOVss  
SCLK  
PWR Supply for IO buffers. 1.1V to 3.6V  
GND Ground for IO buffers.  
I
Primary (SPI_Select = 1)  
SPI serial clock  
MFP3  
Secondary: (SPI_Select = 0)  
Digital microphone input  
Audio serial data bus (secondary) bit clock input  
Audio serial data bus (secondary) DAC/common word clock input  
Audio serial data bus (secondary) ADC word clock input  
Audio serial data bus (secondary) data input  
General purpose input  
13  
14  
15  
B6  
C3  
D4  
SCL  
SS  
I
I2C interface serial clock (SPI_Select = 0)  
SPI interface mode chip-select signal (SPI_Select = 1)  
I2C interface mode serial data input (SPI_Select = 0)  
SPI interface mode serial data input (SPI_Select = 1)  
SDA  
MOSI  
I/O  
O
MISO  
Primary (SPI_Select = 1)  
(1) The DVss pins are not connected within the device: Must be connected on the PC board.  
Submit Documentation Feedback  
4
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TLV320AIC3256  
TLV320AIC3256  
www.ti.com  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
Table 2. TERMINAL FUNCTIONS (continued)  
5x5mm  
40-PIN QFN  
WCSP  
(YZF)  
NAME  
TYPE  
DESCRIPTION  
(RSB) PIN BALL NO.  
NO.  
(Preview)  
Serial data output  
MFP4  
Secondary (SPI_Select = 0)  
General purpose output  
CLKOUT output  
INT1 output  
INT2 output  
Audio serial data bus (primary) ADC word clock output  
Digital microphone clock output  
Audio serial data bus (secondary) data output  
Audio serial data bus (secondary) bit clock output  
Audio serial data bus (secondary) word clock output  
16  
17  
C6  
D6  
SPI_SELECT  
IN1_L  
I
I
Control mode select pin ( 1 = SPI, 0 = I2C )  
Multifunction analog input,  
Single-ended configuration: MIC 1 or Line 1 left  
Differential configuration: MIC or Line right, negative  
18  
19  
20  
E6  
F6  
G6  
IN1_R  
IN2_L  
IN2_R  
I
I
I
Multifunction analog input,  
Single-ended configuration: MIC 1 or Line 1 right  
Differential configuration: MIC or Line right, positive  
Multifunction analog input,  
Single-ended configuration: MIC 2 or Line 2 right  
Differential configuration: MIC or Line left, positive  
Multifunction analog input,  
Single-ended configuration: MIC 2 or Line 2 right  
Differential configuration: MIC or Line left, negative  
21  
22  
23  
24  
E4, E5  
G5  
AVss  
GND Analog Ground  
REF  
O
O
I
Reference voltage output for filtering  
G4  
MICBIAS  
IN3_L  
Microphone bias voltage output  
F5  
Multifunction analog input,  
Single-ended configuration: MIC3 or Line 3 left,  
Differential configuration: MIC or Line left, positive,  
Differential configuration: MIC or Line right, negative  
25  
F4  
IN3_R  
I
Multifunction analog input,  
Single-ended configuration: MIC3 or Line 3 right,  
Differential configuration: MIC or Line left, negative,  
Differential configuration: MIC or Line right, positive  
26  
27  
G3  
F3  
LOL  
O
O
I
Left line output  
LOR  
Right line output  
28  
E3  
GND_SENSE  
AVdd  
External ground reference for headphone interface –0.5V to 0.5V  
29, 30  
31  
G2, G1  
F1  
PWR Analog voltage supply 1.5V–1.95V(2)  
HPL  
O
Left headphone output  
32  
F2  
DRVdd_HP  
PWR Power supply for headphone output stage  
Ground-centered circuit configuration, 1.5V to 1.95V  
Unipolar circuit configuration, 1.5V to 3.6V  
33  
34  
35  
E1  
E2  
D1  
HPR  
O
I
Right headphone output  
Microphone detection  
MICDET  
VNEG  
PWR Negative supply for headphones. –1.8V to 0V  
Input when charge pump is disabled,  
Filtering output when charge pump is enabled  
36  
37  
D2  
D3  
FLY_N  
PWR Negative terminal for charge-pump flying capacitor  
GND Charge pump ground  
DVss_CP  
(2) The AVdd pins are not connected within the device: Must be connected on the PC board.  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): TLV320AIC3256  
TLV320AIC3256  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
www.ti.com  
Table 2. TERMINAL FUNCTIONS (continued)  
5x5mm  
40-PIN QFN  
WCSP  
(YZF)  
NAME  
TYPE  
DESCRIPTION  
(RSB) PIN BALL NO.  
NO.  
(Preview)  
38  
C2  
C1  
B1  
FLY_P  
DVdd_CP  
DVdd  
PWR Positive terminal for charge pump flying capacitor  
PWR Charge Pump supply; recommended to connect to DVdd  
PWR Digital voltage supply 1.26V – 1.95V  
39  
40  
6
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TLV320AIC3256  
TLV320AIC3256  
www.ti.com  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
Electrical Characteristics  
Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
VALUE  
–0.3 to 2.2  
UNIT  
V
AVdd to AVss  
DVdd to DVss  
–0.3 to 2.2  
V
IOVDD to IOVSS  
–0.3 to 3.9  
V
Digital Input voltage  
Analog input voltage  
Operating temperature range  
Storage temperature range  
Junction temperature (TJ Max)  
IOVSS to IOVDD + 0.3  
AVSS to AVdd + 0.3  
–40 to 85  
V
V
°C  
°C  
°C  
W
–55 to 150  
105  
QFN package (RSB)  
Power dissipation  
(TJ Max – TA)/ qJA  
35  
qJA Thermal impedance  
Power dissipation  
C/W  
W
WCSP package (YZF)  
(TJ Max – TA)/ qJA  
50  
qJA Thermal impedance  
C/W  
(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating  
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
Recommended Operating Conditions  
MIN NOM  
MAX UNIT  
AVdd  
Power Supply Voltage Range  
Power Supply Voltage Range  
PLL Input Frequency  
Referenced to AVss(1)  
Referenced to IOVSS(1)  
Referenced to DVss(1)  
Referenced to DVss(1)  
1.5  
1.1  
1.8  
1.95  
3.6  
V
IOVDD  
DVdd(2)  
1.26  
1.26  
1.5  
1.8  
1.8  
1.8  
1.95  
1.95  
1.95  
3.6  
DVDD_CP  
DRVDD_HP  
V
Referenced  
to AVss(1)  
Ground-centered config  
Unipolar config  
1.5  
Clock divider uses fractional divide  
10  
20  
MHz  
(D > 0), P=1, DVdd 1.65V (Refer to table in  
SLAU306, Maximum TLV320AIC3256 Clock  
Frequencies)  
Clock divider uses integer divide  
0.512  
20  
MHz  
MHz  
(D = 0), P=1, DVdd 1.65V (Refer to table in  
SLAU306, Maximum TLV320AIC3256 Clock  
Frequencies)  
MCLK  
Master Clock Frequency  
MCLK; Master Clock Frequency; DVdd  
1.65V  
50  
25  
MCLK; Master Clock Frequency; DVdd  
1.26V  
SCL  
SCL Clock Frequency  
400  
kHz  
kΩ  
LOL, LOR  
HPL, HPR  
Stereo line output load resistance  
0.6  
10  
16  
Stereo headphone output load  
resistance  
Single-ended configuration  
Differential configuration  
14.4  
Headphone output load resistance  
Digital output load capacitance  
Operating Temperature Range  
24.4  
32  
10  
CLout  
pF  
°C  
TOPR  
–40  
85  
(1) All grounds on board are tied together; they must not differ in voltage by more than 0.2V max, for any combination of ground signals.  
(2) At DVdd values lower than 1.65V, the PLL does not function. Please see table in SLAU306, Maximum TLV320AIC3256 Clock  
Frequencies for details on maximum clock frequencies.  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): TLV320AIC3256  
TLV320AIC3256  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
www.ti.com  
Electrical Characteristics, ADC  
At 25°C, AVdd, DVdd, IOVdd,DVdd_CP, DRVdd_HP = 1.8V, fs (Audio) = 48kHz, Cref = 1µF on REF PIN, PLL and Charge  
pump disabled unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AUDIO ADC (1) (2) (CM = 0.9V)  
Input signal level (for 0dB output) Single-ended, CM = 0.9V  
0.5  
VRMS  
1kHz sine wave input  
Single-ended Configuration  
IN1R to Right ADC and IN1L to Left ADC,  
Rin = 20K, fs = 48kHz,  
Device Setup  
AOSR = 128, MCLK = 256*fs,  
PLL Disabled; AGC = OFF,  
Channel Gain = 0dB,  
Processing Block = PRB_R1,  
Power Tune = PTM_R4  
Inputs ac-shorted to ground  
80  
93  
93  
Signal-to-noise ratio,  
A-weighted(1) (2)  
SNR  
DR  
dB  
IN2R, IN3R routed to Right ADC and ac-shorted to ground  
IN2L, IN3L routed to Left ADC and ac-shorted to ground  
Dynamic range A-weighted(1) (2) –60dB full-scale, 1-kHz input signal  
93  
–84  
–84  
dB  
dB  
–3 dB full-scale, 1-kHz input signal  
–70  
THD+ Total Harmonic Distortion plus  
Noise  
IN2R,IN3R routed to Right ADC  
IN2L, IN3L routed to Left ADC  
–3dB full-scale, 1-kHz input signal  
N
AUDIO ADC (CM=0.75V)  
Input signal level (for 0dB output) Single-ended, CM=0.75V, AVdd = 1.5V  
0.375  
VRMS  
1kHz sine wave input  
Single-ended Configuration  
INR, IN2R, IN3R routed to Right ADC  
INL, IN2L, IN3L routed to Left ADC  
Rin = 20K, fs = 48kHz,  
AOSR=128, MCLK = 256* fs,  
Device Setup  
PLL Disabled, AGC = OFF,  
Channel Gain = 0dB,  
Processing Block = PRB_R1  
Power Tune = PTM_R4  
SNR  
DR  
Signal-to-noise ratio, A-weighted Inputs ac-shorted to ground  
90  
dB  
(1) (2)  
Dynamic range A-weighted(1) (2) –60dB full-scale, 1-kHz input signal  
90  
dB  
dB  
THD+ Total Harmonic Distortion plus  
Noise  
–3dB full-scale, 1-kHz input signal  
–81  
N
(1) Ratio of output level with 1-kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a  
20-Hz to 20-kHz bandwidth using an audio analyzer.  
(2) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may  
result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, may affect dynamic specification values  
8
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TLV320AIC3256  
TLV320AIC3256  
www.ti.com  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
Electrical Characteristics, ADC (continued)  
At 25°C, AVdd, DVdd, IOVdd,DVdd_CP, DRVdd_HP = 1.8V, fs (Audio) = 48kHz, Cref = 1µF on REF PIN, PLL and Charge  
pump disabled unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AUDIO ADC (Gain=40dB)  
Input signal level (for 0dB output) Differential Input, CM=0.9V, Channel Gain=40dB  
10  
mVRMS  
1kHz sine wave input  
Differential configuration  
IN1L and IN1R routed to Right ADC  
IN2L and IN2R routed to Left ADC  
Device Setup  
Rin =10K, fs =48kHz, AOSR=128  
MCLK = 256* fs PLL Disabled  
AGC = OFF  
Processing Block = PRB_R1,  
Power Tune = PTM_R4  
ICN  
Idle-Channel Noise,  
A-weighted(3) (4)  
Inputs ac-shorted to ground, input referred noise  
2.8  
0.1  
mVRMS  
AUDIO ADC  
1kHz sine wave input  
dB  
Single-ended configuration  
Rin = 20K fs = 48kHz, AOSR=128,  
MCLK = 256* fs, PLL Disabled  
AGC = OFF, Channel Gain=0dB  
Processing Block = PRB_R1,  
Power Tune = PTM_R4, CM=0.9V  
Gain Error  
1kHz sine wave input at -3dBFS  
Single-ended configuration  
IN1L routed to Left ADC  
IN1R routed to Right ADC, Rin = 20K  
AGC = OFF, AOSR = 128,  
109  
108  
dB  
dB  
Input Channel Separation  
Input Pin Crosstalk  
Channel Gain=0dB, CM=0.9V  
1kHz sine wave input at –3dBFS on IN2L, IN2L internally  
not routed.  
IN1L routed to Left ADC  
ac-coupled to ground  
1kHz sine wave input at –3dBFS on IN2R,  
IN2R internally not routed.  
IN1R routed to Right ADC  
ac-coupled to ground  
Single-ended configuration Rin = 20K,  
AOSR=128 Channel, Gain=0dB, CM=0.9V  
217Hz, 100mVpp signal on AVdd,  
Single-ended configuration, Rin=20K,  
Channel Gain=0dB; CM=0.9V  
55  
dB  
PSRR  
Single-Ended, Rin = 10K, PGA gain set to 0dB  
Single-Ended, Rin = 10K, PGA gain set to 47.5dB  
Single-Ended, Rin = 20K, PGA gain set to 0dB  
Single-Ended, Rin = 20K, PGA gain set to 47.5dB  
Single-Ended, Rin = 40K, PGA gain set to 0dB  
Single-Ended, Rin = 40K, PGA gain set to 47.5dB  
1-kHz tone  
0
47.5  
–6  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
ADC programmable gain  
amplifier gain  
41.5  
–12  
35.5  
0.5  
ADC programmable gain  
amplifier step size  
(3) Ratio of output level with 1-kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a  
20-Hz to 20-kHz bandwidth using an audio analyzer.  
(4) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may  
result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, may affect dynamic specification values  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): TLV320AIC3256  
 
