TLV320AIC3268IRGCR [TI]

TLV320AIC3268 超低功耗立体声音频编解码器 | RGC | 64 | -40 to 85;
TLV320AIC3268IRGCR
型号: TLV320AIC3268IRGCR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TLV320AIC3268 超低功耗立体声音频编解码器 | RGC | 64 | -40 to 85

商用集成电路 编解码器
文件: 总265页 (文件大小:5451K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
TLV320AIC3268 功率立体声音频编解码器,具有 105dB 模转换器 (DAC)DirectPath 戴  
式耳机和 D 扬声器放大器以及集成 miniDSP  
1 特性  
2 应用范围  
1
立体声音频 DAC 到差分线路输出的 105dB 信噪比  
(SNR)  
低功率便携式音频器件  
消费类音频器件  
信息娱乐系统  
到音频模数转换器 (ADC) 立体声线路输入的 95 dB  
SNR  
8-192kHz 回放和录制  
3 说明  
24 mW DirectPathTM 头戴式耳机驱动器的输出功率  
121 mW 差分接收器输出驱动器的输出功率  
D 类扬声器,此扬声器具有  
TLV320AIC3268 (AIC3268) 为用户提供一个集成的方  
法以实现具备多数字和模拟音频流的音频系统,将其作  
为输入源和多输出器件(诸如高功率音频放大器)。  
集成的 miniDSP 使得用户能够通过定制音频流信号处  
理来使他们的产品与众不同。 这款器件的低功耗使其  
成为电池供电运行系统或者运行在受限功耗环境中的系  
统的理想选择。  
1.45 W (8Ω5V10% THDN)  
1.15 W (8Ω5V1% THDN)  
差分或单端立体声线路输出  
AIC3268 是一款集成型、低功率、低压立体声音频编  
解码器,并且特有 4 个数字麦克风输入,以及可编程  
输出、预先定义且可参数化的数字处理块和一个集成  
PLL。 所包含的大范围基于寄存器的功率、输入和输  
出通道配置、增益、效应、端子复用以及时钟控制使得  
此器件能够精准的针对其目标应用。  
8 个单端或 4 个全差分模拟输入  
模拟麦克风输入,和多达 4 个同时数字麦克风通道  
大范围的信号处理选项  
完全可编程增强型 miniDSP  
3 个具有单独 I/O 电源电压的独立数字音频串行接  
AIC3268 支持 8kHz 声音到 192kHz 立体声音乐的大  
范围应用,从而使其成为多种低功率电池供电运行以及  
消费类音频应用的理想选择。  
所有音频串行接口 (ASI) 上支持时分复用  
(TDM) 和单声道脉冲编码调制 (PCM)  
ASI 1 上的 8 通道输入和输出  
器件信息  
可编程锁相环 (PLL),以及低频计时  
可编程 12 位逐次逼近 (SAR) ADC  
SPI I2C 控制接口  
器件名称  
封装  
封装尺寸  
TLV320AIC3268  
VQFN (64)  
9mm x 9mm  
AIC3268  
BIAS  
PLL  
CHARGE PUMP  
4 简化图  
Digital  
Input  
Amplifier  
I2  
In  
S
S
2
ADC  
DAC  
I
Out  
S
BT  
M
U
X
I2  
In  
Audio  
Processing  
Digital  
Input  
Amplifier  
CD  
2
ADC  
DAC  
I
S
Out  
I2  
In  
S
S/PDIF  
Rx  
SPI/I2C  
ASI-1  
ASI-2  
ASI-3  
SAR  
ADC  
Analog  
Input  
Amplifier  
REF  
TERMINAL MUX  
Analog  
Out  
Analog  
In  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLAS953  
 
 
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
简化图 ...................................................................... 1  
修订历史记录 ........................................................... 2  
Terminal Configuration and Functions................ 3  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 Handling Ratings....................................................... 7  
7.3 Recommended Operating Conditions....................... 7  
7.4 Thermal Information.................................................. 8  
7.5 Electrical Characteristics, SAR ADC........................ 9  
7.6 Electrical Characteristics, ADC................................ 9  
7.7 Electrical Characteristics, Bypass Outputs ............ 12  
7.8 Electrical Characteristics, Microphone Interface.... 13  
7.9 Electrical Characteristics, Audio DAC Outputs...... 14  
7.10 Electrical Characteristics, Class-D Outputs ......... 17  
7.11 Electrical Characteristics, Misc. ........................... 18  
7.12 Electrical Characteristics, Logic Levels, IOVDDx 21  
7.13 Interface Timing .................................................... 22  
7.14 Typical Characteristics.......................................... 26  
8
9
Detailed Description ............................................ 34  
8.1 Overview ................................................................. 34  
8.2 Functional Block Diagram ....................................... 35  
8.3 Feature Description................................................. 36  
8.4 Device Functional Modes...................................... 120  
8.5 Programming......................................................... 121  
8.6 Register Maps....................................................... 121  
Applications and Implementation .................... 243  
9.1 Application Information.......................................... 243  
9.2 Typical Applications .............................................. 243  
9.3 Initialization Setup................................................. 247  
10 Power Supply Recommendations ................... 251  
11 Layout................................................................. 252  
11.1 Layout Guidelines ............................................... 252  
11.2 Layout Example .................................................. 253  
12 器件和文档支持 ................................................... 254  
12.1 社区资源.............................................................. 254  
12.2 Trademarks......................................................... 254  
12.3 Electrostatic Discharge Caution.......................... 254  
12.4 Glossary.............................................................. 254  
13 机械封装和可订购信息 ........................................ 255  
5 修订历史记录  
Changes from Revision Initial Release (January 2014) to Revision A  
Page  
已更改生产数据文档状态 ........................................................................................................................................................ 1  
已转换为全新的数据表格式..................................................................................................................................................... 1  
2
Copyright © 2014, Texas Instruments Incorporated  
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
6 Terminal Configuration and Functions  
space  
space  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
AVDD4_18 49  
SPKP 50  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
MICBIAS_VDD  
MICDET  
AVDD1_18  
IN4L  
SVDD 51  
SPKM 52  
SPK_V 53  
VBAT 54  
IN4R  
VREF_SAR  
VREF_AUDIO  
IN1L_AUX1  
IN1R_AUX2  
IN3L  
DVDD_18 55  
DVSS 56  
VSS  
DVSS 57  
DOUT2 58  
BCLK2 59  
GPIO4 60  
DVDD_18 61  
IOVDD2_33 62  
DIN2 63  
IN3R  
IN2R  
IN2L  
AVDD_18  
MCLK  
WCLK2 64  
BCLK1  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
Figure 1. QFN-64(RGC) Package Terminal Assignments (Top View)  
Terminal Functions – 64 Terminal QFN (RGC) Package  
QFN (RGC)  
TERMINAL  
NUMBER  
POWER  
DOMAIN  
NAME  
I,O,IO,P  
DESCRIPTION  
Multi Function Digital IO 3  
See Table 47  
1
2
GPIO3  
IO  
P
IOVDD2  
IOVDD1  
IOVDD1_33  
Digital I/O Buffer Supply 1 (Not internally connected to terminal no. 10)  
Multi Function Digital Output 1  
Primary: (SPI_SELECT = 1)  
3
MISO_GPO1  
O
IOVDD1  
SPI Serial Data Output  
Secondary: (SPI_SELECT = 0)  
See Table 46  
Copyright © 2014, Texas Instruments Incorporated  
3
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Terminal Functions – 64 Terminal QFN (RGC) Package (continued)  
QFN (RGC)  
TERMINAL  
NUMBER  
POWER  
DOMAIN  
NAME  
I,O,IO,P  
DESCRIPTION  
Control Interface Select  
4
SPI_SELECT  
I
IOVDD1  
SPI_SELECT = '1' : SPI interface selected  
SPI_SELECT = '0' : I2C interface selected  
Primary: (SPI_SELECT = '1')  
SPI interface mode serial data input  
Secondary: (SPI_SELECT = '0')  
I2C interface mode serial data  
Multi Function Digital IO 5  
See Table 47  
5
6
7
SDA_MOSI  
GPIO5  
IO  
IO  
I
IOVDD1  
IOVDD1  
IOVDD1  
Primary: (SPI_SELECT = '1')  
SPI Serial Clock  
I2C_ADDR_SCLK  
Secondary: (SPI_SELECT = '0')  
I2C Address Bit (I2C_ADDR)  
Primary: (SPI_SELECT = '1')  
SPI Chip Select  
8
SCL_SSZ  
IO  
IOVDD1  
Secondary: (SPI_SELECT = '0')  
I2C Clock  
9
DVDD_18  
IOVDD1_33  
RESET  
P
P
I
Digital  
1.8V Digital Power Supply (Not internally connected to terminal no. 55)  
10  
11  
IOVDD1  
Digital IO Buffer Supply 1 (Not internally connected to terminal no. 2)  
Active Low Reset  
Primary:  
Audio Serial Data Bus 1 Word Clock  
Secondary:  
12  
13  
14  
WCLK1  
GPIO2  
DOUT1  
IO  
IO  
O
IOVDD1  
IOVDD1  
IOVDD1  
See Table 46  
Multi Function Digital IO 2  
See Table 47  
Primary:  
Audio Serial Data Bus 1 Data Output  
Secondary:  
See Table 46  
Primary:  
Audio Serial Data Bus 1 Data Input  
Secondary:  
15  
16  
17  
DIN1  
GPIO1  
BCLK1  
I
IOVDD1  
IOVDD1  
IOVDD1  
See Table 46  
Multi Function Digital IO 1  
See Table 47  
IO  
IO  
Primary:  
Audio Serial Data Bus 1 Bit Clock  
Secondary:  
See Table 46  
18  
19  
20  
21  
22  
23  
MCLK  
AVDD_18  
IN2L  
I
P
I
IOVDD1  
Analog  
Analog  
Analog  
Analog  
Analog  
Master Clock Input  
1.8V Analog Power Supply  
Analog Input 2 Left  
Analog Input 2 Right  
Analog Input 3 Right  
Analog Input 3 Left  
IN2R  
I
IN3R  
I
IN3L  
I
4
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Terminal Functions – 64 Terminal QFN (RGC) Package (continued)  
QFN (RGC)  
TERMINAL  
NUMBER  
POWER  
DOMAIN  
NAME  
I,O,IO,P  
DESCRIPTION  
Analog Input 1 Right  
Auxilliary 2 Input to SAR ADC  
(Special Function: Right Channel High Impedance Input for Capacitive Sensor  
Measurement)  
24  
25  
IN1R_AUX2  
I
Analog  
Analog  
Analog Input 1 Left  
Auxilliary 1 Input to SAR ADC  
(Special Function: Left Channel High Impedance Input for Capacitive Sensor  
Measurement)  
IN1L_AUX1  
I
26  
27  
VREF_AUDIO  
VREF_SAR  
I
Analog  
Analog  
Analog Reference Voltage Filter Output  
SAR ADC Voltage Reference Input or SAR ADC Internal Voltage Reference  
Bypass Capacitor Terminal  
IO  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
IN4R  
IN4L  
I
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Speaker  
Speaker  
Speaker  
Analog Input 4 Right  
I
Analog Input 4 Left  
AVDD1_18  
MICDET  
MICBIAS_VDD  
MICBIAS_EXT  
MICBIAS  
RECP  
P
1.8V Analog Power Supply  
IO  
P
Headset Detection Terminal  
Power Supply for Micbias  
O
O
O
P
Output Bias Voltage for Headset Microphone  
Output Bias Voltage for on-board Microphones  
Receiver Driver P side Output  
3.3V Power Supply for Receiver Driver  
Receiver Driver M side Output  
1.8V Analog Power Supply  
RECVDD_33  
RECM  
O
P
AVDD2_18  
HPR  
O
P
Right Headphone Output  
HVDD_18  
HPL  
Headphone Amplifier Power Supply  
Left Headphone Output  
O
I
HPVSS_SENSE  
VNEG  
Headphone Ground Sense Terminal  
Charge Pump Negative Supply  
Charge Pump Flying Capacitor M Terminal  
Charge Pump Flying Capacitor P Terminal  
Power Supply Input for Charge Pump  
Left Line Output  
IO  
IO  
IO  
P
CPFCM  
CPFCP  
CPVDD_18  
LOL  
O
O
P
LOR  
Right Line Output  
AVDD4_18  
SPKP  
1.8V Analog Power Supply for Speaker Amplifier  
P side Speaker Amplifier Output  
Speaker Amplifier Output Stage Power Supply  
M side Speaker Amplifier Output  
O
P
SVDD  
SPKM  
O
Speaker Amplifier Output Stage Power Supply (Connect to SVDD through a  
resistor)  
53  
SPK_V  
P
Speaker  
54  
55  
56  
57  
VBAT  
DVDD_18  
DVSS  
I
Speaker  
Digital  
Digital  
Digital  
Battery Monitor Voltage Input  
P
P
P
1.8V Digital Power Supply (Not internally connected to terminal no. 9 and 61)  
Digital Ground (Not internally connected to terminal no. 57 and Thermal Pad)  
DVSS  
Digital Ground (Not internally connected to terminal no. 56 and Thermal Pad)  
Primary:  
Audio Serial Data Bus 2 Data Output  
Secondary:  
58  
DOUT2  
O
IOVDD2  
See Table 47  
Copyright © 2014, Texas Instruments Incorporated  
5
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Terminal Functions – 64 Terminal QFN (RGC) Package (continued)  
QFN (RGC)  
TERMINAL  
NUMBER  
POWER  
DOMAIN  
NAME  
I,O,IO,P  
DESCRIPTION  
Primary:  
Audio Serial Bus 2 Bit Clock  
59  
BCLK2  
GPIO4  
IO  
IO  
IOVDD2  
IOVDD2  
Secondary:  
See Table 47  
Multi Function Digital IO 4  
See Table 47  
60  
61  
62  
DVDD_18  
P
P
Digital  
1.8V Digital Power Supply (Not internally connected to terminal no. 55)  
IOVDD2_33  
IOVDD2  
Digital IO Buffer Supply 2  
Primary:  
Audio Serial Data Bus 2 Data Input  
Secondary:  
63  
64  
DIN2  
I
IOVDD2  
See Table 47  
Primary:  
Audio Serial Data Bus 2 Word Clock  
Secondary:  
WCLK2  
VSS  
IO  
P
IOVDD2  
Ground  
See Table 47  
THERMAL  
PAD  
Internal Device Ground  
6
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
VALUE  
–0.3 to 2.2  
UNIT  
V
AVDD1_18, AVDD2_18, AVDD4_18, AVDD_18 to VSS respectively(2)  
RECVDD_33 to VSS  
–0.3 to 3.9  
V
DVDD_18 to VSS  
–0.3 to 2.2  
V
IOVDD1_33, IOVDD2_33 to VSS  
HVDD_18 to VSS  
–0.3 to 3.9  
V
–0.3 to 2.2  
V
CPVDD_18 to VSS  
–0.3 to 2.2  
V
SVDD, SPK_V, MICBIAS_VDD to VSS(3)  
–0.3 to 6.0  
V
Digital Input voltage to VSS  
VSS – 0.3 to IOVDDx + 0.3  
VSS – 0.3 to AVDDx_18 + 0.3  
–0.3 to 6  
V
Analog input voltage to VSS  
VBAT to VSS  
V
V
Junction temperature (TJ Max)  
QFN-64 package (RGC) Power dissipation  
115  
°C  
W
(TJ Max – TA) / θJA  
(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating  
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) It's recommended to keep all AVDDx_18 supplies within ±50 mV of each other.  
(3) It's recommended to keep SVDD and SPK_V supplies within ±50 mV of each other.  
7.2 Handling Ratings  
MIN  
MAX  
125  
UNIT  
Tstg  
Storage temperature range  
–55  
°C  
HBM  
CDM  
2000  
500  
ESD  
V
7.3 Recommended Operating Conditions  
MIN NOM  
1.5(2)  
1.8  
MAX UNIT  
AVDD1_18,  
AVDD2_18,  
AVDD4_18,  
AVDD_18  
Power Supply Voltage Range Referenced to VSS respectively(1) It is  
1.95  
V
recommended to connect each of these supplies  
to a single supply rail.  
RECVDD_33  
Referenced to VSS  
Referenced to VSS  
1.65(3)  
1.1  
3.3  
3.6  
3.6  
IOVDD1_33,  
IOVDD2_33  
DVDD_18  
CPVDD_18  
HVDD_18  
SVDD(1)  
Power Supply Voltage Range Referenced to VSS  
1.26(4)  
1.26  
1.5(3)  
2.7  
1.8  
1.8  
1.8  
1.95  
1.95  
1.95  
5.5  
Power Supply Voltage Range Referenced to VSS  
V
Referenced to VSS  
Power Supply Voltage Range Referenced to VSS(1)  
Power Supply Voltage Range Referenced to VSS(1)  
V
V
V
SPK_V(1)  
2.7  
5.5  
MICBIAS_VD Power Supply Voltage Range Referenced to VSS  
D
2.7  
5.5  
VREF_SAR  
External voltage reference for Referenced to VSS  
SAR  
1.8 AVDDx_18  
V
(1) AVDDx_18 are within ±0.05 V of each other. SVDD and SPK_V are within ±0.05 V of each other.  
(2) For optimal performance with CM=0.9V, min AVDDx_18 = 1.8V.  
(3) Minimum voltage for HVDD_18 and RECVDD_33 should be greater than or equal to AVDDx_18.  
(4) At DVDD_18 values lower than 1.65V, the PLL and SAR ADC do not function.  
Copyright © 2014, Texas Instruments Incorporated  
7
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Recommended Operating Conditions (continued)  
MIN NOM  
MAX UNIT  
PLL Input Frequency(5)  
Clock divider uses fractional divide  
10  
20 MHz  
(D > 0), P=1, PLL_CLKIN_DIV=1, DVDD_18 ≥  
1.65V  
Clock divider uses integer divide  
(D = 0), P=1, PLL_CLKIN_DIV=1, DVDD_18 ≥  
1.65V  
0.512  
20 MHz  
MCLK  
Master Clock Frequency  
SCL Clock Frequency  
MCLK; Master Clock Frequency; IOVDD1_33 ≥  
1.65V  
50 MHz  
33  
MCLK; Master Clock Frequency; IOVDD1_33 ≥  
1.1V  
SCL  
400 kHz  
LOL, LOR  
Stereo line output load  
resistance  
0.6  
10  
16  
8
kΩ  
HPL, HPR  
Stereo headphone output load Single-ended configuration  
resistance  
14.4  
7.2  
SPKP-SPKM Speaker output load  
resistance  
Differential  
RECP-RECM Receiver output resistance  
Differential  
24.4  
32  
10  
CIN  
Charge pump input capacitor  
(CPVDD to CPVSS terminals)  
µF  
CO  
Charge pump output capacitor Type X7R  
(VNEG terminal)  
2.2  
2.2  
µF  
µF  
CF  
Charge pump flying capacitor Type X7R  
(CPFCP to CPFCM terminals)  
TOPR  
Operating Temperature Range  
–40  
85  
°C  
(5) The PLL Input Frequency refers to clock frequency after PLL_CLKIN_DIV divider. Frequencies higher than 20MHz can be sent as an  
input to this PLL_CLKIN_DIV and reduced in frequency prior to input to the PLL.  
7.4 Thermal Information  
TLV320AIC3268  
THERMAL METRIC(1)  
UNIT  
RGC TERMINALS  
θJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance(3)  
Junction-to-board thermal resistance(4)  
Junction-to-top characterization parameter(5)  
Junction-to-board characterization parameter(6)  
Junction-to-case (bottom) thermal resistance(7)  
19.8  
5.3  
2.9  
0.1  
2.8  
0.3  
θJCtop  
θJB  
°C/W  
ψJT  
ψJB  
θJCbot  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-  
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(5) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(6) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA , using a procedure described in JESD51-2a (sections 6 and 7).  
(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
Spacer  
8
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
7.5 Electrical Characteristics, SAR ADC  
TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD_18, IOVDDx_33 = 1.8V; RECVDD_33 = 3.3V; SVDD,  
SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and  
VREF_AUDIO terminals; PLL disabled, Device CM = 0.9V unless otherwise noted.  
PARAMETER  
SAR ADC Inputs  
Analog Input Input voltage range  
Input capacitance, CSAR_IN  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IN1L/AUX1 or IN1R/AUX2 Selected  
0
VREF_SAR  
V
25  
1
pF  
µA  
V
Input leakage current  
Battery Input VBAT Input voltage range  
VBAT Input impedance  
2.2  
8
5.5  
12  
VBAT (Battery measurement) selected(1)  
VBAT (Battery measurement) not selected  
5
1
kΩ  
µA  
VBAT Input leakage current  
SAR ADC Conversion  
Resolution  
Programmable: 8-bit, 10-bit, 12-bit  
Bits  
LSB  
LSB  
LSB  
%
12-bit  
12-bit  
8-bit  
Integral Linearity  
Differential Linearity  
Offset error  
±0.7  
±0.7  
0.7  
IN1L/AUX1 routed to SAR ADC, 12-bit  
resolution, SAR ADC clock = Internal  
Oscillator Clock, Conversion Clock =  
Internal Oscillator / 4, External Reference =  
1.8V(2)  
Gain error  
±0.01  
±0.7  
±0.7  
0.5  
Integral Linearity  
Differential Linearity  
Offset error  
LSB  
LSB  
LSB  
%
IN1L/AUX1 routed to SAR ADC, 12-bit  
resolution, SAR ADC clock = 12MHz  
External Clock, Conversion Clock =  
External Clock / 4, External Reference =  
1.8V(2)  
Gain error  
-0.01  
±0.04  
±0.04  
±0.5  
0.2  
Integral Linearity  
Differential Linearity  
Offset error  
LSB  
LSB  
LSB  
%
IN1L/AUX1 routed to SAR ADC, 8-bit  
resolution, SAR ADC clock = 12MHz  
External Clock, Conversion Clock =  
External Clock, External Reference =  
1.8V(2)  
Gain error  
Battery  
Measurement  
Accuracy  
VBAT is routed to SAR ADC, 12-bit  
resolution, SAR ADC clock = Internal  
Oscillator Clock, Conversion Clock =  
Internal Oscillator / 4, Internal Reference =  
1.25V  
-1  
%
Offset error  
Gain error  
±2.1  
-0.8  
LSB  
%
Voltage Reference - VREF_SAR  
Voltage range  
Internal VREF_SAR  
External VREF_SAR  
1.25±0.05  
V
V
1.25  
1
AVDDx_18  
Decoupling Capacitor  
μF  
(1) When VBAT is not being sampled/converted. When VBAT is being sampled, effective input impedance to GND is 5.24kΩ.  
(2) When utilizing External SAR reference, this external reference should be restricted VEXT_SAR_REFAVDD_18 and AVDD2_18.  
7.6 Electrical Characteristics, ADC  
TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD_18, IOVDDx_33 = 1.8V; RECVDD_33 = 3.3V; SVDD,  
SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and  
VREF_AUDIO terminals; PLL disabled, Device CM = 0.9V unless otherwise noted.  
PARAMETER  
AUDIO ADC (Single Ended)  
Input signal level (0dB)  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CM = 0.9V  
0.5  
VRMS  
CM = 0.75V  
0.375  
1kHz sine wave input, Single-ended Configuration  
IN2R to Right ADC and IN2L to Left ADC, Rin = 20kΩ, fs = 48kHz,  
AOSR = 128, MCLK = 256*fs, AGC = OFF,  
Channel Gain = 0dB, Processing Block = PRB_R1,  
Power Tune = PTM_R4  
Device Setup  
Copyright © 2014, Texas Instruments Incorporated  
9
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Electrical Characteristics, ADC (continued)  
TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD_18, IOVDDx_33 = 1.8V; RECVDD_33 = 3.3V; SVDD,  
SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and  
VREF_AUDIO terminals; PLL disabled, Device CM = 0.9V unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
Inputs ac-shorted to ground  
MIN  
TYP  
94  
MAX UNIT  
85  
IN1R, IN3R, IN4R each exclusively routed in separate tests to Right  
ADC and ac-shorted to ground  
94  
IN1L, IN3L, IN4L each exclusively routed in separate tests to Left  
Signal-to-noise ratio, A- ADC and ac-shorted to ground  
SNR  
dB  
weighted(1) (2)  
IN1R, IN2R, IN3R, IN4R each exclusively routed in separate tests to  
Right ADC and ac-shorted to ground  
IN1L, IN2L, IN3L, IN4L each exclusively routed in separate tests to  
Left ADC and ac-shorted to ground  
CM=0.75V, AVDD_18,AVDDx_18=1.5V  
92  
94  
92  
IN1R, IN2R, IN3R, IN4R each exclusively routed in separate tests to  
Right ADC  
IN1L, IN2L, IN3L, IN4L each exclusively routed in separate tests to  
Left ADC  
–60dBr full-scale input  
Dynamic range A-  
weighted(1) (2)  
DR  
dB  
IN1R, IN2R, IN3R, IN4R each exclusively routed in separate tests to  
Right ADC  
IN1L, IN2L, IN3L, IN4L each exclusively routed in separate tests to  
Left ADC  
–60dBr full-scale input, CM=0.75V, AVDD_18,AVDDx_18=1.5V  
–3 dBr full-scale signal  
-88  
-88  
-75  
IN1R, IN3R, IN4R each exclusively routed in separate tests to Right  
ADC  
IN1L, IN3L, IN4L each exclusively routed in separate tests to Left  
ADC  
Total Harmonic  
Distortion plus Noise  
THD+N  
–3dBr full-scale signal  
dB  
IN1R, IN2R, IN3R, IN4R each exclusively routed in separate tests to  
Right ADC  
IN1L, IN2L, IN3L, IN4L each exclusively routed in separate tests to  
Left ADC  
-85  
±0.1  
-0.1  
–3dBr full-scale signal, CM=0.75V, AVDD_18,AVDDx_18=1.5V  
IN1R, IN2R, IN3R, IN4R each exclusively routed in separate tests to  
Right ADC  
IN1L, IN2L, IN3L, IN4L each exclusively routed in separate tests to  
Left ADC  
-3dBr full-scale signal  
Gain Error  
dB  
IN1R, IN2R, IN3R, IN4R each exclusively routed in separate tests to  
Right ADC  
IN1L, IN2L, IN3L, IN4L each exclusively routed in separate tests to  
Left ADC  
-3dBr full-scale signal, CM=0.75V, AVDD_18, AVDDx_18=1.5V  
IN1R, IN2R, IN3R, IN4R each exclusively routed in separate tests to  
Right ADC and ac shorted to ground  
IN1L, IN2L, IN3L, IN4L each exclusively routed in separate tests to  
Left ADC and ac shorted to ground  
-1518  
-1766  
Output Offset  
LSB  
dB  
IN1R, IN2R, IN3R, IN4R each exclusively routed in separate tests to  
Right ADC and ac shorted to ground  
IN1L, IN2L, IN3L, IN4L each exclusively routed in separate tests to  
Left ADC and ac shorted to ground  
CM=0.75V, AVDD_18, AVDDx_18=1.5V  
Inter Channel Gain Error -3dBr full scale signal  
Mismatch  
± 0.1  
(1) Ratio of output level with 1kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a  
20-Hz to 20-kHz bandwidth using an audio analyzer.  
(2) All performance measurements done with pre-analyzer 20kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a  
filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass  
filter removes out-of-band noise, which, although not audible, may affect dynamic specification values.  
10  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Electrical Characteristics, ADC (continued)  
TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD_18, IOVDDx_33 = 1.8V; RECVDD_33 = 3.3V; SVDD,  
SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and  
VREF_AUDIO terminals; PLL disabled, Device CM = 0.9V unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Inrter Channel  
Separation  
-3dBr full scale signal  
110  
dB  
-3dBr full scale signal on IN2L and IN2R, IN2L and IN2R not  
104  
dB  
Input Terminal Crosstalk internally routed. IN1L routed to Left ADC and ac-coupled to ground,  
IN1R routed to Right ADC and ac-coupled to ground  
217Hz, 100mVpp signal on AVDD_18, AVDDx_18, HPVDD_18,  
CPVDD_18, IOVDDx_18, DVDD_18  
59  
59  
Power Supply Rejection  
Ratio  
PSRR  
dB  
1kHz, 100mVpp signal on AVDD_18, AVDDx_18, HPVDD_18,  
CPVDD_18, IOVDDx_18, DVDD_18  
IN1L, IN1R, IN2L, IN2R, IN3L, IN3R inputs, Rin=10kΩ  
All Inputs, Rin=20K  
0
-6  
47.5  
ADC Analog  
Programmable Gain  
Amplifier, Gain Range  
41.5  
35.5  
dB  
dB  
IN1L, IN1R, IN2L, IN2R, IN3L, IN3R inputs, Rin=40kΩ  
-12  
ADC Analog  
Programmable Gain  
Amplifier, Gain Step Size  
0.5  
AUDIO ADC (Differential)  
CM=0.9V  
1.0  
Input signal level (0dB)  
VRMS  
CM=0.75V  
0.75  
1kHz sine wave input, Differential Configuration  
IN1L, IN1R routed to Right ADC and IN2L, IN2R routed to Left ADC  
Rin = 20kΩ, fs = 48kHz, CM=0.9V  
AOSR = 128, MCLK = 256*fs, AGC = OFF,  
Channel Gain = 0dB, Processing Block = PRB_R1, Power Tune =  
PTM_R4  
Device Setup  
SNR  
DR  
Signal-to-noise ratio, A- Inputs ac-shorted to ground  
87  
95  
92  
(3) (4)  
weighted  
dB  
Inputs ac-shorted to ground, CM=0.75V, AVDD_18,  
AVDDx_18=1.5V  
Dynamic range A-  
weighted(3) (4)  
–60dBr full scale signal  
95  
92  
dB  
dB  
dB  
dB  
–60dBr full scale signal, CM=0.75V, AVDD_18,AVDDx_18=1.5V  
–3dBr full scale  
THD+N Total Harmonic  
Distortion plus Noise  
–89  
-76  
–3dBr full scale, CM=0.75V, AVDD_18, AVDDx_18=1.5V  
–3dBr full scale  
-85  
Gain Error  
±0.02  
±0.1  
0.1  
–3dBr full scale, CM=0.75V, AVDD_18, AVDDx_18=1.5V  
Inter Channel Gain Error –3dBr full scale  
Mismatch  
–3dBr full scale, CM=0.75V, AVDD_18, AVDDx_18=1.5V  
0.2  
Output Offset  
Inputs ac-shorted to ground  
-2053  
-2198  
LSB  
Inputs ac-shorted to ground, CM=0.75V, AVDD_18,  
AVDDx_18=1.5V  
Inter Channel Seperation -3dBr full scale signal  
111  
117  
dB  
dB  
Input Terminal Crosstalk -3dBr input on IN2L, IN2R. IN2L, IN2R internally not routed.IN1L,  
IN1R differentially routed to Right ADC ac-shorted to ground. -3dBr  
on IN2L, IN2R. IN2L,IN2R internally not routed.IN3L, IN3R  
differentially routed to Left ADC ac-shorted to ground.  
PSRR  
Power Supply Rejection 217Hz, 100mVpp signal on AVDD_18, AVDDx_18, HPVDD_18,  
53  
53  
Ratio  
CPVDD_18, IOVDDx_18, DVDD_18  
dB  
1kHz, 100mVpp signal on AVDD_18, AVDDx_18, HPVDD_18,  
CPVDD_18, IOVDDx_18, DVDD_18  
(3) Ratio of output level with 1kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a  
20-Hz to 20-kHz bandwidth using an audio analyzer.  
(4) All performance measurements done with pre-analyzer 20kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a  
filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass  
filter removes out-of-band noise, which, although not audible, may affect dynamic specification values.  
Copyright © 2014, Texas Instruments Incorporated  
11  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Electrical Characteristics, ADC (continued)  
TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD_18, IOVDDx_33 = 1.8V; RECVDD_33 = 3.3V; SVDD,  
SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and  
VREF_AUDIO terminals; PLL disabled, Device CM = 0.9V unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CMRR Common Mode  
Rejection Ratio  
IN1L, IN1R shorted together and routed to Right ADC. IN2L, IN2R  
shorted together and routed to Left ADC. 350mVrms signal on  
shorted pairs  
68  
dB  
ADC Analog  
Programmable Gain  
Amplifier, Gain Range  
All Inputs, Rin=10kΩ  
All Inputs, Rin=20kΩ  
All Inputs, Rin=40kΩ  
6
0
53.5  
47.5  
41.5  
dB  
dB  
-6  
ADC Analog  
Programmable Gain  
Amplifier, Gain Step Size  
0.5  
7.7 Electrical Characteristics, Bypass Outputs  
TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD_18, IOVDDx_33 = 1.8V; RECVDD_33 = 3.3V; SVDD,  
SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and  
VREF_AUDIO terminals; PLL disabled, Device CM = 0.9V unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG BYPASS TO RECEIVER AMPLIFIER, DIRECT MODE  
Load = 32(differential), 56pF  
Output CM=1.65V  
Device Setup  
IN1L routed to RECP and IN1R routed to  
RECM  
Channel Gain=0dB, 1kHz input signal  
Full scale differential input voltage  
(0dBr)  
1
VRMS  
Voltage Gain  
Gain Error  
Noise, A-weighted(1)  
1
–0.6  
12  
V/V  
dB  
-3dBr input signal  
IN1L and IN1R ac-shorted to ground  
-3dBr input signal  
μVRMS  
dB  
THD+N Total Harmonic Distortion plus Noise  
-90  
ANALOG BYPASS TO HEADPHONE AMPLIFIER (GROUND-CENTERED CIRCUIT CONFIGURATION), PGA MODE  
Load = 16(single-ended), 1nF  
IN1L routed to ADCPGA_L, ADCPGA_L  
routed through MAL to HPL and IN1R routed  
to ADCPGA_R, ADCPGA_R routed through  
Device Setup  
MAR to HPR  
Rin = 20K, Channel Gain = 0dB  
Full scale input voltage (0dBr)  
Voltage Gain  
0.5  
1
VRMS  
V/V  
Gain Error  
Noise, A-weighted(1)  
-3dBr input signal  
-0.8  
10.3  
-71  
dB  
IN1L and IN1R ac-shorted to ground  
-3dBr input signal  
μVRMS  
dB  
THD+N Total Harmonic Distortion plus Noise  
ANALOG BYPASS TO LINE-OUT AMPLIFIER, PGA MODE  
Load = 10K(single-ended), 56pF  
Output CM=0.9V  
IN1L routed to ADCPGA_L, ADCPGA_L  
routed through MAL to LOL and IN1R routed  
to ADCPGA_R, ADCPGA_R routed through  
MAR to LOR  
Device Setup  
Rin = 20K, Channel Gain = 0dB  
Full scale input voltage (0dBr)  
0.5  
VRMS  
(1) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may  
result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, may affect dynamic specification values.  