TLV320AIC3256  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
www.ti.com  
Electrical Characteristics, Bypass Outputs  
At 25°C, AVdd, DVdd, IOVdd,DVdd_CP, DRVdd_HP = 1.8V, fs (Audio) = 48kHz, Cref = 1µF on REF PIN, PLL and Charge  
pump disabled unless otherwise noted.  
PARAMETER  
ANALOG BYPASS TO HEADPHONE AMPLIFIER, DIRECT MODE  
Load = 16(single-ended), 50pF;  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input and Output CM=0.9V;  
Device Setup  
Headphone Output on DRVdd_HP Supply;  
IN1L routed to HPL and IN1R routed to HPR;  
Channel Gain=0dB  
Gain Error  
Noise, A-weighted(1)  
0.8  
3.3  
dB  
Idle Channel, IN1L and IN1R ac-shorted to  
ground  
mVRMS  
THD  
Total Harmonic Distortion  
446mVrms, 1-kHz input signal  
–81  
dB  
ANALOG BYPASS TO LINE-OUT AMPLIFIER, PGA MODE  
Load = 10KOhm (single-ended), 50pF;  
Input and Output CM=0.9V;  
Device Setup  
LINE Output on DRVdd_HP Supply;  
IN1L, IN1R routed to line out  
Channel Gain = 0dB  
Gain Error Gain Error  
0.8  
6.7  
dB  
Idle Channel,  
mVRMS  
IN1L and IN1R ac-shorted to ground  
Noise, A-weighted(1)  
Channel Gain=40dB,  
3
mVRMS  
Input Signal (0dB) = 5mVrms  
Inputs ac-shorted to ground, Input Referred  
(1) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may  
result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, may affect dynamic specification values  
10  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TLV320AIC3256  
 
 
 
TLV320AIC3256  
www.ti.com  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
Electrical Characteristics, Microphone Interface  
At 25°C, AVdd, DVdd, IOVdd,DVdd_CP, DRVdd_HP = 1.8V, fs (Audio) = 48kHz, Cref = 1µF on REF PIN, PLL and Charge  
pump disabled unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MICROPHONE BIAS  
Bias voltage  
Bias voltage CM=0.9V, DRVdd_HP = 1.8V  
Micbias Mode 0, Connect to AVdd or  
DRVdd_HP  
1.5  
V
Micbias Mode 3, Connect to AVdd  
Micbias Mode 3, Connect to DRVdd_HP  
CM=0.75V, DRVdd_HP = 1.8V  
AVdd  
V
V
DRVdd_HP  
Micbias Mode 0, Connect to AVdd or  
DRVdd_HP  
1.23  
1.43  
V
V
Micbias Mode 1, Connect to AVdd or  
DRVdd_HP  
Micbias Mode 3, Connect to AVdd  
AVdd  
V
V
Micbias Mode 3, Connect to DRVdd_HP  
DRVdd_HP  
MICROPHONE BIAS  
Bias voltage  
Bias voltage CM=0.9V, DRVdd_HP = 3.3V  
Micbias Mode 0, Connect to DRVdd_HP  
Micbias Mode 1, Connect to DRVdd_HP  
Micbias Mode 2, Connect to DRVdd_HP  
Micbias Mode 3, Connect to DRVdd_HP  
CM=0.75V, DRVdd_HP = 3.3V  
1.5  
1.7  
V
V
V
V
2.5  
DRVdd_HP  
Micbias Mode 0, Connect to DRVdd_HP  
Micbias Mode 1, Connect to DRVdd_HP  
Micbias Mode 2, Connect to DRVdd_HP  
Micbias Mode 3, Connect to DRVdd_HP  
1.23  
1.43  
V
V
V
V
2.1  
DRVdd_HP  
9.5  
Output Noise  
CM=0.9V, Micbias Mode 2, A-weighted, 20Hz  
to 20kHz bandwidth,  
mVRMS  
Current load = 0mA.  
Current Sourcing  
Inline Resistance  
Micbias Mode 2, Connect to DRVdd_HP  
Micbias Mode 3, Connect to AVdd  
Micbias Mode 3, Connect to DRVdd_HP  
3
131  
89  
mA  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): TLV320AIC3256  
 
 
TLV320AIC3256  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
www.ti.com  
Electrical Characteristics, Audio DAC Outputs  
At 25°C, AVdd, DVdd, IOVdd,DVdd_CP, DRVdd_HP = 1.8V, fs (Audio) = 48kHz, Cref = 1µF on REF PIN, PLL and Charge  
pump disabled unless otherwise noted.  
PARAMETER  
AUDIO DAC – STEREO SINGLE-ENDED LINE OUTPUT (CM=0.9V)  
Load = 10 k(single-ended), 56pF  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Line Output on AVdd Supply  
Input & Output CM=0.9V  
Device Setup  
DOSR = 128, MCLK=256* fs,  
Channel Gain = 0dB, word length = 16 bits,  
Processing Block = PRB_P1,  
Power Tune = PTM_P3  
Full scale output voltage (0dB)  
Signal-to-noise ratio A-weighted(1) (2)  
0.5  
100  
100  
VRMS  
dB  
SNR  
DR  
All zeros fed to DAC input  
87  
(1) (2)  
Dynamic range, A-weighted  
–60dB 1kHz input full-scale signal, Word  
length=20 bits  
dB  
THD+N Total Harmonic Distortion plus Noise  
DAC Gain Error  
–3dB full-scale, 1-kHz input signal  
0 dB, 1kHz input full scale signal  
Mute  
–81  
0.5  
–70  
dB  
dB  
dB  
dB  
DAC Mute Attenuation  
121  
108  
DAC channel separation  
–1 dB, 1kHz signal, between left and right HP  
out  
100mVpp, 1kHz signal applied to AVdd  
100mVpp, 217Hz signal applied to AVdd  
72  
80  
dB  
dB  
DAC PSRR  
AUDIO DAC – STEREO SINGLE-ENDED LINE OUTPUT (CM=0.75V)  
Load = 10 k(single-ended), 56pF  
Line Output on AVdd Supply  
Input & Output CM=0.75V; AVdd=1.5V  
DOSR = 128  
Device Setup  
MCLK=256* fs  
Channel Gain = 0dB  
word length = 20-bits  
Processing Block = PRB_P1  
Power Tune = PTM_P4  
Full scale output voltage (0dB)  
Signal-to-noise ratio, A-weighted  
0.375  
99  
VRMS  
dB  
(1) (2)  
SNR  
DR  
All zeros fed to DAC input  
(1) (2)  
Dynamic range, A-weighted  
–60dB 1 kHz input full-scale signal  
–1 dB full-scale, 1-kHz input signal  
98  
dB  
THD+N Total Harmonic Distortion plus Noise  
–77  
dB  
AUDIO DAC – STEREO SINGLE-ENDED HEADPHONE OUTPUT (GROUND-CENTERED CIRCUIT CONFIGURATION)  
Load = 16(single-ended), 56pF  
Input CM=0.9V, Output CM=0V  
DOSR = 128,  
MCLK=256* fs, Channel Gain=0dB  
word length = 16 bits;  
Device Setup  
Processing Block = PRB_P1  
Power Tune = PTM_P3  
FS1  
Full scale output voltage (for THD ≤  
0.65  
VRMS  
–40dB)  
SNR  
DR  
Signal-to-noise ratio, A-weighted(1) (2)  
All zeros fed to DAC input  
85  
95  
93  
dB  
dB  
(1) (2)  
Dynamic range, A-weighted  
–60dB 1kHz input full-scale signal, Word  
Length = 20 bits, Power Tune = PTM_P4  
THD+N Total Harmonic Distortion plus Noise  
500mVRMS output (corresponds to FS1 –  
2.3dB),  
–70  
–55  
dB  
1-kHz input signal  
(1) Ratio of output level with 1-kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a  
20-Hz to 20-kHz bandwidth using an audio analyzer.  
(2) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may  
result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, may affect dynamic specification values  
12  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TLV320AIC3256  
 
TLV320AIC3256  
www.ti.com  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
Electrical Characteristics, Audio DAC Outputs (continued)  
At 25°C, AVdd, DVdd, IOVdd,DVdd_CP, DRVdd_HP = 1.8V, fs (Audio) = 48kHz, Cref = 1µF on REF PIN, PLL and Charge  
pump disabled unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
500mVRMS output, 1kHz input full scale signal  
Mute  
MIN  
TYP  
MAX  
UNIT  
DAC Gain Error  
0.5  
dB  
DAC Mute Attenuation  
DAC channel separation  
118  
102  
dB  
–3dB, 1kHz signal, between left and right HP  
out  
dB  
100mVpp, 1kHz signal applied to AVdd  
100mVpp, 217Hz signal applied to AVdd  
THD –40dB  
66  
77  
dB  
dB  
DAC PSRR  
Power Delivered  
26.5  
mW  
FS2  
Full scale output voltage (for THD ≤  
–40dB)  
Load = 32Ω  
0.85  
V
SNR  
Signal-to-noise ratio, A-weighted(1) (2)  
All zeros fed to DAC input, Load = 32Ω  
THD –40dB, Load = 32Ω  
96  
dB  
Power Delivered  
22.5  
mW  
AUDIO DAC – STEREO SINGLE-ENDED HEADPHONE OUTPUT (UNIPOLAR CIRCUIT CONFIGURATION)  
Load = 16(single-ended), 56pF,  
Headphone Output on AVdd Supply,  
Input & Output CM=0.9V  
Device Setup  
DOSR = 128, MCLK=256* fs,  
Channel Gain = 0dB  
Processing Block = PRB_P1,  
Power Tune = PTM_P3  
Full scale output voltage (0dB)  
Signal-to-noise ratio, A-weighted(3) (4)  
0.5  
100  
100  
–83  
VRMS  
dB  
SNR  
DR  
All zeros fed to DAC input  
87  
(3) (4)  
Dynamic range, A-weighted  
-60dB 1 kHz input full-scale signal  
–3dB full-scale, 1-kHz input signal  
dB  
THD+N Total Harmonic Distortion plus Noise  
–70  
dB  
(3) Ratio of output level with 1-kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a  
20-Hz to 20-kHz bandwidth using an audio analyzer.  
(4) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may  
result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, may affect dynamic specification values  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): TLV320AIC3256  
 
 
TLV320AIC3256  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
www.ti.com  
Electrical Characteristics, Misc.  
At 25°C, AVdd, DVdd, IOVdd,DVdd_CP, DRVdd_HP = 1.8V, fs (Audio) = 48kHz, Cref = 1µF on REF PIN, PLL and Charge  
pump disabled unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
REFERENCE  
CMMode = 0 (0.9V)  
0.9  
0.75  
1.1  
Reference Voltage Settings  
Reference Noise  
V
CMMode = 1 (0.75V)  
CM=0.9V, A-weighted, 20Hz to 20kHz bandwidth,  
mVRMS  
Cref = 1mF  
Decoupling Capacitor  
Bias Current  
1
mF  
mA  
120  
miniDSP(1)  
Maximum miniDSP clock frequency - ADC  
Maximum miniDSP clock frequency - DAC  
DVdd = 1.65V  
DVdd = 1.65V  
58.9  
58.9  
MHz  
MHz  
Shutdown Current  
Device Setup  
I(total)  
DVdd is provided externally, no clocks supplied, no  
digital activity, register values are retained  
Sum of all supply currents, all supplies at 1.8V  
<10  
mA  
(1) The miniDSP clock speed is specified by design and not tested in production.  
Electrical Characteristics, Logic Levels  
At 25°C, AVdd, DVdd, IOVDD = 1.8V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
CMOS  
MAX  
UNIT  
LOGIC FAMILY  
VIH  
Logic Level  
IIH = 5 mA, IOVDD > 1.6V  
0.7 × IOVDD  
0.9 × IOVDD  
IOVDD  
V
V
IIH = 5mA, 1.2V IOVDD <1.6V  
IIH = 5mA, IOVDD < 1.2V  
IIL = 5 mA, IOVDD > 1.6V  
IIL = 5mA, 1.2V IOVDD <1.6V  
IIL = 5mA, IOVDD < 1.2V  
IOH = 2 TTL loads  
V
VIL  
–0.3  
0.3 × IOVDD  
0.1 × IOVDD  
0
V
V
V
VOH  
VOL  
0.8 × IOVDD  
V
IOL = 2 TTL loads  
0.1 × IOVDD  
V
Capacitive Load  
10  
pF  
14  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TLV320AIC3256  
 
 
 
 
TLV320AIC3256  
www.ti.com  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
Interface Timing  
Typical Timing Characteristics — Audio Data Serial Interface Timing (I2S)  
All specifications at 25°C, DVdd = 1.8V  
WCLK  
t (WS)  
d
BCLK  
t (DO-BCLK)  
d
t (DO-WS)  
d
DOUT  
t (DI)  
t (DI)  
S
h
DIN  
I2S/LJF Timing in Master Mode  
Figure 4. I2S/LJF/RJF Timing in Master Mode  
Table 3. I2S/LJF/RJF Timing in Master Mode (see Figure 4)  
PARAMETER  
IOVDD=1.8V  
IOVDD=3.3V  
UNITS  
MIN  
MAX  
MIN  
MAX  
td(WS)  
WCLK delay  
30  
20  
22  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td (DO-WS)  
WCLK to DOUT delay (For LJF Mode only)  
td (DO-BCLK)  
BCLK to DOUT delay  
DIN setup  
ts(DI)  
th(DI)  
tr  
8
8
8
8
DIN hold  
Rise time  
24  
24  
12  
12  
tf  
Fall time  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): TLV320AIC3256  
 