12  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Electrical Characteristics, Bypass Outputs (continued)  
TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD_18, IOVDDx_33 = 1.8V; RECVDD_33 = 3.3V; SVDD,  
SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and  
VREF_AUDIO terminals; PLL disabled, Device CM = 0.9V unless otherwise noted.  
PARAMETER  
Voltage Gain  
TEST CONDITIONS  
MIN  
TYP  
1
MAX  
UNIT  
V/V  
Gain Error  
-1dBr input signal  
–0.9  
6
dB  
(2)  
Noise, A-weighted  
IN1L and IN1R ac-shorted to ground  
-3dBr input signal  
μVRMS  
dB  
THD+N Total Harmonic Distortion plus Noise  
-87  
ANALOG BYPASS TO LINE-OUT AMPLIFIER, DIRECT MODE  
Load = 10K(single-ended), 56pF  
Output CM=0.9V  
IN1L routed to LOL and IN1R routed to LOR  
Channel Gain = 0dB  
Device Setup  
Full scale input voltage (0dBr)  
Voltage Gain  
0.5  
1
VRMS  
V/V  
Gain Error  
Noise, A-weighted(2)  
-3dBr input signal  
-0.4  
3
dB  
IN1L and IN1R ac-shorted to ground  
-3dBr input signal  
μVRMS  
dB  
THD+N Total Harmonic Distortion plus Noise  
-95  
(2) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may  
result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, may affect dynamic specification values.  
7.8 Electrical Characteristics, Microphone Interface  
TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD_18, IOVDDx_33 = 1.8V; RECVDD_33 = 3.3V; SVDD,  
SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and  
VREF_AUDIO terminals; PLL disabled, Device CM = 0.9V unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
MICROPHONE BIAS (MICBIAS or MICBIAS_EXT)  
Bias voltage  
Micbias Mode 0, No Load Current  
Micbias Mode 1, Load Current = 8mA  
Micbias Mode 4, No Load Current(1)  
Micbias Mode 5, No Load Current(1)  
1.8  
2.0  
V
1.85  
2.15  
V
V
V
V
2.9  
3.0  
Micbias Mode 0, No Load Current, CM=0.75V,  
AVDD_18, AVDDx_18=1.5V  
1.50  
Micbias Mode 1, No Load Current, CM=0.75V,  
AVDD_18, AVDDx_18=1.5V  
1.7  
2.4  
2.5  
6.4  
V
V
V
Micbias Mode 4, No Load Current, CM=0.75V,  
AVDD_18, AVDDx_18=1.5V  
Micbias Mode 5, No Load Current, CM=0.75V,  
AVDD_18, AVDDx_18=1.5V  
Output Noise  
Micbias Mode 1, A-weighted, 20Hz to 20kHz  
bandwidth,  
μVRMS  
Current load = 0mA.  
Current Sourcing  
Micbias Mode 0, 1, 4, or 5  
8
mA  
(1) With Common Mode voltage of 0.9V, the MICBIAS_VDD voltage must be at minimum 3.05V to utilize Micbias Mode 4, and minimum of  
3.2V to utilize Micbias Mode 5. With Common Mode voltage of 0.75V, the corresponding MICBIAS_VDD voltage must be minimum of  
2.65V and 2.75V respectively.  
Copyright © 2014, Texas Instruments Incorporated  
13  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Electrical Characteristics, Microphone Interface (continued)  
TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD_18, IOVDDx_33 = 1.8V; RECVDD_33 = 3.3V; SVDD,  
SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and  
VREF_AUDIO terminals; PLL disabled, Device CM = 0.9V unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
217Hz, 100mVpp signal on AVDD_18,  
AVDDx_18, HVDD_18, CPVDD_18, DVDD_18,  
IOVDDx_33, Micbias Mode 1  
51  
dB  
217Hz, 100mVpp signal on MICBIAS_VDD,  
CM=0.9V, Micbias Mode 1  
93  
51  
88  
dB  
dB  
dB  
PSRR Power Supply Rejection Ratio(2)  
1kHz, 100mVpp signal on AVDDx_18,  
DVDD_18, IOVDDx, CM=0.9V, Micbias Mode 1  
1kHz, 100mVpp signal on MICBIAS_VDD,  
CM=0.9V, Micbias Mode 1  
(2) PSRR is specified as 20*log10(Vsup/Vout), where Vsup is the signal applied on the power supply and Vout is the measured analog output.  
For ADC, Vout is given as equivalent analog input signal which produces the same level of digital output signal.  
7.9 Electrical Characteristics, Audio DAC Outputs  
TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD_18, IOVDDx_33 = 1.8V; RECVDD_33 = 3.3V; SVDD,  
SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and  
VREF_AUDIO terminals; PLL disabled, Device CM = 0.9V unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
AUDIO DAC – STEREO SINGLE-ENDED LINE OUTPUT  
Load = 10k(single-ended), 56pF  
CM=0.9V  
DOSR = 128, MCLK=256* fs  
Channel Gain = 0dB  
Device Setup  
Processing Block = PRB_P1, Power Tune =  
PTM_P4  
Full scale output voltage (0dBr)  
0.5  
0.375  
102  
VRMS  
CM = 0.75V, AVDD_18, AVDDx_18 = 1.5V  
Signal-to-noise ratio A-weighted(1) (2) All zeros fed to DAC input  
88  
SNR  
DR  
dB  
dB  
All zeros fed to DAC input, CM=0.75V,  
AVDD_18,AVDDx_18=1.5V  
–60dBFS input signal  
99  
(1) (2)  
Dynamic range, A-weighted  
102  
99  
–60dBFS input signal, CM=0.75V,  
AVDD_18,AVDDx_18=1.5V  
Total Harmonic Distortion plus Noise  
DAC Gain Error  
–3dBFS input signal  
–93  
-91  
-72  
dB  
THD+N  
–3dBFS input signal, CM=0.75V,  
AVDD_18,AVDDx_18=1.5V  
–3dBFS input signal  
±0.01  
0.1  
dB  
dB  
–3dBFS input signal, CM=0.75V,  
AVDD_18,AVDDx_18=1.5V  
Inter Channel Gain Mismatch  
–3dBFS input signal  
± 0.0  
±0.0  
–3dBFS input signal, CM=0.75V,  
AVDD_18,AVDDx_18=1.5V  
DAC Mute Attenuation  
DAC channel separation  
Digital Volume Control is Muted  
126  
114  
dB  
dB  
–3dBFS, 1kHz signal, between left and right Line  
out  
(1) Ratio of output level with 1kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a  
20Hz to 20kHz bandwidth using an audio analyzer.  
(2) All performance measurements done with 20kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may  
result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, may affect dynamic specification values.  
14  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Electrical Characteristics, Audio DAC Outputs (continued)  
TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD_18, IOVDDx_33 = 1.8V; RECVDD_33 = 3.3V; SVDD,  
SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and  
VREF_AUDIO terminals; PLL disabled, Device CM = 0.9V unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
217Hz, 100mVpp signal applied to AVDD_18,  
AVDDx_18,  
74  
dB  
HVDD_18,CPVDD_18,IOVDDx_33,DVDD_18  
PSRR  
RL  
Power Supply Rejection Ratio(3)  
1kHz, 100mVpp signal applied to AVDD_18,  
AVDDx_18,HVDD_18,CPVDD_18,IOVDDx_33,DVD  
D_18  
73  
10  
dB  
Output Resistive Load(4)  
Resistance to ground  
9
kΩ  
AUDIO DAC – STEREO DIFFERENTIAL LINE OUTPUT  
Load = 10k(differential), 56pF between  
RECP,RECMM and LOL,LOR  
Left DAC routed directly to RECP,RECM, Right  
DAC routed to LOL,LOR  
Output CM=0.9V  
DOSR = 128, MCLK=256* fs  
Channel Gain = 0dB  
Device Setup  
Processing Block = PRB_P1, Power Tune =  
PTM_P4  
RECVDD_33, AVDD_18, AVDDx_18=1.8V  
Full scale output voltage (0dBr)  
1
VRMS  
CM = 0.75V, AVDD_18, AVDDx_18,  
RECVDD_33=1.5V  
0.75  
Signal-to-noise ratio A-weighted(1) (2) All zeros fed to DAC input  
92  
105  
103  
SNR  
DR  
dB  
All zeros fed to DAC input, CM=0.75V,  
AVDD_18, AVDDx_18, RECVDD_33=1.5V  
–60dBFS input signal  
(5) (6)  
Dynamic range, A-weighted  
105  
102  
dB  
–60dBFS input full-scale signal, CM=0.75V,  
AVDD_18, AVDDx_18, RECVDD_33=1.5V  
Total Harmonic Distortion plus Noise  
DAC Gain Error  
–3dBFS input signal  
-94  
-92  
-75  
dB  
THD+N  
–3dBFS input signal, CM=0.75V,  
AVDD_18, AVDDx_18, RECVDD_33=1.5V  
–3dBFS input signal  
±0.03  
±0.04  
dB  
–3dBFS input signal, CM=0.75V,  
AVDD_18, AVDDx_18, RECVDD_33=1.5V  
Inter Channel Gain Mismatch  
Output Offset  
-3dBFS input signal  
0.0  
±0.5  
±0.4  
dB  
All zero's fed to DAC Input  
mV  
All zero's fed to DAC Input, CM=0.75V  
AVDD_18, AVDDx_18, RECVDD_33=1.5V  
DAC Mute Attenuation  
Digital Volume Control is Muted  
126  
93  
dB  
dB  
PSRR  
217kHz, 100mVpp signal applied to AVDD_18,  
AVDDx_18, RECVDD_33, HVDD_18, CPVDD_18,  
IOVDDx_33, DVDD_18  
Power Supply Rejection Ratio(7)  
1kHz, 100mVpp signal applied to AVDD_18,  
AVDDx_18, RECVDD_33, HVDD_18, CPVDD_18,  
IOVDDx_33, DVDD_18  
92  
dB  
(3) PSRR is specified as 20*log10(Vsup/Vout), where Vsup is the signal applied on the power supply and Vout is the measured analog output.  
For ADC, Vout is given as equivalent analog input signal which produces the same level of digital output signal.  
(4) Minimum resistive load and Maximum capacitive load are specified by design.  
(5) Ratio of output level with 1kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a  
20Hz to 20kHz bandwidth using an audio analyzer.  
(6) All performance measurements done with 20kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may  
result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, may affect dynamic specification values.  
(7) PSRR is specified as 20*log10(Vsup/Vout), where Vsup is the signal applied on the power supply and Vout is the measured analog output.  
For ADC, Vout is given as equivalent analog input signal which produces the same level of digital output signal.  
Copyright © 2014, Texas Instruments Incorporated  
15  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Electrical Characteristics, Audio DAC Outputs (continued)  
TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD_18, IOVDDx_33 = 1.8V; RECVDD_33 = 3.3V; SVDD,  
SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and  
VREF_AUDIO terminals; PLL disabled, Device CM = 0.9V unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
RL  
Output Resistive Load(8)  
Resistance between LOL , LOR and RECP, RECM  
9
10  
kΩ  
AUDIO DAC – STEREO SINGLE-ENDED HEADPHONE OUTPUT (GROUND-CENTERED CIRCUIT CONFIGURATION)  
Load = 16(single-ended), 1nF  
DOSR = 128, MCLK=256* fs  
Channel Gain = 0dB  
Processing Block = PRB_P1, Power Tune =  
Device Setup  
PTM_P3  
Headphone Output Strength=100%  
Full-scale Output voltage (0dBr)  
0.5  
VRMS  
CM=0.75V,  
0.375  
AVDD_18,AVDDx_18,HVDD_18,CPVDD_18=1.5V  
(9)  
Signal-to-noise ratio, A-weighted  
All zeros fed to DAC input  
88  
94  
93  
(10)  
All zeros fed to DAC input  
SNR  
DR  
dB  
CM=0.75V,  
AVDD_18,AVDDx_18,HVDD_18,CPVDD_18=1.5V  
(9) (10)  
Dynamic range, A-weighted  
–60dBFS input signal  
95  
94  
–60dBFS input signal  
CM=0.75V,  
dB  
AVDD_18,AVDDx_18,HVDD_18,CPVDD_18=1.5V  
Total Harmonic Distortion plus Noise  
DAC Gain Error  
–3dBFS input signal  
-69  
-71  
-60  
dB  
–3dBFS input signal  
CM=0.75V,  
AVDD_18,AVDDx_18,HVDD_18,CPVDD_18=1.5V  
THD+N  
–3dBFS input signal  
±0.1  
0.2  
–3dBFS input signal  
CM=0.75V,  
AVDD_18,AVDDx_18,HVDD_18,CPVDD_18=1.5V  
dB  
dB  
Inter Channel Gain Mismatch  
–3dBFS input signal  
±0.1  
±0.1  
–3dBFS input signal  
CM=0.75V,  
AVDD_18,AVDDx_18,HVDD_18,CPVDD_18=1.5V  
DAC Mute Attenuation  
DAC channel separation  
Output Offset  
Analog Volume Control is Muted  
Between HPL, HPR at –3dBFS input signal  
All zeros fed to DAC  
139  
80  
dB  
dB  
mV  
dB  
±0.1  
67  
217Hz, 100mVpp signal applied to  
AVDD_18,AVDDx_18,HVDD_18,CPVDD_18,IOVDD  
x_33,DVDD_18  
PSRR  
Power Supply Rejection Ration(11)  
1kHz, 100mVpp signal applied to  
AVDD_18,AVDDx_18,HVDD_18,CPVDD_18,IOVDD  
x_33,DVDD_18  
70  
dB  
THD+N=0.1%  
17  
24  
8
THD+N=1%, Headphone Gain=5dB  
THD+N=0.1%, RL=32Ω  
Power Delivered  
mW  
THD+N=1%, Headphone Gain=5dB, RL=32Ω  
21  
(8) Minimum resistive load and Maximum capacitive load are specified by design.  
(9) Ratio of output level with 1kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a  
20Hz to 20kHz bandwidth using an audio analyzer.  
(10) All performance measurements done with 20kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may  
result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, may affect dynamic specification values.  
(11) PSRR is specified as 20*log10(Vsup/Vout), where Vsup is the signal applied on the power supply and Vout is the measured analog output.  
For ADC, Vout is given as equivalent analog input signal which produces the same level of digital output signal.  
16  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Electrical Characteristics, Audio DAC Outputs (continued)  
TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD_18, IOVDDx_33 = 1.8V; RECVDD_33 = 3.3V; SVDD,  
SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and  
VREF_AUDIO terminals; PLL disabled, Device CM = 0.9V unless otherwise noted.  
PARAMETER  
Output Load(12)  
AUDIO DAC – MONO DIFFERENTIAL RECEIVER OUTPUT  
Load = 32(differential), 56pF  
TEST CONDITIONS  
MIN  
14.4  
TYP  
MAX UNIT  
RL  
Resistive Load to ground  
16  
Ω
Output CM=1.65V  
DOSR = 128, MCLK=256* fs  
Left DAC routed to RECP, RECM, Channel  
(Receiver Driver) Gain = 6dB for full scale output  
signal  
Device Setup  
Processing Block = PRB_P4, Power Tune =  
PTM_P4  
Full scale output voltage (0dBr)  
2
VRMS  
dB  
Signal-to-noise ratio, A-weighted(13)  
All zeros fed to DAC input  
90  
102  
SNR  
(14)  
(13) (14)  
DR  
Dynamic range, A-weighted  
–60dBFS input signal  
–3dBFS input signal  
103  
-91  
62  
dB  
THD+N  
Total Harmonic Distortion plus Noise  
Power Supply Rejection Ratio(11)  
-70  
dB  
dB  
217Hz, 100mVpp signal applied to AVDD_18,  
AVDD1x_18,HVDD_18,  
CPVDD_18,IOVDDx_33,DVDD_18  
PSRR  
1kHz, 100mVpp 217Hz signal applied to AVDD_18,  
AVDD1x_18,HVDD_18,  
59  
CPVDD_18,IOVDDx_33,DVDD_18  
1kHz, 100mVpp signal applied on RECVDD_33  
All zero's fed to DAC, Offset Correction Enabled  
THD+N 0.1%  
89  
±0.5  
72  
Output Offset  
mV  
Power Delivered  
mW  
THD+N 1%  
121  
mW  
(12) Minimum resistive load and Maximum capacitive load are specified by design.  
(13) Ratio of output level with 1kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a  
20Hz to 20kHz bandwidth using an audio analyzer.  
(14) All performance measurements done with 20kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may  
result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, may affect dynamic specification values.  
7.10 Electrical Characteristics, Class-D Outputs  
TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD_18, IOVDDx_33 = 1.8V; RECVDD_33 = 3.3V; SVDD,  
SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and  
VREF_AUDIO terminals; PLL disabled, Device CM = 0.9V unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DAC OUTPUT to CLASS-D SPEAKER OUTPUT; Load = 8(Differential), 33µH  
BTL Load = 8, 33µH between SPKP and SPKM  
Device Setup  
Lineout routed to Class-D  
PRB_P1, PTM_P4, DOSR=128, MCLK=256*FS  
0dBFS input signal, Class-D gain=12dB, THD+N ≤  
–20dB  
2.7  
3.5  
Output voltage  
VRMS  
SVDD=5.0V  
0dBFS input signal, Class-D gain=12dB, THD+N ≤  
–20dB  
Class-D gain=6dB(1)  
45  
46  
140  
Idle Channel Noise  
µVRMS  
SVDD=5.0V  
Class-D gain=6dB(1)  
(1) All performance measurements done with 20kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may  
result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, may affect dynamic specification values.  
Copyright © 2014, Texas Instruments Incorporated  
17  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Electrical Characteristics, Class-D Outputs (continued)  
TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD_18, IOVDDx_33 = 1.8V; RECVDD_33 = 3.3V; SVDD,  
SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and  
VREF_AUDIO terminals; PLL disabled, Device CM = 0.9V unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
-3dBFS input signal, Class-D gain=6dB  
All zero's fed to DAC, Class-D gain=6dB  
MIN  
TYP  
MAX  
UNIT  
Total harmonic distortion  
+ noise  
THD+N  
PSRR  
-68  
dB  
Output Offset  
±12.1  
64  
mV  
dB  
217Hz, 200 mVp-p signal on SVDD, Class-D  
gain=6dB  
Power-supply rejection  
ratio(2)  
1kHz, 200 mVp-p signal on SVDD, Class-D gain=6dB  
Analog Mute Only  
64  
104  
dB  
dB  
Mute attenuation  
SVDD = 3.6 V  
0.65  
0.81  
1.15  
0.74  
1.02  
1.45  
THD+N = 1%, f = 1 kHz,  
Class-D gain = 12 dB  
SVDD = 4.2 V  
SVDD = 5.0 V  
SVDD = 3.6 V  
PO  
Maximum output power  
W
THD+N = 10%, f = 1 kHz,  
Class-D gain = 12 dB  
SVDD = 4.2 V  
SVDD = 5.0 V  
Over Temperature  
>104  
20  
C
C
Protection Trip Point(3)  
Over Temperature  
Protection Hysterisis(3)  
Over Current Trip  
Threshold(4)  
>850  
mA  
(2) PSRR is specified as 20*log10(Vsup/Vout), where Vsup is the signal applied on the power supply and Vout is the measured analog output.  
For ADC, Vout is given as equivalent analog input signal which produces the same level of digital output signal.  
(3) Over Temperature and Over Current Protection parameters are indicative values from design. Over Temperature trip point can be very  
heavily influenced by thermal properties of the actual PCB.  
(4) Over Temperature and Over Current Protection parameters are indicative values from design. Over Temperature trip point can be very  
heavily influenced by thermal properties of the actual PCB.  
7.11 Electrical Characteristics, Misc.  
TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD_18, IOVDDx_33 = 1.8V; RECVDD_33 = 3.3V; SVDD,  
SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and  
VREF_AUDIO terminals; PLL disabled, Device CM = 0.9V unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
REFERENCE - VREF_AUDIO  
CMMode = 0 (0.9V)  
0.9  
0.75  
1
Reference Voltage Settings  
V
CMMode = 1 (0.75V)  
Decoupling Capacitor  
Bias Current  
μF  
μA  
Reference forcefully powered on.  
101  
miniDSP  
miniDSP clock frequency - ADC  
DVDD_18 = 1.26V  
DVDD_18 = 1.65V  
DVDD_18 = 1.71V  
DVDD_18 = 1.26V  
DVDD_18 = 1.65V  
DVDD_18 = 1.71V  
37.5  
63  
MHz  
MHz  
69  
miniDSP clock frequency - DAC  
35.0  
59.0  
62.5  
Shutdown Power  
Coarse AVdd supply turned off, All External  
analog supplies powered and set available,  
No external digital input is toggled, register  
values are retained.  
Device Setup  
18  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Electrical Characteristics, Misc. (continued)  
TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD_18, IOVDDx_33 = 1.8V; RECVDD_33 = 3.3V; SVDD,  
SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and  
VREF_AUDIO terminals; PLL disabled, Device CM = 0.9V unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
P(total)  
Sum of all supply currents, all supplies at 1.8  
V except for SVDD = SPK_V =  
MICBIAS_VDD = 3.6 V and RECVDD_33 =  
3.3 V  
1.4  
μW  
I(DVDD_18)  
0.02  
0.17  
0.13  
μA  
μA  
μA  
I(IOVDD1_33, IOVDD2_33)  
I(AVDD1_18, AVDD2_18, AVDD4_18,  
AVDD_18, HVDD_18, CPVDD_18)  
I(RECVDD_33)  
0.01  
0.22  
μA  
μA  
I(SVDD, SPK_V, MICBIAS_VDD)  
Active Power  
Device Setup  
fS=48ksps, PLL disabled, Device is I2S slave,  
Stereo ADC record, AGC disabled  
PTM_R4,PRB_P1  
I(DVDD_18)  
4
28  
mA  
µA  
I(IOVDD1_18,IOVDD2_18)  
I(AVDD1_18, AVDD2_18,  
AVDD4_18,AVDD_18, HVDD_18,  
CPVDD_18)  
6.9  
mA  
I(RECVDD_33)  
0
µA  
µA  
I(SVDD, SPK_V,MICBIAS_VDD)  
Device Setup  
0.2  
fS=8ksps, PLL disabled, Device is I2S slave,  
Stereo ADC record, AGC disabled  
PTM_R4,PRB_P1  
I(DVDD_18)  
0.9  
5
mA  
µA  
I(IOVDD1_18,IOVDD2_18)  
I(AVDD1_18, AVDD2_18,  
AVDD4_18,AVDD_18, HVDD_18,  
CPVDD_18)  
6.7  
mA  
I(RECVDD_33)  
0
µA  
µA  
I(SVDD, SPK_V,MICBIAS_VDD)  
Device Setup  
0.2  
fS=48ksps, PLL disabled; Device is I2S slave  
Stereo DAC Playback on Stereo Single-ended  
Lineout;  
PTM_P4; PRB_P1;  
All zeros on I2S input; DAC Modualtor  
excited;  
Input CM=0.9V  
I(DVDD_18)  
4.8  
6
mA  
µA  
I(IOVDD1_18,IOVDD2_18)  
I(AVDD1_18, AVDD2_18,  
AVDD4_18,AVDD_18, HVDD_18,  
CPVDD_18)  
1.9  
mA  
I(RECVDD_33)  
0
µA  
µA  
(SVDD, SPK_V,MICBIAS_VDD)  
Device Setup  
0.2  
fS=48ksps, PLL disabled; Device is I2S slave  
Stereo DAC Playback on Stereo Differential  
Lineout;  
PTM_P4; PRB_P1;  
All zeros on I2S input; DAC Modualtor  
excited;  
Input CM=0.9V  
I(DVDD_18)  
5.3  
mA  
Copyright © 2014, Texas Instruments Incorporated  
19  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Electrical Characteristics, Misc. (continued)  
TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD_18, IOVDDx_33 = 1.8V; RECVDD_33 = 3.3V; SVDD,  
SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and  
VREF_AUDIO terminals; PLL disabled, Device CM = 0.9V unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
7
MAX  
UNIT  
µA  
I(IOVDD1_18,IOVDD2_18)  
I(AVDD1_18, AVDD2_18,  
AVDD4_18,AVDD_18, HVDD_18,  
CPVDD_18)  
2.3  
mA  
I(RECVDD_33)  
2
mA  
µA  
I(SVDD, SPK_V,MICBIAS_VDD)  
Device Setup  
0.2  
fS=48ksps, PLL disabled; Device is I2S slave  
Stereo DAC Playback on Headphones  
(Ground Centered Mode);  
PTM_P4; PRB_P1;  
All zeros on I2S input; DAC Modualtor  
excited;  
Input CM=0.9V  
I(DVDD_18)  
5.2  
6
mA  
µA  
I(IOVDD1_18,IOVDD2_18)  
I(AVDD1_18, AVDD2_18,  
AVDD4_18,AVDD_18, HVDD_18,  
CPVDD_18)  
6.4  
mA  
I(RECVDD_33)  
0
µA  
µA  
I(SVDD, SPK_V,MICBIAS_VDD)  
Device Setup  
0.2  
fS=48ksps, PLL disabled; Device is I2S slave  
Mono DAC Playback on Speaker Amp ;  
PTM_P4; PRB_P1;  
All zeros on I2S input; DAC Modualtor  
excited;  
Input CM=0.9V  
I(DVDD_18)  
3.3  
5
mA  
µA  
I(IOVDD1_18,IOVDD2_18)  
I(AVDD1_18, AVDD2_18,  
AVDD4_18,AVDD_18, HVDD_18,  
CPVDD_18)  
1.9  
mA  
I(RECVDD_33)  
0
µA  
I(SVDD, SPK_V,MICBIAS_VDD)  
Device Setup  
6.7  
mA  
fS=48ksps, PLL disabled; Device is I2S slave  
Mono DAC Playback on Receiver Amp ;  
PTM_P4; PRB_P1;  
All zeros on I2S input; DAC Modualtor  
excited;  
Input CM=0.9V, Receiver Amp Output  
CM=1.65V  
I(DVDD_18)  
3.1  
6
mA  
µA  
I(IOVDD1_18,IOVDD2_18)  
I(AVDD1_18, AVDD2_18,  
AVDD4_18,AVDD_18, HVDD_18,  
CPVDD_18)  
1.4  
mA  
I(RECVDD_33)  
2.3  
0.2  
mA  
µA  
I(SVDD, SPK_V,MICBIAS_VDD)  
20  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
7.12 Electrical Characteristics, Logic Levels, IOVDDx  
TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD_18, IOVDDx_33 = 1.8V; RECVDD_33 = 3.3V; SVDD,  
SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and  
VREF_AUDIO terminals; PLL disabled, Device CM = 0.9V unless otherwise noted.  
PARAMETER  
Digital IO (When SPI_SELECT = '1', all terminals, When SPI_SELECT = '0', all terminals except SCL, SDA)  
LOGIC FAMILY CMOS  
VIH Logic Level  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IIH = 5 μA, IOVDDx_33 > 1.65V  
IIH = 5μA, 1.2V IOVDDx_33 <1.65V  
IIH = 5μA, IOVDDx_33 < 1.2V  
0.7 × IOVDDx_33  
0.9 × IOVDDx_33  
IOVDDx_33  
–0.3  
V
V
V
VIL  
IIL = 5 μA, IOVDDx_33 > 1.65V  
0.3 × IOVDDx_33  
V
V
IIL = 5μA, 1.2V IOVDDx_33 <1.65V  
IIL = 5μA, IOVDDx_33 < 1.2V  
0.1 × IOVDDx_33  
0
V
VOH  
IOH = 3mA load, IOVDDx_33 > 1.65V  
IOH = 1mA load, IOVDDx_33 < 1.65V  
IOL = 3mA load, IOVDDx_33 > 1.65V  
IOL = 1mA load, IOVDDx_33 < 1.65V  
0.8 × IOVDDx_33  
0.8 × IOVDDx_33  
V
V
VOL  
0.2 × IOVDDx_33  
0.2 × IOVDDx_33  
V
V
Capacitive Load  
10  
pF  
Digital IO (SCL, SDA when SPI_SELECT = '0')  
LOGIC FAMILY  
OPEN  
DRAIN  
VIH  
VIL  
0.7 × IOVDD1_33  
–0.3  
V
V
V
V
0.3 × IOVDD1_33  
0.4  
VOL  
IOL = 3mA load, IOVDD1_33 > 2V  
IOL = 2mA load, IOVDD1_33 2V  
0.2 × IOVDD1_33  
Copyright © 2014, Texas Instruments Incorporated  
21  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
7.13 Interface Timing  
Note: All timing specifications are measured at characterization but not tested at final test. The audio serial interface timing  
specifications are applied to Audio Serial Interface 1, Audio Serial Interface 2 and Audio Serial Interface 3.  
7.13.1 Typical Timing Characteristics — Audio Data Serial Interface Timing (I2S)  
WCLK represents WCLK1 terminal for Audio Serial Interface 1, WCLK2 terminal for Audio Serial Interface 2 and Word Clock  
for Audio Serial Interface 3. BCLK represents BCLK1 terminal for Audio Serial Interface 1, BCLK2 for Audio Serial Interface 2  
and Bit Clock for Audio Serial Interface 3. DOUT represents DOUT1 terminal for Audio Serial Interface 1, DOUT2 for Audio  
Serial Interface 2 and Data Out for Audio Serial Interface 3. DIN represents DIN1 terminal for Audio Serial Interface 1, DIN2  
for Audio Serial Interface 2 and Data In for Audio Serial Interface 3. Specifications are at 25° C with DVDD_18 = 1.8V.  
WCLK  
t
d(WS)  
BCLK  
t
d(DO-BCLK)  
t
d(DO-WS)  
DOUT  
t
t
h(DI)  
S(DI)  
DIN  
Figure 2. I2S,LJF,RJF Timing in Master Mode  
Table 1. I2S,LJF,RJF Timing in Master Mode (see Figure 2)  
PARAMETER  
IOVDDx=1.8V  
IOVDDx=3.3V  
UNIT  
MIN  
MAX  
MIN  
MAX  
td(WS)  
WCLK delay  
23  
28  
25  
17  
23  
19  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td (DO-WS)  
WCLK to DOUT delay (For LJF Mode only)  
BCLK to DOUT delay  
DIN setup  
td (DO-BCLK)  
ts(DI)  
th(DI)  
tr  
7
5
8
5
DIN hold  
BCLK Rise time  
7
5
6
tf  
BCLK Fall time  
10  
22  
Copyright © 2014, Texas Instruments Incorporated  
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
WCLK  
th(WS)  
ts(WS)  
tL(BCLK)  
td(DO-WS)  
tH(BCLK)  
td(DO-BCLK)  
BCLK  
DOUT  
DIN  
th(DI)  
ts(DI)  
Figure 3. I2S,LJF,RJF Timing in Slave Mode  
Table 2. I2S,LJF,RJF Timing in Slave Mode (see Figure 3)  
PARAMETER  
IOVDDx=1.8V  
IOVDDx=3.3V  
UNIT  
MIN  
34  
34  
7
MAX  
MIN  
30  
30  
7
MAX  
tH (BCLK)  
tL (BCLK)  
ts (WS)  
BCLK high period  
ns  
BCLK low period  
WCLK setup  
th (WS)  
WCLK hold  
5
5
td (DO-WS)  
WCLK to DOUT delay (For LJF mode only)  
BCLK to DOUT delay  
DIN setup  
28  
26  
24  
21  
td (DO-BCLK)  
ts(DI)  
th(DI)  
tr  
5
5
5
5
DIN hold  
BCLK Rise time  
BCLK Fall time  
5
5
4
4
tf  
Copyright © 2014, Texas Instruments Incorporated  
23  
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
7.13.2 Typical DSP Timing Characteristics  
Specifications are at 25° C with DVDD_18 = 1.8 V.  
WCLK  
th(WS)  
ts(WS)  
tL(BCLK)  
td(DO-WS)  
tH(BCLK)  
td(DO-BCLK)  
BCLK  
DOUT  
DIN  
th(DI)  
ts(DI)  
Figure 4. DSP,Mono PCM Timing in Master Mode  
Table 3. DSP,Mono PCM Timing in Master Mode (see Figure 4)  
PARAMETER  
IOVDDx=1.8V  
IOVDDx=3.3V  
UNIT  
MIN  
MAX  
MIN  
MAX  
td (WS)  
WCLK delay  
22  
25  
17  
19  
ns  
ns  
ns  
ns  
ns  
ns  
td (DO-BCLK)  
BCLK to DOUT delay  
DIN setup  
ts(DI)  
th(DI)  
tr  
5
5
5
5
DIN hold  
BCLK Rise time  
BCLK Fall time  
7
5
6
tf  
10  
WCLK  
t
t
h(ws)  
t
h(ws)  
t
s(ws)  
h(ws)  
t
BCLK  
DOUT  
DIN  
L(BCLK)  
t
H(BCLK)  
t
d(DO-BCLK)  
t
t
h(DI)  
s(DI)  
Figure 5. DSP/Mono PCM Timing in Slave Mode  
Table 4. DSP,Mono PCM Timing in Slave Mode (see Figure 5)  
PARAMETER  
IOVDDx=1.8V  
IOVDDx=3.3V  
UNIT  
MIN  
31  
31  
6
MAX  
MIN  
25  
25  
6
MAX  
tH (BCLK)  
tL (BCLK)  
ts(WS)  
BCLK high period  
BCLK low period  
WCLK setup  
ns  
ns  
ns  
ns  
th(WS)  
WCLK hold  
5
5
td (DO-BCLK)  
BCLK to DOUT delay  
DIN setup  
26  
20  
ns  
ns  
ns  
ns  
ns  
ts(DI)  
th(DI)  
tr  
5
5
5
5
DIN hold  
BCLK Rise time  
BCLK Fall time  
5
5
4
4
tf  
24  
Copyright © 2014, Texas Instruments Incorporated  
 
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
7.13.3 I2C Interface Timing  
Figure 6. I2C Interface Timing Diagram  
Table 5. I2C Interface Timing (see Figure 6)  
PARAMETER  
Standard-Mode  
Fast-Mode  
UNIT  
MIN  
0
MAX  
MIN  
0
MAX  
fSCL  
SCL clock frequency  
100  
400  
kHz  
tHD;STA  
Hold time (repeated) START condition. After this  
period, the first clock pulse is generated.  