 
TLV320AIC3256  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
www.ti.com  
WCLK  
th(WS)  
ts(WS)  
tL(BCLK)  
td(DO-WS)  
tH(BCLK)  
td(DO-BCLK)  
BCLK  
DOUT  
DIN  
th(DI)  
ts(DI)  
Figure 5. I2S/LJF/RJF Timing in Slave Mode  
Table 4. I2S/LJF/RJF Timing in Slave Mode (see Figure 5)  
PARAMETER  
IOVDD=1.8V  
IOVDD=3.3V  
UNITS  
MIN  
35  
35  
8
MAX  
MIN  
35  
35  
8
MAX  
tH (BCLK)  
tL (BCLK)  
ts (WS)  
th (WS)  
td (DO-WS)  
td (DO-BCLK)  
ts(DI)  
BCLK high period  
ns  
BCLK low period  
WCLK setup  
WCLK hold  
8
8
WCLK to DOUT delay (For LJF mode only)  
20  
22  
20  
22  
BCLK to DOUT delay  
DIN setup  
8
8
8
8
th(DI)  
DIN hold  
tr  
Rise time  
4
4
4
4
tf  
Fall time  
16  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TLV320AIC3256  
 
TLV320AIC3256  
www.ti.com  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
Typical DSP Timing Characteristics  
All specifications at 25°C, DVdd = 1.8V  
WCLK  
t (WS)  
d
t (WS)  
d
BCLK  
DOUT  
DIN  
t (DO-BCLK)  
d
t (DI)  
h
t (DI)  
s
Figure 6. DSP Timing in Master Mode  
Table 5. DSP Timing in Master Mode (see Figure 6)  
PARAMETER  
IOVDD=1.8V  
IOVDD=3.3V  
UNITS  
MIN  
MAX  
MIN  
MAX  
td (WS)  
WCLK delay  
30  
22  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
td (DO-BCLK)  
BCLK to DOUT delay  
DIN setup  
ts(DI)  
th(DI)  
tr  
8
8
8
8
DIN hold  
Rise time  
24  
24  
12  
12  
tf  
Fall time  
WCLK  
t (ws)  
h
t (ws)  
t (ws)  
h
s
t (ws)  
h
t (BCLK)  
L
BCLK  
DOUT  
DIN  
t
(BCLK)  
H
t (DO-BCLK)  
d
t (DI)  
h
t (DI)  
s
Figure 7. DSP Timing in Slave Mode  
Table 6. DSP Timing in Slave Mode (see Figure 7)  
PARAMETER  
IOVDD=1.8V  
IOVDD=3.3V  
UNITS  
MIN  
35  
35  
8
MAX  
MIN  
35  
35  
8
MAX  
tH (BCLK)  
tL (BCLK)  
ts(WS)  
BCLK high period  
BCLK low period  
WCLK setup  
WCLK hold  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
th(WS)  
8
8
td (DO-BCLK)  
BCLK to DOUT delay  
DIN setup  
22  
22  
ts(DI)  
th(DI)  
tr  
8
8
8
8
DIN hold  
Rise time  
4
4
4
4
tf  
Fall time  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): TLV320AIC3256  
 
 
TLV320AIC3256  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
www.ti.com  
I2C Interface Timing  
Figure 8. I2C Interface Timing  
Table 7. I2C Interface Timing  
PARAMETER  
TEST CONDITION  
Standard-Mode  
Fast-Mode  
MIN TYP  
UNITS  
MIN  
0
TYP  
MAX  
MAX  
fSCL  
SCL clock frequency  
100  
0
400  
kHz  
tHD;STA Hold time (repeated) START  
condition. After this period, the first  
clock pulse is generated.  
4.0  
0.8  
ms  
tLOW  
tHIGH  
LOW period of the SCL clock  
HIGH period of the SCL clock  
4.7  
4.0  
4.7  
1.3  
0.6  
0.8  
ms  
ms  
ms  
tSU;STA Setup time for a repeated START  
condition  
tHD;DAT Data hold time: For I2C bus  
devices  
0
3.45  
0
0.9  
ms  
tSU;DAT Data set-up time  
250  
100  
ns  
ns  
ns  
ms  
ms  
tr  
tf  
SDA and SCL Rise Time  
SDA and SCL Fall Time  
1000 20+0.1Cb  
300  
300  
300 20+0.1Cb  
tSU;STO Set-up time for STOP condition  
4.0  
4.7  
0.8  
1.3  
tBUF  
Bus free time between a STOP  
and START condition  
Cb  
Capacitive load for each bus line  
400  
400  
pF  
18  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TLV320AIC3256  
TLV320AIC3256  
www.ti.com  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
SPI Interface Timing  
SS  
t
td  
tLag  
t
tLead  
sck  
tf  
tr  
SCLK  
MISO  
tsckl  
tsckh  
tv  
tdis  
MSB OUT  
thi  
BIT 6 . . . 1  
LSB OUT  
t
a
tsu  
MOSI  
MSB IN  
BIT 6 . . . 1  
LSB IN  
Figure 9. SPI Interface Timing Diagram  
Timing Requirements (See Figure 9)  
At 25°C, DVdd = 1.8V  
Table 8. SPI Interface Timing  
PARAMETER  
TEST CONDITION  
IOVDD=1.8V  
IOVDD=3.3V  
MIN TYP  
UNITS  
MIN  
100  
50  
TYP MAX  
MAX  
tsck  
tsckh  
tsckl  
tlead  
tlag  
td  
SCLK Period(1)  
50  
25  
25  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Pulse width High  
SCLK Pulse width Low  
Enable Lead Time  
50  
30  
Enable Lag Time  
30  
Sequential Transfer Delay  
Slave DOUT access time  
Slave DOUT disable time  
DIN data setup time  
DIN data hold time  
40  
ta  
40  
40  
20  
20  
tdis  
tsu  
15  
15  
10  
10  
thi  
tv;DOUT DOUT data valid time  
25  
4
18  
4
tr  
tf  
SCLK Rise Time  
SCLK Fall Time  
4
4
(1) These parameters are based on characterization and are not tested in production.  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): TLV320AIC3256  
 
TLV320AIC3256  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
www.ti.com  
Typical Characteristics  
Device Power Consumption  
Device power consumption largely depends on PowerTune configuration. For information on device power  
consumption, see the TLV320AIC3256 Application Reference Guide, literature number SLAU306.  
Typical Performance  
ADC SNR  
vs  
TOTAL HARMONIC DISTORTION GCHP CONFIGURATION  
vs  
CHANNEL GAIN  
HEADPHONE OUTPUT POWER  
100  
95  
90  
85  
80  
75  
70  
65  
60  
0
R
= 10 kW, Differential  
IN  
-10  
R
= 20 kW, Differential  
IN  
-20  
-30  
R
= 10 kW, Single Ended  
IN  
32W  
-40  
16W  
R
= 20 kW, Single Ended  
IN  
-50  
-60  
-70  
-80  
55  
50  
-20  
0
20  
Channel Gain - dB  
40  
60  
0
10  
20  
30  
40  
50  
Headphone Output Power mW  
Figure 10.  
Figure 11.  
TOTAL HARMONIC DISTORTION UNIPOLAR  
CONFIGURATION  
TOTAL HARMONIC DISTORTION  
vs  
vs  
HEADPHONE OUTPUT POWER  
HEADPHONE OUTPUT POWER  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
CM = 0.9 V,  
32 W BTL Load  
CM = 0.9 V,  
= 32 W  
CM = 1.65 V,  
R = 32 W  
L
R
= 16 W  
R
L
L
GCHP Mode  
DRVDD_HP = 1.8V  
CM = 0.9 V  
Unipolar Mode  
DRVDD_HP = 3.3V  
CM = 1.65 V  
CM = 1.65 V,  
= 16 W  
R
L
-80  
-90  
-80  
-90  
0
50  
100  
150  
200  
0
20  
40  
60  
80  
Headphone Output Power - mW  
Headphone Output Power - mW  
Figure 12.  
Figure 13.  
20  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TLV320AIC3256  
TLV320AIC3256  
www.ti.com  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
HEADPHONE SNR AND OUTPUT POWER  
vs  
OUTPUT COMMON MODE SETTING  
105  
100  
95  
60  
50  
SNR  
90  
40  
30  
20  
10  
0
85  
80  
Output Power  
75  
70  
65  
60  
0
0.75  
0.9  
1.25  
Output Common Mode Setting  
1.5  
1.65  
Figure 14.  
FFT  
DAC PLAYBACK TO HEADPHONE FFT @ -1dBFS  
(UNIPOLAR MODE)  
SINGLE ENDED LINE INPUT TO ADC FFT @ -1dBr  
vs  
vs  
FREQUENCY  
FREQUENCY  
0
-20  
0
-20  
DAC  
ADC  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
-160  
0
5000  
10000  
15000  
20000  
0
5000  
10000  
15000  
20000  
f - Frequency - Hz  
f - Frequency - Hz  
Figure 15.  
Figure 16.  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): TLV320AIC3256  
TLV320AIC3256  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
www.ti.com  
DAC PLAYBACK TO HEADPHONE FFT @ -1dBFS  
(GROUND-CENTERED MODE)  
DAC PLAYBACK TO LINE-OUT FFT @ -1dBFS  
vs  
vs  
FREQUENCY  
FREQUENCY  
0
0
-20  
DAC  
DAC  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0
5000  
10000  
15000  
20000  
0
5000  
10000  
15000  
20000  
f - Frequency - Hz  
f - Frequency - Hz  
Figure 17.  
Figure 18.  
LINE INPUT TO HEADPHONE FFT @ 446mVrms  
(UNIPOLAR MODE)  
LINE INPUT TO LINE-OUT FFT @ 446mVrms (PGA MODE)  
vs  
vs  
FREQUENCY  
FREQUENCY  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
-140  
-120  
-140  
0
5000  
10000  
15000  
20000  
0
5000  
10000  
15000  
20000  
f - Frequency - Hz  
f - Frequency - Hz  
Figure 19.  
Figure 20.  
22  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TLV320AIC3256  
TLV320AIC3256  
www.ti.com  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
Typical Circuit Configuration  
Host Processor  
DOUT  
Reset MCLK  
SCL  
SDA  
BCLK WCLK DIN  
0.1u  
0.1u  
1K  
SPI_Select  
MICBIAS  
LOL  
LOR  
1k 1k 2.7k  
4700p  
TPA2012  
Class D Amp  
0.1u  
0.1u  
1K  
0.1uF  
4700p  
IN1_R  
IN1_L  
MFP3/SCLK  
MFP4/MISO  
MFP5/GPIO  
IOVDD  
0.1uF  
0.1uF  
0.1uF  
TLV320AIC3256  
1.1...3.6V  
IN2_L  
AVDD  
1.8...1.95V  
IN2_R  
MICDET  
AVDD  
DVDD  
1k  
1k  
DVDD_CP  
DRVDD_HP  
FLY_P  
10 uF  
0.1uF  
IN3_R  
2.2 uF  
X7R  
IN3_L  
FLY_N  
GND_Sense  
DVSS_  
HPR  
HPL  
REF  
AVSS  
IOVSS  
CP  
DVSS  
DVSS  
VNEG  
Headset_Mic  
Earjack  
Headset_Spkr_R  
Headset_Spkr_L  
Headset_Gnd  
microphone  
and headset  
speakers  
2.2 uF  
X7R  
1uF  
Figure 21. Typical Circuit Configuration  
APPLICATION OVERVIEW  
The TLV320AIC3256 offers a wide range of configuration options. Figure 1 shows the basic functional blocks of  
the device.  
Device Connections  
Digital Pins  
Only a small number of digital pins are dedicated to a single function; whenever possible, the digital pins have a  
default function, and also can be reprogrammed to cover alternative functions for various applications.  
The fixed-function pins are Reset and the SPI_Select pin, which are HW control pins. Depending on the state of  
SPI_Select, the two control-bus pins SCL/SS and SDA/MOSI are configured for either I2C or SPI protocol.  
Other digital IO pins can be configured for various functions via register control. An overview of available  
functionality is given in Multifunction Pins.  
Analog Pins  
Analog functions can also be configured to a large degree. For minimum power consumption, analog blocks are  
powered down by default. The blocks can be powered up with fine granularity according to the application needs.  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): TLV320AIC3256  
TLV320AIC3256  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
www.ti.com  
Multifunction Pins  
Table 9 shows the possible allocation of pins for specific functions. The PLL input, for example, can be  
programmed to be any of 4 pins (MCLK, BCLK, DIN, GPIO).  
Table 9. Multifunction Pin Assignments  
1
2
3
4
5
6
7
8
Pin Function  
MCLK  
BCLK  
WCLK  
DIN  
MFP1  
DOUT  
MFP2  
DMDIN/  
MFP3/  
SCLK  
DMCLK/  
MFP4/  
MISO  
GPIO  
MFP5  
A
B
C
D
E
F
PLL Input  
S(1)  
S(1) ,D(4)  
S(2)  
S(2)  
S(2),D  
E(5)  
E
S(3)  
S(3)  
Codec Clock Input  
I2S BCLK input  
I2S BCLK output  
I2S WCLK input  
I2S WCLK output  
E, D  
E
G
H
I
I2S ADC word clock input  
I2S ADC WCLK out  
I2S DIN  
E
E
E
E
E
E, D  
J
I2S DOUT  
E, D  
E
K
K
K
L
General Purpose Output I  
General Purpose Output II  
General Purpose Output III  
General Purpose Input I  
General Purpose Input II  
General Purpose Input III  
INT1 output  
E
E
L
E
L
E
E
E
E
E
E
M
N
Q
R
S
T
E
E
E
E
INT2 output  
Secondary I2S BCLK input  
Secondary I2S WCLK in  
Secondary I2S DIN  
Secondary I2S DOUT  
Secondary I2S BCLK OUT  
Secondary I2S WCLK OUT  
Aux Clock Output  
E
E
E
E
E
E
E
U
V
X
E
E
E
E
E
E
(1) S(1): The MCLK pin can be used to drive the PLL and Codec Clock inputs simultaneously  
(2) S(2): The BCLK pin can be used to drive the PLL and Codec Clock and audio interface bit clock inputs simultaneously  
(3) S(3): The GPIO/MFP5 pin can be used to drive the PLL and Codec Clock inputs simultaneously  
(4) D: Default Function  
(5) E: The pin is exclusively used for this function, no other function can be implemented with the same pin (e.g. if GPIO/MFP5 has been  
allocated for General Purpose Output, it cannot be used as the INT1 output at the same time)  
24  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TLV320AIC3256  
 