4.0  
0.8  
μs  
tLOW  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
LOW period of the SCL clock  
HIGH period of the SCL clock  
Setup time for a repeated START condition  
Data hold time: For I2C bus devices  
Data set-up time  
4.7  
4.0  
4.7  
0
1.3  
0.6  
0.8  
0
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
μs  
3.45  
0.9  
250  
100  
SDA and SCL Rise Time  
1000  
300  
20 + 0.1Cb  
300  
300  
tf  
SDA and SCL Fall Time  
20 + 0.1Cb  
0.8  
tSU;STO  
tBUF  
Set-up time for STOP condition  
4.0  
4.7  
Bus free time between a STOP and START  
condition  
1.3  
Cb  
Capacitive load for each bus line  
400  
400  
pF  
Copyright © 2014, Texas Instruments Incorporated  
25  
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
7.13.4 SPI Interface Timing  
SS = SCL terminal, SCLK = I2C_ADDR_SCLK terminal, MISO = GPO1 terminal, and MOSI = SDA terminal. Specifications  
are at 25° C with DVDD_18 = 1.8V.  
SS  
t
td  
tLag  
t
tLead  
sck  
tf  
tr  
SCLK  
MISO  
tsckl  
tsckh  
tv(DOUT)  
tdis  
MSB OUT  
th(DIN)  
BIT 6 . . . 1  
LSB OUT  
t
a
tsu  
MOSI  
MSB IN  
BIT 6 . . . 1  
LSB IN  
Figure 7. SPI Interface Timing Diagram  
Table 6. SPI Interface Timing  
PARAMETER  
IOVDD1=1.8V  
IOVDD1=3.3V  
UNIT  
MIN  
48  
24  
24  
24  
24  
20  
MAX  
MIN  
40  
20  
20  
20  
20  
20  
MAX  
tsck  
tsckh  
tsckl  
tlead  
tlag  
SCLK Period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Pulse width High  
SCLK Pulse width Low  
SS Lead Time  
SS Lag Time  
td;seqxfr  
ta  
Sequential Transfer Delay  
Slave DOUT (MISO) access time  
Slave DOUT (MISO) disable time  
DIN (MOSI) data setup time  
DIN (MOSI) data hold time  
DOUT (MISO) data valid time  
SCLK Rise Time  
19  
20  
13  
13  
tdis  
tsu  
8
9
7
7
th;DIN  
tv;DOUT  
tr  
19  
4
15  
4
tf  
SCLK Fall Time  
4
4
7.14 Typical Characteristics  
TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD_18, IOVDDx_33 = 1.8V; RECVDD_33 = 3.3V;  
SVDD, SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on  
VREF_SAR and VREF_AUDIO terminals; PLL disabled, Device CM = 0.9V unless otherwise noted.  
26  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Typical Characteristics (continued)  
7.14.1 SAR ADC Performance  
1.0  
1.0  
0.8  
0.5  
0.5  
0.3  
0.0  
0.0  
±0.3  
±0.5  
±0.8  
±1.0  
±0.5  
±1.0  
0
1024  
2048  
3072  
0
1024  
2048  
3072  
ADC Output Code  
ADC Output Code  
C002  
C001  
12-bit resolution  
12-bit resolution  
Internal Oscillator divide by 4  
External Reference  
Internal Oscillator divide by 4  
External Reference  
Figure 8. SAR ADC, DNL versus Output Code  
Figure 9. SAR ADC, INL versus Output Code  
0.5  
0.5  
0.4  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0.0  
0.0  
±0.1  
±0.2  
±0.3  
±0.4  
±0.5  
±0.1  
±0.2  
±0.3  
±0.4  
±0.5  
0
64  
128  
192  
0
64  
128  
192  
ADC Output Code  
ADC Output Code  
C004  
C003  
8-bit resolution  
8-bit resolution  
12MHz External Conversion Clock  
External Reference  
12MHz External Conversion Clock  
External Reference  
Figure 10. SAR ADC, DNL versus Output Code  
Figure 11. SAR ADC, INL versus Output Code  
2.0  
1.5  
1.0  
0.5  
0.0  
±0.5  
±1.0  
±1.5  
±2.0  
2.2  
3.2  
4.2  
5.2  
VBAT (V)  
C005  
12-bit resolution  
Internal Oscillator Clock Divider by 4  
Interal Reference  
Figure 12. Battery Measurement, Accuracy versus VBAT Input Voltage  
Copyright © 2014, Texas Instruments Incorporated  
27  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
7.14.2 Audio ADC Performance  
0
±20  
±10  
±30  
±50  
±40  
±70  
±90  
±60  
±110  
±130  
±150  
±80  
±100  
20  
200  
2000  
20000  
±70  
±60  
±50  
±40  
±30  
±20  
±10  
0
Frequency (Hz)  
Input Amplitude (dBr)  
C009  
C007  
Differential Input  
Rin=20kΩ  
CM=0.9V  
Differential Input  
Rin=20kΩ  
CM=0.9V  
Channel Gain=0dB  
Input Amplitude=-3dBr  
Channel Gain=0dB  
Figure 13. Audio ADC, Output Amplitude versus  
Frequency  
Figure 14. Audio ADC, Total Harmonic Distortion + Noise  
versus Input Amplitude  
0
±10  
±30  
±50  
±20  
±40  
±70  
±90  
±60  
±110  
±130  
±150  
±80  
±100  
20  
200  
2000  
20000  
C006  
±70  
±60  
±50  
±40  
±30  
±20  
±10  
0
Frequency (Hz)  
Input Amplitude (dBr)  
C008  
Single-ended Input  
Channel Gain=0dB  
Rin=20kΩ  
CM=0.9V  
Single-ended Input  
Channel Gain=0dB  
Rin=20kΩ  
CM=0.9V  
Input Amplitude=-3dBr  
Figure 15. Audio ADC, Output Amplitude versus  
Frequency  
Figure 16. Audio ADC, Total Harmonic Distortion + Noise  
versus Input Amplitude  
100  
95  
90  
85  
80  
75  
Diff, Rin 10KŸ  
Diff, Rin 20KŸ  
Diff, Rin 40KŸ  
SE, Rin 10KŸ  
70  
65  
60  
55  
SE, Rin 20KŸ  
SE, Rin 40KŸ  
±12 ±6  
0
6
12 18 24 30 36 42 48  
Channel Gain (dB)  
C010  
Differential and Single-ended Inputs  
Rin=10kΩ  
20kΩ and 40kΩ  
CM=0.9V  
Figure 17. Audio ADC, Output SNR versus Channel Gain (Analog)  
28  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Typical Characteristics (continued)  
7.14.3 MICBIAS Performance  
3.10  
2.70  
2.30  
1.90  
Mode 5  
Mode 4  
Mode 0  
Mode 1  
1.50  
0
1
2
3
4
5
6
7
8
Load Current (mA)  
C011  
MICBIAS_VDD at 200mV above programmed output voltage  
CM=0.9V  
Figure 18. Micbias, Output Voltage versus Load Current  
7.14.4 Audio DAC to Line Out Performance  
0
±20  
±10  
±30  
±50  
±40  
±70  
±90  
±60  
±110  
±130  
±150  
±80  
±100  
20  
200  
2000  
Frequency (Hz)  
20000  
±70  
±60  
±50  
±40  
±30  
±20  
±10  
0
Input Amplitude (dBFS)  
C012  
C013  
Differential Line Out  
RECVDD_33=1.8V  
Rload=10kΩ  
Input Amplitude=-3dBFS  
CM=0.9V  
Differential Line Out  
RECVDD_33=1.8V  
Rload=10kΩ  
CM=0.9V  
Figure 19. DAC Playback on Line Out Amplifier, Output  
Amplitude versus Frequency  
Figure 20. DAC Playback on Line Out Amplifier, Total  
Harmonic Distortion + Noise versus Input Amplitude  
Copyright © 2014, Texas Instruments Incorporated  
29  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
±10  
±30  
±10  
±30  
±50  
±50  
±70  
±90  
±70  
±110  
±130  
±150  
±90  
±110  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
C014  
C015  
Differential Line Out  
RECVDD_33=1.8V  
Rload=10kΩ  
CM=0.9V  
Single-ended Line Out  
Input Amplitude=-3dBFS  
Rload=10kΩ  
CM=0.9V  
Input Amplitude=-3dBFS  
Figure 21. DAC Playback on Line Out Amplifier, Total  
Harmonic Distortion + Noise versus Input Frequency  
Figure 22. DAC Playback on Line Out Amplifier, Output  
Amplitiude versus Frequency  
0
±20  
±40  
±60  
±80  
±10  
±30  
±50  
±70  
±90  
±100  
±110  
±70  
±60  
±50  
±40  
±30  
±20  
±10  
0
20  
200  
2000  
20000  
Input Amplitude (dBFS)  
Frequency (Hz)  
C017  
C016  
Single-ended Line Out  
Rload=10kΩ  
CM=0.9V  
Single-ended Line Out  
Input Amplitude=-3dBFS  
Rload=10kΩ  
CM=0.9V  
Figure 23. DAC Playback on Line Out Amplifier, Total  
Harmonic Distortion + Noise versus Input Amplitude  
Figure 24. DAC Playback on Line Out Amplifier, Total  
Harmonic Distortion + Noise versus Input Frequency  
30  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Typical Characteristics (continued)  
7.14.5 Audio DAC to Headphone Performance  
±10  
±30  
±10  
±30  
±50  
±50  
±70  
±70  
±90  
±90  
±110  
±130  
±150  
±110  
±130  
±150  
20  
200  
2000  
20000  
20  
200  
2000  
20000  
Frequency (Hz)  
Frequency (Hz)  
C018  
C019  
Input Amplitude=-60dBFS  
Rload=16Ω  
Input Amplitude=-60dBFS  
Rload=32Ω  
Figure 25. DAC Playback on Headphone Amplifier, Output  
Amplitude versus Frequency  
Figure 26. DAC Playback on Headphone Amplifier, Output  
Amplitude versus Frequency  
0
CM=0.75V, R=16ŸꢀꢁGain=5dB  
±10  
±30  
CM=0.9V, R=16ŸꢀꢁGain=5dB  
±20  
CM=0.75V, R=32ŸꢀꢁGain=5dB  
CM=0.9V, R=32ŸꢀꢁGain=5dB  
±40  
±60  
±50  
±70  
±80  
±90  
±110  
±100  
20  
200  
2000  
Frequency (Hz)  
20000  
0.0  
0.1  
1.0  
10.0  
100.0  
Output Power (mW)  
C020  
C021  
Headphone Gain=5dB  
Rload=16Ω and 32Ω  
Headphone Gain=0dB  
Device CM=0.9V  
Rload=16Ω  
Device CM=0.75V and 0.9V  
Input Amplitude=-3dBFS  
Figure 27. DAC Playback on Headphone Amplifier, Total  
Harmonic Distortion + Noise versus Output Power  
Figure 28. DAC Playback on Headphone Amplifier, Total  
Harmonic Distortion + Noise versus Input Frequency  
±10  
±30  
±50  
±70  
±90  
±110  
20  
200  
2000  
Frequency (Hz)  
20000  
C022  
Headphone Gain=0dB  
Device CM=0.9V  
Rload=32Ω  
Input Amplitude=-3dBFS  
Figure 29. DAC Playback on Headphone Amplifier, Total Harmonic Distortion + Noise versus Input Frequency  
Copyright © 2014, Texas Instruments Incorporated  
31  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
7.14.6 Audio DAC to Receiver Performance  
±10  
±30  
±10  
±30  
±50  
±50  
±70  
±90  
±70  
±110  
±130  
±150  
±90  
±110  
0.1  
1.0  
10.0  
100.0  
20  
200  
2000  
Frequency (Hz)  
20000  
Output Power (mW)  
C023  
C024  
Receiver Gain=6dB  
Device CM=0.9V  
Output CM=1.65V  
Rload=32Ω  
Receiver Gain=6dB  
Device CM=0.9V  
Output CM=1.65V  
Rload=32Ω  
Input Amplitude=-3dBFS  
Figure 30. DAC Playback on Receiver Amplifier, Output  
Amplitude versus Input Frequency  
Figure 31. DAC Playback on Receiver Amplifier, Total  
Harmonic Distortion + Noise versus Output Power  
±10  
±30  
±50  
±70  
±90  
±110  
20  
200  
2000  
Frequency (Hz)  
20000  
C025  
Receiver Gain=6dB  
Device CM=0.9V  
Output CM=1.65V  
Rload=32Ω  
Input Amplitude=-3dBFS  
Figure 32. DAC Playback on Receiver Amplifier, Total Harmonic Distortion + Noise versus Input Frequency  
32  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Typical Characteristics (continued)  
7.14.7 Class-D Driver Performance  
0
±20  
±10  
±30  
±50  
±40  
SVDD = 5.5V  
±70  
±90  
±60  
SVDD = 5.0V  
SVDD = 4.2V  
±110  
±130  
±150  
±80  
SVDD = 3.6V  
SVDD = 2.7V  
±100  
20  
200  
2000  
20000  
0.1  
0.6  
1.1  
1.6  
2.1  
Frequency (Hz)  
Output Power (W)  
C026  
C027  
Input Amplitude=-3dBFS  
Speaker Gain=6dB  
Rload=8Ω  
Speaker Gain=12dB  
Rload=8Ω  
SVDD=2.7V, 3.6V, 4.2V, 5.0V and 5.5V  
Figure 33. DAC Playback on Speaker Amplifier, Output  
Amplitude versus Frequency  
Figure 34. DAC Playback on Speaker Amplifier, Total  
Harmonic Distortion + Noise versus Output Power  
±10  
±30  
91  
81  
71  
61  
51  
±50  
±70  
SVDD=2.7V  
SVDD=3.6V  
SVDD=4.2V  
±90  
41  
31  
21  
±110  
±130  
±150  
SVDD=5.0V  
11  
SVDD=5.5V  
1.00  
1
0.01  
20  
200  
2000  
20000  
0.10  
Output Power (W)  
Frequency (Hz)  
C029  
C028  
Speaker Gain=6dB  
Rload=8Ω  
SVDD=2.7V, 3.6V, 4.2V, 5.0V and 5.5V  
Rload=8Ω  
Input Amplitude=-3dBFS  
Figure 36. DAC Playback on Speaker Amplifier, Total  
Harmonic Distortion versus Input Frequency  
Figure 35. DAC Playback on Speaker Amplifier, Efficiency  
versus Output Power  
Copyright © 2014, Texas Instruments Incorporated  
33  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TLV320AIC3268 (AIC3268) is a flexible, highly-integrated, low-power, low-voltage stereo audio codec. The  
AIC3268 features four digital microphone inputs, plus programmable outputs, PowerTune capabilities, enhanced  
fully-programmable miniDSP, predefined and parameterizable signal processing blocks, integrated PLL, and  
flexible digital audio interfaces. Extensive register-based control of power, input and output channel configuration,  
gains, effects, terminal-multiplexing and clocks are included, allowing the device to be precisely targeted to its  
application.  
The record path of the TLV320AIC3268 covers operations from 8kHz mono to 192kHz stereo recording, and  
contains programmable input channel configurations which cover single-ended and differential setups, as well as  
floating or mixing input signals. It also provides a digitally-controlled stereo microphone preamplifier and  
integrated microphone bias. The record path can also be configured for up to two stereo (that is up to 4)  
simultaneous digital microphone Pulse Density Modulation (PDM) interfaces typically used at 64Fs or 128Fs.  
The playback path offers signal processing blocks for filtering and effects; headphone, line, receiver, and Class-D  
speaker output; flexible mixing of DAC; and analog input signals as well as programmable volume controls. The  
playback path contains two high-power DirectPathTM headphone output drivers which eliminate the need for ac  
coupling capacitors. A built in charge pump generates the negative supply for the ground centered headphone  
drivers. These headphone output drivers can be configured in multiple ways, including stereo, and mono BTL.  
The playback path also features stereo lineout drivers, which can be configured either for single-ended operation  
or differential output operation for high performance systems. In addition, playback audio can be routed to an  
integrated Class-D speaker driver or a differential receiver amplifier.  
The integrated PowerTune technology allows the device to be tuned to just the right power-performance trade-  
off. Mobile applications frequently have multiple use cases requiring very low-power operation while being used  
in a mobile environment. When used in a docked environment power consumption typically is less of a concern  
while lowest possible noise is important. With PowerTune the TLV320AIC3268 can address both cases.  
The required internal clock of the TLV320AIC3268 can be derived from multiple sources, including the MCLK  
terminal, the BCLK1 terminal, the BCLK2 terminal, several general purpose IO terminals or the output of the  
internal PLL, where the input to the PLL again can be derived from similar terminals. Although using the internal  
fractional PLL ensures the availability of a suitable clock signal, it is not recommended for the lowest power  
settings. The PLL is highly programmable and can accept available input clocks in the range of 512kHz to  
50MHz. To enable even lower clock frequencies, an integrated low-frequency clock multiplier can also be used  
as an input to the PLL.  
The TLV320AIC3268 has a 12-bit SAR ADC converter that supports system voltage measurements. These  
system voltage measurements can be sourced from three dedicated analog inputs (IN1L/AUX1, IN1R/AUX2 or  
VBAT terminals), or, alternatively, an on-chip temperature sensor that can be read by the SAR ADC.  
The device also features three full Digital Audio Serial Interfaces, each supporting I2S, DSP/TDM, RJF, LJF, and  
mono PCM formats. This enables three simultaneous digital playback and record paths to three independent  
digital audio buses or chips. Each of the Digital Audio Serial Interfaces can be run using separate power voltages  
to enable easy integration with separate chips with different IO voltages.  
The device is available in the 9mm x 9mm x 0,9mm 64-terminal QFN package.  
34  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
8.2 Functional Block Diagram  
LOL  
-6...29 dB  
-78...0dB  
(1-dB Steps)  
Int.  
Ref.  
VREF_SAR  
IN1L  
RECP  
VBAT  
VBAT  
-78...0dB  
IN1L/AUX1  
IN1R/AUX2  
RECM  
SAR  
ADC  
LOR  
-78...0dB  
6...30dB  
(6-dB Steps)  
TEMP  
TEMP  
SENSOR  
IN1R  
-78...0dB  
-6dB  
SPKP  
SPKM  
-12, -6, 0dB  
LOL  
RIGHT _  
CH_IN  
-78...0dB  
LOR  
12, –6, 0dB  
IN1L_AUX1  
IN2L  
12, –6, 0dB  
12, –6, 0dB  
-6...14dB  
(1-dB Steps)  
-78... 0dB  
Vol. Ctrl.  
AGC  
IN3L  
ADC  
Signal  
Proc .  
DAC  
Signal  
Proc.  
HPL  
–6 dB  
Left  
ADC  
Left  
+
tPL  
IN4L  
DAC  
-78...0dB  
047.5dB  
(0.5-dB Steps )  
Gain Adj.  
–36...0dB  
MAL  
LOL  
miniDSP  
miniDSP  
Dig Mixer  
Volume  
Audio  
HPVSS_SENSE  
Dig Mixer  
Volume  
Interface  
–36...0dB  
MAR  
LOR  
HPR  
0…47.5dB  
(0.5-dB Steps )  
Gain Adj.  
-78...0dB  
ADC  
Signal  
Proc .  
DAC  
Signal  
Proc.  
Right  
ADC  
Right –  
DAC +  
–6 dB  
tPR  
IN4R  
IN3R  
12, –6, 0dB  
12, –6, 0dB  
12, –6, 0dB  
Vol.Ctrl.  
-6...14dB  
(1-dB Steps  
AGC  
IN2R  
)
-12, -6,0dB  
IN1R_AUX2  
-6dB  
Low Freq  
Clocking  
SPI_SELECT  
RESET  
2
Digital Interrupt  
Ctrl  
SPI / I C  
Control Block  
PLL  
ASI-3  
ASI-2  
ASI-1  
Mic. (x4)  
MICDET  
Detection  
MICBIAS  
Mic  
Bias  
Charge  
Pump  
MICBIAS_EXT  
Supplies  
Terminal Muxing / Clock Routing  
VREF_AUDIO  
Ref  
Copyright © 2014, Texas Instruments Incorporated  
35  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Analog Audio I/O  
P1_R45_D1=Power  
P1_R48_D[6:4]=Gain  
-12, -6, 0dB  
SPKP  
P1_R23_D[4:3]  
MAL  
LOL  
P1_R45_D7  
Class-D  
Speaker Amp L  
6, 12, 18, 24, 30  
dB  
IN1L-B  
P1_R46_D[6:0]  
SPKM  
IN1L  
IN1L  
P1_R45_D2  
RIGHT_CH_IN  
10/20/40K  
P1_R52_D[7:6]  
20K  
-78dB to 0dB  
P1_R46_D[6:0]  
P1_R17_D3=Power  
IN2L  
-78dB to 0dB  
P1_R47_D[6:0]  
10/20/40K  
P1_R52_D[5:4]  
IN1L  
MAL  
P1_R47_D[6:0]  
Mixer Amp  
LOR  
MAR  
P1_R17_D5  
P1_R18_D[5:0]  
Left  
IN3L  
10/20/40K  
P1_R52_D[3:2]  
P1_R45_D6  
-36dB to 0dB  
P1_R18_D[5:0]  
IN4L  
20K  
P1_R53_D5  
0 to +47.5 dB  
P1_R59  
10/20/40K  
P
P1_R52_D[1:0]  
IN1R  
IN2R  
IN3R  
IN4R  
P
P1_R27_D1=Power  
P1_R31_D[5:0]=Gain  
Mic PGA  
Left  
Left DAC  
Left ADC  
10/20/40K  
10/20/40K  
20K  
P1_R54_D[5:4]  
P1_R54_D[3:2]  
P1_R53_D4  
M
P1_R27_D7  
P1_R27_D5  
MAL  
M
HPL  
Headphone  
Amplifier Left  
-6dB to14dB  
LDACP  
LOL-B1  
P1_R28_D[6:0]  
Left Channel Input Options:  
-78dB to 0dB  
P1_R28_D[6:0]  
Single Ended: IN1L or IN2L or IN3L or IN1R or IN4L  
10/20/40K  
10/20/40K  
P1_R54_D[7:6]  
P1_R54_D[1:0]  
Differential: IN2L (P) and IN2R (M) or IN3L (P) and IN3R (M)  
or IN4L (P) and IN4R (M)  
P1_R23_D7  
P1_R23_D[4:3]  
P1_R22_D1=Power  
MAL  
IN1L-B  
LOL  
Lineout  
Amplifier  
Left  
Note (For All Inputs to Mic PGA):  
CM2L  
P1_R22_D7  
P1_R22_D5  
LDACM  
RDACP  
PGA Input = 0 dB for Singled Ended Input with RIN = 10K  
PGA Input = +6 dB for Differential Input with RIN= 10K  
PGA Input = -6 dB for Singled Ended Input with RIN= 20K  
PGA Input = 0 dB for Differential Input with RIN= 20K  
PGA Input = -12 dB for Singled Ended Input with RIN= 40K  
PGA Input = -6 dB for Differential Input with RIN= 40K  
CM1L  
CM1R  
CM2R  
CM  
-78dB to 0dB  
P1_R36_D[6:0]  
P1_R40_D[5:0]=Gain RECP  
P1_R40_D7=Power RECP  
-78dB to 0dB  
P1_R38_D[6:0]  
P1_R36_D[6:0]  
10/20/40K  
LOL-B2  
P1_R57_D[1:0]  
P1_R57_D[7:6]  
RECP  
P1_R38_D[6:0]  
IN1L  
1
Receiver  
Amplifier  
-6db to +29dB  
LDACP  
LDACM  
IN1R  
P1_R42_D6  
P1_R42_D5  
10/20/40K  
20K  
Right Channel Input Options:  
RECM  
P1_R39_D[6:0]  
P1_R37_D[6:0]  
2
Single Ended: IN1R or IN2R or IN3R or IN2L or IN4R  
LOR-B2  
-78dB to 0dB  
P1_R56_D4  
IN4L  
P1_R41_D[5:0]=Gain RECM  
P1_R40_D6=Power RECM  
P1_R39_D[6:0]  
Differential: IN1R (P) and IN1L (M) or IN3R (P) and IN3L (M)  
or IN4R (P) and IN4L (M)  
-78dB to 0dB  
P1_R37_D[6:0]  
10/20/40K  
10/20/40K  
10/20/40K  
P1_R57_D[3:2]  
P1_R57_D[5:4]  
P1_R55_D[1:0]  
P1_R56_D5  
IN3L  
IN1L  
IN2L  
0 to +47.5 dB  
P1_R60  
P1_R22_D0=Power  
P1_R22_D2  
LOL  
M
P
P1_R22_D6  
M
RDACM  
LOR  
Lineout  
Amplifier  
Right  
Mic PGA  
Right  
Right DAC  
Right ADC  
P1_R23_D6  
MAR  
P
P1_R23_D[1:0]  
IN1R-B  
IN4R  
IN3R  
20K  
P1_R19_D[5:0]  
-36d to 0dB  
-78dB to 0dB  
P1_R29_D[6:0]  
10/20/40K  
10/20/40K  
10/20/40K  
P1_R17_D2=Power  
P1_R55_D[3:2]  
P1_R55_D[5:4]  
P1_R55_D[7:6]  
P1_R19_D[5:0]  
MAR  
P1_R27_D0=Power  
P1_R32_D[5:0]=Gain  
Mixer Amp  
P1_R17_D4  
IN2R  
IN1R  
Right  
P1_R29_D[6:0]  
LOR-B1  
LDACM  
RDACP  
MAR  
IN1R  
HPR  
P1_R27_D2  
P1_R27_D4  
P1_R27_D6  
Headphone  
Amplifier Right  
-6dB to +14dB  
20K  
IN1R  
-12, -6, 0dB  
P1_R23_D[1:0]  
IN1R-B  
Figure 37. Analog Routing Diagram  
8.3.1.1 Analog Low Power Bypass  
The TLV320AIC3268 offers two analog-bypass modes. In either of the modes, an analog input signal can be  
routed from an analog input terminal to an amplifier driving an analog output terminal. Neither the ADC nor the  
DAC resources are required for such operation; this supports low-power operation during analog-bypass mode.  
In analog low-power bypass mode, line-level signals can be routed directly from the analog inputs IN1L to the left  
lineout amplifier (LOL) and IN1R to LOR. Additionally, line-level signals can be routed directly from these analog  
inputs to the amplifier.  
8.3.1.2 Headphone Outputs  
The stereo headphone drivers on terminals HPL and HPR can drive loads with impedances down to 16Ω in  
single-ended DC-coupled headphone configurations. An integral charge pump generates the negative supply  
required to operate the headphone drivers in dc-coupled mode, where the common mode of the output signal is  
made equal to the ground of the headphone load using a ground-sense circuit. Operation of headphone drivers  
in dc-coupled (ground centered mode) eliminates the need for large dc-blocking capacitors.  
36  
Copyright © 2014, Texas Instruments Incorporated  
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
HPL  
HPR  
HPVSS_SENSE  
Figure 38. TLV320AIC3268 Ground-Centered Headphone Output  
8.3.1.2.1 Using the Headphone Amplifier  
The headphone drivers are capable of driving a mixed combination of DAC signal, left and right ADC PGA signal,  
and LOL and LOR output signals by configuring B0_P1_R27-R29. The ADC PGA signals can be attenuated up  
to 36dB before routing to headphone drivers by configuring B0_P1_R18 and B0_P1_R19. The line-output signals  
can be attenuated up to 78dB before routing to headphone drivers by configuring B0_P1_R28 and B0_P1_R29.  
The level of the DAC signal can be controlled using the digital volume control of the DAC by configuring  
B0_P0_R64-R66. To control the output-voltage swing of headphone drivers, the headphone driver volume  
control provides a range of –6.0dB to +14.0dB in steps of 1dB. These can be configured by programming  
B0_P1_R27, B0_P1_R31, and B0_P1_R32. In addition, finer volume controls are also available when routing  
LOL or LOR to the headphone drivers by controlling B0_P1_R27-R28. These level controls are not meant to be  
used as dynamic volume control, but more to set output levels during initial device configuration. Register  
B0_P1_R9_D[6:5] allows the headphone output stage to be scaled to tradeoff power delivered vs quiescent  
(1)  
power consumption.  
8.3.1.2.2 Ground-Centered Headphone Amplifier Configuration  
Among the other advantages of the ground-centered connection is inherent freedom from turn-on transients that  
can cause audible pops, sometimes at uncomfortable volumes.  
(1) If the device must be placed into 'mute' from the –6.0dB setting, set the device at a gain of –5.0dB first, then place the device into mute.  
Copyright © 2014, Texas Instruments Incorporated  
37  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
8.3.1.2.2.1 Circuit Topology  
The power supply hook up scheme for the ground centered configuration is shown in HVDD_18 terminal supplies  
the positive side of the headphone amplifier. CPVDD_18 terminal supplies the charge pump which in turn  
supplies the negative side of the headphone amplifier. Two capacitors are required for the charge pump circuit to  
work. These capacitors should be X7R rated.  
1.5...1.95V  
CPVDD  
CPVDD_18  
HVDD_18  
-6...+14dB  
HPL  
1dB steps  
-6...+14dB  
HPR  
1dB steps  
HPVSS_SENSE  
VNEG  
CPFCM  
2.2 uF  
X7R  
2.2 uF  
X7R  
Charge  
Pump  
CPFCP  
CPVSS  
Figure 39. Ground-Centered Headphone Connections  
8.3.1.2.2.2 Charge Pump Setup and Operation  
The built in charge pump draws charge from the CPVDD_18 supply, and by switching the external capacitor  
between CPFCP and CPFCM, generates the negative voltage on VNEG terminal. The charge-pump circuit uses  
the principles of switched-capacitor charge conservation to generate the VNEG supply in a very efficient fashion.  
To turn on the charge pump circuit when headphone drivers are powered, program B0_P1_R35_D[1:0] to "'00".  
When the charge pump circuit is disabled, VNEG acts as a ground terminal, allowing unipolar configuration of the  
headphone amps. By default, the charge pump is disabled. The switching rate of the charge pump can be  
controlled by B0_P1_R33. Because the charge pump can demand significant inrush currents from the supply, it  
is important to have a capacitor connected in close proximity to the CPVDD_18 and CPVSS terminals of the  
device. At 500kHz clock rate this requires approximately a 10μF capacitor. The ESR and ESL of the capacitor  
must be low to allow fast switching currents.  
The ground-centered mode of operation is enabled by configuring B0_P1_R31_D7 to "1". Note that the HPL and  
HPR gain settings are ganged in Ground-Cetered Mode of operation (B0_P1_R32_D7 = "1"). The HPL and HPR  
gain settings cannot be ganged if using the Stereo Unipolar Configuration.  
8.3.1.2.2.3 Output Power Optimization  
The device can be optimized for a specific output-power range. The charge pump and the headphone driver  
circuitry can be reduced in power so less overall power is consumed. The headphone driver power can be  
programmed in B0_P1_R9. The control of charge pump switching current is programmed in B0_P1_R34_D[4:2].  
8.3.1.2.2.4 Offset Correction and Start-Up  
The TLV320AIC3268 offers an offset-correction scheme that is based on calibration during power up. This  
scheme minimizes the differences in DC voltage between HPVSS_SENSE and HPL/HPR outputs.  
The offset calibration happens after the headphones are powered up in ground-centered configuration. All other  
headphone configurations like signal routings, gain settings and mute removal must be configured before  
headphone powerup. Any change in these settings while the headphones are powered up may result in  
additional offsets and are best avoided.  
38  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
The offset-calibration block has a few programmable parameters that the user must control. The user can either  
choose to calibrate the offset only for the selected input routing or all input configurations. The calibration data is  
stored in internal memory until the next hardware reset or until AVDDx power is removed.  
Programming B0_P1_R34_D[1:0] as "10" causes the offset to be calibrated for the selected input mode.  
Programming B0_P1_R34_D[1:0] as “11” causes the offset to be calibrated for all possible configurations. All  
related blocks must be powered while doing offset correction.  
Programming B0_P1_R34_D[1:0] as “00” (default) disables the offset correction block. While the offset is being  
calibrated, no signal should be applied to the headphone amplifier, that is the DAC should be kept muted and  
analog bypass routing should be kept at the highest attenuation.  
8.3.1.3 Stereo Line Outputs  
The TLV320AIC3268 features stereo line level drivers which can be configured in either fully differential  
configuration (RECP, RECM and LOL, LOR) or single-ended configuration (LOL and LOR).The stereo line level  
drivers can drive a wide range of line level resistive impedances in the range of 600Ω to 10kΩ. The output  
common mode of line level drivers can be configured to equal the analog input common-mode setting, either  
0.75V or 0.9V. The line-level drivers can drive out a mixed combination of DAC signal and attenuated ADC PGA  
signal, and signal mixing is register-programmable.  
8.3.1.3.1 Line Out Amplifier Configurations  
The TLV320AIC3268 can support stereo differential lineout as shown in Figure 40 for stereo DAC playback.  
RECP  
B0_P1_R42_D[6]=’1'  
LDACP  
LEFT  
DAC AFIR  
LDACM  
RECM  
B0_P1_R42_D[5]=’1'  
LOL  
B0_P1_R22_D[5]=’1'  
RDACP  
RIGHT  
DAC AFIR  
RDACM  
LOR  
B0_P1_R22_D[6]=1'  
Figure 40. Stereo Differential Line-out  
In this mode, the output common-mode setting of the receiver amplifier should be kept the same as the input  
common mode by programming B0_P1_R8_D[1:0]="00". Also, in this mode the receiver driver gain should be  
kept at 0dB by programming B0_P1_R40_D[5:0] and B0_P1_R41_D[5:0] as "000000". The RECVDD_33 supply  
should be connected to the AVDDx_18 power rails for symmetricity.  
The TLV320AIC3268 can also support stereo single-ended line outputs as shown in Figure 41 for stereo DAC  
playback.  
Signal mixing can be configured by programming B0_P1_R22 and B0_P1_R23. To route the output of Left DAC  
and Right DAC for stereo single-ended output, as shown in Figure 41, LDACM can be routed to LOL driver by  
setting B0_P1_R22_D7 = ‘1’, and RDACM can be routed to LOR driver by setting B0_P1_R22_D6 = ‘1’.  
Alternatively, stereo single-ended signals can also be routed through the mixer amplifiers by configuring  
B0_P1_R23_D[7:6]. For lowest-power operation, stereo single-ended signals can also be routed in direct  
terminal bypass with possible gains of 0dB, -6dB, or -12dB by configuring B0_P1_R23_D[4:3] and  
B0_P1_R23_D[1:0]. While each of these two bypass cases could be used in a stereo single-ended configuration,  
a mono differential input signal could also be used.  
Copyright © 2014, Texas Instruments Incorporated  
39  
 
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
The output of the stereo line out drivers can also be routed to the stereo headphone drivers, with 0dB to -72dB  
gain controls in steps of 0.5dB on each headphone channel. This enables the DAC output or bypass signals to  
be simultaneously played back to the stereo headphone drivers as well as stereo line- level drivers. This routing  
and volume control is achieved in B0_P1_R28 and B0_P1_R29.  
LDACM,  
MAL, or  
IN1L-B  
LOL  
RDACM,  
MAR, or  
IN1R-B  
LOR  
Figure 41. Stereo Single-Ended Line-out  
Additionally, the two line-level drivers can be configured to act as a mono differential line level driver by routing  
the output of LOL to LOR (B0_P1_R22_D2 = ‘1’). This differential signal takes either LDACM, MAL, or IN1L-B as  
a single-ended mono signal and creates a differential mono output signal on LOL and LOR.  
LDACM,  
MAL, or  
IN1L-B  
LOL  
Output +  
Output -  
LOR  
LOL  
Figure 42. Single Channel Input to Differential Line-out  
8.3.1.4 Differential Receiver Output  
The differential receiver amplifier output spans the RECP and RECM terminals and can drive a 32Ω receiver  
driver. he receiver driver can drive up to a 1Vrms output signal.  
The differential receiver driver is capable of driving a mixed combination of DAC signal through the Line Out  
amplifiers and the line-bypass from analog input IN1L and IN1R. Routing and volume level setting of the IN1L  
and IN1R input signals to the Positive and Negative driver is controlled by B0_P1_R38 and B0_P1_R39  
respectively. These two registers enable fine tuning of the inputs to the receiver driver by allowing up to 78dB of  
attenuation. A single volume control can be utilized for both inputs by setting B0_P1_R39_D7. Routing and  
volume level setting of the LOL and LOR signals to the positive and negative inputs of the differential receiver  
driver is controlled by B0_P1_R36 and B0_P1_R37 respectively. These two registers enable fine tuning of the  
separate positive and negative differential signals by allowing up to 78dB of attenuation. A single volume control  
can be utilized for both inputs by setting B0_P1_R37_D7. Routing of LDACP and LDACM signals to the Positive  
and Negative driver is controlled by B0_P1_R42_D6 and B0_P1_R42_D5 respectively.  
40  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
LOL  
LDACP  
IN1L  
32Ω  
RECP  
RECM  
LOR  
LDACM  
IN1R  
Figure 43. Receiver Differential Output  
The receiver driver can be powered on by writing 11 to B0_P1_R40_D[7:6]. The positive driver gain and muting  
can be controlled by writing to B0_P1_R40_D[5:0], and the negative driver gain can be controlled by writing to  
B0_P1_R41_D[5:0], with each amplifier providing -6dB to 29dB gains in steps of 1dB. A single volume control  
can be utilized for the differential receiver output drivers by setting B0_P1_R41_D7 to '1'.  
The TLV320AIC3268 has an overcurrent/short-circuit protection feature for the receiver drivers that is always  
enabled to provide protection. If the output is shorted, this overcurrent condition either shuts down the output  
stage (if B0_P1_R10_D0 = 1) or starts to limit the amount of current (if B0_P1_R10_D0 = 0). The default  
condition for the receiver driver is current-limiting mode. In case of a short circuit, for automatic latching  
shutdown, the output is disabled and a status flag is provided as read-only bits B0_P0_R44_D7 for RECP and on  
B0_P0_R44_D6 for RECM.  
The receiver driver also has an offset calibration for minimizing start-up transients. By default, this feature is  
enabled at every power-up by setting B0_P1_R42_D[4:3] to '01'. The status of the offset calibration can be read  
through the Receiver Offset Calibration Flag (B0_P1_R42_D7). Offset calibration should only be disabled if this  
driver is utilized as a second single-ended headphone configuration (that is, should not be utilized in differential  
configuration).  
8.3.1.5 Class-D Speaker Outputs  
The integrated Class-D speaker driver (SPKP, SPKN) is capable of driving an 8Ω differential load. The speaker  
driver can be powered directly from the power supply (2.7V to 5.5V) on the SVDD terminal, however the voltage  
(including spike voltage) must be limited below the Absolute Maximum Voltage of 6.0V.  
The speaker driver capable of supplying 0.74 W at 10% THD+N with a 3.6-V power supply and 1.45 W at 10%  
THD+N with a 5.0V power supply. Separate left and right channels can be sent to the Class-D driver through the  
Lineout signal path, or from the mixer amplifiers in the ADC bypass. Additionally, the analog mixer before the  
Speaker amplifier can sum the left and right audio signals for monophonic playback.  
The speaker driver is capable of driving a mixed combination of DAC signal through the Line Out amplifiers and  
the left and right ADC PGA signal. The ADC PGA signals can be routed to the speaker drivers by setting  
B0_P1_R45_D7 (Left Mixer amplifier to Speaker) and B0_P1_R45_D6 (Right Mixer amplifier to Speaker), and  
these signals can be attenuated up to 36dB before this routing to the speakers by configuring B0_P1_R18 and  
B0_P1_R19. Routing and volume level setting of the LOL and LOR signals to the speaker driver is controlled by  
B0_P1_R46 and B0_P1_R47 respectively. These two registers enable fine tuning of the separate stereo signals  
by allowing up to 78dB of attenuation. To play the stereo DAC signals through the Line Out amplifiers to the  
speaker, the DAC signals should be routed to the LOL/LOR drivers by setting B0_P1_R22_D[7:6]. The level of  
these DAC signal can also be controlled using the digital volume control of the DAC signal (B0_P0_R65 and  
B0_P0_R66).  
Copyright © 2014, Texas Instruments Incorporated  
41  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
8Ω  
SPKP  
SPKM  
MAL  
LOL  
LOR  
MAR  
RIGHT_CH_IN  
Figure 44. Speaker Output  
The class-D speaker driver can be powered on by writing to B0_P1_R45_D1. The driver gain can be controlled  
by writing to B0_P1_R48_D[6:4], and it can be muted by writing ‘000’ to these bits.  
The TLV320AIC3268 has a short-circuit protection feature for the speaker driver that is always enabled to  
provide protection. If the output is shorted, the output stage shuts down on the overcurrent condition. (Current  
limiting is not an available option for the higher-current speaker driver output stage.) In case of a short circuit, the  
output is disabled and a status flag is provided as a read-only bit on B0_P0_R44_D7. If shutdown occurs due to  
an overcurrent condition, then the device requires a reset to re-enable the output stage. Resetting can be done in  
two ways. First, the device master reset can be used, which requires either toggling the RESET terminal or using  
the software reset. If master reset is used, it resets all of the registers. Second, a dedicated speaker power-stage  
reset can be used that keeps all of the other device settings. The speaker power-stage reset is done by setting  
B0_P1_R45_D1. If the fault condition has been removed, then the device returns to normal operation. If the fault  
is still present, then another shutdown occurs. Repeated resetting (more than three times) is not recommended,  
as this could lead to overheating.  
The TLV320AIC3268 has an overtemperature thermal-protection (OTP) feature for the speaker driver which is  
always enabled to provide protection. If the device is overheated, then the output stops switching. When the  
device cools down, the device resumes switching. An overtemperature status flag is provided as a read-only bit  
on B0_P0_R45_D7, and this status flag can be routed to INT1 interrupt (B0_P0_R48_D1 = ‘1’) or INT2 interrupt  
(B0_P0_R49_D1 = ‘1’). The OTP feature is for self-protection of the device. If die temperature can be controlled  
at the system/board level, then overtemperature does not occur.  
To minimize battery current leakage, the SVDD voltage levels should not be less than the AVDDx_18 voltage  
levels.  
8.3.2 ADC / Digital Microphone Interface  
The TLV320AIC3268 includes a stereo audio ADC, which uses a delta-sigma modulator with a programmable  
oversampling ratio, followed by a digital decimation filter and a programmable miniDSP. The ADC supports  
sampling rates from 8kHz to 192kHz. In order to provide optimal system power management, the stereo  
recording path can be powered up one channel at a time, to support the case where only mono record capability  
is required.  
The ADC path of the TLV320AIC3268 features a large set of options for signal conditioning as well as signal  
routing:  
2 ADCs  
8 analog inputs which can be mixed or multiplexed in single-ended or differential configuration  
2 programmable gain amplifiers (PGA) with a range of 0 to +47.5dB  
2 mixer amplifiers for analog bypass  
2 low power analog bypass channels  
Fine gain adjust of digital channels with 0.1 dB step size  
Digital volume control with a range of -12 to +20dB  
Mute function  
42  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Automatic gain control (AGC)  
In addition to the standard set of ADC features the TLV320AIC3268 also offers the following special functions:  
Built in microphone biases  
Four-channel digital microphone interface  
Allows 4 total microphones  
Up to 4 digital microphones  
Up to 2 analog microphones  
Channel-to-channel phase adjustment  
Fast charge of ac-coupling capacitors  
Anti thump  
Adaptive coefficient update mode  
8.3.2.1 ADC Signal Routing  
As shown in Figure 37, the TLV320AIC3268 includes eight analog inputs which can be configured as either 4  
stereo single-ended pairs or 4 fully-differential pairs. These terminals connect through series resistors and  
switches to the virtual ground terminals of two fully-differential amplifiers (one per ADC/PGA channel). By turning  
on only one set of switches per amplifier at a time, the inputs can be effectively multiplexed to each ADC PGA  
channel. By turning on multiple sets of switches per amplifier at a time, audio sources can be mixed. The  
TLV320AIC3268 supports the ability to mix up to five single-ended analog inputs or up to three fully-differential  
analog inputs into each ADC PGA channel.  
In most applications, high input impedance is desired for analog inputs. However when used in conjunction with  
high gain as in the case of microphone inputs, the higher input impedance results in higher noise or lower  
dynamic range. The TLV320AIC3268 allows the user the flexibility of choosing the input impedance from 10k,  
20kand 40k. When multiple inputs are mixed together, by choosing different input impedances, level  
adjustment can be achieved. For example, if one input is selected with 10kinput impedance and the second  
input is selected with 20kinput impedance, then the second input is attenuated by half as compared to the first  
input. Note that this input level control is not intended to be a volume control, but instead used occasionally for  
level setting. Also, note that this input-level configurability is available on IN1L, IN1R, IN2L, IN2R, IN3L, and  
IN3R; for IN4L and IN4R, this input impedance is fixed at 20k.  
Mixing of multiple inputs can easily lead to PGA outputs that exceed the range of the internal amplifiers, resulting  
in saturation and clipterminalg of the mixed output signal. Whenever mixing is being implemented, the system  
designer is advised to take adequate precautions to avoid such a saturation from occurring. In general, the mixed  
signal should not exceed 0dB.  
Typically, voice or audio signal inputs are capacitively coupled to the device. This allows the device to  
independently set the common mode of the input signals to values chosen by register control of B0_P1_R8_D2  
to either 0.9V or 0.75V. The correct value maximizes the dynamic range across the entire analog supply range.  
Failure to capacitively connect the input to the device can cause high offset due to mismatch in source common-  
mode and device common-mode setting. In extreme cases it could also saturate the analog channel, causing  
distortion.  
8.3.2.1.1 High Impedance Input Mode  
The TLV320AIC3268 supports a special high impedance input mode on terminals IN1L/AUX1 and IN1R/AUX2 to  
enable interfacing with sensors having high output impedance. By programming B0_P1_R17_D[5] and  
B0_P1_R17_D[4] to '1' IN1L/AUX1 and IN1R/AUX2 can be used in high impedance mode respectively. While  
using this mode, IN1L/AUX1 and IN1R/AUX2 should not be routed to Left and Right ADC PGA's or  
B0_P1_R52_D[7:6], B0_P1_R52_D[1:0], B0_P1_R55_D[7:6] and B0_P1_R57_D[5:4] should be programmed as  
"00". While using this mode the signal should be externally biased around a common mode which is close to the  
device common mode programmed via B0_P1_R8_D[2]. When using high impedance mode, routing of MAL and  
MAR amplifiers to Speaker Amplifier and Lineout Drivers is not supported.  
Copyright © 2014, Texas Instruments Incorporated  
43  
 
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
8.3.2.2 ADC Gain Setting  
Digital  
Gain  
Adjust  
Frequency  
Response  
and Gain  
Input  
Selection  
Digital  
Volume  
Control  
Analog  
Gain  
Audio  
Interface  
Analog  
In  
ADC  
Filtering  
PGA  
ADC  
Fully  
Programmable  
Coefficients  
0,-6,-12 dB  
0...47.5 dB  
Step = 0.5 dB  
-12...20 dB 0-0.4 dB  
Step = 0.5 dB Step= 0.1 dB  
When the gain of the ADC Channel is kept at 0dB and the common mode set to 0.75V, a single-ended input of  
0.375VRMS results in a full-scale digital signal at the output of ADC channel. Similarly, when the gain is kept at  
0dB, and common mode is set to 0.9V, a single-ended input of 0.5VRMS results in a full-scale digital signal at the  
output of the ADC channel. However various block functions control the gain through the channel. The gain  
applied by the PGA is described in Table 7. Additionally, the digital volume control adjusts the gain through the  
channel as described in Digital Volume Control. A finer level of gain adjustment is possible and described in Fine  
Digital Gain Adjustment. The decimation filters A, B and C along with the delta-sigma modulator contribute to a  
DC gain of 1.0 through the channel.  
8.3.2.2.1 Analog Programmable Gain Amplifier (PGA)  
The TLV320AIC3268 features a built-in low-noise PGA for boosting low-level signals, such as direct microphone  
inputs, to full-scale to achieve high SNR. This PGA can provide a gain in the range of 0dB to 47.5dB for single-  
ended inputs or 6dB to 53.5dB for fully-differential inputs (gain calculated w.r.t. input impedance setting of 10k,  
20kinput impedance will result in 6dB lower and 40kwill result in 12dB lower gain). This gain can be user  
controlled by writing to B0_P1_R59 and B0_P1_R60. In the AGC mode this gain can also be automatically  
controlled by the built-in hardware AGC.  
Table 7. Analog PGA vs Input Configuration  
Book 0, Page 1, Register 59, D[6:0]  
(B0_P1_R59_D[6:0])  
Book 0, Page 1, Register 60, D[6:0]  
B0_P1_R60_D[6:0]  
EFFECTIVE GAIN APPLIED BY PGA  
SINGLE-ENDED  
DIFFERENTIAL  
RIN = 10kΩ  
RIN = 20kΩ RIN = 40kΩ  
RIN = 10kΩ RIN = 20kΩ RIN = 40kΩ  
000 0000  
000 0001  
000 0010  
0 dB  
–6 dB  
-12 dB  
–11.5 dB  
–11.0 dB  
6.0 dB  
6.5 dB  
7.0 dB  
0 dB  
–6.0 dB  
-5.5 dB  
–5.0 dB  
0.5 dB  
1.0 dB  
–5.5 dB  
–5.0 dB  
0.5 dB  
7.5 dB  
101 1110  
101 1111  
47.0 dB  
47.5 dB  
41.0 dB  
41.5 dB  
35.0 dB  
35.5 dB  
53.0 dB  
53.5 dB  
47.0 dB  
47.5 dB  
41.0 dB  
41.5 dB  
The gain changes are implemented with an internal soft-stepterminalg algorithm that only changes the actual  
volume level by one 0.5-dB step every one or two ADC output samples, depending on the register value (see  
registers B0_P0_R81_D[1:0]). This soft-stepterminalg ensures that volume control changes occur smoothly with  
no audible artifacts. On reset, the PGA gain defaults to a mute condition, and at power down, the PGA soft-steps  
the volume to mute before shutting down. A read-only flag B0_P0_R36_D7 and B0_P0_R36_D3 is set whenever  
the gain applied by the PGA equals the desired value set by the register. The soft-stepterminalg control can also  
be disabled by programming B0_P0_R81_D[1:0].  
8.3.2.2.2 Digital Volume Control  
The TLV320AIC3268 also has a digital volume-control block with a range from -12dB to +20dB in steps of 0.5dB.  
It is set by programming B0_P0_R83 and B0_P0_R84 respectively for left and right channels.  
44  
Copyright © 2014, Texas Instruments Incorporated  
 
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Table 8. Digital Volume Control for ADC  
Desired Gain (dB)  
Left / Right Channel  
B0_P0_R83 and B0_P0_R84,  
D[6:0]  
–12.0  
–11.5  
–11.0  
..  
110 1000  
110 1001  
110 1010  
–0.5  
0.0  
111 1111  
000 0000 (Default)  
000 0001  
+0.5  
..  
+19.5  
+20.0  
010 0111  
010 1000  
During volume control changes, the soft-stepterminalg feature is used to avoid audible artifacts. The soft-  
stepterminalg rate can be set to either 1 or 2 gain steps per sample. Soft-stepterminalg can also be entirely  
disabled. This soft-stepterminalg is configured via B0_P0_R81_D[1:0], and is common to soft-stepterminalg  
control for the analog PGA. During power-down of an ADC channel, this volume control soft-steps down to -  
12.0dB before powering down. Due to the soft-stepterminalg control, soon after changing the volume control  
setting or powering down the ADC channel, the actual applied gain may be different from the one programmed  
through the control register. The TLV320AIC3268 gives feedback to the user, through read-only flags  
B0_P0_R36_D7 for Left Channel and B0_P0_R36_D3 for the right channel.  
8.3.2.2.3 Fine Digital Gain Adjustment  
Additionally, the gains in each of the channels is finely adjustable in steps of 0.1dB. This is useful when trying to  
match the gain between channels. By programming B0_P0_R82, the gain can be adjusted from 0dB to -0.4dB in  
steps of 0.1dB. This feature, in combination with the regular digital volume control allows the gains through the  
left and right channels be matched in the range of -0.5dB to +0.5dB with a resolution of 0.1dB.  
8.3.2.2.4 AGC  
The TLV320AIC3268 includes Automatic Gain Control (AGC) for ADC recording. AGC can be used to maintain a  
nominally-constant output level when recording speech. As opposed to manually setting the PGA gain, in the  
AGC mode, the circuitry automatically adjusts the PGA gain as the input signal becomes overly loud or very  
weak, such as when a person speaking into a microphone moves closer or farther from the microphone. The  
AGC algorithm has several programmable parameters, including target gain, attack and decay time constants,  
noise threshold, and max PGA applicable, that allow the algorithm to be fine tuned for any particular application.  
The algorithm uses the absolute average of the signal (which is the average of the absolute value of the signal)  
as a measure of the nominal amplitude of the output signal. Since the gain can be changed at the sample  
interval time, the AGC algorithm operates at the ADC sample rate.  
1. Target Level represents the nominal output level at which the AGC attempts to hold the ADC output signal level. The TLV320AIC3268  
allows programming of eight different target levels, which can be programmed from –5.5 dB to –24 dB relative to a full-scale signal.  
Since the TLV320AIC3268 reacts to the signal absolute average and not to peak levels, it is recommended that the target level be set  
with enough margin to avoid clipterminalg at the occurrence of loud sounds.  
2. Attack Time sets how quickly the AGC circuitry reduces the PGA gain when the output signal level exceeds the target level due to  
increase in input signal level. Wide range of attack time programmability is supported in terms of number of samples (that is, number of  
ADC sample frequency clock cycles).  
3. Decay Time sets how quickly the PGA gain is increased when the output signal level falls below the target level due to reduction in  
input signal level. Wide range of decay time programmability is supported in terms of number of samples (that is, number of ADC  
sample frequency clock cycles).  
4. Gain Hysteresis is the hysteresis applied to the required gain calculated by the AGC function while changing its mode of operation from  
attack to decay or vice-versa. For example, while attacking the input signal, if the current applied gain by the AGC is xdB, and suddenly  
because of input level going down, the new calculated required gain is ydB, then this gain is applied provided y is greater than x by the  
value set in Gain Hysteresis. This feature avoids the condition when the AGC function can fluctuate between a very narrow band of  
gains leading to audible artifacts. The Gain Hysteresis can be adjusted or disabled by the user.  
Copyright © 2014, Texas Instruments Incorporated  
45  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
5. Noise threshold sets the level below which if the input signal level falls, the AGC considers it as silence, and thus brings down the gain  
to 0 dB in steps of 0.5 dB every FS and sets the noise threshold flag. The gain stays at 0 dB unless the input speech signal average  
rises above the noise threshold setting. This ensures that noise is not 'gained up' in the absence of speech. Noise threshold level in the  
AGC algorithm is programmable from -30dB to -90 dB of full-scale. When AGC Noise Threshold is set to –70dB, –80db, or –90dB, the  
microphone input Max PGA applicable setting must be greater than or equal to 11.5dB, 21.5dB, or 31.5dB respectively. This operation  
includes hysteresis and debounce to avoid the AGC gain from cycling between high gain and 0 dB when signals are near the noise  
threshold level. When utilizing the AGC noise threshold, it is recommended to configure the 1st order IIR filter as a high-pass filter to  
achieve best performance. The noise (or silence) detection feature can be entirely disabled by the user.  
6. Max PGA applicable allows the designer to restrict the maximum gain applied by the AGC. This can be used for limiting PGA gain in  
situations where environmental noise is greater than the programmed noise threshold. Microphone input Max PGA can be programmed  
from 0 dB to 58 dB in steps of 0.5 dB.  
7. Hysteresis, as the name suggests, sets a window around the Noise Threshold which must be exceeded to either detect that the  
recorded signal is indeed noise or signal. If initially the energy of the recorded signal is greater than the Noise Threshold, then the AGC  
recognizes it as noise only when the energy of the recorded signal falls below the Noise Threshold by a value given by Hysteresis.  
Similarly, after the recorded signal is recognized as noise, for the AGC to recognize it as a signal, its energy must exceed the Noise  
Threshold by a value given by the Hysteresis setting. In order to prevent the AGC from jumterminalg between noise and signal states,  
(which can happen when the energy of recorded signal is very close to the Noise threshold) a non-zero hysteresis value should be  
chosen. The Hysteresis feature can also be disabled.  
8. Debounce Time (Noise and Signal) sets the hysteresis in time domain for noise detection. The AGC continuously calculates the  
energy of the recorded signal. If the calculated energy is less than the set Noise Threshold, then the AGC does not increase the input  
gain to achieve the Target Level. However, to handle audible artifacts which can occur when the energy of the input signal is very close  
to the Noise Threshold, the AGC checks if the energy of the recorded signal is less than the Noise Threshold for a time greater than the  
Noise Debounce Time. Similarly the AGC starts increasing the input-signal gain to reach the Target Level when the calculated energy of  
the input signal is greater than the Noise Threshold. Again, to avoid audible artifacts when the input-signal energy is very close to Noise  
Threshold, the energy of the input signal needs to continuously exceed the Noise Threshold value for the Signal Debounce Time. If the  
debounce times are kept very small, then audible artifacts can result by rapid enabling and disabling the AGC function. At the same  
time, if the Debounce time is kept too large, then the AGC may take time to respond to changes in levels of input signals with respect to  
Noise Threshold. Both noise and signal debounce time can be disabled.  
9. The AGC Noise Threshold Flag is a read-only flag indicating that the input signal has levels lower than the Noise Threshold, and thus  
is detected as noise (or silence). In such a condition the AGC applies a gain of 0 dB.  
10. Gain Applied by AGC is a ready-only register setting which gives a real-time feedback to the system on the gain applied by the AGC  
to the recorded signal. This, along with the Target Setting, can be used to determine the input signal level. In a steady state situation  
Target  
Level  
(dB)  
=
Gain  
Applied  
by  
AGC  
(dB)  
+
Input  
Signal  
Level  
(dB)  
When the AGC noise threshold flag is set, then the status of gain applied by AGC should be ignored.  
11. The AGC Saturation Flag is a read-only flag indicating that the ADC output signal has not reached its Target Level. However, the AGC  
is unable to increase the gain further because the required gain is higher than the Maximum Allowed PGA gain. Such a situation can  
happen when the input signal has very low energy and the Noise Threshold is also set very low. When the AGC noise threshold flag is  
set, the status of AGC saturation flag should be ignored.  
12. The ADC Saturation Flag is a read-only flag indicating an overflow condition in the ADC channel. On overflow, the signal is clipped and  
distortion results. This typically happens when the AGC Target Level is kept very high and the energy in the input signal increases faster  
than the Attack Time.  
13. An AGC low-pass filter is used to help find the average level of the input signal. This average level is compared to the programmed  
detection levels in the AGC to provide the correct functionality. This low pass filter is in the form of a first-order IIR filter. Three 8-bit  
registers are used to form the 24-bit digital coefficient as shown on the register map. In this way, a total of 9 registers are programmed  
to form the 3 IIR coefficients. The transfer function of the filter implemented for signal level detection is given by  
N0 + N1z-1  
H(z) =  
223 - D1z-1  
(1)  
Where:  
Coefficient N0 can be programmed by writing into B40_P1_R12, B40_P1_R13, and B40_P1_R14.  
Coefficient N1 can be programmed by writing into B40_P1_R16, B40_P1_R17, and B40_P1_R18.  
Coefficient D1 can be programmed by writing into B40_P1_R20, B40_P1_R21, and B40_P1_R22.  
N0, N1 and D1 are 24-bit 2’s complement numbers and their default values implement a low-pass filter with cut-off at  
0.002735*ADC_FS .  
See Table 9 for various AGC programming options. AGC can be used only if analog microphone input is routed to the ADC channel.  
46  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Table 9. AGC Parameter Settings  
Function  
Control Register  
Left ADC  
Control Register  
Right ADC  
Bits  
AGC enable  
Book 0, Page 0, Register 86  
(B0_P0_R86)  
Book 0, Page 0, Register 94  
(B0_P0_R94)  
D7  
Target Level  
Book 0, Page 0, Register 86  
(B0_P0_R86)  
Book 0, Page 0, Register 94  
(B0_P0_R94)  
D[6:4]  
Gain Hysteresis  
Book 0, Page 0, Register 86  
(B0_P0_R86)  
Book 0, Page 0, Register 94  
(B0_P0_R94)  
D[1:0]  
Hysteresis  
Book 0, Page 0, Register 87  
(B0_P0_R87)  
Book 0, Page 0, Register 95  
(B0_P0_R95)  
D[7:6]  
Noise threshold  
Book 0, Page 0, Register 87  
(B0_P0_R87)  
Book 0, Page 0, Register 95  
(B0_P0_R95)  
D[5:1]  
Max PGA applicable  
Time constants (attack time)  
Time constants(decay time)  
Debounce time (Noise)  
Debounce time (Signal)  
Gain applied by AGC  
AGC Noise Threshold Flag  
Book 0, Page 0, Register 88  
(B0_P0_R88)  
Book 0, Page 0, Register 96  
(B0_P0_R96)  
D[6:0]  
Book 0, Page 0, Register 89  
(B0_P0_R89)  
Book 0, Page 0, Register 97  
(B0_P0_R97)  
D[7:0]  
Book 0, Page 0, Register 90  
(B0_P0_R90)  
Book 0, Page 0, Register 98  
(B0_P0_R98)  
D[7:0]  
Book 0, Page 0, Register 91  
(B0_P0_R91)  
Book 0, Page 0, Register 99  
(B0_P0_R99)  
D[4:0]  
Book 0, Page 0, Register 92  
(B0_P0_R92)  
Book 0, Page 0, Register 100  
(B0_P0_R100)  
D[3:0]  
Book 0, Page 0, Register 93  
(B0_P0_R93)  
Book 0, Page 0, Register 101  
(B0_P0_R101)  
D[7:0] (Read Only)  
D[6:5] (Read Only)  
Book 0, Page 0, Register 45  
(B0_P0_R45) (sticky flag),  
Book 0, Page 0, Register 47  
(B0_P0_R47) (non-sticky flag)  
Book 0, Page 0, Register 45  
(B0_P0_R45) (sticky flag),  
Book 0, Page 0, Register 47  
(B0_P0_R47) (non-sticky flag)  
AGC Saturation flag  
ADC Saturation flag  
Book 0, Page 0, Register 36  
(B0_P0_R36) (sticky flag)  
Book 0, Page 0, Register 36  
(B0_P0_R36) (sticky flag)  
D5, D1 (Read Only)  
D[3:2] (Read Only)  
Book 0, Page 0, Register 42  
(B0_P0_R42) (sticky flag),  
Book 0, Page 0, Register 43  
(B0_P0_R43) (non-sticky flag)  
Book 0, Page 0, Register 42  
(B0_P0_R42) (sticky flag),  
Book 0, Page 0, Register 43  
(B0_P0_R43) (non-sticky flag)  
Copyright © 2014, Texas Instruments Incorporated  
47  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Input  
Signal  
Output  
Signal  
Target  
Level  
AGC  
Gain  
Attack  
Time  
Decay Time  
Figure 45. AGC Characteristics  
The TLV320AIC3268 ADC channel includes a built-in digital decimation filter to process the oversampled data  
from the to generate digital data at Nyquist sampling rate with high dynamic range. The decimation filter can be  
chosen from three different types, depending on the required frequency response, group delay and sampling  
rate.  
8.3.2.3 ADC Processing Blocks  
The TLV320AIC3268 offers a range of processing blocks which implement various signal processing capabilities  
along with decimation filtering. These processing blocks give users the choice of how much and what type of  
signal processing they may use and which decimation filter is applied.  
Table 10 gives an overview of the available processing blocks of the ADC channel and their properties. The  
Resource Class Column (RC) gives an approximate indication of power consumption.  
The signal processing blocks available are:  
First-order IIR  
AGC  
Additional signal processing functions are acheived by programming the miniDSP. For specific details on  
available processing functions, please contact Texas Instruments.  
The processing blocks are tuned for mono or stereo use cases and can achieve high anti-alias filtering. The  
available first order IIR, has fully user programmable coefficients.  
48  
Copyright © 2014, Texas Instruments Incorporated  
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Table 10. ADC Processing Blocks  
Processing  
Blocks  
Channel  
Decimation  
Filter  
1st Order  
IIR Available  
Number  
BiQuads  
FIR  
Required AOSR  
Value  
Resource  
Class  
PRB_R1(1)  
Stereo  
Left  
A
A
Yes  
Yes  
0
0
No  
No  
128,64,32,16,8,4  
128,64,32,16,8,4  
7
4
PRB_R4  
(1) Default  
8.3.2.4 ADC Processing Blocks – Details  
8.3.2.4.1 1st order IIR, AGC, Filter A  
From Delta-Sigma  
AGC  
Gain  
st  
1
Order  
IIR  
To Audio  
Interface  
Modulator or  
Digital Microphone  
Filter A  
´
Compen  
Sation  
AGC  
From  
Digital Vol. Ctrl  
To Analog PGA  
Figure 46. Signal Chain for PRB_R1 and PRB_R4  
8.3.2.5 User Programmable Filters  
The built-in processing block in TLV320AIC3268 has a user programmable first order IIR filter. This filter can be  
used for dc-blocking purposes. The user programmable coefficients allow the user to control the cut-off  
frequency of the high pass filter.  
The coefficients of these filters are each 24-bits wide, in two's-complement and occupy 3 consecutive 8-bit  
registers in the register space. For default values please see Table 56.  
8.3.2.5.1 1st Order IIR Section  
The transfer function for the first order IIR Filter is given by  
N0 + N1z-1  
H(z) =  
223 - D1z-1  
(2)  
The frequency response for the 1st order IIR Section with default coefficients is flat at a gain of 0dB. Details on  
ADC coefficient default values are given in Table 56.  
Table 11. ADC 1st order IIR Filter Coefficients  
Filter  
FIlter  
ADC Coefficient Left  
ADC Coefficient Right Channel  
Coefficient Channel  
N0  
N1  
D1  
C4 (B40_P1_R24-R26)  
C36 (B40_P2_R32-R34)  
C37 (B40_P2_R36-R38)  
C39 (B40_P2_R40-R42)  
1st Order  
IIR  
C5 (B40_P1_R28-R30)  
C6 (B40_P1_R32-R34)  
8.3.2.6 Decimation Filter  
The TLV320AIC3268 offers 3 different types of decimation filters. The integrated digital decimation filter removes  
high-frequency content and down samples the audio data from an initial sampling rate of AOSR*fS to the final  
output sampling rate of fS. The decimation filtering is achieved using a higher-order CIC filter followed by linear-  
phase FIR filters. The decimation filter cannot be chosen by itself, it is implicitly set through the chosen  
processing block.  
The following subsections describe the properties of the available filters A, B and C.  
Copyright © 2014, Texas Instruments Incorporated  
49  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
8.3.2.6.1 Decimation Filter A  
This filter is intended for use at sampling rates up to 48kHz. When configuring this filter, the oversampling ratio of  
the ADC can either be 128 or 64. For highest performance the oversampling ratio must be set to 128. Using  
AOSR of 64 for sampling rates up to 48kHz, gives lower power consumption, but degrades the signal to noise  
ratio (SNR).  
Filter A can also be used for 96kHz at an AOSR of 64.  
Table 12. ADC Decimation Filter A, Specification  
Parameter  
Condition  
Value (Typical)  
Units  
AOSR = 128  
Filter Gain Pass Band  
Filter Gain Stop Band  
Filter Group Delay  
0…0.39 fS  
0.55…64fS  
0.062  
–73  
dB  
dB  
17/fS  
0.062  
0.05  
0.05  
Sec.  
dB  
Pass Band Ripple, 8 ksps  
Pass Band Ripple, 44.1 ksps  
Pass Band Ripple, 48 ksps  
AOSR = 64  
0…0.39 fS  
0…0.39 fS  
0…0.39 fS  
dB  
dB  
Filter Gain Pass Band  
Filter Gain Stop Band  
Filter Group Delay  
0…0.39 fS  
0.55…32fS  
0.062  
–73  
dB  
dB  
Sec.  
dB  
dB  
dB  
dB  
17/fS  
0.062  
0.05  
0.05  
0.1  
Pass Band Ripple, 8 ksps  
Pass Band Ripple, 44.1 ksps  
Pass Band Ripple, 48 ksps  
Pass Band Ripple, 96 ksps  
0…0.39 fS  
0…0.39 fS  
0…0.39 fS  
0…20kHz  
ADC Channel Response for Decimation Filter A  
(Red line corresponds to –73 dB)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
Frequency Normalized to fS  
G013  
Figure 47. ADC Decimation Filter A, Frequency Response  
50  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
8.3.2.6.2 Decimation Filter B  
Filter B is intended to support sampling rates up to 96kHz at a oversampling ratio of 64.  
Table 13. ADC Decimation Filter B, Specifications  
Parameter  
Condition  
Value (Typical)  
Units  
AOSR = 64  
Filter Gain Pass Band  
Filter Gain Stop Band  
Filter Group Delay  
0…0.39fS  
±0.077  
–46  
dB  
dB  
Sec.  
dB  
dB  
dB  
dB  
0.60fS…32fS  
11/fS  
0.076  
0.06  
Pass Band Ripple, 8 ksps  
Pass Band Ripple, 44.1 ksps  
Pass Band Ripple, 48 ksps  
Pass Band Ripple, 96 ksps  
0…0.39fS  
0…0.39fS  
0…0.39fS  
0…20kHz  
0.06  
0.11  
ADC Channel Response for Decimation Filter B  
(Red line corresponds to –44 dB)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
Frequency Normalized to fS  
G014  
Figure 48. ADC Decimation Filter B, Frequency Response  
Copyright © 2014, Texas Instruments Incorporated  
51  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
8.3.2.6.3 Decimation Filter C  
Filter type C along with AOSR of 32 is specially designed for 192ksps operation for the ADC. The pass band  
which extends up to 0.11*fS ( corresponds to 21kHz), is suited for audio applications.  