TLV320AIC3256  
www.ti.com  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
Analog Audio I/O  
The analog I/O path of the TLV320AIC3256 features a large set of options for signal conditioning as well as  
signal routing:  
6 analog inputs which can be mixed and/or multiplexed in single-ended and/or differential configuration  
2 programmable gain amplifiers (PGA) with a range of 0 to +47.5dB  
2 mixer amplifiers for analog bypass  
2 low power analog bypass channels  
Mute function  
Channel-to-channel phase adjustment  
Fast charge of ac-coupling capacitors  
Anti thump  
Analog Low Power Bypass  
The TLV320AIC3256 offers two analog-bypass modes. In either of the modes, an analog input signal can be  
routed from an analog input pin to an amplifier driving an analog output pin. Neither the ADC nor the DAC  
resources are required for such operation; this supports low-power operation during analog-bypass mode.  
In analog low-power bypass mode, line-level signals can be routed directly from the analog inputs IN1_L to the  
left headphone amplifier (HPL) and IN1_R to HPR.  
ADC Bypass Using Mixer Amplifiers  
In addition to the low-power bypass mode, there is a bypass mode that uses the programmable gain amplifiers of  
the input stage in conjunction with a mixer amplifier. With this mode, microphone-level signals can be amplified  
and routed to the line or headphone outputs, fully bypassing the ADC and DAC.  
To enable this mode, the mixer amplifiers are powered on via software command.  
Headphone Output  
The stereo headphone drivers on pins HPL and HPR can drive loads with impedances down to 16Ω in  
single-ended DC-coupled headphone configurations. An integral charge pump generates the negative supply  
required to operate the headphone drivers in dc-coupled mode, where the common mode of the output signal is  
made equal to the ground of the headphone load using a ground-sense circuit. Operation of headphone drivers  
in dc-coupled (ground centered mode) eliminates the need for large dc-blocking capacitors.  
HPL  
HPR  
GND_SENSE  
Figure 22. TLV320AIC3256 Ground-Centered Headphone Output  
Alternatively the headphone amplifier can also be operated in a unipolar circuit configuration using DC blocking  
capacitors.  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): TLV320AIC3256  
TLV320AIC3256  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
www.ti.com  
Line Outputs  
Line Out Amplifier Overview  
The stereo line level drivers on LOL and LOR pins can drive a wide range of line level resistive impedances in  
the range of 600Ω to 10kΩ. The output common modes of line level drivers can be configured to equal either the  
analog input common-mode setting, or 1.65V. With output common-mode setting of 1.65V and DRVdd_HP  
supply at 3.3V the line-level drivers can drive up to 1Vrms output signal. The line-level drivers can drive out a  
mixed combination of DAC signal and attenuated ADC PGA signal. Signal mixing is register-programmable.  
ADC  
The TLV320AIC3256 includes a stereo audio ADC, which uses a delta-sigma modulator with a programmable  
oversampling ratio, followed by a digital decimation filter. The ADC supports sampling rates from 8kHz to  
192kHz. In order to provide optimal system power management, the stereo recording path can be powered up  
one channel at a time, to support the case where only mono record capability is required.  
The ADC path of the TLV320AIC3256 features a large set of options for signal conditioning as well as signal  
routing:  
2 ADCs  
6 analog inputs which can be mixed and/or multiplexed in single-ended and/or differential configuration  
2 programmable gain amplifiers (PGA) with a range of 0 to +47.5dB  
2 mixer amplifiers for analog bypass  
2 low power analog bypass channels  
Fine gain adjust of digital channels with 0.1 dB step size  
Digital volume control with a range of -12 to +20dB  
Mute function  
In addition to the standard set of ADC features the TLV320AIC3256 also offers the following special functions:  
Channel-to-channel phase adjustment  
Fast charge of ac-coupling capacitors  
Anti thump  
Adaptive filter mode  
ADC Processing  
The TLV320AIC3256 ADC channel includes a built-in digital decimation filter to process the oversampled data  
from the to generate digital data at Nyquist sampling rate with high dynamic range. The decimation filter can be  
chosen from three different types, depending on the required frequency response, group delay and sampling  
rate.  
ADC Processing Blocks  
The TLV320AIC3256 offers a range of processing blocks which implement various signal processing capabilities  
along with decimation filtering. These processing blocks give users the choice of how much and what type of  
signal processing they may use and which decimation filter is applied.  
The choice between these processing blocks is part of the PowerTune strategy to balance power conservation  
and signal-processing flexibility. Less signal-processing capability reduces the power consumed by the device.  
Table 10 gives an overview of the available processing blocks of the ADC channel and their properties. The  
Resource Class Column (RC) gives an approximate indication of power consumption.  
The signal processing blocks available are:  
First-order IIR  
Scalable number of biquad filters  
Variable-tap FIR filter  
26  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TLV320AIC3256  
TLV320AIC3256  
www.ti.com  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
The processing blocks are tuned for common cases and can achieve high anti-alias filtering or low-group delay in  
combination with various signal processing effects such as audio effects and frequency shaping. The available  
first order IIR, BiQuad and FIR filters have fully user-programmable coefficients. The Resource Class Column  
(RC) gives an approximate indication of power consumption.  
Table 10. ADC Processing Blocks  
Processing  
Blocks  
Channel  
Decimation  
Filter  
1st Order  
IIR Available  
Number  
BiQuads  
FIR  
Required  
AOSR Value  
Resource  
Class  
PRB_R1(1)  
PRB_R2  
PRB_R3  
PRB_R4  
PRB_R5  
PRB_R6  
PRB_R7  
PRB_R8  
PRB_R9  
PRB_R10  
PRB_R11  
PRB_R12  
PRB_R13  
PRB_R14  
PRB_R15  
PRB_R16  
PRB_R17  
PRB_R18  
Stereo  
Stereo  
Stereo  
Right  
A
A
A
A
A
A
B
B
B
B
B
B
C
C
C
C
C
C
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
0
5
0
0
5
0
0
3
0
0
3
0
0
5
0
0
5
0
No  
No  
128,64  
128,64  
128,64  
128,64  
128,64  
128,64  
64  
6
8
8
3
4
4
3
4
4
2
2
2
3
4
4
2
2
2
25-Tap  
No  
Right  
No  
Right  
25-Tap  
No  
Stereo  
Stereo  
Stereo  
Right  
No  
64  
20-Tap  
No  
64  
64  
Right  
No  
64  
Right  
20-Tap  
No  
64  
Stereo  
Stereo  
Stereo  
Right  
32  
No  
32  
25-Tap  
No  
32  
32  
Right  
No  
32  
Right  
25-Tap  
32  
(1) Default  
For more detailed information see the Application Reference Guide, SLAU306  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): TLV320AIC3256  
TLV320AIC3256  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
www.ti.com  
DAC  
The TLV320AIC3256 includes a stereo audio DAC supporting data rates from 8kHz to 192kHz. Each channel of  
the stereo audio DAC consists of a signal-processing engine with fixed processing blocks, a programmable  
miniDSP, a digital interpolation filter, multi-bit digital delta-sigma modulator, and an analog reconstruction filter.  
The DAC is designed to provide enhanced performance at low sampling rates through increased oversampling  
and image filtering, thereby keeping quantization noise generated within the delta-sigma modulator and signal  
images strongly suppressed within the audio band to beyond 20kHz. To handle multiple input rates and optimize  
power dissipation and performance, the TLV320AIC3256 allows the system designer to program the  
oversampling rates over a wide range from 1 to 1024. The system designer can choose higher oversampling  
ratios for lower input data rates and lower oversampling ratios for higher input data rates.  
The TLV320AIC3256 DAC channel includes a built-in digital interpolation filter to generate oversampled data for  
the sigma-delta modulator. The interpolation filter can be chosen from three different types depending on  
required frequency response, group delay and sampling rate.  
The DAC path of the TLV320AIC3256 features many options for signal conditioning and signal routing:  
2 headphone amplifiers  
Ground-centered, bipolar operation or unipolar operation  
Usable in single-ended or differential mode  
Analog volume setting with a range of -6 to +14 dB  
2 line-out amplifiers  
Usable in single-ended or differential mode  
Analog volume setting with a range of -6 to +29 dB  
Digital volume control with a range of -63.5 to +24dB  
Mute function  
Dynamic range compression (DRC)  
In addition to the standard set of DAC features the TLV320AIC3256 also offers the following special features:  
Built in sine wave generation (beep generator)  
Digital auto mute  
Adaptive filter mode  
DAC Processing Blocks — Overview  
The TLV320AIC3256 implements signal processing capabilities and interpolation filtering via processing blocks.  
These fixed processing blocks give users the choice of how much and what type of signal processing they may  
use and which interpolation filter is applied.  
The choice between these processing blocks is part of the PowerTune strategy balancing power conservation  
and signal processing flexibility. Less signal processing capability will result in less power consumed by the  
device. Table 11 gives an overview over all available processing blocks of the DAC channel and their properties.  
The Resource Class Column (RC) gives an approximate indication of power consumption.  
The signal processing blocks available are:  
First-order IIR  
Scalable number of biquad filters  
3D – Effect  
Beep Generator  
The processing blocks are tuned for typical cases and can achieve high image rejection or low group delay in  
combination with various signal processing effects such as audio effects and frequency shaping. The available  
first-order IIR and biquad filters have fully user-programmable coefficients. The Resource Class Column (RC)  
gives an approximate indication of power consumption.  
28  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TLV320AIC3256  
TLV320AIC3256  
www.ti.com  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
Table 11. Overview – DAC Predefined Processing Blocks  
Processing  
Interpolation  
Filter  
Channel  
1st Order  
IIR Available  
Num. of  
Biquads  
DRC  
3D  
Beep  
Generator  
Resource  
Class  
Block No.  
PRB_P1(1)  
PRB_P2  
A
A
A
A
A
A
B
B
B
B
B
B
B
B
B
B
C
C
C
C
C
C
A
A
A
Stereo  
Stereo  
Stereo  
Left  
No  
Yes  
Yes  
No  
3
6
6
3
6
6
0
4
4
6
6
0
4
4
6
6
0
4
4
0
4
4
2
5
5
No  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
8
12  
10  
4
PRB_P3  
PRB_P4  
No  
PRB_P5  
Left  
Yes  
Yes  
Yes  
No  
Yes  
No  
6
PRB_P6  
Left  
6
PRB_P7  
Stereo  
Stereo  
Stereo  
Stereo  
Stereo  
Left  
No  
6
PRB_P8  
Yes  
No  
8
PRB_P9  
No  
8
PRB_P10  
PRB_P11  
PRB_P12  
PRB_P13  
PRB_P14  
PRB_P15  
PRB_P16  
PRB_P17  
PRB_P18  
PRB_P19  
PRB_P20  
PRB_P21  
PRB_P22  
PRB_P23  
PRB_P24  
PRB_P25  
Yes  
Yes  
Yes  
No  
Yes  
No  
10  
8
No  
3
Left  
Yes  
No  
4
Left  
No  
4
Left  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
No  
6
Left  
4
Stereo  
Stereo  
Stereo  
Left  
No  
3
Yes  
No  
6
4
No  
2
Left  
Yes  
No  
3
Left  
2
Stereo  
Stereo  
Stereo  
No  
8
Yes  
Yes  
Yes  
Yes  
12  
12  
(1) Default  
For more detailed information see the Application Reference Guide, SLAU306  
Digital Audio I/O Interface  
Audio data is transferred between the host processor and the TLV320AIC3256 via the digital audio data serial  
interface, or audio bus. The audio bus on this device is very flexible, including left or right-justified data options,  
support for I2S or PCM protocols, programmable data length options, a TDM mode for multichannel operation,  
very flexible master/slave configurability for each bus clock line, and the ability to communicate with multiple  
devices within a system directly.  
The audio bus of the TLV320AIC3256 can be configured for left or right-justified, I2S, DSP, or TDM modes of  
operation, where communication with standard PCM interfaces is supported within the TDM mode. These modes  
are all MSB-first, with data width programmable as 16, 20, 24, or 32 bits by configuring Page 0, Register 27,  
D(5:4). In addition, the word clock and bit clock can be independently configured in either Master or Slave mode,  
for flexible connectivity to a wide variety of processors. The word clock is used to define the beginning of a  
frame, and may be programmed as either a pulse or a square-wave signal. The frequency of this clock  
corresponds to the maximum of the selected ADC and DAC sampling frequencies.  
The bit clock is used to clock in and clock out the digital audio data across the serial bus. When in Master mode,  
this signal can be programmed to generate variable clock pulses by controlling the bit-clock divider in Page 0,  
Register 30. The number of bit-clock pulses in a frame may need adjustment to accommodate various  
word-lengths as well as to support the case when multiple TLV320AIC3256s may share the same audio bus.  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): TLV320AIC3256  
TLV320AIC3256  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
www.ti.com  
The TLV320AIC3256 also includes a feature to offset the position of start of data transfer with respect to the  
word-clock. This offset can be controlled in terms of number of bit-clocks and can be programmed in Page 0,  
Register 28.  
The TLV320AIC3256 also has the feature of inverting the polarity of the bit-clock used for transferring the audio  
data as compared to the default clock polarity used. This feature can be used independently of the mode of  
audio interface chosen. This can be configured via Page 0, Register 29, D(3).  
The TLV320AIC3256 further includes programmability (Page 0, Register 27, D0) to place the DOUT line into a  
hi-Z (3-state) condition during all bit clocks when valid data is not being sent. By combining this capability with  
the ability to program at what bit clock in a frame the audio data begins, time-division multiplexing (TDM) can be  
accomplished, enabling the use of multiple codecs on a single audio serial data bus. When the audio serial data  
bus is powered down while configured in master mode, the pins associated with the interface are put into a hi-Z  
output condition.  
By default when the word-clocks and bit-clocks are generated by the TLV320AIC3256, these clocks are active  
only when the codec (ADC, DAC or both) are powered up within the device. This is done to save power.  
However, it also supports a feature when both the word clocks and bit-clocks can be active even when the codec  
in the device is powered down. This is useful when using the TDM mode with multiple codecs on the same bus,  
or when word-clock or bit-clocks are used in the system as general-purpose clocks.  
Clock Generation and PLL  
The TLV320AIC3256 supports a wide range of options for generating clocks for the ADC and DAC sections as  
well as interface and other control blocks. The clocks for ADC and DAC require a source reference clock. This  
clock can be provided on variety of device pins such as MCLK, BCLK or GPI pins. The CODEC_CLKIN can then  
be routed through highly-flexible clock dividers to generate the various clocks required for ADC, DAC and the  
miniDSP sections. In the event that the desired audio or miniDSP clocks cannot be generated from the reference  
clocks on MCLK BCLK or GPIO, the TLV320AIC3256 also provides the option of using the on-chip PLL which  
supports a wide range of fractional multiplication values to generate the required clocks. Starting from  
CODEC_CLKIN the TLV320AIC3256 provides several programmable clock dividers to help achieve a variety of  
sampling rates for ADC, DAC and clocks for the miniDSP .  
To minimize power consumption, the system ideally provides a master clock that is a suitable integer multiple of  
the desired sampling frequencies. In such cases, internal dividers can be programmed to set up the required  