Table 14. ADC Decimation Filter C, Specifications  
Parameter  
Condition  
0…0.11fS  
Value (Typical)  
±0.033  
–60  
Units  
dB  
Filter Gain from 0 to 0.11fS  
Filter Gain from 0.28fS to 16fS  
Filter Group Delay  
0.28fS…16fS  
dB  
11/fS  
Sec.  
dB  
Pass Band Ripple, 8 ksps  
Pass Band Ripple, 44.1 ksps  
Pass Band Ripple, 48 ksps  
Pass Band Ripple, 96 ksps  
Pass Band Ripple, 192 ksps  
0…0.11fS  
0…0.11fS  
0…0.11fS  
0…0.11fS  
0…20kHz  
0.033  
0.033  
dB  
0.032  
dB  
0.032  
dB  
0.086  
dB  
ADC Channel Response for Decimation Filter C  
(Red line corresponds to –60 dB)  
0
–20  
–40  
–60  
–80  
–100  
–120  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
Frequency Normalized to fS  
G015  
Figure 49. ADC Decimation Filter C, Frequency Response  
8.3.2.7 ADC Data Interface  
The decimation filter and signal processing block in the ADC channel passes 32-bit data words to the audio  
serial interface once every cycle of Fs,ADC. During each cycle of Fs,ADC, a pair of data words ( for left and right  
channel) are passed. The audio serial interface rounds the data to the required word length of the interface  
before converting to serial data as per the different modes for audio serial interface.  
52  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
8.3.2.8 ADC Special Functions  
8.3.2.8.1 Power Tune Modes  
As a part of PowerTune strategy, the analog performance of ADC can be adjusted. As a consequence the power  
consumption on AVDDx_18 supplies can be traded off with the speed of operation (ADC_MOD_CLK) and  
performance.  
The TLV320AIC3268 supports 4 different power tune modes for ADC, PTM_R1, PTM_R2, PTM_R3 and  
PTM_R4, which can be set by programming B0_P1_R61_D[7:6]. The PTM_R4 is the default mode and gives the  
best performance for ADC with AOSR=128 and ADC_FS up to 48ksps. At lower speeds of ADC_MOD_CLK (  
AOSR*ADC_FS ) lower PTM modes can be used for the benefit of lower power consumption, for example for  
AOSR=64 and ADC_FS=8ksps, PTM_R1 can be used. Using lower PTM modes for higher frequencies of  
ADC_MOD_CLK can result in reduction of peak amplitude of analog inputs where the distortion performance  
sets in. In general , PTM_R1 is recommended till ADC_MOD_CLK up to 0.768MHz, PTM_R2 for  
ADC_MOD_CLK up to 1.536MHz and PTM_R3 for ADC_MOD_CLK up to 3.072MHz. In applications where  
power consumption is not very critical, PTM_R4 is recommended to be used for best performance.  
8.3.2.8.2 Microphone Bias  
The TLV320AIC3268 has two built-in low noise Microphone Bias terminals for electret-condenser microphones:  
MICBIAS and MICBIAS_EXT. Typically, MICBIAS is utilized for onboard microphones, while MICBIAS_EXT  
provides a microphone bias for inserted headsets. Each bias amplifier can support up to 8mA of load current to  
support multiple microphones. Each bias amplifier has been designed to provide a combination of high PSRR,  
low noise and programmable bias voltages to allow the user to fine tune the biasing to specific microphone  
combinations. To support a wide range of bias voltages, the bias amplifier can work off either a low analog  
supply or the higher AVDD3_33 analog supply.To support a wide range of bias voltages, the MICBIAS and  
MICBIAS_EXT voltage are generated through an onchip low-dropout regulator. Thus, programmed voltages  
should be 300mV below MICBIAS_VDD.  
Table 15. MICBIAS Voltage Control  
MICBIAS Mode  
B0_P1_R51_D[2:0]  
B0_P1_R8_D2  
Minimum  
MICBIAS_VD  
D Voltage  
MICBIAS Output Voltage (without  
load)  
000  
001  
0 or 1  
0 or 1  
2.7V  
2.7V  
Grounded  
Tristated (use only if external bias  
utilized)  
MICBIAS Mode 0  
MICBIAS Mode 0  
MICBIAS Mode 1  
MICBIAS Mode 1  
MICBIAS Mode 4  
MICBIAS Mode 4  
MICBIAS Mode 5  
MICBIAS Mode 5  
010  
010  
011  
011  
110  
110  
111  
111  
0
1
0
1
0
1
0
1
2.7V  
2.7V  
2.7V  
2.7V  
3.05V  
2.7V  
3.2V  
2.7V  
1.80V  
1.50V  
2.00V  
1.67V  
2.85V  
2.37V  
3.00V  
2.50V  
Table 16. MICBIAS_EXT Voltage Control  
MICBIAS_EXT Mode  
B0_P1_R51_D[6:4]  
B0_P1_R8_D2  
Minimum  
MICBIAS_VD  
D Voltage  
MICBIAS Voltage (without load)  
000  
001  
0 or 1  
0 or 1  
2.7V  
2.7V  
Grounded  
Tristated (use only if external bias  
utilized)  
MICBIAS_EXT Mode 0  
MICBIAS_EXT Mode 0  
MICBIAS_EXT Mode 1  
MICBIAS_EXT Mode 1  
010  
010  
011  
011  
0
1
0
1
2.7V  
2.7V  
2.7V  
2.7V  
1.80V  
1.50V  
2.00V  
1.67V  
Copyright © 2014, Texas Instruments Incorporated  
53  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Table 16. MICBIAS_EXT Voltage Control (continued)  
MICBIAS_EXT Mode  
B0_P1_R51_D[6:4]  
B0_P1_R8_D2  
Minimum  
MICBIAS_VD  
D Voltage  
MICBIAS Voltage (without load)  
MICBIAS_EXT Mode 4  
MICBIAS_EXT Mode 4  
MICBIAS_EXT Mode 5  
MICBIAS_EXT Mode 5  
110  
110  
111  
111  
0
1
0
1
3.05V  
2.7V  
3.2V  
2.7V  
2.85V  
2.37V  
3.00V  
2.50V  
8.3.2.8.3 Digital Microphone Function  
In addition to supporting analog microphones, the TLV320AIC3268 also interfaces to digital microphones.  
Σ-Δ  
LEFT ADC  
CIC FILTER  
Σ-Δ  
RIGHT ADC  
CIC FILTER  
Signal  
Processing  
Blocks  
LEFT CIC2  
FILTER  
RIGHT CIC2  
FILTER  
DIG_MIC_IN2  
ADC_MOD_CLK  
DIG_MIC_IN1  
DOUT2 MISO_GPO1  
BCLK2  
WCLK2  
GPIO4 GPIO5  
GPIO3  
DIN2  
GPIO1 GPIO2  
DIN1  
Figure 50. Digital Microphone in TLV320AIC3268  
The TLV320AIC3268 outputs internal clock ADC_MOD_CLK on several digital IO terminals. This clock can act  
as DigMic Clock. The generation of ADC_MOD_CLK is described in Figure 58. The digital microphone data can  
be accepted on several terminals on both the rising edge as well as the falling edge of the DigMic Clock.  
Table 17 describes the various ways in which digital microphone interface can be implemented using the several  
terminal options available in TLV320AIC3268. The TLV320AIC3268 supports two stereo channels of digital  
microphone. The stereo Digital Mic 1 channel can be muxed with the ADC modulator for analog inputs. The  
54  
Copyright © 2014, Texas Instruments Incorporated  
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
additional stereo Digital Mic 2 channel is seperately supported. Both these channels use the same DigMic Clock.  
The Digital Mic 1 channel can be processed either by the built in processing available in PRB_Rx modes or be  
custom processed in miniDSP. The Digital Mic 2 channel can be processed by using the miniDSP. Each data  
line configured for digital microphone data can support either mono data or stereo data by using both edges of  
DigMic Clock. Some of the common digital microphone features as listed in Table 17.  
Table 17. Digital Microphone Features  
Digital Microphone Feature  
Digital Mic 1 enabled for Left ADC CIC Filter  
Register  
B0_P0_R81_D[5:4]=01  
Digital Mic 1 enabled for Right ADC CIC Filter  
Digital Mic 2 enabled for Left CIC2 Filter  
B0_P0_R81_D[3:2]=01  
B0_P0_R112_D[5:4]=01  
B0_P0_R112_D[3:2]=01  
B0_P4_R100_D[7]  
Digital Mic 2 enabled for Right CIC2 Filter  
Digital Mic 1 left channel data valid clock edge control  
Digital Mic 1 right channel data valid clock edge control  
Digital Mic 2 left channel data valid clock edge control  
Digital Mic 2 right channel data valid clock edge control  
Digital Mic 1 left channel data terminal selection  
Digital Mic 1 right channel data terminal selection  
Digital Mic 2 left channel data terminal selection  
Digital Mic 2 right channel data terminal selection  
B0_P4_R100_D[6]  
B0_P4_R100_D[3]  
B0_P4_R100_D[2]  
B0_P4_R101_D[7:4]  
B0_P4_R101_D[3:0]  
B0_P4_R102_D[7:4]  
B0_P4_R102_D[3:0]  
Since the digital microphone signals do not pass through the ADC PGA block, the hardware AGC should not be  
enabled while using digital microphone inputs for left and right ADC channels.  
ADC_MOD_CLK  
DIG_MIC_IN  
RIGHT  
RIGHT  
LEFT  
RIGHT  
LEFT  
LEFT  
Figure 51. Timing Diagram for Digital Microphone Interface  
The digital-microphone mode can be selectively enabled for only-left, only-right, or stereo channels. When the  
digital microphone mode is enabled, the analog section of the ADC can be powered down and bypassed for  
power efficiency. The AOSR value for the ADC channel must be configured to select the desired decimation ratio  
to be achieved based on the external digital microphone properties.  
Figure 52 is a typical circuit diagram showing one possibility for connecting digital microphones. All terminal  
assignment options for digital microphones are described in Rows E and J of the terminal muxing tables in and  
(located in Multifunction Terminals). Depending on the performance of the digital microphone (for example  
PSRR) and the noise level on the IOVDDx_33 power supply, some additional filtering may be needed for Vmic  
near the digital microphone for best performance.  
Copyright © 2014, Texas Instruments Incorporated  
55  
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
IOVDD  
(1.1 V – 3.6 V)  
IOVDD1_33  
10uF  
0.1uF  
AIC3268  
IOVSS  
Vmic  
VDD  
CLK  
DATA  
L/R  
GPIO1  
GPIO5  
GND  
Vmic  
VDD  
CLK  
DATA  
L/R  
GND  
Vmic  
VDD  
CLK  
GPIO2  
VSS  
DATA  
L/R  
GND  
Vmic  
VDD  
CLK  
DATA  
L/R  
GND  
Figure 52. Typical Digital Microphone External Circuitry  
8.3.2.8.4 Channel-to-Channel Phase Adjustment  
The TLV320AIC3268 has a built-in feature to fine-adjust the phase between the stereo ADC record signals. The  
phase compensation is particularly helpful to adjust delays when using dual microphones for noise cancellation  
and other processing. This delay can be controlled in fine amounts in the following fashion.  
Delay(7:0) = B0_P0_R85_D[7:0]  
Where  
RIGHT _ ADC _PHASE _ COMP(t) = RIGHT _ ADC _ OUT(t - tpr  
where  
tpr  
)
(3)  
(4)  
(Delay(4 : 0) + Delay(6 : 5) * AOSR * kf )  
=
AOSR * ADC _FS  
Where kf is a function of the decimation filter:  
Decimation Filter Type  
kf  
A
B
C
0.25  
0.5  
1
and  
LEFT _ ADC _ PHASE _ COMP (t) = LEFT _ ADC _ OUT (t - tpl )  
(5)  
(6)  
Where  
Delay(7)  
=
tpl  
ADC _FS  
This feature is available for stereo analog inputs or Digital Mic 1 channel.  
56  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
8.3.2.8.5 Fast Charging AC Capacitors  
The value of the coupling capacitor must be so chosen that the high-pass filter formed by the coupling capacitor  
and the input impedance do not affect the signal content. At power-up, before proper recording can begin, this  
coupling capacitor must be charged up to the common-mode voltage. To enable quick charging, the  
TLV320AIC3268 has modes to speed up the charging of the coupling capacitor. These are controlled by the  
values in B0_P1_R122_D[1:0].  
8.3.2.8.6 Anti Thump  
For normal voice or audio recording, the analog input terminals of the TLV320AIC3268, must be AC-coupled to  
isolate the DC-common mode voltage of the driving circuit from the common-mode voltage of the  
TLV320AIC3268.  
When the analog inputs are not selected for any routing, the input terminals are 3-stated and the voltage on the  
terminals is undefined. When the unselected inputs are selected for any routing, the input terminals must charge  
from the undefined voltage to the input common-mode voltage. This charging signal can cause audible artifacts.  
In order to avoid such artifacts the TLV320AIC3268 also incorporates anti-thump circuitry to allow connection of  
unused inputs to the common-mode level. This feature is disabled by default, and can be enabled by writing the  
appropriate values into B0_P1_R58_D[7:0]. The use of this feature in combination with the PTM_R1 setting in  
B0_P0_R61 when the ADC channel is powered down causes the additional current consumption of 700μA from  
AVDDx_18 and 125μA from DVDDx_18 in the sleep mode.  
8.3.2.8.7 Adaptive Filtering  
After the ADC is running, the filter coefficients are locked and cannot be accessed for read or write. However the  
TLV320AIC3268 offers an adaptive filter mode as well. Setting B40_P0_R1_D2=1 turns on double buffering of  
the coefficients. In this mode filter coefficients can be updated through the host and activated without  
stopterminalg and restarting the ADC, enabling advanced adaptive filtering applications.  
To support double buffering, all coefficients are stored in two buffers (Buffer A and B). When the ADC is running  
and adaptive filtering mode is turned on, setting the control bit B40_P0_R1_D0=1 switches the coefficient buffers  
at the next start of a sampling period. The bit reverts to 0 after the switch occurs. At the same time, the flag  
B40_P0_R1_D1 toggles.  
The flag in B40_P0_R1_D1 indicates which of the two buffers is actually in use.  
For B40_P0_R1_D1=0: Buffer A is in use by the ADC engine. For B40_P0_R1_D1=1: Buffer B is in use.  
While the device is running, coefficient updates are always made to the buffer not in use by the ADC, regardless  
to which buffer the coefficients have been written.  
ADC running  
Flag, B40_P0_R1_D1  
Coefficient Buffer in use  
Writing to  
C4, Buffer A  
C4, Buffer B  
C4, Buffer A  
C4, Buffer B  
C4, Buffer A  
C4, Buffer B  
Will update  
C4, Buffer A  
C4, Buffer B  
C4, Buffer B  
C4, Buffer B  
C4, Buffer A  
C4, Buffer A  
No  
No  
0
0
0
0
1
1
None  
None  
Yes  
Yes  
Yes  
Yes  
Buffer A  
Buffer A  
Buffer B  
Buffer B  
Copyright © 2014, Texas Instruments Incorporated  
57  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
8.3.3 DAC  
The TLV320AIC3268 includes a stereo audio DAC supporting data rates from 8kHz to 192kHz. Each channel of  
the stereo audio DAC consists of a signal-processing engine with fixed processing blocks, a digital interpolation  
filter, multi-bit digital delta-sigma modulator, and an analog reconstruction filter. The DAC is designed to provide  
enhanced performance at low sampling rates through increased oversampling and image filtering, thereby  
keeping quantization noise generated within the delta-sigma modulator and signal images strongly suppressed  
within the audio band to beyond 20kHz. To handle multiple input rates and optimize power dissipation and  
performance, the TLV320AIC3268 allows the system designer to program the oversampling rates over a wide  
range from 1 to 1024. The system designer can choose higher oversampling ratios for lower input data rates and  
lower oversampling ratios for higher input data rates.  
The TLV320AIC3268 DAC channel includes a built-in digital interpolation filter to generate oversampled data for  
the sigma-delta modulator. The interpolation filter can be chosen from three different types depending on  
required frequency response, group delay and sampling rate.  
The DAC path of the TLV320AIC3268 features many options for signal conditioning and signal routing:  
2 headphone amplifiers  
Usable in single-ended stereo or differential mono mode  
Analog volume setting with a range of -6 to +14 dB  
Line-out amplifiers  
Usable in streo single-ended or stereo differential modes  
Class-D speaker amplifier  
Usable with left, right, or monophonic mix modes  
Analog volume control with a settings of +6, +12, +18, +24, and +30 dB  
1 Receiver amplifier  
Usable in mono differential mode  
Analog volume setting with a range of -6 to +29 dB  
Digital volume control with a range of -63.5 to +24dB  
Mute function  
In addition to the standard set of DAC features the TLV320AIC3268 also offers the following special features:  
Digital auto mute  
Adaptive coefficient update mode  
In addition to the above signal processing functions, extensive algorithms are available by programming the  
miniDSP. For specific details on available algorithms, please contact Texas Instruments.  
8.3.3.1 DAC Processing Blocks  
The TLV320AIC3268 implements signal processing capabilities and interpolation filtering via processing blocks.  
These fixed processing blocks give users the choice of how much and what type of signal processing they may  
use and which interpolation filter is applied.  
Table 18 gives an overview over all available processing blocks of the DAC channel and their properties. The  
Resource Class Column (RC) gives an approximate indication of power consumption.  
The signal processing blocks available are:  
First-order IIR  
Scalable number of biquad filters  
The processing blocks can be chosen based on mono or stereo playback requirement and need for additional  
filtering for frequency shaping. The available first-order IIR and biquad filters have fully user-programmable  
coefficients.  
58  
Copyright © 2014, Texas Instruments Incorporated  
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Table 18. Overview – DAC Predefined Processing Blocks  
Processing  
Block No.  
Interpolation  
Filter  
Channel  
1st Order  
IIR Available  
Num. of  
Biquads  
DRC  
3D  
Beep  
Generator  
RC Class  
PRB_P1(1)  
PRB_P3  
PRB_P6  
A
A
A
Stereo  
Stereo  
Left  
No  
Yes  
Yes  
2
6
6
No  
No  
No  
No  
No  
No  
No  
No  
No  
8
10  
5
(1) Default  
8.3.3.2 DAC Processing Blocks – Details  
8.3.3.2.1 2 Biquads, Interpolation Filter A  
Interp.  
Filter A  
to Modulator  
from Interface  
BiQuad A  
BiQuad B  
Digital  
Volume Ctrl  
Figure 53. Signal Chain for PRB_P1 (Stereo)  
8.3.3.2.2 6 Biquads, 1st order IIR, Interpolation Filter A or B  
Interp.  
BiQuad  
A
BiQuad  
B
BiQuad  
C
BiQuad  
D
BiQuad  
E
BiQuad  
F
to  
IIR  
Filter  
A,B  
from  
Modulator  
Interface  
Digital  
Volume  
Ctrl  
Figure 54. Signal Chain for PRB_P3 (Stereo) and PRB_P6 (Left)  
8.3.3.3 User Programmable Filters  
The TLV320AIC3268 allows either 3 or 6 user programmable BiQuad filters in DAC channel. Some processing  
blocks also support a first order IIR filter for dc-blocking.  
The coefficients of the available filters are arranged as sequentially-indexed coefficients in two banks. If adaptive  
coefficient update mode is chosen, the coefficient banks can be switched on-the-fly. For more details on adaptive  
filtering please see Adaptive Filtering.  
The coefficients of these filters are each 24-bits wide, in two's-complement and occupy 3 consecutive 8-bit  
registers in the register space. For default values please see DAC Defaults.  
8.3.3.3.1 1st-Order IIR Section  
The IIR is of first-order and its transfer function is given by  
N0 + N1z-1  
H(z) =  
223 - D1z-1  
(7)  
The frequency response for the 1st order IIR Section with default coefficients is flat. Details on DAC coefficient  
default values are given in DAC Defaults.  
Table 19. DAC IIR Filter Coefficients  
Filter  
Filter Coefficient DAC Coefficient Left Channel DAC Coefficient Right  
Channel  
1st Order IIR  
N0  
N1  
D1  
C1 (B80_P1_R12-R14)  
C2 (B80_P3_R16-R18)  
C3 (B80_P3_R20-R22)  
C36 (B80_P3_R32-R34)  
C37 (B80_P3_R36-R38)  
C38 (B80_P3_R40-R42)  
Copyright © 2014, Texas Instruments Incorporated  
59  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
8.3.3.3.2 Biquad Section  
The transfer function of each of the Biquad Filters is given by  
N0 + 2 * N1z-1 + N2z-2  
223 - 2 *D1z-1 -D2z-2  
H(z) =  
(8)  
The frequency response for each biquad section with default coefficients is flat at a gain of 0dB. Details on DAC  
coefficient default values are given in DAC Defaults.  
Table 20. DAC Biquad Filter Coefficients  
Filter  
Coefficient  
N0  
N1  
N2  
D1  
D2  
N0  
N1  
N2  
D1  
D2  
N0  
N1  
N2  
D1  
D2  
N0  
N1  
N2  
D1  
D2  
N0  
N1  
N2  
D1  
D2  
N0  
N1  
N2  
D1  
D2  
Left DAC Channel  
Right DAC Channel  
BIQUAD A  
C4 (B80_P1_R24-R26)  
C5 (B80_P1_R28-R30)  
C6 (B80_P1_R32-R34)  
C7 (B80_P1_R36-R38)  
C8 (B80_P1_R40-R42)  
C9 (B80_P1_R44-R46)  
C10 (B80_P1_R48-R50)  
C11 (B80_P1_R52-R54)  
C12 (B80_P1_R56-R58)  
C13 (B80_P1_R60-R62)  
C14 (B80_P1_R64-R66)  
C15 (B80_P1_R68-R70)  
C16 (B80_P1_R72-R74)  
C17 (B80_P1_R76-R78)  
C18 (B80_P1_R80-R82)  
C19 (B80_P1_R84-R86)  
C20 (B80_P1_R88-R90)  
C21 (B80_P1_R92-R94)  
C22 (B80_P1_R96-R98)  
C23 (B80_P1_R100-R102)  
C24 (B80_P1_R104-R106)  
C25 (B80_P1_R108-R110)  
C26 (B80_P1_R112-R114)  
C27 (B80_P1_R116-R118)  
C28 (B80_P1_R120-R122)  
C29 (B80_P1_R124-R126)  
C30 (B80_P2_R8-R10)  
C31 (B80_P2_R12-R14)  
C32 (B80_P2_R16-R18)  
C33 (B80_P2_R20-R22)  
C39 (B80_P2_R44-R46)  
C40 (B80_P2_R48-R50)  
C41 (B80_P2_R52-R54)  
C42 (B80_P2_R56-R58)  
C43 (B80_P2_R60-R62)  
C44 (B80_P2_R64-R66)  
C45 (B80_P2_R68-R70)  
C46 (B80_P2_R72-R74)  
C47 (B80_P2_R76-R78)  
C48 (B80_P2_R80-R82)  
C49 (B80_P2_R84-R86)  
C50 (B80_P2_R88-R90)  
C51 (B80_P2_R92-R94)  
C52 (B80_P2_R96-R98)  
C53 (B80_P2_R100-R102)  
C54 (B80_P2_R104-R106)  
C55 (B80_P2_R108-R110)  
C56 (B80_P2_R112-R114)  
C57 (B80_P2_R116-R118)  
C58 (B80_P2_R120-R122)  
C59 (B80_P2_R124-R126)  
C60 (B80_P3_R8-R10)  
C61 (B80_P3_R12-R14)  
C62 (B80_P3_R16-R18)  
C63 (B80_P3_R20-R22)  
C64 (B80_P3_R24-R26)  
C65 (B80_P3_R28-R30)  
C66 (B80_P3_R32-R34)  
C67 (B80_P3_R36-R38)  
C68 (B80_P3_R40-R42)  
BIQUAD B  
BIQUAD C  
BIQUAD D  
BIQUAD E  
BIQUAD F  
60  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
8.3.3.4 Interpolation Filters  
8.3.3.4.1 Interpolation Filter A  
Filter A is designed for an Fs up to 48ksps with a flat passband of 0kHz–20kHz.  
Table 21. DAC Interpolation Filter A, Specification  
Parameter  
Condition  
Value (Typical)  
±0.015  
Units  
dB  
Filter Gain Pass Band  
Filter Gain Stop Band  
Filter Group Delay  
0 … 0.45fS  
0.55Fs… 7.455fS  
–65  
dB  
21/fS  
s
DAC Channel Response for Interpolation Filter A  
(Red line corresponds to –65 dB)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
1
2
3
4
5
6
7
Frequency Normalized to fS  
G016  
Figure 55. DAC Interpolation Filter A, Frequency Response  
8.3.3.4.2 Interpolation Filter B  
Filter B is specifically designed for an Fs of above 96ksps. Thus, the flat pass-band region easily covers the  
required audio band of 0-20kHz.  
Table 22. DAC Interpolation Filter B, Specification  
Parameter  
Condition  
Value (Typical)  
±0.015  
Units  
dB  
Filter Gain Pass Band  
Filter Gain Stop Band  
Filter Group Delay  
0 … 0.45fS  
0.55Fs… 3.45fS  
–58  
dB  
18/fS  
s
Copyright © 2014, Texas Instruments Incorporated  
61  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
DAC Channel Response for Interpolation Filter B  
(Red line corresponds to –58 dB)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Frequency Normalized to fS  
G017  
Figure 56. Channel Interpolation Filter B, Frequency Response  
8.3.3.4.3 Interpolation Filter C  
Filter C is specifically designed for the 192ksps mode. The pass band extends up to 0.40*Fs (corresponds to  
80kHz), more than sufficient for audio applications.  
DAC Channel Response for Interpolation Filter C  
(Red line corresponds to –43 dB)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
Frequency Normalized to fS  
G018  
Figure 57. DAC Interpolation Filter C, Frequency Response  
Table 23. DAC Interpolation Filter C, Specification  
Parameter  
Condition  
Value (Typical)  
±0.03  
Units  
dB  
Filter Gain Pass Band  
Filter Gain Stop Band  
Filter Group Delay  
0 … 0.35fS  
0.60Fs… 1.4fS  
–43  
dB  
13/fS  
s
62  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
8.3.3.5 DAC Gain Setting  
8.3.3.5.1 PowerTune Modes  
As part of the PowerTune strategy, the analog properties of the DAC are adjusted. As a consequence, the full-  
scale signal swing achieved at the headphone outputs must be adjusted.  
Please see Table 24 for the proper gain compensation values across the different combinations.  
Table 24. DAC Gain versus PowerTune Modes  
DAC PowerTune  
Mode Control  
PowerTune Mode  
Headphone Gain  
Page 1,Register 3/4,  
Bits D4-D2)  
CM = 0.75V, Gain for 375mVRMS output  
CM = 0.9V, Gain for 500mVRMS output  
swing at 0dB full scale input  
swing at 0dB full scale input  
000  
001  
010  
PTM_P3, PTM_P4  
PTM_P2  
0
4
0
4
PTM_P1  
14  
14  
8.3.3.5.2 Digital Volume Control  
The TLV320AIC3268 signal processing blocks incorporate a digital volume control block that can control the  
volume of the playback signal from +24dB to –63.5dB in steps of 0.5dB. These can be controlled by writing to  
B0_P0_R65 and B0_P0_R66. The volume control of left and right channels by default can be controlled  
independently, but by programming B0_P0_R64_D[1:0], they can be made interdependent. The volume changes  
are soft-stepped in steps of 0.5dB to avoid audible artifacts during gain change. The rate of soft-stepping can be  
controlled by programming B0_P0_R63_D[1:0] to either one step per frame (DAC_FS ) or one step per 2 frames.  
The soft-stepping feature can also be entirely disabled. During soft-stepping the value of the actual applied gain  
would differ from the programmed gain in register. The TLV320AIC3268 gives a feedback to the user in form of  
register readable flag to indicate that soft-stepping is currently in progress. The flags for left and right channels  
can be read back by reading B0_P0_R38_D4 and B0_P0_R38_D0 respectively. A value of 0 in these flags  
indicates a soft-stepping operation in progress, and a value of 1 indicates that soft-stepping has completed. A  
soft-stepping operation comes into effect during a) power-up, when the volume control soft-steps from –63.5dB  
to programmed gain value b) volume change by user when DAC is powered up and c) power-down, when the  
volume control block soft-steps to –63.5dB before powering down the channel.  
Copyright © 2014, Texas Instruments Incorporated  
63  
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
8.3.3.6 DAC Special Functions  
8.3.3.6.1 Digital Auto Mute  
The TLV320AIC3268 also incorporates a special feature, in which the DAC channel is auto-muted when a  
continuous stream of DC-input is detected. When using PRB_Px modes, the Data Input 1 (L1,R1) ports of  
miniDSP_D are monitoted for DC-inputs. Signals routed to Data Input 1 port is controlled by configuring  
B0_P4_R118_D[5:4].By default, this feature is disabled. It can be enabled by writing a non-000 value into  
B0_P0_R64_D[6:4]. The non-zero value controls the duration of continuous stream of DC-input before which the  
auto-mute feature takes effect. This feature is especially helpful for eliminating high-frequency-noise power being  
delivered into the load even during silent periods of speech or music.  
8.3.3.6.2 Adaptive Filtering  
When the DAC is running, the user-programmable filter coefficients are locked and cannot be accessed for either  
read or write.  
However, the TLV320AIC3268 offers an adaptive filter mode as well, and the DAC contains two separate  
adaptive filter coefficient banks (Primary Adaptive Bank in Book 80, and Secondary Adaptive Bank in Book 82).  
Setting B80_P0_R1_D2=1 for the Primary Adaptive Bank will turn on double buffering of the coefficients.  
Similarly, setting B82_P0_R1_D2=1 will turn on double buffering of the coefficients in the Secondary Adaptive  
Bank. In this mode, filter coefficients can be updated through the host, and activated without stopping and  
restarting the DAC. This enables advanced adaptive filtering applications.  
In the double-buffering scheme, all coefficients are stored in two buffers (Buffers A and B). When the DAC is  
running and adaptive filtering mode is turned on, setting the control bit B80_P0_R1_D0=1 (B82_P0_R1_D0=1 if  
using Secondary Bank) switches the coefficient buffers at the next start of a sampling period. This bit is set back  
to 0 after the switch occurs. At the same time, the flag B80_P0_R1_D1 (B82_P0_R1_D1 if using Secondary  
Bank) toggles.  
The flag in B80_P0_R1_D1 indicates which of the two buffers in the Primary Bank is actually in use.  
B80_P0_R1_D1=0: Buffer A is in use by the DAC engine, Bit D1=1: Buffer B is in use.  
While the device is running, coefficient updates are always made to the buffer not in use by the DAC, regardless  
to which buffer the coefficients have been written.  
DAC running  
B80_P0_R1_D1 for Primary Bank Coefficient Buffer in use  
Writing to  
Will update  
(B82_P0_R1_D1 for Secondary  
Bank)  
No  
0
0
0
0
1
1
None  
C1, Buffer A  
C1, Buffer B  
C1, Buffer A  
C1, Buffer B  
C1, Buffer A  
C1, Buffer B  
C1, Buffer A  
C1, Buffer B  
C1, Buffer B  
C1, Buffer B  
C1, Buffer A  
C1, Buffer A  
No  
None  
Yes  
Yes  
Yes  
Yes  
Buffer A  
Buffer A  
Buffer B  
Buffer B  
The user programmable coefficients C1 to C70 are defined on B80_P1-P3 for Buffer A and B80_P9-P11 for  
Buffer B. For the Secondary Bank, the coefficients are located on similar pages on Book 82.  
8.3.4 Clock Generation and PLL  
To minimize power consumption, the system ideally provides a master clock that is a suitable integer multiple of  
the desired sampling frequencies. In such cases, internal dividers can be programmed to set up the required  
internal clock signals at very low power consumption. For cases where such master clocks are not available, the  
built-in PLL can be used to generate a clock signal that serves as an internal master clock. In fact, this master  
clock can also be routed to an output terminal and may be used elsewhere in the system. The clock system is  
flexible enough that it even allows the internal clocks to be derived directly from an external clock source, while  
the PLL is used to generate some other clock that is only used outside the TLV320AIC3268.  
The ADC_CLKIN and DAC_CLKIN can then be routed through highly-flexible clock dividers to generate the  
various clocks required for ADC, DAC and the miniDSP sections.  
64  
Copyright © 2014, Texas Instruments Incorporated  
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
The TLV320AIC3268 supports a wide range of options for generating clocks for the ADC and DAC sections as  
well as the interface and other control blocks as shown in Figure 58. The clocks for the ADC and the DAC  
require a source reference clock. In the TLV320AIC3268 the ADC and DAC clock-trees can have different root  
clocks. These clocks can be provided on a variety of device terminals such as MCLK, BCLK1, BCLK2, GPIO1,  
GPIO2 and GPIO3, and the onchip high-frequency reference clock (HF_REF_CLK) and high-frequency oscillator  
clock (HF_OSC_CLK) can also be provided as sources. The source reference clock for the ADC can be chosen  
by programming the ADC_CLKIN value on B0_P0_R4_D[3:0]. The source reference clock for the DAC can be  
chosed by programming the DAC_CLKIN value on B0_P0_R4_D[7:4]. The ADC_CLKIN and DAC_CLKIN can  
then be routed through highly flexible clock dividers shown in Figure 58 to generate the various clocks required  
for the ADC, DAC, and miniDSP sections. In the event that the desired audio miniDSP clocks cannot be  
generated from the reference clocks coming from the device terminals listed above, the TLV320AIC3268 also  
provides the option of using the on-chip PLL which supports a wide range of fractional multiplication values to  
generate the required clocks. Starting from ADC_CLKIN and DAC_CLKIN, the TLV320AIC3268 provides several  
programmable clock dividers to help achieve a variety of sampling rates for the ADC and DAC, as well as clocks  
for the miniDSP sections.  
Copyright © 2014, Texas Instruments Incorporated  
65  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
MCLK  
BCLK1  
BCLK2  
GPIO1  
GPIO2  
GPIO3  
PLL_CLK  
HF_REF_CLK  
HF_OSC_CLK  
DAC_CLKIN  
ADC_CLKIN  
NDAC=1,2,…..,  
127,128  
NADC=1,2,…..,  
127,128  
¸ NDAC  
¸ NADC  
To DAC miniDSP clock  
generation  
DAC_CLK  
ADC_CLK  
To ADC miniDSP  
clock generation  
MDAC=1,2,…..,  
127,128  
MADC=1,2,…..,  
127,128  
¸ MDAC  
¸ MADC  
DAC_MOD_CLK  
ADC_MOD_CLK  
DOSR=1,2,…..,  
1023,1024  
AOSR=1,2,…..,  
255,256  
¸ DOSR  
¸ AOSR  
DAC_FS  
ADC_FS  
Figure 58. Clock Distribution Tree  
The DAC and ADC clocks are obtained as follows:  
DAC_CLKIN  
NDAC ´ MDAC ´ DOSR  
DAC_CLKIN  
DAC_fs =  
(9)  
(10)  
(11)  
DAC_MOD_CLK =  
NDAC ´ MDAC  
ADC _CLKIN  
NADC´MADC´ AOSR  
ADC _ fS  
=
66  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
ADC_CLKIN  
ADC_MOD_CLK =  
NADC ´ MADC  
(12)  
The MUX settings in the ADC clock tree allow alternative clock settings:  
DAC_CLKIN  
ADC_fs =  
NDAC ´ MADC ´ AOSR  
or  
DAC_CLKIN  
ADC_fs =  
NDAC ´ MDAC ´ AOSR  
(13)  
(14)  
DAC_CLKIN  
ADC_MOD_CLK =  
NDAC ´ MADC  
or  
DAC_CLKIN  
ADC_MOD_CLK =  
NDAC ´ MDAC  
By default ADC_CLK = DAC_CLK and ADC_MOD_CLK = DAC_MOD_CLK.  
Table 25. DAC CLKIN and ADC CLKIN Clock Dividers  
Divider Bits  
Range  
NDAC  
MDAC  
DOSR  
NADC  
MADC  
AOSR  
B0_P0_R11_D[6:0]  
1, 2, … 127, 128  
1, 2, … 127, 128  
1, 2, … 1023, 1024  
1, 2, … 127, 128  
1, 2, … 127, 128  
1, 2, … 255, 256  
B0_P0_R12_D[6:0]  
B0_P0_R13_D[1:0] and B0_P0_R14_D[7:0]  
B0_P0_R18_D[6:0]  
B0_P0_R19_D[6:0]  
B0_P0_R20_D[7:0]  
The registers used for DAC and ADC clock selection are listed in Table 26.  
Table 26. DAC and ADC Clock Selectors  
Selector  
Bits  
Inputs  
MCLK1, MCLK2, BCLK1, GPIO1, PLL_CLK, BCLK2, GPI1, HR_REF_CLK,  
HF_OSC_CLK, GPIO2, GPI2  
DAC_CLKIN  
B0_P0_R4_D[7:4]  
MCLK1, MCLK2, BCLK1, GPIO1, PLL_CLK, BCLK2, GPI1, HR_REF_CLK,  
HF_OSC_CLK, GPIO2, GPI2  
ADC_CLKIN  
ADC_CLK  
B0_P0_R4_D[3:0]  
B0_P0_R18_D7  
NDAC output (DAC_CLK), NADC output  
ADC_MOD_CLK B0_P0_R19_D7  
MDAC output (DAC_MOD_CLK), MADC output  
The DAC Modulator is clocked by DAC_MOD_CLK. For proper power-up of the DAC Channel, these clocks must  
be enabled by configuring the NDAC and MDAC clock dividers (B0_P0_R11_D7=1 and B0_P0_R12_D7=1).  
When the DAC channel is powered down, the device internally initiates a power-down sequence for proper shut-  
down. During this shut-down sequence, the NDAC and MDAC dividers must not be powered down, or else a  
proper low power shut-down may not take place. The user can read the power-status flag in B0_P0_R37_D7 for  
the Left DAC and B0_P0_R37_D3 for the Right DAC. When both flags indicate power-down, the MDAC divider  
may be powered down, followed by the NDAC divider.  
The ADC modulator is clocked by ADC_MOD_CLK. For proper power-up of the ADC Channel, these clocks are  
enabled by the NADC and MADC clock dividers (B0_P0_R18_D7=1 and B0_P0_R19_D7=1). When the ADC  
channel is powered down, the device internally initiates a power-down sequence for proper shut-down. During  
this shut-down sequence, the NADC and MADC dividers must not be powered down, or else a proper low power  
shut-down may not take place. The user can read the power-status flag in B0_P0_R36_D6 for the Left ADC and  
B0_P0_R36_D2 for the Right ADC. When both flags indicate power-down, the MADC divider may be powered  
down, followed by NADC divider.  
Copyright © 2014, Texas Instruments Incorporated  
67  
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
When ADC_CLK is derived from the NDAC divider output, the NDAC must be kept powered up till the power-  
down status flags for ADC do not indicate that the ADC is still in the process of powering down. When the input  
to the AOSR clock divider is derived from DAC_MOD_CLK, then MDAC must be powered up when ADC_FS is  
needed (that is when WCLK is generated by TLV320AIC3268 or AGC is enabled) and can be powered down  
only after the ADC power-down flags indicate power-down status.  
In general, all the root clock dividers should be powered down only after the child clock dividers have been  
powered down for proper operation.  
The TLV320AIC3268 also has options for routing some of the internal clocks to the output terminals of the device  
to be used as general purpose clocks in the system.  
For example, the TLV320AIC3268 can be configured to drive the bit clock signals ASI1_BCLK_OUT,  
ASI2_BCLK_OUT, and ASI3_BCLK_OUT on the three serial interfaces as shown in Figure 59.  
DAC_MOD_CLK  
ADC_MOD_CLK  
DAC_MOD_CLK  
ADC_MOD_CLK  
DAC_MOD_CLK  
ADC_MOD_CLK  
DAC_CLK ADC_CLK  
DAC_CLK ADC_CLK  
DAC_CLK  
ADC_CLK  
ASI1_BDIV_CLKIN  
N=1,2,…..,127,128  
ASI2_BDIV_CLKIN  
ASI3_BDIV_CLKIN  
¸
¸
¸
N=1,2,..,127,128  
N=1,2,..,127,128  
ASI1_BDIV  
ASI2_BDIV  
ASI3_BDIV  
ASI1_BDIV_OUT  
ASI2_BDIV_OUT  
ASI3_BDIV_OUT  
ASI1_BCLK  
ASI1_BCLK  
ASI2_BCLK  
ASI2_BCLK  
ASI3_BCLK  
ASI3_BCLK  
ASI1_BCLK_OUT  
ASI2_BCLK_OUT  
ASI3_BCLK_OUT  
Figure 59. Bit Clock Output Options for ASI1, ASI2, and ASI3  
When TLV320AIC3268 is configured to drive ASI1_BCLK_OUT, the clock signal can be selected via  
B0_P4_R14_D[6:4] to come from ASI1_BDIV_OUT, ASI2_BDIV_OUT, ASI3_BDIV_OUT, ASI2_BCLK Input, or  
ASI3_BCLK Input.  
When TLV320AIC3268 is configured to drive ASI2_BCLK_OUT, the clock signal can be selected via  
B0_P4_R30_D[6:4] to come from ASI1_BDIV_OUT, ASI2_BDIV_OUT, ASI3_BDIV_OUT, ASI1_BCLK Input, or  
ASI3_BCLK Input.  
When TLV320AIC3268 is configured to drive ASI3_BCLK_OUT, the clock signal can be selected via  
B0_P4_R46_D[6:4] to come from ASI1_BDIV_OUT, ASI2_BDIV_OUT, ASI3_BDIV_OUT, ASI1_BCLK, or  
ASI2_BCLK.  
ASI1_BDIV_OUT is a divided value of ASI1_BDIV_CLKIN, where the division value can be programmed in  
B0_P4_R12_D[6:0] from 1 to 128, and this bit clock divider can be powered on by setting B0_P4_R12_D7. The  
ASI1_BDIV_CLKIN can itself be configured to be one of DAC_CLK, DAC_MOD_CLK, ADC_CLK or  
ADC_MOD_CLK by configuring the ASI1_BDIV_CLKIN mux in B0_P4_R11_D[1:0].  
68  
Copyright © 2014, Texas Instruments Incorporated  
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
ASI2_BDIV_OUT is a divided value of ASI2_BDIV_CLKIN, where the division value can be programmed in  
B0_P4_R28_D[6:0] from 1 to 128, and this bit clock divider can be powered on by setting B0_P4_R28_D7. The  
ASI2_BDIV_CLKIN can itself be configured to be one of DAC_CLK, DAC_MOD_CLK, ADC_CLK or  
ADC_MOD_CLK by configuring the ASI2_BDIV_CLKIN mux in B0_P4_R27_D[1:0].  
ASI3_BDIV_OUT is a divided value of ASI3_BDIV_CLKIN, where the division value can be programmed in  
B0_P4_R44_D[6:0] from 1 to 128, and this bit clock divider can be powered on by setting B0_P4_R44_D7. The  
ASI3_BDIV_CLKIN can itself be configured to be one of DAC_CLK, DAC_MOD_CLK, ADC_CLK or  
ADC_MOD_CLK by configuring the ASI3_BDIV_CLKIN mux in B0_P4_R43_D[1:0].  
The TLV320AIC3268 can also be configured to provide the world clocks for ASI1, ASI2, and ASI3 as shown in  
Figure 60.  
ASI3_BCLK  
ASI1_BCLK  
ASI2_BCLK  
¸
¸
N=32,33,…..,127,128  
¸
N=32,33,…..,127,128  
N=32,33,…..,127,128  
ASI1_WDIV  
ASI2_WDIV  
ASI3_WDIV  
ASI1_WDIV_OUT  
ASI2_WDIV_OUT  
ASI3_WDIV_OUT  
ASI1_WDIV_OUT ASI1_WCLK  
ASI2_WDIV_OUT  
ASI2_WCLK  
ASI1_WDIV_OUT  
ASI1_WDIV_OUT ASI1_WCLK  
ASI2_WDIV_OUT  
ASI2_WDIV_OUT  
ASI2_WCLK  
ADC_FS  
ADC_FS  
DAC_FS  
ADC_FS  
DAC_FS  
DAC_FS  
ASI3_WDIV_OUT  
ASI3_WCLK  
ASI3_WDIV_OUT  
ASI3_WDIV_OUT  
ASI3_WCLK  
ASI1_WCLK_OUT  
ASI2_WCLK_OUT  
ASI3_WCLK_OUT  
Figure 60. Word Clock Options for ASI1, ASI2, and ASI3  
ASI1_WCLK_OUT can be selected to come from DAC_FS, ADC_FS, ASI1_WDIV_OUT, ASI2_WDIV_OUT,  
ASI3_WDIV_OUT, as well as ASI2_WCLK Input, and ASI3_WCLK Input using B0_P4_R14_D[2:0].  
ASI1_WDIV_OUT is driven as a divided value of ASI1_BCLK, where the division can be programmed in  
B0_P4_R13_D[6:0] from 32 to 128, and this word clock divider can be powered on by setting B0_P4_R13_D7.  
ASI2_WCLK_OUT can be selected to come from DAC_FS, ADC_FS, ASI1_WDIV_OUT, ASI2_WDIV_OUT,  
ASI3_WDIV_OUT, as well as ASI1_WCLK Input, and ASI3_WCLK Input using B0_P4_R30_D[2:0].  
ASI2_WDIV_OUT is driven as a divided value of ASI2_BCLK, where the division can be programmed in  
B0_P4_R29_D[6:0] from 32 to 128, and this word clock divider can be powered on by setting B0_P4_R29_D7.  
ASI3_WCLK_OUT can be selected to come from DAC_FS, ADC_FS, ASI1_WDIV_OUT, ASI2_WDIV_OUT,  
ASI3_WDIV_OUT, as well as ASI1_WCLK Input, and ASI2_WCLK Input using B0_P4_R46_D[2:0].  
ASI3_WDIV_OUT is driven as a divided value of ASI3_BCLK, where the division can be programmed in  
B0_P4_R45_D[6:0] from 32 to 128, and this word clock divider can be powered on by setting B0_P4_R45_D7.  
The bit clock and work clock dividers are summarized in Table 27. The bit clock and word clock selectors are  
summarized in Table 28.  
Table 27. ASI1, ASI2, and ASI3 Bit and Word Clock Dividers  
Divider  
Bits  
Range  
ASI1_BDIV  
B0_P4_R12_D[6:0]  
1, 2, … 127, 128  
Copyright © 2014, Texas Instruments Incorporated  
69  
 
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Table 27. ASI1, ASI2, and ASI3 Bit and Word Clock Dividers (continued)  
Divider  
Bits  
Range  
ASI2_BDIV  
ASI3_BDIV  
ASI1_WDIV  
ASI2_WDIV  
ASI3_WDIV  
B0_P4_R28_D[6:0]  
B0_P4_R44_D[6:0]  
B0_P4_R13_D[6:0]  
B0_P4_R29_D[6:0]  
B0_P4_R45_D[6:0]  
1, 2, … 127, 128  
1, 2, … 127, 128  
32, 33, … 127, 128  
32, 33, … 127, 128  
32, 33, … 127, 128  
Table 28. ASI1, ASI2, and ASI3 Bit and Word Clock Selection  
Selector  
Bits  
Inputs  
ASI1_BDIV_OUT, ASI2_BDIV_OUT, ASI3_BDIV_OUT, ASI2_BCLK,  
ASI3_BCLK  
ASI1_BCLK_OUT  
B0_P4_R14_D[6:4]  
B0_P4_R30_D[6:4]  
B0_P4_R46_D[6:4]  
ASI1_BDIV_OUT, ASI2_BDIV_OUT, ASI3_BDIV_OUT, ASI1_BCLK,  
ASI3_BCLK  
ASI2_BCLK_OUT  
ASI3_BCLK_OUT  
ASI1_BDIV_OUT, ASI2_BDIV_OUT, ASI3_BDIV_OUT, ASI1_BCLK,  
ASI2_BCLK  
ASI1_BDIV_CLKIN  
ASI2_BDIV_CLKIN  
ASI3_BDIV_CLKIN  
B0_P4_R11_D[1:0]  
B0_P4_R27_D[1:0]  
B0_P4_R43_D[1:0]  
DAC_CLK, DAC_MOD_CLK, ADC_CLK, ADC_MOD_CLK  
DAC_CLK, DAC_MOD_CLK, ADC_CLK, ADC_MOD_CLK  
DAC_CLK, DAC_MOD_CLK, ADC_CLK, ADC_MOD_CLK  
DAC_FS, ADC_FS, ASI1_WDIV_OUT, ASI2_WDIV_OUT, ASI3_WDIV_OUT,  
ASI2_WCLK, ASI3_WCLK  
ASI1_WCLK_OUT  
ASI2_WCLK_OUT  
ASI3_WCLK_OUT  
B0_P4_R14_D[2:0]  
B0_P4_R30_D[2:0]  
B0_P4_R46_D[2:0]  
DAC_FS, ADC_FS, ASI1_WDIV_OUT, ASI2_WDIV_OUT, ASI3_WDIV_OUT,  
ASI1_WCLK, ASI3_WCLK  
DAC_FS, ADC_FS, ASI1_WDIV_OUT, ASI2_WDIV_OUT, ASI3_WDIV_OUT,  
ASI1_WCLK, ASI2_WCLK  
Additionally a general purpose clock CLKOUT can be driven out on DOUT1, WCLK2, BCLK2, GPIO1, GPIO2, or  
GPO1 according to the settings in Table 29.  
Table 29. CLKOUT Selection  
Clock Output  
DOUT1  
Bits  
B0_P4_R67_D[4:1] = ’0011’  
B0_P4_R69_D[5:2] = ’0100’  
B0_P4_R70_D[5:2] = ’0100’  
B0_P4_R86_D[6:2] = ’00100’  
B0_P4_R87_D[6:2] = ’00100’  
B0_P4_R96_D[4:1] = ”0011’  
WCLK2  
BCLK2  
GPIO1  
GPIO2  
MISO_GPO1  
70  
Copyright © 2014, Texas Instruments Incorporated  
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
This clock can be a divided down version of CDIV_CLKIN. The value of this clock divider can be programmed  
from 1 to 128 by writing to B0_P0_R22_D[6:0], and this CDIV clock divider can be powered on by setting  
B0_P4_R22_D7. The CDIV_CLKIN can itself be programmed as one of the clocks among the list shown in  
Figure 61. This can be controlled by programming the mux in B0_P0_R21_D[3:0].  
MCLK  
BCLK1  
DIN1  
BCLK2  
GPIO3  
CDIV_CLKIN  
CLKOUT  
¸ CDIV  
PLL_CLK  
DAC_CLK  
DAC_MOD_CLK  
ADC_CLK  
N=1,2,…,128  
ADC_MOD_CLK  
HF_REF_CLK  
HF_OSC_CLK  
Figure 61. General Purpose Clock Output Options  
Table 30. Maximum TLV320AIC3268 Clock Frequencies  
DVDD_18 1.26V  
50MHz  
DVDD_18 1.65V  
137MHz  
DVDD_18 1.71V  
137MHz  
ADC_CLKIN  
DAC_CLKIN  
50MHz  
137MHz  
137MHz  
ADC_CLK  
50MHz  
70MHz  
70MHz  
ADC_miniDSP_CLK  
ADC_MOD_CLK  
ADC_FS  
37.5MHz  
6.758MHz  
0.192MHz  
50.0MHz  
35.0MHz  
6.758MHz  
0.192MHz  
50MHz  
63.0MHz  
6.758MHz  
0.192MHz  
70MHz  
69.0MHz  
6.758MHz  
0.192MHz  
70MHz  
DAC_CLK  
DAC_miniDSP_CLK  
DAC_MOD_CLK  
DAC_FS  
59.0MHz  
6.758MHz  
0.192MHz  
70MHz  
62.5MHz  
6.758MHz  
0.192MHz  
70MHz  
ASI1_BDIV_CLKIN,  
ASI2_BDIV_CLKIN,  
ASI3_BDIV_CLKIN  
CDIV_CLKIN  
50MHz  
137MHz  
137MHz  
8.3.4.1 PLL  
The TLV320AIC3268 has an on-chip PLL to generate the clock frequency for the audio ADC, DAC, and Digital  
Signal Processing blocks. The programmability of the PLL allows operation from a wide variety of clocks that  
may be available in the system. The PLL Clocking and muxing is shown in Figure 62.  
Copyright © 2014, Texas Instruments Incorporated  
71  
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
MCLK1  
BCLK1  
DIN1  
GPIO2  
BCLK2 HF_REF_CLK  
GPI1  
MCLK2  
GPIO1  
GPI2  
PLL_CLKIN  
%PLL  
_CLKI  
N_DIV  
PLL_CLKIN_DIV=1,2,,128  
%P  
P=1,2,,8  
PLL  
R=1,2,…,16  
J=1,2,..,63  
D=0000,0001,,9999  
×(R×J·D)  
PLL_CLK  
MCLK  
BCLK1  
GPIO1  
GPIO3  
GPIO2 HF_REF_CLK  
DIN1  
BCLK2  
PLL_CLKIN  
%PLL_CL  
KIN_DIV  
PLL_CLKIN_DIV=1,2,…,128  
%P  
P=1,2,…,8  
R=1,2,…,16  
J=1,2,..,63  
PLL  
D=0000,0001,,9999  
×(R×J·D)  
PLL_CLK  
Figure 62. PLL Clocking and Mux  
72  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
The PLL input supports clocks varying from 512kHz to 20MHz and is register programmable to enable  
generation of required sampling rates with fine resolution. The PLL can be turned on by writing to  
B0_P0_R6_D7. When the PLL is enabled, the PLL output clock PLL_CLK is given by the following equation  
PLL_CLK = (PLL_CLKIN x R x J.D)/(PxPLL_CLKIN_DIV)  
PLL_CLKIN ´ R ´ J.D  
PLL_CLK =  
PxPLL_CLKIN_DIV  
(15)  
R = 1, 2, … 16.  
J = 1, 2, 3, 4,… 63, and D = 0, 1, 2, 3, 4, … 9999  
P = 1, 2, 3, 4, … 8  
PLL_CLKIN_DIV = 1, 2, … 128.  
R, J, D, P, and PLL_CLKIN_DIV are register programmable.  
The PLL can be programmed via B0_P0_R6-R10. The PLL can be turned on via B0_P0_R6_D7. The variable P  
can be programmed via B0_P0_R6_D[6:4]. The default register value for P is 1. The variable R can be  
programmed via B0_P0_R6_D[3:0]. The default register value for R is 1. The variable J can be programmed via  
B0_P0_R7_D[5:0]. The default register value for J is 4. The variable D is 12-bits, programmed into two registers.  
The MSB portion can be programmed via B0_P0_R8_D[5:0], and the LSB portion is programmed via  
B0_P0_R9_D[7:0]. The default register value for D is 0. The PLL_CLKIN_DIV value can be programmed via  
B0_P0_R10_D[6:0]. The default register value for PLL_CLKIN_DIV is 1.  
When the PLL is enabled the following conditions must be satisfied  
When the PLL is enabled and D = 0, the following conditions must be satisfied for PLL_CLKIN:  
PLL_CLKIN  
512 kHz £  
£ 20 MHz  
P ´ PLL_CLKIN_DIV  
(16)  
(17)  
When the PLL is enabled and D 0, the following conditions must be satisfied for PLL_CLKIN:  
PLL_CLKIN  
10 MHz £  
£ 20 MHz  
P ´ PLL_CLKIN_DIV  
In the TLV320AIC3268 the PLL_CLK supports a wide range of output clock values, based on register settings  
and power-supply conditions.  
Table 31. PLL_CLK Frequency Range  
AVdd  
PLL Mode  
Min PLL_CLK  
Max PLL_CLK  
B0_P0_R5_D6  
frequency (MHz)  
frequency (MHz)  
1.5V  
0
1
0
1
0
1
80  
95  
80  
92  
80  
92  
103  
110  
118  
123  
132  
137  
1.65V  
1.80V  
The PLL can be powered up independently from the ADC and DAC blocks, and can also be used as a general  
purpose PLL by selecting its output as an input to the General Purpose Output Clock mux (enabling routing to a  
variety of digital output terminals). After powering up the PLL, PLL_CLK is available typically after 10ms. The PLL  
output frequency is controlled by J.D and R dividers  
PLL Divider  
Bits  
J
B0_P0_R7_D[5:0]  
D
R
B0_P0_R8_D[5:0] and B0_P0_R9_D[7:0]  
B0_P0_R6_D[3:0]  
Copyright © 2014, Texas Instruments Incorporated  
73  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
The D-divider value is 14-bits wide and is controlled by 2 registers. For proper update of the D-divider value,  
B0_P0_R8 must be programmed first followed immediately by B0_P0_R9. Unless the write to B0_P0_R9 is  
completed, the new value of D will not take effect.  
The clocks for codec and various signal processing blocks, ADC_CLKIN and DAC_CLKIN can be generated  
from MCLK, BCLK1, GPIO1, BCLK2, GPIO3, HF_REF_CLK, HF_OSC_CLK, GPIO2, GPIO6, BCLK3 or  
PLL_CLK (B0_P0_R4_D[7:0]).  
If the ADC_CLKIN and/or the DAC_CLKIN are derived from the PLL, then the PLL must be powered up first and  
powered down last.  
Table 32 lists several example cases of typical MCLK rates and how to program the PLL to achieve a sample  
rate Fs of either 44.1kHz or 48kHz.  
Table 32. PLL Example Configurations  
Fs = 44.1kHz  
MCLK (MHz)  
2.8224  
5.6448  
12  
PLL_CLKIN_DIV  
PLLP  
PLLR  
PLLJ  
PLLD  
0
MADC  
NADC  
AOSR  
128  
128  
128  
64  
MDAC  
NDAC  
DOSR  
128  
128  
128  
104  
128  
128  
128  
1
1
1
1
1
1
1
1
1
1
1
1
1
4
3
3
1
2
1
1
1
10  
5
3
3
5
5
5
3
5
5
5
3
3
3
4
3
3
3
5
5
5
6
5
5
5
0
7
560  
2336  
2920  
4100  
560  
3
13  
4
13  
3
16  
5
128  
128  
128  
19.2  
4
3
48  
7
3
Fs = 48kHz  
2.048  
3.072  
4.096  
6.144  
8.192  
12  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
3
4
3
2
4
1
1
1
1
14  
7
0
0
2
2
2
2
2
2
2
2
2
7
7
7
7
8
7
7
7
7
128  
128  
128  
128  
128  
128  
128  
128  
128  
7
7
7
7
4
7
7
7
7
2
2
2
2
4
2
2
2
2
128  
128  
128  
128  
128  
128  
128  
128  
128  
7
0
7
0
3
0
7
1680  
3760  
4800  
1680  
16  
5
19.2  
4
48  
7
8.3.4.2 Low Frequency Reference Clock  
To extend the frequency locking range of the on-chip PLL to an external clock at low frequencies, a clock  
frequency multiplier is used to generate its output clock with the frequency K times of its input reference clock  
frequency for the PLL to lock, where K is a 28-bit value of the control register bits {B0_P0_R25_D[3:0],  
B0_P1_R26, B0_P0R27, B0_P0_R28}. The reference clock source can be selected with the control register bits,  
B0_P0_R24_D[7:4]. The clock routing for the low frequency clock is shown in Figure 63.  
74  
Copyright © 2014, Texas Instruments Incorporated  
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
WCLK1  
MCLK  
BCLK2  
GPIO1  
GPIO3  
WCLK2  
DIN2  
GPIO2  
ONE TIME  
CALLIBRATION  
MCLK  
HIGH FREQ  
LFR_CLKIN  
OSCILLATOR  
HF_OSC_CLK  
HF_CLK  
Clock Frequency  
Multiplier  
HF_REF_CLK  
Figure 63. Low-Frequency Clocking  
The output clock, HF_REF_CLOCK, is generated by delta-sigma modulation with a high frequency clock,  
HF_CLK. The source of HF_CLK can be setup by programming the control bits, B0_P0_R24_R[3:0]. If the on-  
chip high frequency oscillator clock, HF_OSC_CLK, is selected as the source, it is recommended to calibrate the  
oscillator clock by following the proper calibration procedure before turning on the clock multiplier.  
The HF_OSC_CLK can have large device-to-device variation of its default frequency. For proper functioning, the  
HF_OSC_CLK can be calibrated with respect to the LFR_CLKIN. This calibration happens at power-up of the  
block when this feature is enabled (HF_OSC_CLK is used by any other function). By default this calibration is  
enabled and if so desired can be disabled by writing B0_P0_R29_D5 = ‘0’. For calibrating the HF_OSC_CLK the  
26-bit ratio of frequencies (Desired HF_OSC_CLK freq / Frequency of LFR_CLKIN) can be programmed in  
B0_P0_R29_D[1:0], B0_P0_R30_D[7:0], B0_P0_R31_D[7:0], and B0_P0_R32_D[7:0]. This ratio must be  
programmed before enabling this block. Also, the LFR_CLKIN must be present when the HF_OSC_CLK is  
enabled, and the LFR_CLKIN frequency should be less than 50 kHz. This calibration is an approximate  
calibration, and the frequency of HF_OSC_CLK will approximately equal Programmed Ratio * LFR_CLKIN  
frequency. The error can be approx ±7MHz. The desired frequency should ideally be kept between 50MHz and  
57.5MHz for good audio performance. Once the calibration is over, the calibrated clock will be available for use  
by other blocks. The HF_OSC_CLK has an additional programmability by which this block can be used even  
when AVDD1_18 supply is not powered up. This can be useful when a free running clock is required when  
AVDD1_18 is not powered as no other analog blocks may be powered up. This feature can be controlled by  
B0_P0_R29_D6.  
For a better quality of the PLL clock, the clock multiplier output should be set at higher frequency by choosing a  
higher multiplication value of K, if there are multiple options. But the multiplied frequency should not be higher  
than ¼ times of HF_REF_CLK frequency and the frequency has to be within the PLL locking range, 10-20MHz  
for D0 and 512kHz – 20MHz for D=0. To select HF_REF_CLK as the PLL reference, B0_P0_R5_D[5:2] should  
be set as '0110'.  
8.3.5 Reference Voltage  
All audio data converters require a DC reference voltage. The TLV320AIC3268 achieves its low-noise  
performance by internally generating a low-noise reference voltage. This reference voltage is generated using a  
band-gap circuit with a good PSRR performance. This audio converter reference voltage must be filtered  
externally using a minimum 1μF capacitor connected from the VREF_AUDIO terminal to analog ground (VSS).  
To achieve low power consumption, this audio reference block is powered down when all analog blocks inside  
the device are powered down. In this condition, the VREF_AUDIO terminal is 3-stated. On powerup of any  
analog block, the audio reference block is also powered up and the VREF_AUDIO terminal settles to its steady-  
state voltage after the settling time (a function of the decoupling capacitor on the VREF_AUDIO terminal). This  
time is approximately equal to 1 second when using a 1μF decoupling capacitor. In the event that a faster power-  
Copyright © 2014, Texas Instruments Incorporated  
75  
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
up is required, either the audio reference block can be kept powered up (even when no other analog block is  
powered up) by programming B0_P1_R122_D2 = 1. However, in this case, an additional 100μA of current from  
AVDDx_18 is consumed. Additionally, to achieve a faster powerup, a fast-charge option is also provided where  
the charging time can be controlled between 40ms and 120ms by programming B0_P1_R122_D[1:0]. By default,  
the fast charge option is enabled.  
In addition, the TLV320AIC3268 can also generate a separate 1.25V DC reference which is utilized by the SAR  
ADC for measurement. This SAR reference voltage must also be filtered externally using a minimum 1μF  
capacitor connected from the VREF_SAR terminal to analog ground (AVSS).  
To achieve low power consumption, this SAR reference block is powered down by default when SAR  
conversations are not occurring. The system could utilize this reference voltage outside of SAR ADC conversions  
by powering it continuously by programming B0_P3_R6_D5 =0.  
8.3.6 SAR ADC  
This section describes how to use the SAR ADC for the functions:  
Temperature measurement  
Battery measurement  
Auxiliary voltage measurement  
The analog inputs of the TLV320AIC3268 are shown in Figure 64.  
AVDD  
VREF_SAR  
GPIO1/GPIO2/  
GPO1/DOUT1/  
WCLK2/BCLK2/  
DOUT2  
VREF  
DATA_AVA  
REFP  
IN+  
IN-  
CONVERTER  
REFM  
VBAT  
IN1L/AUX1  
IN1R/AUX2  
AVSS  
Figure 64. Simplified Diagram of the SAR ADC Analog Input Section  
The ADC is controlled by an ADC control register (B0_P3_R3_D[7:0]). Several modes of operation are possible,  
depending on the bits set in the control register. Channel selection, scan operation, resolution, and conversion  
rate may all be programmed through this register. These modes are outlined in the following sections for each  
type of analog input. The results of conversions made are stored in the appropriate result register.  
The SAR ADC can be powered down forcefully by writing to B0_P3_R2_D7. Overall SAR configuration and  
mode is controlled by writing to B0_P3_R3_D[7:0].  
Voltage Reference  
The TLV320AIC3268 can use an internal voltage reference of 1.25V or an external reference through the  
reference control register (B0_P3_R6). The internal reference voltage should only be used in the single-ended  
mode for battery monitoring, for temperature measurement, and for using the auxiliary inputs.  
The TLV320AIC3268 may use an external voltage reference (B0_P3_R6). In many systems, a 2.5V reference is  
supplied; however, this device supports a reference voltage up to the AVDDx_18 level. The external reference  
should be a low-noise signal and accordingly, depending on the application, it might need some R-C filtering at  
the VREF_SAR terminal.  
76  
Copyright © 2014, Texas Instruments Incorporated  
 
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
This voltage reference should only be used in the single-ended mode for measuring the auxiliary inputs  
(IN1L/AUX1, IN1R/AUX2, and VBAT).  
Variable Resolution  
The TLV320AIC3268 provides three different resolutions for the ADC: 8, 10, or 12 bits. Lower resolutions are  
often practical for measurements such as system voltages. Performing the conversions at lower resolution  
reduces the amount of time it takes for the ADC to complete its conversion process, which lowers power  
consumption. The ADC resolution can be programmed by writing to B0_P3_R2_D[6:5].  
Data Format  
The TLV320AIC3268 output data is unsigned binary format and can be read from two 8-bit registers over the  
Control interface (SPI or I2C). The SAR ADC's output data is MSB zero appended to make a 16-bit word.  
8.3.6.1 Conversion Clock and Conversion Time  
The TLV320AIC3268 contains an internal oscillator (LF_OSC_CLK), which is used to drive the state machines  
inside the device that perform the many functions of the part. MCLK is also available as a high frequency clock  
source. The clock source (LF_OSC_CLK or divided down MCLK) is selected by writing to B0_P3_R17_D7.  
When using the high frequency clock source MCLK , the clock divider B0_P3_R17_D[6:0] should be  
programmed to result in output clock pulses to be larger than 40ns. This clock (ADC_SAR_Clock) is further  
divided down to provide a clock to run the SAR ADC. The division ratio for this clock is set by writing to  
B0_P3_R2_D[4:3]. The ability to change the conversion clock rate allows the user to choose the optimal value for  
the resolution, speed, and power. If the division value is used as 1 , the ADC is limited to 8-bit resolution, division  
value of 2 is suitable for 10-bit resolution; 12-bit resolution requires the division value to be set as 4 or  
8(recommended).  
Similarly, the internal delay timers operate on clocks derived from either the LF_OSC_CLK or MCLK. The clock  
selection is controlled by writing to B0_P0_R23_D7. When using MCLK as the clock source the clock divider  
B0_P0_R23_D[6:0] should be programmed to have the resultant output clock to be approximately 1MHz in  
frequency. To avoid asynchronous issues, the system should use the same value for both B0_P0_R23_D7 and  
B0_P3_R17_D7.  
Details for clock selection can be seen in Figure 65.  
LF_OSC_CLK/8  
%8  
Internal 8MHz  
Oscillator  
LF_OSC_CLK  
0
ADC_SAR_Conversion_Clock  
SAR ADC Clock Divider  
B0_P3_R2_D[4:3]  
1
To SAR ADC FSMs  
MCLK  
Clock Divider  
B0_P3_R17_D[6:0]  
ADC_SAR_Clock  
SAR_ADC_Clock Select  
B0_P3_R17_D[7]  
Clock Divider  
1
B0_P0_R23_D[6:0]  
REF_1MHz_CLK  
To Interval Timers  
LF_OSC_CLK/8  
0
Timer_Clock Select  
B0_P0_R23_D[7]  
Figure 65. SAR ADC and Interval Timer Clock Select  
Copyright © 2014, Texas Instruments Incorporated  
77  
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Regardless of the conversion clock speed, the internal clock runs nominally at 8.2 MHz. The conversion time of  
the TLV320AIC3268 depends on several functions. While the conversion clock speed plays an important role in  
the time it takes for a conversion to complete, a certain number of internal clock cycles are needed for proper  
sampling of the signal. Conversion time can vary, depending on the mode in which the TLV320AIC3268 is used.  