internal clock signals at very low power consumption. For cases where such master clocks are not available, the  
built-in PLL can be used to generate a clock signal that serves as an internal master clock. In fact, this master  
clock can also be routed to an output pin and may be used elsewhere in the system. The clock system is flexible  
enough that it even allows the internal clocks to be derived directly from an external clock source, while the PLL  
is used to generate some other clock that is only used outside the TLV320AIC3256.  
For more detailed information see the Application Reference Guide, SLAU306  
Control Interfaces  
The TLV320AIC3256 control interface supports SPI or I2C communication protocols, with the protocol selectable  
using the SPI_SELECT pin. For SPI, SPI_SELECT should be tied high; for I2C, SPI_SELECT should be tied low.  
It is not recommended to change the state of SPI_SELECT during device operation.  
I2C Control  
The TLV320AIC3256 supports the I2C control protocol, and will respond to the I2C address of 0011000. I2C is a  
two-wire, open-drain interface supporting multiple devices and masters on a single bus. Devices on the I2C bus  
only drive the bus lines LOW by connecting them to ground; they never drive the bus lines HIGH. Instead, the  
bus wires are pulled HIGH by pullup resistors, so the bus wires are HIGH when no device is driving them LOW.  
This way, two devices cannot conflict; if two devices drive the bus simultaneously, there is no driver contention.  
30  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TLV320AIC3256  
TLV320AIC3256  
www.ti.com  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
SPI Control  
In the SPI control mode, the TLV320AIC3256 uses the pins SCL/SS as SS, SCLK as SCLK, MISO as MISO,  
SDA/MOSI as MOSI; a standard SPI port with clock polarity setting of 0 (typical microprocessor SPI control bit  
CPOL = 0). The SPI port allows full-duplex, synchronous, serial communication between a host processor (the  
master) and peripheral devices (slaves). The SPI master (in this case, the host processor) generates the  
synchronizing clock (driven onto SCLK) and initiates transmissions. The SPI slave devices (such as the  
TLV320AIC3256) depend on a master to start and synchronize transmissions. A transmission begins when  
initiated by an SPI master. The byte from the SPI master begins shifting in on the slave MOSI pin under the  
control of the master serial clock (driven onto SCLK). As the byte shifts in on the MOSI pin, a byte shifts out on  
the MISO pin to the master shift register.  
For more detailed information see the Application Reference Guide, SLAU306  
Power Supply  
The device has an integrated charge pump. Using the device in ground-centered headphone configuration, it can  
be conveniently supplied from a single 1.5V to 1.95V rail. It has separate power domains for digital IO, digital  
core, analog core, charge-pump input and headphone drive, all of which can be connected together and be  
supplied from one source. For improved power efficiency, the digital core voltage can range from 1.26V to 1.95V.  
The IO voltage can be supplied in the range of 1.1V to 3.6V.  
For more detailed information see the TLV320AIC3256Application Reference Guide, SLAU306  
Device Special Functions  
The following special functions are available to support advanced system requirements:  
Headset detection  
Interrupt generation  
Flexible pin multiplexing  
For more detailed information see the Application Reference Guide, SLAU306  
Register Map Summary  
Table 12. Summary of Register Map  
Decimal  
Hex  
DESCRIPTION  
PAGE NO. REG. NO.  
PAGE NO. REG. NO.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09-0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
Page Select Register  
1
Software Reset Register  
2
Reserved Register  
3
Reserved Register  
4
Clock Setting Register 1, Multiplexers  
Clock Setting Register 2, PLL P&R Values  
Clock Setting Register 3, PLL J Values  
Clock Setting Register 4, PLL D Values (MSB)  
Clock Setting Register 5, PLL D Values (LSB)  
Reserved Register  
5
6
7
8
9-10  
11  
12  
13  
14  
15  
16  
17  
Clock Setting Register 6, NDAC Values  
Clock Setting Register 7, MDAC Values  
DAC OSR Setting Register 1, MSB Value  
DAC OSR Setting Register 2, LSB Value  
miniDSP_D Instruction Control Register 1  
miniDSP_D Instruction Control Register 2  
miniDSP_D Interpolation Factor Setting Register  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): TLV320AIC3256  
TLV320AIC3256  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
www.ti.com  
Table 12. Summary of Register Map (continued)  
Decimal  
Hex  
DESCRIPTION  
PAGE NO. REG. NO.  
PAGE NO. REG. NO.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39-41  
42  
43  
44  
45  
46  
47  
48  
49  
50-51  
52  
53  
54  
55  
56  
57-59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27-0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32-0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39-0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
Clock Setting Register 8, NADC Values  
Clock Setting Register 9, MADC Values  
ADC Oversampling (AOSR) Register  
miniDSP_A Instruction Control Register 1  
miniDSP_A Instruction Control Register 2  
miniDSP_A Decimation Factor Setting Register  
Reserved Register  
Clock Setting Register 10, Multiplexers  
Clock Setting Register 11, CLKOUT M divider value  
Audio Interface Setting Register 1  
Audio Interface Setting Register 2, Data offset setting  
Audio Interface Setting Register 3  
Clock Setting Register 12, BCLK N Divider  
Audio Interface Setting Register 4, Secondary Audio Interface  
Audio Interface Setting Register 5  
Audio Interface Setting Register 6  
Digital Interface Misc. Setting Register  
Reserved Register  
ADC Flag Register  
DAC Flag Register 1  
DAC Flag Register 2  
Reserved Register  
Sticky Flag Register 1  
Interrupt Flag Register 1  
Sticky Flag Register 2  
Sticky Flag Register 3  
Interrupt Flag Register 2  
Interrupt Flag Register 3  
INT1 Interrupt Control Register  
INT2 Interrupt Control Register  
Reserved Register  
GPIO/MFP5 Control Register  
DOUT/MFP2 Function Control Register  
DIN/MFP1 Function Control Register  
MISO/MFP4 Function Control Register  
SCLK/MFP3 Function Control Register  
Reserved Registers  
DAC Signal Processing Block Control Register  
ADC Signal Processing Block Control Register  
miniDSP_A and miniDSP_D Configuration Register  
DAC Channel Setup Register 1  
DAC Channel Setup Register 2  
Left DAC Channel Digital Volume Control Register  
Right DAC Channel Digital Volume Control Register  
Headset Detection Configuration Register  
DRC Control Register 1  
32  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TLV320AIC3256  
TLV320AIC3256  
www.ti.com  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
Table 12. Summary of Register Map (continued)  
Decimal  
PAGE NO. REG. NO.  
Hex  
DESCRIPTION  
PAGE NO. REG. NO.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
69  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
0x01  
0x01  
0x01  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
DRC Control Register 2  
DRC Control Register 3  
Beep Generator Register 1  
Beep Generator Register 2  
Beep Generator Register 3  
Beep Generator Register 4  
Beep Generator Register 5  
Beep Generator Register 6  
Beep Generator Register 7  
Beep Generator Register 8  
Beep Generator Register 9  
Reserved Register  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
ADC Channel Setup Register  
82  
ADC Fine Gain Adjust Register  
83  
Left ADC Channel Volume Control Register  
Right ADC Channel Volume Control Register  
ADC Phase Adjust Register  
84  
85  
86  
Left Channel AGC Control Register 1  
Left Channel AGC Control Register 2  
Left Channel AGC Control Register 3  
Left Channel AGC Control Register 4  
Left Channel AGC Control Register 5  
Left Channel AGC Control Register 6  
Left Channel AGC Control Register 7  
Left Channel AGC Control Register 8  
Right Channel AGC Control Register 1  
Right Channel AGC Control Register 2  
Right Channel AGC Control Register 3  
Right Channel AGC Control Register 4  
Right Channel AGC Control Register 5  
Right Channel AGC Control Register 6  
Right Channel AGC Control Register 7  
Right Channel AGC Control Register 8  
DC Measurement Register 1  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110-127  
0
DC Measurement Register 2  
Left Channel DC Measurement Output Register 1  
Left Channel DC Measurement Output Register 2  
Left Channel DC Measurement Output Register 3  
Right Channel DC Measurement Output Register 1  
Right Channel DC Measurement Output Register 2  
Right Channel DC Measurement Output Register 3  
0x6E-0x7F Reserved Register  
0x00  
0x01  
0x02  
0x03  
Page Select Register  
1
Power Configuration Register 1  
Power Configuration Register 2  
Playback Configuration Register 1  
2
3
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): TLV320AIC3256  
TLV320AIC3256  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
www.ti.com  
Table 12. Summary of Register Map (continued)  
Decimal  
Hex  
DESCRIPTION  
PAGE NO. REG. NO.  
PAGE NO. REG. NO.  
1
4
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x1A-0x22  
0x1A-0x22  
0x1A-0x22  
0x2C  
0x2C  
0x2C  
0x04  
Playback Configuration Register 2  
Reserved Register  
1
5-8  
9
0x05-0x08  
0x09  
1
Output Driver Power Control Register  
Common Mode Control Register  
1
10  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
1
11  
Over Current Protection Configuration Register  
HPL Routing Selection Register  
1
12  
1
13  
HPR Routing Selection Register  
1
14  
LOL Routing Selection Register  
1
15  
LOR Routing Selection Register  
1
16  
0x10  
HPL Driver Gain Setting Register  
1
17  
0x11  
HPR Driver Gain Setting Register  
1
18  
0x12  
LOL Driver Gain Setting Register  
1
19  
0x13  
LOR Driver Gain Setting Register  
1
20  
0x14  
Headphone Driver Startup Control Register  
Reserved Register  
1
21  
0x15  
1
22  
0x16  
IN1L to HPL Volume Control Register  
IN1R to HPR Volume Control Register  
Mixer Amplifier Left Volume Control Register  
Mixer Amplifier Right Volume Control Register  
Reserved Register  
1
23  
0x17  
1
24  
0x18  
1
25  
0x19  
1
26-50  
51  
0x1A-0x32  
0x33  
1
MICBIAS Configuration Register  
1
52  
0x34  
Left MICPGA Positive Terminal Input Routing Configuration Register  
Reserved Register  
1
53  
0x35  
1
54  
0x36  
Left MICPGA Negative Terminal Input Routing Configuration Register  
Right MICPGA Positive Terminal Input Routing Configuration Register  
Reserved Register  
1
55  
0x37  
1
56  
0x38  
1
57  
0x39  
Right MICPGA Negative Terminal Input Routing Configuration Register  
Floating Input Configuration Register  
Left MICPGA Volume Control Register  
Right MICPGA Volume Control Register  
ADC Power Tune Configuration Register  
ADC Analog Volume Control Flag Register  
DAC Analog Gain Control Flag Register  
Reserved Register  
1
58  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
1
59  
1
60  
1
61  
1
62  
1
63  
1
64-70  
71  
0x40-0x46  
0x47  
1
Analog Input Quick Charging Configuration Register  
Reserved Register  
1
72-122  
123  
124  
125  
126-127  
0
0x48-0x7A  
0x7B  
0x7C  
0x7D  
1
Reference Power-up Configuration Register  
Charge Pump Control  
1
1
Headphone Driver Configuration  
1
0x7E-0x7F Reserved Register  
26-34  
26-34  
26-34  
44  
0x00  
Page Select Register  
1-7  
8-127  
0
0x01-0x07  
0x08-0x7F  
0x00  
Reserved.  
ADC Coefficients Buffer-B C(0:255)  
Page Select Register  
44  
1
0x01  
DAC Adaptive Filter Configuration Register  
Reserved  
44  
2-7  
0x02-0x07  
34  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TLV320AIC3256  
TLV320AIC3256  
www.ti.com  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
Table 12. Summary of Register Map (continued)  
Decimal  
PAGE NO. REG. NO.  
Hex  
DESCRIPTION  
PAGE NO. REG. NO.  
44  
8-127  
0
0x2C  
0x08-0x7F  
DAC Coefficients Buffer-A C(0:29)  
Page Select Register  
Reserved.  
45-52  
0x2D-0x34 0x00  
45-52  
1-7  
0x2D-0x34 0x01-0x07  
0x2D-0x34 0x08-0x7F  
45-52  
8-127  
0
DAC Coefficients Buffer-A C(30:255)  
Page Select Register  
Reserved.  
62-70  
0x3E-0x46  
0x3E-0x46  
0x3E-0x46  
0x50-0x72  
0x50-0x72  
0x50-0x72  
0x00  
62-70  
1-7  
0x01-0x07  
0x08-0x7F  
0x00  
62-70  
8-127  
0
DAC Coefficients Buffer-B C(0:255)  
Page Select Register  
Reserved.  
80-114  
80-114  
80-114  
152-186  
152-186  
152-186  
1-7  
0x01-0x07  
0x08-0x7F  
8-127  
0
miniDSP_A Instructions  
Page Select Register  
Reserved.  
0x98-0xBA 0x00  
1-7  
0x98-0xBA 0x01-0x07  
0x98-0xBA 0x08-0x7F  
8-127  
miniDSP_D Instructions  
Additional Package Data, YZK Package  
Table 13.  
Dim  
Value  
Unit  
X max:  
X min:  
3499.00  
3439.00  
3229.00  
3239.00  
µm  
Y max:  
Y min:  
Notes:  
Step X:3509.00 x Y:3309.00 µm  
Step -40µm + 30 µm=max  
Step -40µm – 30 µm=min  
µm  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): TLV320AIC3256  
TLV320AIC3256  
SLOS630A DECEMBER 2010REVISED DECEMBER 2010  
www.ti.com  
REVISION HISTORY  
Changes from Revision initial (December 2010) to Revision A  
Page  
Changed "mV" to "mVRMS" for Input signal level units ....................................................................................................... 9  
Changed Gain Error value from 0.7 to 0.8 ......................................................................................................................... 10  
Changed Gain Error value from 0.5 to 0.8 ......................................................................................................................... 10  
Changed Noise, Idle Channel value from 6.9 to 6.7 ........................................................................................................... 10  
Changed Bias voltage, Micbias Mode 0 value from 1.25 to 1.23 ....................................................................................... 11  
Changed Bias voltage, Micbias Mode 0 value from 1.25 to 1.23 ....................................................................................... 11  
Changed DAC Gain Error value from 0.4 to 0.5 ................................................................................................................. 12  
Changed DAC Gain Error value from 0.1 to 0.5 ................................................................................................................. 13  
Changed DAC channel separation condition from –1dB to –3dB ...................................................................................... 13  
Changed 10µF to 1µF in Reference Noise conditions statement ....................................................................................... 14  
Deleted min value from Decoupling Capacitor, changed typ value from 10 to 1µF ........................................................... 14  
Moved value from typ to min .............................................................................................................................................. 14  
Moved value from typ to min .............................................................................................................................................. 14  
Changed WCLK delay min from 14 to 30ns ....................................................................................................................... 15  
36  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TLV320AIC3256  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Jan-2011  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TLV320AIC3256IRSBR  
TLV320AIC3256IRSBT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RSB  
RSB  
40  
40  
3000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
Purchase Samples  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
Request Free Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV320AIC3256IRSBR  
TLV320AIC3256IRSBT  
WQFN  
WQFN  
RSB  
RSB  
40  
40  
3000  
250  
330.0  
180.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.5  
1.5  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV320AIC3256IRSBR  
TLV320AIC3256IRSBT  
WQFN  
WQFN  
RSB  
RSB  
40  
40  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