Throughout this document, internal and conversion clock cycles are used to describe the times that many  
functions take to execute. Considering the total system design, these times must be taken into account by the  
user.  
The ADC uses either the internal MCLK signal or the internal oscillator for the SAR conversions.  
8.3.6.2 Data Available - INT1 or INT2 Programmed as DATA_AVA  
The interrupt signals INT1 and INT2 can be programmed by writing to B0_P0_R50_D[7:6] (INT1) or  
B0_P0_R50_D[5:4] (INT2). These terminals function as the DATA_AVA signal. To enable the SAR data available  
interrupt, B0_P3_R3_D[1:0] must be programmed to '01'. The DATA_AVA signal and interrupts INT1 and INT2  
can be mapped to GPIO1, GPIO2, GPO1, DOUT1, WCLK2, BCLK2, or DOUT2.  
8.3.6.3 Temperature Measurement  
In some applications, such as battery charging, a measurement of ambient temperature is required. The  
temperature measurement technique used in the TLV320AIC3268 relies on the characteristics of a  
semiconductor junction operating at a fixed current level. The forward diode voltage (Vj) has a well-defined  
characteristic versus temperature. The ambient temperature can be predicted in applications by knowing the  
25°C value of the Vj voltage and then monitoring the variation of that voltage as the temperature changes.  
The TLV320AIC3268 offers two modes of temperature measurement. The first mode requires a single reading to  
predict the ambient temperature. A diode, as shown in Figure 66, is used during this measurement cycle. This  
voltage is typically 600 mV at 25°C with a 20μA current through it. The absolute value of this diode voltage can  
vary a few millivolts. The temperature coefficient of this voltage is typically 2 mV/°C. During the final test of the  
end product, the diode voltage at a known room temperature is stored in nonvolatile memory. Further calibration  
can be done to calculate the precise temperature coefficient of the particular device. This method has a  
temperature resolution of approximately 0.4°C/LSB and accuracy of approximately ±3°C with two-temperature  
calibration. Figure 67 and Figure 68 show typical plots with single and two-temperature calibration, respectively.  
A/D  
MUX  
Converter  
TEMP0  
TEMP1  
Figure 66. Functional Block Diagram of Temperature-Measurement Mode  
78  
Copyright © 2014, Texas Instruments Incorporated  
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
20  
15  
10  
5
0
−5  
−10  
−15  
−20  
−25  
−40  
−20  
0
20  
40  
60  
80  
100  
TA − Free−Air Temperature (°C)  
G000  
Figure 67. Typical Plot of Single-Measurement Method After Calibrating  
for Offset at Room Temperature  
0.5  
0
−0.5  
−1  
−1.5  
−2  
−2.5  
−3  
−40  
−20  
0
20  
40  
60  
80  
100  
TA − Free−Air Temperature (°C)  
G001  
Figure 68. Typical Plot of Single-Measurement Method After Calibrating  
for Offset and Gain at Two Temperatures  
The second mode uses a two-measurement (differential) method. This mode requires a second conversion with  
a current 82 times larger. The voltage difference between the first (TEMP1) and second (TEMP2) conversion,  
using 82 times the bias current, is represented by:  
kT  
V
=
´ln(N)  
(Temp1 - Temp2)  
q
(18)  
where  
N is the current ratio = 82  
k = Boltzmann’s constant (1.38054 × 1023 electron volts/Kelvin)  
q = the electron charge (1.602189 × 1019 C)  
Copyright © 2014, Texas Instruments Incorporated  
79  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
T = the temperature in degrees Kelvin  
The equation for the relation between differential code and temperature may vary slightly from device to device  
and can be calibrated at final system test by the user. This method provides resolution of approximately 2°C/LSB  
and accuracy of approximately ±6°C after calibrating at room temperature. A plot of typical calibration error for  
this method is shown in Figure 69.  
0.5  
0
−0.5  
−1  
−1.5  
−2  
−2.5  
−3  
−40  
−20  
0
20  
40  
60  
80  
100  
TA − Free−Air Temperature (°C)  
G002  
Figure 69. Typical Plot of Differential Measurement Method After Calibrating  
for Offset and Gain at Two Temperatures  
The TLV320AIC3268 supports programmable auto-temperature measurement mode, which can be enabled by  
setting B0_P3_R19_D4. In this mode, the TLV320AIC3268 can auto-start the temperature measurement after a  
programmable interval. The user can program minimum and maximum threshold values through a register. In the  
case of temperature measurements, these thresholds are controlled in B0_P3_R30-R33. If the measurement  
goes outside the threshold range, the TLV320AIC3268 sets a flag in read-only B0_P3_R21, which is cleared  
after the flag is read. The TLV320AIC3268 can also be configured to send an active-high interrupt over INT1 or  
INT2 by setting bits in B0_P0_R50. The duration of the interrupt is approximately 2 ms, if B0_P0_R51_D[7:6] =  
'00' or B0_P0_R51_D[5:4] = '00', or these interrupt signals can be configured for alternate output signals. See  
Interrupt Generation and Diagnostic Flags for more details on interrupt generation.  
Temperature measurement can only be done in host-controlled mode.  
8.3.6.4 Auxiliary Battery-Voltage Measurement for VBAT  
The TLV320AIC3268 can be used to measure battery voltage up to 6V. This measurement can made using the  
VBAT terminal, which has a voltage divider (divide by 5), as seen in Figure 64. This analog prescaler is available  
on the terminal to allow higher voltages to be measured by the SAR ADC. This battery measurement function is  
supported in 8-bit, 10-bit, and 12-bit modes.  
To enable the battery-voltage measurement mode, write a '0110' to B0_P3_R3_D[5:2].  
Because the ADC code is 1/5 of the actual voltage value applied at VBAT, the correct value can be found by  
multiplying the ADC code by 5. For low voltages of VREF_SAR, this function can support voltages from 0 to (5 ×  
VREF_SAR), where the upper voltage limit for VBAT is 6V, and is also limited by the value listed in the Absolute  
Maximum Ratings table in the TLV320AIC3268 data sheet.  
In the battery-voltage measurement mode, the conversion results in an ADC output code of B, where the voltage  
at the input terminal (VBAT) can be calculated as:  
B
2N  
VBAT  
=
´ (5´ VREF _SAR)  
(19)  
80  
Copyright © 2014, Texas Instruments Incorporated  
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
where:  
N is the programmed resolution of the SAR ADC.  
VREF_SAR is the applied external reference voltage.  
For an example of a script for battery voltages on VBAT, download the Example Scripts zip file from the  
TLV320AIC3268 product page.  
8.3.6.5 Auxiliary Voltage Measurements  
The TLV320AIC3268 can be used to measure voltage on IN1L/AUX1 and IN1R/AUX2 terminals. This voltage  
measurement function is supported in 8-bit, 10-bit, and 12-bit modes.  
For IN1L/AUX1 and IN1R/AUX2:  
If the conversion results in an ADC output code of B, then the voltage at the input terminals (IN1L/AUX1 and  
IN1R/AUX2) can be calculated as:  
B
2N  
VPIN  
=
´ VREF _SAR  
(20)  
where:  
N is the programmed resolution of the SAR ADC.  
VREF_SAR is the applied external reference voltage.  
For an example of a script for reading voltages on IN1L, download the Example Scripts zip file from the  
TLV320AIC3268 product page.  
The TLV320AIC3268 supports a special mode of conversion on IN1L/AUX1 and IN1R/AUX2 terminals called the  
resistance measurement mode. This mode is useful for measuring the value of an external resistance connected  
to this terminal. Conversion for IN1L/AUX1 input works in resistance measurement mode by writing '1' to  
B0_P3_R19_D2 and conversion for IN1R/AUX2 works in resistance measurement mode by writing '1' to  
B0_P3_R19_D1.  
VREF_SAR  
VREF_SAR  
50kΩ  
50kΩ  
50kΩ  
50kΩ  
IN1L/AUX1  
IN1L/AUX1  
IN1R/AUX2  
SAR ADC  
SAR ADC  
Rext  
Rext  
IN1R/AUX2  
External Bias Resistance Measurement Mode  
Internal Bias Resistance Measurement Mode  
Figure 70. Resistance measurement mode for IN1L/AUX1 and IN1R/AUX2  
The resistance measurement mode works in two ways. In Internal Bias Resistance measurement mode the value  
of external resistance Rext is measured as a ratio with internal bias resistance which is nominally of 50kΩ value.  
The value of Rext is calculated by Equation 21. This value is useful to measure external resistance without any  
external components. The internal bias resistance will however exhibit device to device variation and should thus  
be used where a very high accuracy measurement is not required.  
Rext=ADCOUT.50000/(2N-ADCOUT)  
(1) Where N is the resolution of the SAR ADC  
(2) Where bias resistor is 50kΩ. The equation will scale for a different value of bias resistor.  
(21)  
Copyright © 2014, Texas Instruments Incorporated  
81  
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
The resistance measurement mode can be also enabled to work with external bias resistor by writing '1' to  
B0_P3_R19_D0. When using this mode, an external bias resistor of 50kΩ should be connected between  
VREF_SAR and IN1L/AUX1 or IN1R/AUX2 terminals. This mode enables a higher accuracy conversion by using  
a higher accuracy bias resistance. The value of Rext is determined by Equation 21.  
8.3.6.6 Auto Scan  
If making voltage measurements on one or many of the inputs from IN1L/AUX1, IN1R/AUX2, VBAT and TEMP1  
(or TEMP2) is desired on a continuous basis, then the auto-scan mode can be used. This mode causes the  
TLV320AIC3268 to sample and convert each of selected inputs in a repetetive manner with programmed  
intervals. The set of inputs that can be selected are programmed by configuring B0_P3_R19_D[7:4]. Auto scan  
can be set up by writing "1001" to B0_P3_R3_D[5:2]. Programming B0_P3_R15_D[3:0], allows a programmable  
interval delay to be introduced between successive conversions of the set of inputs selected for covnersion.  
See Conversion Time Calculations for the TLV320AIC3268, Host-Controlled Auto Scan Mode for conversion-time  
calculations and timing diagrams.  
8.3.6.7 Port Scan  
If making voltage measurements on the inputs IN1L/AUX1, IN1R/AUX2, and VBAT is desired on a periodic basis,  
then the port-scan mode can be used. This mode causes the TLV320AIC3268 to sample and convert each of the  
auxiliary inputs once. At the end of this cycle, all of the auxiliary result registers contain the updated values.  
Thus, with one write to the TLV320AIC3268, the host can cause three different measurements to be made. Port  
scan can be set up by writing "1011" to B0_P3_R3_D[5:2].  
See Conversion Time Calculations for the TLV320AIC3268, Port-Scan Operation, Port-Scan Operation, for  
conversion-time calculations and timing diagrams.  
8.3.6.8 Buffer Mode  
The TLV320AIC3268 supports a programmable buffer mode for all conversions (VBAT, IN1L/AUX1, IN1R/AUX2,  
TEMP1, TEMP2). Buffer mode is implemented using a circular FIFO with a depth of 64. The number of interrupts  
required to be serviced by a host processor can be reduced significantly in buffer mode. Buffer mode can be  
enabled using B0_P3_R13_D7.  
l
Figure 71. Circular Buffer  
82  
Copyright © 2014, Texas Instruments Incorporated  
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Converted data is automatically written into the FIFO. To control the writing, reading and interrupt process, a  
write pointer (WRPTR), a read pointer (RDPTR), and a trigger pointer (TGPTR) are used. The read pointer  
always shows the location that is read next. The write pointer indicates the location in which the next converted  
data is to be written. The trigger pointer indicates the location at which an interrupt is generated if the write  
pointer reaches that location. Trigger level is the number of the data values needed to be present in the FIFO  
before generating an interrupt. Figure 71 shows the case when the trigger level is programmed as 32. On  
resetting the buffer mode, RDPTR moves to location 1, WRPTR moves to location 1, and TGPTR moves to a  
location equal to the programmed trigger level.  
The user can select the input or input sequence to be converted by writing to B0_P3_R3_D[5:2]. The converted  
values are written in a predefined sequence to the circular buffer. The user has flexibility to program a specific  
trigger level in order to choose the configuration which best fits the application. When the number of converted  
data values written in FIFO becomes equal to the programmed trigger level, then the device generates an  
interrupt signal on INT1 or INT2. In buffer mode, the user should program this terminal as Data Available. In  
buffer mode, conversions (VBAT, IN1L/AUX1, IN1R/AUX2, TEMP1, TEMP2) are allowed only in host-controlled  
mode.  
Buffer mode can be used in single-shot conversion or continuous-conversion mode.  
In single-shot conversion mode, once the number of data values written reaches the programmed trigger level,  
the TLV320AIC3268 generates an interrupt and waits for the user to start reading. As soon as the user starts  
reading the first data value from the last converted set, the TLV320AIC3268 clears the interrupt and starts a new  
set of conversions, and the trigger pointer is incremented by the programmed trigger level. An interrupt is  
generated again when the trigger condition is satisfied.  
In continuous-conversion mode, once the number of data values written reaches the programmed trigger level,  
the TLV320AIC3268 generates an interrupt. It immediately starts a new set of conversions, and the trigger  
pointer is incremented by the programmed trigger level. An interrupt is cleared either by writing the next  
converted data value into the FIFO or by starting to read from the FIFO.  
Depending on how the user is reading data, the FIFO can become empty or full. If the user is trying to read data  
even if the FIFO is empty, then RDPTR keeps pointing to same location. If the FIFO becomes full, then the next  
location is overwritten with newly converted data values, and the read pointer is incremented by one.  
While reading the FIFO, the TLV320AIC3268 provides FIFO-empty and -full status flags along with the data. The  
user can also read a status flag from B0_P3_R13_D[1:0]. See Table 33 for buffer-mode control and Table 34 for  
buffer-mode 16-bit read-data format.  
Table 33. SAR/Buffer Mode Data Read Control (B0_P3_R18_D[7:5])(1)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
0: SPI interface is used for SAR/buffer data reading.  
1: I2C interface is used for SAR/buffer data reading.  
D7  
R/W  
0
0: SAR/buffer data update is automatically halted (to avoid simultaneous buffer read and  
write operations) based on internal detection logic. Valid only for SPI interface.  
1: SAR/buffer data update is held using software control (B0_P3_R18_D5).  
D6  
D5  
R/W  
0
0: SAR/buffer data update is enabled all the time (valid only if B0_P3_R18_D6 = 1).  
1: SAR/buffer data update is stopped so that user can read the last updated data without  
any data corruption (valid only if B0_P3_R18_D6 = 1).  
R/W  
0
(1) To enable buffer mode, write a 1 to B0_P3_R13_D7.  
Table 34. Buffer Mode 16-Bit Read Data Format (B0_P252_R1 and B0_P252_R2)  
BUFFER  
READ DATA  
BIT  
RESET  
VALUE  
NAME  
FUF  
DESCRIPTION  
COMMENT  
Buffer-Full flag - This flag indicates that all the 64 locations of  
the buffer contain unread data.  
D15  
0
B0_P252_R1_D7  
Buffer-Empty flag - This flag indicates that there is no un-read  
data available in FIFO. This is generated while reading the  
last converted data.  
D14  
D13  
EMF  
1
B0_P252_R1_D6  
B0_P252_R1_D5  
X
Reserved  
Copyright © 2014, Texas Instruments Incorporated  
83  
 
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Table 34. Buffer Mode 16-Bit Read Data Format (B0_P252_R1 and B0_P252_R2) (continued)  
BUFFER  
READ DATA  
BIT  
RESET  
VALUE  
NAME  
DESCRIPTION  
COMMENT  
Data identification:  
0 = VBAT or IN1R/AUX2 data in R11-R0  
1= IN1L/AUX1 or TEMP data in R11-R0  
Order for writing data in buffer when multiple inputs are  
selected:  
D12  
ID  
X
B0_P252_R1_D4  
For autoscan conversion: IN1L/AUX1 (if selected),  
IN1R/AUX2 (if selected), VBAT, TEMP1 or TEMP2 (if  
selected)  
For port-scan conversion: IN1L/AUX1, IN1R/AUX2, VBAT  
D11-D8  
D7-D0  
R11-R8  
R7-R0  
X
X
Converted data (MSB, 4 bits)  
Converted data (LSB, 8 bits)  
B0_P252_R1_D[3:0]  
B0_P252_R2_D[7:0]  
8.3.6.8.1 Buffer Mode Access through I2C for TLV320AIC3268  
To enable faster data access, SPI protocol is preferred, but if I2C is required, note the following.  
In continuous buffer mode:  
Only one measurement type, that is choice of IN1L, IN1R, VBAT, TEMP1 or TEMP2, can be used.  
In single-shot mode:  
Multiple measurement types can be stored in the buffer consecutively.  
The I2C read must completely empty the buffer. In other words, the number of bytes read must be equal to  
the trigger-level multiplied by 2 (for 2 bytes per converted data). If the buffer is empty, this will be reflected  
by bit B0_P252_R1_D6=1 in the last measurement read.  
The I2C read must empty the buffer in a single call. Note that some I2C drivers may break auto-increment  
instructions into multiple, smaller calls. This can cause the SAR buffer to return invalid data, so the SAR  
trigger level must be less than or equal to the max I2C auto-increment size divided by 2.  
If 64 elements (128 bytes) are read, the last byte will be invalid data since I2C allows a maximum of 127  
bytes.  
8.3.6.9 Reading AUX Data in Non-Buffer Mode From SPI  
Reading from the TLV320AIC3268 is done by using the protocol called out in Figure 72.  
SS  
SCLK  
Hi-Z  
Hi-Z  
Hi-Z  
RA(6)  
RA(5)  
RA(0)  
Don’t Care  
MOSI  
MISO  
7-Bit Register Address  
Read  
16-Bit Register Data  
D(14)  
Hi-Z  
D(15)  
D(0)  
Figure 72. 16-Bit Data-Read Timing, 24 Clocks per 16-Bit Data Read, 8-Bit Bus Interface  
This protocol uses a 24-clock sequence to get a 16-bit data read. Set the INT1 or INT2 interrupt for monitoring  
the data-available status by writing '01' to B0_P3_R3_D[1:0]. Reading is normally done when the interrupt is low  
(data is available for reading). Status from the ADC conversion can be read from B0_P3_R9. If bit D6 is 0, then  
the ADC is actively converting, so a BUSY status is read. If bit D5 is set, then some data is now available for  
reading. Next, reading from a status register on B0_P3_R10 lets us know if data is available for IN1L/AUX1,  
IN1R/AUX2, or VBAT. If bit D7 is set, then IN1L/AUX1 data can be read. If bit D6 is set, then IN1R/AUX2 data  
can be read. If bit D5 is set, then VBAT data can be read.  
84  
Copyright © 2014, Texas Instruments Incorporated  
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
The first 7 bits in the read sequence are for the first register address of the two sequential 8-bit registers. The  
next bit is high, which specifies that a read operation follows; then the 16 remaining clocks are used to get the  
16-bit data that is read out in the order of D15–D0. The register address specified in the first seven clocks of the  
24-clock sequence reads out as bits D15–D8, where D15 is the MSB of the byte, then the register number is  
incremented by 1 and the data is read from D7–D0, where D7 is the MSB of that byte. (For reading data for  
IN1L/AUX1, use B0_P3_R54 and B0_P3_R55; for reading data for IN1R/AUX2, use B0_P3_R56 and  
B0_P3_R57; and for reading data for VBAT, use B0_P3_R58 and B0_P3_R59.) From this cycle, the first 16-bit  
data word has been read. This sequence can be repeated to read further values of IN1L/AUX1, IN1R/AUX2, and  
VBAT data.  
8.3.6.10 Auto Threshold Detect  
The SAR ADC in TLV320AIC3268 has a special auto threshold detect feature where the device can detect a  
conversion exceeding the pre-programmed minimum and maximum thresholds for the input. Upon such a  
detection the TLV320AIC3268 can interrupt the host processor. This feature is useful as it allows the host to be  
immediately informed about out of range conditions, without the host having to poll for converted values. Upon  
receiving an interrupt, the host can read the flag register to find the input which exceeded the maximum or  
minimum threshold. The register settings for Auto Threshold Detect feature are described in Table 35.  
Table 35. Threshold Detect Settings  
Parameter  
IN1L/AUX1  
IN1R/AUX2  
TEMP  
Maximum Threshold  
check enable  
B0_P3_R22_D[4]='1'  
B0_P3_R26_D[4]='1'  
B0_P3_R30_D[4]='1'  
Maximum Threshold  
Code  
B0_P3_R22_D[3:0],  
B0_P3_R23_D[7:0]  
B0_P3_R26_D[3:0],  
B0_P3_R27_D[7:0]  
B0_P3_R30_D[3:0],  
B0_P3_R31_D[7:0]  
Minimum Threshold  
check enable  
B0_P3_R24_D[4]='1'  
B0_P3_R28_D[4]='1'  
B0_P3_R32_D[4]='1'  
Minimum Threshold  
Code  
B0_P3_R24_D[3:0],  
B0_P3_R25_D[7:0]  
B0_P3_R28_D[3:0],  
B0_P3_R29_D[7:0]  
B0_P3_R32_D[3:0],  
B0_P3_R33_D[7:0]  
Maximum Threshold  
Flag  
B0_P3_R21_D5  
B0_P3_R21_D4  
B0_P3_R21_D3  
B0_P3_R21_D2  
B0_P0_R50_D7  
B0_P0_R50_D5  
B0_P3_R21_D1  
B0_P3_R21_D0  
Minimum Threshold  
Flag  
INT1 interrupt on  
Threshold exceed  
INT2 interrupt on  
Threshold exceed  
8.3.6.11 Conversion Time Calculations for the TLV320AIC3268  
This section discusses conversion time calculations for temperature, auxiliary, and battery measurements for  
TLV320AIC3268.  
The timing signals can be programmed by B0_P3_R3. INT1 or INT2 can be programmed as DATA_AVA by  
programming B0_P0_R50_D[7:4]. DATA_AVA can also be sent to GPIO1, GPIO2, GPO1, DOUT1, WCLK2,  
BCLK2, or DOUT2.  
Table 36. Parameters for calculating Conversion Times  
Parameter  
Definition  
SAR ADC output is provided after averaging over Navgsamples. Averaging is controlled by  
B0_P3_R2_D[2:0] where  
000 => Mean Filter, Navg=1  
001 => Mean Filter, Navg=4  
010 => Mean Filter, Navg=8  
011 => Mean Filter, Navg=16  
Navg  
100 => Median Filter, Navg=1  
101 => Median Filter, Navg=5  
110 => Median Filter, Navg=9  
111 => Median Filter, Navg=15  
Copyright © 2014, Texas Instruments Incorporated  
85  
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Table 36. Parameters for calculating Conversion Times (continued)  
Parameter  
Definition  
Number of inputs to be converted for scan conversion, for example, for Scan mode Ninp=1  
and Port-Scan mode Ninp=3  
Ninp  
Nbits  
tclk  
Resolution of SAR ADC. Can be set to 8, 10 or 12bits by programming B0_P3_R2_D[6:5]  
Clock period of ADC_SAR_CLK. See Figure 65  
tconv  
Clock period of ADC_SAR_Conversion_Clock. See Figure 65  
Power up stabilization time for internal reference. This is configured by programming  
B0_P3_R6_D[3:2] where  
00 => tref = 0  
01 => tref = 8000*tclk  
10 => tref = 32000*tclk  
11 => tref = 64000*tclk  
tref  
Programmable interval delay timer used for Auto-Scan Mode. Configured by programming  
B0_P3_R15_D[3:0]. This is the programmable interval delay between two consecutive  
conversions sets. A conversion set it the set of inputs that have been enabled in Auto-Scan  
mode.  
tdel  
n1 = 6 for SAR_ADC_CLK_DIV=2 for 8-bit conversion mode. SAR_ADC_CLK_DIV is  
programmed in B0_P3_R2_D[4:3]=00.  
n1 = 7 for all other values of SAR_ADC_CLK_DIV  
n1  
n2  
n2 = 11 for TEMP1 conversion mode  
n2 = 387 for IN1L/AUX1 , IN1R/AUX2 conversions in resistance mode.  
n2 = 0 for all other conversions  
n3 = 0 if external reference is used for SAR_ADC. B0_P3_R6_D[7] = '0'  
n3 = 3 if internal reference is used and always powered up. B0_P3_R6_D[7]='1' and  
B0_P3_R6_D[5]='0'  
n3  
n3 = 1 + tref/tclk for all other conversions  
n4=0, if programmable interval delay timer is diabled or B0_P3_R15_D[3] = '0'  
n4=7, if programmable interval delay timer is enabled or B0_P3_R15_D[3] = '1'  
n4  
8.3.6.11.1 Host-Controlled Scan Mode  
The time needed to make one single conversion for VBAT, IN1L/AUX1, IN1R/AUX2, TEMP1 (or TEMP2) is given  
by  
Tcycle=Navg.{(Nbits+ 1).tconv + (n1+ 13).tclk} + Navg.n2.tclk + (n3 + 17).tclk  
(1) This equation is valid if B0_P3_R18_D[6:5] = 00, which means SAR data update is not kept on hold for reading  
converted data.  
(2) The programmable delay tREF scales accordingly based on the actual divider setting and time period of the  
clock used to generate this. See the respective control register settings to understand the scale factors.  
Programmed for  
Host-Controlled  
Mode With Invalid  
A/D Function  
P3/R3  
Is Updated  
for  
VBAT Scan  
Mode  
Reading  
VBAT Data  
Register  
CONTROL INTERFACE DEACTIVATED  
Selected  
Sample, Conversion  
and Averaging for  
VBAT input  
Wait for Reference Power-Up Delay in Case  
of Internal Reference Mode if Applicable  
Waiting for Host to  
Write Into P3/R3  
Waiting for Host to  
Write Into P3/R3  
PINTDAV (As DATA_AVA  
[P3/R3, D1–D0 = 01])  
Figure 73. Host-Controlled VBAT Scan Mode  
8.3.6.11.2 Host-Controlled Auto Scan Mode  
The time needed for one cycle of Auto Scan Mode is given by:  
Tcycle=Ninp.Navg.{(Nbits+ 1).tconv + (n1+ 13).tclk} + Navg.n2.tclk + Ninp.9.tclk + (n3 + n4).tclk + tdel  
(1) This equation is valid if B0_P3_R18_D[6:5] = 00, which means SAR data update is not kept on hold for reading  
converted data.  
(2) This equation is valid only from the second conversion onward.  
86  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
(3) All the programmable delays, tDEL and tREF, scale accordingly based on the actual divider setting and time  
period of the clock used to generate this. See the respective control register settings to understand the scale  
factors.  
B0_P3_R3_D[5:2]  
programmed to  
“1001”  
Control Interface  
Read  
Data  
Read  
Data  
Sample, Convert Sample, Convert Sample, Convert  
and Average  
Input  
FSM State  
Waiting for Host to  
program B0_P3_R3  
Waiting for tref if applicable  
and Average  
Input  
and Average  
Input  
/Data_Available  
B0_P3_R3_D[1:0]=”01'  
Figure 74. Host-Controlled Auto Scan Mode  
8.3.6.11.3 Port-Scan Operation  
The time needed to complete one set of Port-Scan conversions is given by:  
Tcycle=3.Navg.{(Nbits+ 1).tconv + (n1+ 13).tclk} + (n3 + 35).tclk  
(1) This equation is valid if B0_P3_R18_D[6:5] = 00, which means SAR data update is not kept on hold for reading  
converted data.  
(2) The programmable delay tREF scales based on the actual divider setting and time period of the clock used to  
generate this. See the respective control register settings to understand the scale factors.  
B0_P3_R3_D[5:2]  
programmed to  
“1011”  
Read  
IN1L/  
AUX1  
Read  
IN2L/  
AUX2  
Control Interface  
Read  
VBAT  
Sample and  
Convert  
IN1L/AUX1  
Sample and  
Convert  
IN2L/AUX2  
Sample and  
Convert  
VBAT  
FSM State  
Waiting for Host to  
program B0_P3_R3  
Waiting for tref if applicable  
Waiting for Host to program B0_P3_R3  
/Data_Available  
B0_P3_R3_D[1:0]=”01'  
Figure 75. Host-Controlled Port Scan Mode  
8.3.7 Headset Detection  
The TLV320AIC3268 includes extensive capability to monitor a headphone, microphone, or headset jack to find if  
a plug has been inserted into the jack, and if inserted find the nature of headset or headphone inserted in the  
jack. The device also includes the capability to detect a button press for actions such as starting a call with  
headset button press. The figures below show the circuit configuration to enable this feature for stereo  
headphones and stereo headset with microphone and button, as well as mono headset with and without  
microphone. It is recommended to use IN1L or IN1R for external headset microphones.  
Copyright © 2014, Texas Instruments Incorporated  
87  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Stereo Headset with  
Microphone, Button  
Stereo  
Headphones  
s
s
HPR  
g
g
HPVSS_SENSE  
AVSS  
s
s
HPL  
Micpga  
m
m
IN1L  
MICDET  
Micbias_ext  
MICBIAS_EXT  
Figure 76. Jack Connections for Detection of Stereo Headsets  
Mono Headset with  
Microphone, Button  
Mono Headset  
HPR  
g
g
HPVSS_SENSE  
AVSS  
s
s
HPL  
Micpga  
m
m
IN1L  
MICDET  
Micbias_ext  
MICBIAS_EXT  
Figure 77. Jack Connections for Detection of Mono Headsets  
88  
Copyright © 2014, Texas Instruments Incorporated  
 
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
This feature is enabled by programming B0_P0_R67_D7. In order to avoid false detections due to mechanical  
vibrations in headset jacks or microphone buttons, a debounce function is provided for glitch rejection. For the  
case of headset insertion/removal, a debounce function with a range of 16ms - 512ms is provided. This can be  
programmed via B0_P0_R67_D[4:2]. For improved button-press detection, the debounce function has a range of  
8ms to 32ms by programming B0_P0_R67_D[1:0].  
The TLV320AIC3268 also provides feedback to user when a button press, or a headset insertion/removal event  
is detected through register readable flags as well as an interrupt on the IO terminals. The value in  
B0_P0_R46_D[5:4] provides the instantaneous state of button press and headset insertion. B0_P0_R44_D5 is a  
sticky (latched) flag that is set when the button-press event is detected. B0_P0_R44_D4 is a sticky flag that is set  
when the headset insertion or removal event is detected. These sticky flags are set by the event occurrence, and  
are reset only when read. This requires polling B0_P0_R44. To avoid polling and the associated overhead, the  
TLV320AIC3268 also provides an interrupt feature where the events can trigger the INT1 and/or INT2 interrupts.  
These interrupt events can be routed to one of the digital output terminals. Please see Interrupt Generation and  
Diagnostic Flags for details on interrupts (INT1 and INT2) and Interrupt Generation and Diagnostic Flags for  
details on digital terminal routing.  
As shown in Figure 76 and Figure 77, the TLV320AIC3268 not only detects a headset insertion event, but also  
distinguishes between the different headsets inserted, such as stereo headphones, stereo cellular headsets with  
microphone, mono headsets with microphone, and mono headset without microphone. After the headset-  
detection event, the user can read B0_P0_R37_D[5:4] and B0_P0_R37_D[1:0] to determine the type of headset  
inserted.  
Table 37. Headset Detection Types  
Headset Type  
Microphone Detection  
Headset Detection  
Stereo Headphones without  
Microphone  
B0_P0_R37_D[5:4] = 01  
B0_P0_R37_D[1:0] = 10  
Stereo Headset with  
Microphone  
B0_P0_R37_D[5:4] = 11  
B0_P0_R37_D[5:4] = 01  
B0_P0_R37_D[1:0] = 10  
B0_P0_R37_D[1:0] = 01  
B0_P0_R37_D[1:0] = 01  
Mono Headset without  
Microphone  
Mono Headset with Microphone B0_P0_R37_D[5:4] = 11  
For proper detection of these different types, it is important to follow the guidelines in Table 38.  
Table 38. Detection Specifications for Microphone, Button, Headset  
Parameter  
Minimum  
Typical  
Maximum  
Unit  
Ω
Headphone load resistance  
16  
300  
2
Key switch resistance (includes all jack-to-plug  
contact resistances)  
Ω
Effective capacitance between MICDET and ground  
Microphone effective resistance  
150  
8
pF  
kΩ  
kΩ  
0.8  
Micbias_ext resistor for microphone detection  
2.09  
2.2  
2.31  
Table 39. Headset Detection Block Registers  
Register  
Description  
B0_P0_R67_D7  
B0_P0_R67_D[4:2]  
B0_P0_R67_D[1:0]  
B0_P0_R44_D5  
B0_P0_R44_D4  
B0_P0_R46_D5  
B0_P0_R46_D4  
Headset Detection Enable/Disable  
Debounce Programmability for Headset Detection  
Debounce Programmability for Button Press  
Sticky Flag for Button Press Event  
Sticky Flag for Headset Insertion or Removal Event  
Status Flag for Button Press Event  
Status Flag for Headset Insertion and Removal  
B0_P0_R37_D[5:4] and B0_P0_R37_D[1:0] Flags for type of Headset Detected  
B0_P1_R119 and B0_P1_R120  
Headset Detection Tuning Registers  
Copyright © 2014, Texas Instruments Incorporated  
89  
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
The headset detection block requires AVDDx_18 and AVDD3_33 to be powered. In addition, the weak  
connection of AVDDx_18 to DVDD_18 should be disabled (B0_P1_R1_D3="0"), and External Analog Supplies  
should be enabled (B0_P1_R1_D2="0"). The headset detection feature in the TLV320AIC3268 is achieved with a  
very low power overhead, requiring less than 30μA of additional current from AVDDx_18 supplies.  
8.3.8 Interrupt Generation and Diagnostic Flags  
The TLV320AIC3268 an trigger interrupts to the host processor for events that require host processor  
intervention. This avoids polling the status-flag registers continuously. The TLV320AIC3268 has two defined  
interrupts; INT1 and INT2 that can be configured by programming Page 0, Register 48 and 49. A user can  
configure the interrupts INT1 and INT2 to be triggered by one or many events such as:  
Headset Detection  
Button Press  
Noise Detected by AGC  
Over-current Condition in Headphones  
Data Overflow in ADC and DAC Processing Blocks and Filters  
Over-temperature Condition in Speaker Drivers  
SAR ADC Data Available or Exceeding Threshold  
Each of these INT1 and INT2 interrupts can be routed to output terminals like GPIO1, GPIO2, GPO1, DOUT1,  
WCLK2, BCLK2, and DOUT2 by configuring B0_P4_R67-R96. Table 40 displays how to individually configure  
the INT1 or INT2 interrupts.  