TLV320AIC3256_14

Ultra Low Power Stereo Audio Codec With Embedded miniDSP
TI

TLV320AIC3262

Ultra Low Power Stereo Audio Codec With miniDSP, DirectPath Headphone
TI

TLV320AIC3262IYZFR

Ultra Low Power Stereo Audio Codec With miniDSP, DirectPath Headphone
TI

TLV320AIC3262IYZFT

Ultra Low Power Stereo Audio Codec With miniDSP, DirectPath Headphone
TI

TLV320AIC3262_14

Ultra Low Power Stereo Audio Codec With miniDSP, DirectPath Headphone, and Stereo Class-D Speaker Amplifier
TI

TLV320AIC3262_15

Ultralow Power Stereo Audio Codec
TI

TLV320AIC3262_17

Ultralow Power Stereo Audio Codec With miniDSP, DirectPath Headphone, and Stereo Class-D Speaker Amplifier
TI

TLV320AIC3263

Check for Samples: TLV320AIC3263
TI

TLV320AIC3263IYZFR

具有 miniDSP、D 类扬声器、DirectPath 耳机和 4 个数字麦克风的低功耗立体声音频编解码器 | YZF | 81 | -40 to 85
TI

TLV320AIC3263IYZFT

具有 miniDSP、D 类扬声器、DirectPath 耳机和 4 个数字麦克风的低功耗立体声音频编解码器 | YZF | 81 | -40 to 85
TI

TLV320AIC3263_14

Ultra Low Power Stereo Audio Codec With miniDSP, DirectPath Headphone, and Class-D Speaker Amplifier
TI

TLV320AIC3268

TLV320AIC3268 超低功耗立体声音频编解码器
TI