Table 40. Register Settings for Interrupt Routing  
Terminal  
GPIO1  
GPIO2  
GPO1  
INT1  
INT2  
B0_P4_R86_D[5:2] = 0101  
B0_P4_R87_D[5:2] = 0101  
B0_P4_R96_D[5:2] = 0100  
B0_P4_R67_D[4:1] = 0100  
B0_P4_R69_D[5:2] = 0101  
B0_P4_R70_D[5:2] = 0101  
B0_P4_R71_D[4:1] = 0100  
B0_P4_R86_D[5:2] = 0110  
B0_P4_R87_D[5:2] = 0110  
B0_P4_R96_D[5:2] = 0101  
B0_P4_R67_D[4:1] = 0101  
B0_P4_R69_D[5:2] = 0110  
B0_P4_R70_D[5:2] = 0101  
B0_P4_R71_D[4:1] = 0101  
DOUT1  
WCLK2  
BCLK2  
DOUT2  
These interrupt signals can either be configured as a single pulse, a series of pulses, or a change in output level  
by programming B0_P0_R51_D[7:6] and B0_P0_R51_D[5:4]. If the user configures the interrupts as a series of  
pulses, the events will trigger the start of pulses that will stop when the flag registers in B0_P0_R42,  
B0_P0_R44, B0_P0_R45 are read by the user to determine the cause of the interrupt. Similarly, if the user  
configures the interrupts as an active-high, level-based interrupt generated from these sticky flags, the interrupt  
port will reset low when the flag registers in B0_P0_R42, B0_P0_R44, B0_P0_R45 are read by the user.  
When the interrupts are configured for multiple events simultaneously, the user can read associated flags to  
determine the triggering events. Sometimes upon reading the Primary Flag Registers, additional Secondary Flag  
Registers may have to be read back to resolve the triggering event. For example, on receiving an interrupt, the  
user can read Primary Flag Registers B0_P0_R44 and B0_P0_R45. If B0_P0_R44_D[7] is '1', it indicates an  
over-current condition on one of HPL, RECP or SPK drivers has happened. To determine which of the three  
drivers had an over-current condition, the Secondary Flag Register B0_P1_R69 should be read back. Table 41  
provides details of Primary Flag Registers and Secondary Flag Registers which can be used to resolve events  
causing the interrupts.  
Table 41. Flags for Interrupt  
Primary Flag  
Register  
Secondary Flag  
Register  
Type  
FLAG Details  
B0_P0_R42_D[7]  
B0_P0_R42_D[6]  
B0_P0_R42_D[5]  
B0_P0_R42_D[3]  
Sticky  
Sticky  
Sticky  
Sticky  
Left DAC Overflow Flag  
Right DAC Overflow Flag  
DAC Barrel Shifter Overflow Flag  
Left ADC Overflow Flag  
90  
Copyright © 2014, Texas Instruments Incorporated  
 
 
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Table 41. Flags for Interrupt (continued)  
Primary Flag  
Register  
Secondary Flag  
Register  
Type  
FLAG Details  
B0_P0_R42_D[2]  
B0_P0_R42_D[1]  
B0_P0_R44_D[7]  
Sticky  
Sticky  
Sticky  
Sticky  
Sticky  
Sticky  
Sticky  
Sticky  
Sticky  
Right ADC Overflow Flag  
ADC Barrel Shifter Overflow Flag  
Over Current Flag for HPL, RECP and SPK Drivers  
Over Current Flag for RECP Driver  
B0_P1_R69_D[7]  
B0_P1_R69_D[6]  
B0_P1_R69_D[5]  
Over Current Flag for HPL Driver  
Over Current Flag for SPK Driver  
B0_P0_R44_D[6]  
B0_P0_R44_D[5]  
B0_P0_R44_D[4]  
Over Current Flag for HPR and RECM  
Button Press Flag  
Headset Insertion/Removal Detected Flag  
Mic Presence on Inserted Headset Status  
Headphone Load Status  
B0_P0_R37_D[5:4] Status  
B0_P0_R37_D[1:0] Status  
B0_P0_R44_D[1]  
B0_P0_R44_D[0]  
B0_P0_R45_D[7]  
B0_P0_R45_D[6]  
B0_P0_R45_D[5]  
B0_P0_R45_D[4]  
B0_P0_R45_D[3]  
B0_P0_R50_D[2]  
Sticky  
Sticky  
Sticky  
Sticky  
Sticky  
Sticky  
Sticky  
Sticky  
miniDSP_D Standard Interrupt Port Flag  
miniDSP_D Auxilliary Interrupt Port Flag  
SPK Driver Over Temperature Flag  
Left AGC Noise Detect Flag  
Right AGC Noise Detect Flag  
miniDSP_A Standard Interrupt Port Flag  
miniDSP_A Auxilliary Interrupt Port Flag  
SAR ADC Data Available Flag  
B0_P0_R9_D[5]  
B0_P0_R10_D[7]  
B0_P0_R10_D[6]  
B0_P0_R10_D[5]  
B0_P0_R10_D[1]  
B0_P0_R10_D[0]  
Status  
Status  
Status  
Status  
Status  
Status  
Sticky  
Status  
Status  
Status  
Status  
Status  
Status  
SAR ADC Data Available Status  
SAR ADC IN1L/AUX1 New Converted Data Available Status  
SAR ADC IN1R/AUX2 New Converted Data Available Status  
SAR ADC VBAT New Converted Data Available Status  
SAR ADC TEMP1 New Converted Data Available Status  
SAR ADC TEMP2 New Converted Data Available Status  
SAR ADC Threshold Exceed Flag  
B0_P0_R50_D[1]  
B0_P3_R21_D[5]  
B0_P3_R21_D[4]  
B0_P3_R21_D[3]  
B0_P3_R21_D[2]  
B0_P3_R21_D[1]  
B0_P3_R21_D[0]  
SAR ADC IN1L/AUX1 Max. Threshold Compare Status  
SAR ADC IN1L/AUX1 Min. Threshold Compare Status  
SAR ADC IN1R/AUX2 Max. Threshold Compare Status  
SAR ADC IN1R/AUX2 Min. Threshold Compare Status  
SAR ADC TEMP Max. Threshold Compare Status  
SAR ADC TEMP Min. Threshold Compare Status  
In addition to the interrupt flags, the TLV320AIC3268 features additional status flags which are very helpful for  
diagnostics since they enable reporting of the status of various internal blocks of the device. Table 42 provides  
list of the other flags available in TLV320AIC3268.  
Table 42. Miscellaneous Flags  
Flag Register  
B0_P0_R36_D[7]  
B0_P0_R36_D[6]  
B0_P0_R36_D[5]  
B0_P0_R36_D[3]  
B0_P0_R36_D[2]  
B0_P0_R36_D[1]  
B0_P0_R37_D[7]  
B0_P0_R37_D[3]  
Type  
Status  
Status  
Sticky  
Status  
Status  
Sticky  
Status  
Status  
FLAG Details  
Left ADCPGA Gain Status  
Left ADC Power Status  
Left AGC Gain Saturation Flag  
Right ADCPGA Gain Status  
Right ADC Power Status  
Right AGC Gain Saturation Flag  
Left DAC Power Status  
Right DAC Power Status  
Copyright © 2014, Texas Instruments Incorporated  
91  
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Table 42. Miscellaneous Flags (continued)  
Flag Register  
B0_P0_R38_D[6]  
B0_P0_R38_D[4]  
B0_P0_R38_D[2]  
B0_P0_R38_D[0]  
B0_P1_R62_D[1]  
B0_P1_R62_D[0]  
B0_P1_R63_D[7]  
B0_P1_R63_D[6]  
B0_P1_R63_D[5]  
B0_P1_R63_D[4]  
B0_P1_R64_D[7]  
B0_P1_R64_D[6]  
B0_P1_R64_D[5]  
B0_P1_R64_D[4]  
B0_P1_R64_D[3]  
B0_P1_R64_D[0]  
B0_P1_R65_D[7]  
B0_P1_R65_D[6]  
B0_P1_R65_D[5]  
B0_P1_R65_D[4]  
B0_P1_R66_D[7]  
B0_P1_R66_D[6]  
B0_P1_R66_D[5]  
B0_P1_R66_D[4]  
B0_P1_R66_D[3]  
B0_P1_R66_D[2]  
B0_P1_R66_D[1]  
Type  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
FLAG Details  
Left DAC Volume Control Mute Status  
Left DAC Volume Control Soft-stepping Status  
Right DAC Volume Control Mute Status  
Right DAC Volume Control Soft-stepping Status  
Left ADCPGA Gain Status  
Right ADCPGA Gain Status  
HPL Driver Gain Status  
HPR Driver Gain Status  
RECP Driver Gain Status  
RECM Driver Gain Status  
LOL to HPL Volume Control Status  
LOR to HPR Volume Control Status  
LOL to RECP Volume Control Status  
LOR to RECM Volume Control Status  
LOL to SPK Volume Control Status  
Charge Pump Power Status  
IN1L to RECP Volume Control Status  
IN1R to RECM Volume Control Status  
Left ADCPGA to MAL Volume Control Status  
Right ADCPGA to MAR Volume Control Status  
LOL Driver Power Up Status  
LOR Driver Power Up Status  
HPL Driver Power Up Status  
HPR Driver Power Up Status  
RECP Driver Power Up Status  
RECM Driver Power Up Status  
SPK Driver Power Up Status  
Sticky Flags are useful for reporting events which could be intermittent. These flags are set by the triggering  
events like over-current detect but are reset only when the flag register is read back the user. Status Flags on  
the other hand are useful for reporting events which are steady state in nature like power-up status of a block.  
The flag value reflects the triggering event's status when the register is being read by the user.  
92  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
8.3.9 Interfaces  
8.3.9.1 Control Interfaces  
The TLV320AIC3268 control interface supports SPI or I2C communication protocols. For SPI, the SPI_SELECT  
terminal should be tied high; for I2C, SPI_SELECT should be tied low. It is not recommended to change the state  
of SPI_SELECT during device operation.  
8.3.9.1.1 I2C Control Mode  
The TLV320AIC3268 supports the I2C control protocol, and will respond by default (I2C_ADDR_SCLK grounded)  
to the 7-bit I2C address of 0011000. With the one I2C address terminal, I2C_ADDR_SCLK, the device can be  
configured to respond to one of two 7-bit I2C addresses, 0011000 or 0011001. The full 8-bit I2C address can be  
calculated as:  
8-Bit I2C Address = "001100" + I2C_ADDR_SCLK + R/W  
Example: to write to the TLV320AIC3268 with I2C_ADDR_SCLK = 1 the 8-Bit I2C Address is "001100" +  
I2C_ADDR_SCLK + R/W = "00110010" = 0x32  
I2C is a two-wire, open-drain interface supporting multiple devices and masters on a single bus. Devices on the  
I2C bus only drive the bus lines LOW by connecting them to ground; they never drive the bus lines HIGH.  
Instead, the bus wires are pulled HIGH by pullup resistors, so the bus wires are HIGH when no device is driving  
them LOW. This way, two devices cannot conflict; if two devices drive the bus simultaneously, there is no driver  
contention.  
Communication on the I2C bus always takes place between two devices, one acting as the master and the other  
acting as the slave. Both masters and slaves can read and write, but slaves can only do so under the direction of  
the master. Some I2C devices can act as masters or slaves, but the TLV320AIC3268 can only act as a slave  
device.  
An I2C bus consists of two lines, SDA and SCL. SDA carries data, and the SCL signal provides the clock. All  
data is transmitted across the I2C bus in groups of eight bits. To send a bit on the I2C bus, the SDA line is driven  
to the appropriate level while SCL is LOW (a LOW on SDA indicates the bit is zero, while a HIGH indicates the  
bit is one).  
Once the SDA line has settled, the SCL line is brought HIGH, then LOW. This pulse on the SCL line clocks the  
SDA bit into the receiver’s shift register.  
The I2C bus is bidirectional: the SDA line is used both for transmitting and receiving data. When a master reads  
from a slave, the slave drives the data line; when a master sends to a slave, the master drives the data line.  
Most of the time the bus is idle, no communication is taking place, and both lines are HIGH. When  
communication is taking place, the bus is active. Only master devices can start communication on the bus.  
Normally, the data line is only allowed to change state while the clock line is LOW. If the data line changes state  
while the clock line is HIGH, it is either a START condition or its counterpart, a STOP condition. A START  
condition is when the clock line is HIGH and the data line goes from HIGH to LOW. A STOP condition is when  
the clock line is HIGH and the data line goes from LOW to HIGH.  
After the master issues a START condition, it sends a byte that selects the slave device for communication. This  
byte is called the address byte. Each device on an I2C bus has a unique 7-bit address to which it responds.  
(Slaves can also have 10-bit addresses; see the I2C specification for details.) The master sends an address in  
the address byte, together with a bit that indicates whether it wishes to read from or write to the slave device.  
Every byte transmitted on the I2C bus, whether it is address or data, is acknowledged with an acknowledge bit.  
When a master has finished sending a byte (eight data bits) to a slave, it stops driving SDA and waits for the  
slave to acknowledge the byte. The slave acknowledges the byte by pulling SDA LOW. The master then sends a  
clock pulse to clock the acknowledge bit. Similarly, when a master has finished reading a byte, it pulls SDA LOW  
to acknowledge this to the slave. It then sends a clock pulse to clock the bit. (Remember that the master always  
drives the clock line.)  
A not-acknowledge is performed by simply leaving SDA HIGH during an acknowledge cycle. If a device is not  
present on the bus, and the master attempts to address it, it will receive a notacknowledge because no device  
is present at that address to pull the line LOW.  
Copyright © 2014, Texas Instruments Incorporated  
93  
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
When a master has finished communicating with a slave, it may issue a STOP condition. When a STOP  
condition is issued, the bus becomes idle again. A master may also issue another START condition. When a  
START condition is issued while the bus is active, it is called a repeated START condition.  
The TLV320AIC3268 can also respond to and acknowledge a General Call, which consists of the master issuing  
a command with a slave address byte of 00H. This feature is disabled by default, but can be enabled via  
B0_P0_R115_D5.  
SCL  
DA(6)  
DA(0)  
RA(7)  
RA(0)  
D(7)  
D(0)  
SDA  
Slave  
Ack  
(S)  
Slave  
Ack  
(S)  
Slave  
Ack  
(S)  
Start  
(M)  
7-bit Device Address  
(M)  
Write  
(M)  
8-bit Register Address  
(M)  
8-bit Register Data  
(M)  
Stop  
(M)  
(M) => SDA Controlled by Master  
(S) => SDA Controlled by Slave  
Figure 78. I2C Write  
SCL  
SDA  
DA(6)  
DA(0)  
D(7)  
D(0)  
DA(6)  
DA(0)  
RA(7)  
RA(0)  
Master  
No Ack  
(M)  
Start  
(M)  
Stop  
(M)  
7-bit Device Address  
(M)  
Write  
(M)  
Slave  
Ack  
(S)  
8-bit Register Address  
(M)  
Slave  
Ack  
(S)  
Repeat  
Start  
(M)  
7-bit Device Address  
(M)  
Read  
(M)  
Slave  
Ack  
(S)  
8-bit Register Data  
(S)  
(M) => SDA Controlled by Master  
(S) => SDA Controlled by Slave  
Figure 79. I2C Read  
In the case of an I2C register write, if the master does not issue a STOP condition, then the device enters auto-  
increment mode. So in the next eight clocks, the data on SDA is treated as data for the next incremental register.  
Similarly, in the case of an I2C register read, after the device has sent out the 8-bit data from the addressed  
register, if the master issues a ACKNOWLEDGE, the slave takes over control of SDA bus and transmit for the  
next 8 clocks the data of the next incremental register.  
8.3.9.1.2 SPI Digital Interface  
In the SPI control mode, the TLV320AIC3268 uses the terminals SCL_SSZ as SS, I2C_ADDR_SCLK as SCLK,  
MISO_GPO1 as MISO, SDA_MOSI as MOSI; a standard SPI port with clock polarity setting of 0 (typical  
microprocessor SPI control bit CPOL = 0) and clock phase setting of 1 (typical microprocessor SPI control bit  
CPHA = 1). The SPI port allows full-duplex, synchronous, serial communication between a host processor (the  
master) and peripheral devices (slaves). The SPI master (in this case, the host processor) generates the  
synchronizing clock (driven onto SCLK) and initiates transmissions. The SPI slave devices (such as the  
TLV320AIC3268) depend on a master to start and synchronize transmissions. A transmission begins when  
initiated by an SPI master. The byte from the SPI master begins shifting in on the slave MOSI terminal under the  
control of the master serial clock (driven onto SCLK). As the byte shifts in on the MOSI terminal, a byte shifts out  
on the MISO terminal to the master shift register.  
The TLV320AIC3268 interface is designed so that with a clock-phase bit setting of 1 (typical microprocessor SPI  
control bit CPHA = 1), the master begins driving its MOSI terminal and the slave begins driving its MISO terminal  
on the first serial clock edge. The SSZ terminal can remain low between transmissions; however, the  
TLV320AIC3268 only interprets the first 8 bits transmitted after the falling edge of SSZ as a command byte, and  
the next 8 bits as a data byte only if writing to a register. Reserved register bits should be written to their default  
values. The TLV320AIC3268 is entirely controlled by registers. Reading and writing these registers is  
accomplished by an 8-bit command sent to the MOSI terminal of the part prior to the data for that register. The  
command is structured as shown in Table 43. The first 7 bits specify the address of the register which is being  
written or read, from 0 to 127 (decimal). The command word ends with an R/W bit, which specifies the direction  
94  
Copyright © 2014, Texas Instruments Incorporated  
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
of data flow on the serial bus. In the case of a register write, the R/W bit should be set to 0. A second byte of  
data is sent to the MOSI terminal and contains the data to be written to the register. Reading of registers is  
accomplished in a similar fashion. The 8-bit command word sends the 7-bit register address, followed by the R/W  
bit = 1 to signify a register read is occurring. The 8-bit register data is then clocked out of the part on the MISO  
terminal during the second 8 SCLK clocks in the frame.  
Table 43.  
COMMAND WORD  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADDR(6)  
ADDR(5)  
ADDR(4)  
ADDR(3)  
ADDR(2)  
ADDR(1)  
ADDR(0)  
R/WZ  
SS  
SCLK  
MOSI  
Hi-Z  
Hi-Z  
RA(6)  
RA(5)  
RA(0)  
D(7)  
D(6)  
D(0)  
7-bit Register Address  
Write  
8-bit Register Data  
Hi-Z  
Hi-Z  
MISO  
Figure 80. SPI Timing Diagram for Register Write  
SS  
SCLK  
MOSI  
Hi-Z  
Hi-Z  
Hi-Z  
RA(6)  
RA(5)  
RA(0)  
Don’t Care  
7-bit Register Address  
Read  
8-bit Register Data  
Hi-Z  
MISO  
D(7)  
D(6)  
D(0)  
Figure 81. SPI Timing Diagram for Register Read  
8.3.9.2 Digital Audio Interfaces  
The TLV320AIC3268 features three digital audio data serial interfaces, or audio buses. These three interfaces  
can be run simultaneously, thereby enabling reception and transmission of digital audio for or to three separate  
devices. A common example of usage of multiple digital audio serial interfaces is to allow connections with  
application processor, bluetooth chipset, digital input Class-D amplifiers and so forth. By utilizing the  
TLV320AIC3268 as the center of the audio processing in a portable audio system, mixing of voice and music  
audio is greatly simplified. In addition, the miniDSP can be utilized to greatly enhance the portable device  
experience by providing advanced audio processing to both communication and media audio streams  
simultaneously.  
Copyright © 2014, Texas Instruments Incorporated  
95  
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Audio Serial Interfaces  
AUDIO SERIAL INTERFACE 1  
AUDIO SERIAL INTERFACE 2  
AUDIO SERIAL INTERFACE 3  
WCLK  
BCLK  
DIN  
DOUT  
WCLK  
BCLK  
DIN  
DOUT  
WCLK  
BCLK  
DIN  
DOUT  
Figure 82. Typical Multiple Connections to Three Audio Serial Interfaces  
Each audio bus on the TLV320AIC3268 is very flexible, including left or right-justified data options, support for  
I2S or PCM protocols, programmable data length options, a TDM mode for multichannel operation, very flexible  
master or slave configurability for each bus clock line, and the ability to communicate with multiple devices within  
a system directly.  
Each of the three audio buses of the TLV320AIC3268 can be configured for left or right-justified, I2S, DSP, or  
TDM modes of operation, where communication with PCM interfaces is supported within the TDM mode. These  
modes are all MSB-first, with data width programmable as 16, 20, 24, or 32 bits. In addition, the word clock and  
bit clock can be independently configured in either Master or Slave mode, for flexible connectivity to a wide  
variety of processors. The word clock is used to define the beginning of a frame, and may be programmed as  
either a pulse or a square-wave signal. The frequency of this clock corresponds to the maximum of the selected  
ADC and DAC sampling frequencies. When configuring an audio interface for six-wire mode, the ADC and DAC  
paths can operate based on separate word clocks.  
The bit clock is used to clock in and clock out the digital audio data across the serial bus. When in Master mode,  
this signal can be programmed to generate variable clock pulses by controlling the bit-clock divider. The number  
of bit-clock pulses in a frame may need adjustment to accommodate various word-lengths as well as to support  
the case when multiple TLV320AIC3268s may share the same audio bus. When configuring an audio interface  
for six-wire mode, the ADC and DAC paths can operate based on separate bit clocks.  
The TLV320AIC3268 also includes a feature to offset the position of start of data transfer with respect to the  
word-clock. This offset can be controlled in terms of number of bit-clocks.  
The TLV320AIC3268 also has the feature of inverting the polarity of the bit-clock used for transferring the audio  
data as compared to the default clock polarity used. This feature can be used independently of the mode of  
audio interface chosen.  
The TLV320AIC3268 further includes programmability to 3-state the DOUT line during all bit clocks when valid  
data is not being sent. By combining this capability with the ability to program at what bit clock in a frame the  
audio data begins, time-division multiplexing (TDM) can be accomplished, enabling the use of multiple codecs on  
a single audio serial data bus. When the audio serial data bus is powered down while configured in master  
mode, the terminals associated with the interface are put into a 3-state output condition.  
By default, when the word-clocks and bit-clocks are generated by the TLV320AIC3268, these clocks are active  
only when the codec (ADC, DAC or both) are powered up within the device. This is done to save power.  
However, it also supports a feature when both the word clocks and bit-clocks can be active even when the codec  
is powered down. This is useful when using the TDM mode with multiple codecs on the same bus, or when word-  
clock or bit-clocks are used in the system as general-purpose clocks.  
The TLV320AIC3268 contains advanced Digital Audio interfaces features to enable:  
Connections of Multiple Digital Audio interfaces  
6-wire Digital Audio interfaces for separate uplink/downlink clocks or ADC/DAC clocks  
96  
Copyright © 2014, Texas Instruments Incorporated  
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Multi-channel, Multiple terminal operation  
8.3.9.2.1 Connecting Multiple Audio Digital Interfaces  
The TLV320AIC3268 enables connections to multiple audio data buses. Figure 82 shows a typical example of  
utilizing the digital terminals on the device to connect to four separate 4-wire digital audio buses, with up to three  
of these 4-wire buses receiving and sending digital audio data simultaneously. This configuration can be utilized  
when using I2C for control of the device. If only 3 total audio interface connections are needed (that is, a fourth  
audio bus does not need to be muxed into Audio Serial Interface 1), either I2C or SPI control can be used.  
(Further details on SPI control and terminals utilized can be found in SPI Digital Interface and Table 47.)  
To configure each of the three audio serial interfaces, both the audio interface and the terminals should be set up  
for appropriate routing of the signals. Audio Serial Interface 1 configuration registers are located in B0_P4_R1-  
R16 and B0_P4_R49-R52. Audio Serial Interface 2 configuration registers are located in B0_P4_R17-R32 and  
B0_P4_R53-R54. Audio Serial Interface 3 configuration registers are located in B0_P4_R33-R48 and  
B0_P4_R55-R56. The terminal muxing registers are located in B0_P4_R65-R96. Table 44 displays the  
appropriate register settings needed to implement the Audio Serial Interface configuration found in Figure 82.  
Table 44. Register Settings for Typical Multiple Audio Digital Interface Connections  
Terminal Control  
(Codec Interface as  
Slave)  
Terminal Control  
(Codec Interface as  
Master)  
Interface Control (Codec  
Interface is Slave)  
Interface Control (Codec  
Interface is Master)  
TERMINAL  
Audio Serial  
Interface 1 Word  
Clock to WCLK1  
Terminal  
B0_P4_R10_D[7:5] = 000  
B0_P4_R10_D[4:2] = 000  
B0_P4_R10_D[7:5] = 001  
B0_P4_R10_D[4:2] = 001  
B0_P4_R65_D[5:2] = 0001  
Audio Serial  
Interface 1 Bit  
Clock to BCLK1  
Terminal  
N/A  
Audio Serial  
Interface 1 Data  
Input to DIN1  
Terminal  
B0_P4_R49_D[4:0] = 00001 (default)  
B0_P4_R8_D[7:4] = 0101 (default) (ASI1-to-DAC datapath)  
B0_P4_R68_D[6:5] = 01 (default)  
B0_P4_R67_D[4:1] = 0001 (default)  
B0_P4_R69_D[5:2] = 0001 (default)  
B0_P4_R70_D[5:2] = 0001 (default)  
B0_P4_R72_D[6:5] = 01  
Audio Serial  
Interface 1 Data  
Output to DOUT1  
Terminal  
B0_P4_R15_D[1:0] = 00 (default)  
B0_P4_R7_D[2:0] = 001 (default)  
Audio Serial  
Interface 2 Word  
Clock to WCLK2  
Terminal  
B0_P4_R26_D5 = 0 (default)  
B0_P4_R26_D2 = 0 (default)  
B0_P4_R26_D5 = 1  
B0_P4_R26_D2 = 1  
Audio Serial  
Interface 2 Bit  
Clock to BCLK2  
Terminal  
Audio Serial  
Interface 2 Data  
Input to DIN2  
Terminal  
B0_P4_R24_D[7:4] = 0101 (ASI2-to-DAC datapath)  
Audio Serial  
Interface 2 Data  
Output to DOUT2  
Terminal  
B0_P4_R23_D[2:0] = 101 (ADC-to-ASI2 routing - Port 2),  
B0_P4_R31_D[1:0] = 00 (default)  
B0_P4_R71_D[4:1] = 0001 (default)  
Audio Serial  
Interface 3 Word  
Clock to GPIO2  
Terminal  
B0_P4_R87_D[6:2] =  
10100  
B0_P4_R87_D[6:2] =  
B0_P4_R55_D[6:5] = 10  
B0_P4_R55_D[2:0] = 001  
00001  
Audio Serial  
Interface 3 Bit  
Clock to GPIO1  
Terminal  
B0_P4_R86_D[6:2] =  
10101  
B0_P4_R86_D[6:2] =  
00001  
Copyright © 2014, Texas Instruments Incorporated  
97  
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Table 44. Register Settings for Typical Multiple Audio Digital Interface Connections (continued)  
Terminal Control  
(Codec Interface as  
Slave)  
Terminal Control  
(Codec Interface as  
Master)  
Interface Control (Codec  
Interface is Slave)  
Interface Control (Codec  
Interface is Master)  
TERMINAL  
Audio Serial  
Interface 3 Data  
Input to GPIO3  
Terminal  
B0_P4_R40_D[7:4] = 0101 (ASI3-to-DAC datapath)  
B0_P4_R88_D[6:2] = 11101  
Audio Serial  
Interface 3 Data  
Output to GPIO4  
Terminal  
B0_P4_R39_D[2:0] = 110 (ADC-to-ASI3 routing - Port 3)  
B0_P4_R47_D[1:0] = 00 (default)  
B0_P4_R89_D[6:2] = 11101  
Since each interface can be configured separately as master or slave, the appropriate settings are displayed for  
both possible configurations for each of the three audio serial interfaces. When in master mode, the bit clock and  
work clock source can be derived from a variety of sources, and more details on the possible sources of these  
clocks can be found in the Clock Generation and PLL section.  
8.3.9.2.2 Six-Wire Digital Audio Interface  
The six-wire audio interface mode allows independent configuration of receive and transmist word and bit clocks  
for the device. The TLV320AIC3268 supports six-wire audio interface on ASI1 and ASI2. The six-wire inteface  
mode is available in all interface formats such as I2S, LJF, RJF, DSP and PCM modes. Due to terminal  
limitations, only one of ASI1 or ASI2 can operate in six-wire mode at a time.  
When ASI1 operates in six-wire mode, WCLK1 functions as DAC_WCLK or receive word clock, BCLK1 functions  
as DAC_BCLK or receive bit clock. The tranmist word clock and transmit bit clock function can get supported on  
any of the pair of terminals amongst GPIO1, GPIO2, GPIO3 or GPIO4.  
Audio Serial Interfaces  
AUDIO SERIAL INTERFACE 1  
AUDIO SERIAL INTERFACE 2  
DAC_WCLK  
DAC_BCLK  
DIN  
ADC_WCLK  
ADC_BCLK  
DOUT  
WCLK  
BCLK  
DIN  
DOUT  
Figure 83. Six-Wire Audio Serial Interface with ASI1  
When ASI2 operates in six-wire mode, WCLK1 functions as DAC_WCLK or receive word clock, BCLK1 functions  
as DAC_BCLK or receive bit clock. The tranmist word clock and transmit bit clock function can get supported on  
any of the pair of terminals amongst GPIO1, GPIO2, GPIO3 or GPIO4.  
Audio Serial Interfaces  
AUDIO SERIAL INTERFACE 2  
AUDIO SERIAL INTERFACE 1  
DAC_WCLK  
DAC_BCLK  
DIN  
ADC_WCLK  
ADC_BCLK  
DOUT  
WCLK  
BCLK  
DIN  
DOUT  
Figure 84. Six-Wire Audio Serial Interface with ASI2  
The details of register settings to enable six-wire interface mode are shown in Table 51.  
98  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
8.3.9.2.3 Multiple Channel, Multiple Terminal Setup  
The TLV320AIC3268 also enables connections of up to four stereo pairs (8 total channels) of input and output  
data on Audio Serial Interface 1. These eight bidirectional channels are all synchronized to a single word clock  
(WCLK1) and bit clock (BCLK1). Figure 85 displays a typical configuration for this multi-channel setup.  
Audio Serial Interfaces  
AUDIO SERIAL INTERFACE 1  
WCLK  
BCLK  
DIN(L1,R1)  
DIN(L2,R2)  
DIN(L3,R3)  
DIN(L4,R4)  
DOUT(L1,R1)  
DOUT(L2,R2)  
DOUT(L3,R3)  
DOUT(L4,R4)  
Figure 85. Multi-channel, Multi-Terminal Inputs and Outputs to Audio Serial Interface 1  
Table 45. Register Settings for Replacing ASI2 and ASI3 with Multi-Channel Connections  
Terminal  
Interface Control  
Terminal Control  
Audio Serial Interface 1 DIN_1 Input to  
DIN1 Terminal  
To configure to 8 channels - B0_P4_R4_D[7:6] = 11  
To configure multiterminal mode - B0_P4_R6_D[7] = 1  
To configure input routings for DIN1 - B0_P4_R49_D[4:0] =  
00001  
To configure input routings for DIN2 - B0_P4_R50_D[4:0] =  
00010  
B0_P4_R68_D[6:5] = 01 (default)  
Audio Serial Interface 1 DIN_2 Input to  
DIN2 (1)terminal  
B0_P4_R72_D[6:5] = 01 (default)  
B0_P4_R70_D[5:2] = 1110  
Audio Serial Interface 1 DIN_3 Input to  
BCLK2(1) terminal  
To configure input routings for BCLK2 - B0_P4_R51_D[4:0]  
= 01100  
Audio Serial Interface 1 DIN_4 Input to  
WCLK2(1) terminal  
To configure input routings for WCLK2 -  
B0_P4_R51_D[4:0] = 01110  
B0_P4_R69_D[5:2] = 1111  
Audio Serial Interface 1 DOUT_1 Input to  
DOUT1 terminal  
B0_P4_R67_D[4:1] = 0001  
(default)  
Audio Serial Interface 1 DOUT_2 Input to  
DOUT2(1) terminal  
B0_P4_R71_D[4:1] = 1101  
B0_P4_R86_D[6:2] = 01110  
B0_P4_R87_D[6:2] = 01111  
To configure to 8 channels - B0_P4_R4_D[7:6] = 11  
To configure multiterminal mode - B0_P4_R6_D[7] = 1  
Audio Serial Interface 1 DOUT_3 Input to  
GPIO1 terminal  
Audio Serial Interface 1 DOUT_4 Input to  
GPIO2 terminal  
(1) BCLK2, WCLK2, DIN2 and DOUT2 terminals are with respect to IOVDD2 supply therefore using with ASI-1 in multiterminal 8-ch mode  
requires either shorting IOVDD1 and IOVDD2 with same voltage level or putting on-board level-shifter for the above signals.  
The configuration shown in Figure 85 can be used with either I2C or SPI for control interface. In this configuration  
ASI2 and ASI3 cannot be used. Other combinations with reduced channels or I2C only control interface allow  
simultaneous use of ASI2 or ASI3 by choosing different set of terminals. For details of various functions  
supported on terminals, see Table 47.  
8.3.9.2.4 Audio Formats  
Each Audio Serial Interface supports left or right-justified, I2S, DSP, or mono PCM modes. In addition, time-  
division multiplexing (TDM) can be implemented in each of these formats to enable multi-channel operation.  
8.3.9.2.4.1 Right Justified Mode  
Audio Serial Interface 1 can be put into Right Justified Mode by programming B0_P4_R1_D[7:5] = 010. Audio  
Serial Interface 2 can be put into Right Justified Mode by programming B0_P4_R17_D[7:5] = 010. Audio Serial  
Interface 3 can be put into Right Justified Mode by programming B0_P4_R33_D[7:5] = 010. In right-justified  
mode, the LSB of the left channel is valid on the rising edge of the bit clock preceding the falling edge of the  
word clock. Similarly, the LSB of the right channel is valid on the rising edge of the bit clock preceding the rising  
edge of the word clock.  
Copyright © 2014, Texas Instruments Incorporated  
99  
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
1/fs  
WCLK  
BCLK  
Left Channel  
Right Channel  
n-1 n-2 n-3  
MSB  
DIN/  
DOUT  
0
n-1 n-2 n-3  
MSB  
2
1
0
2
1
0
LSB  
LSB  
Figure 86. Timing Diagram for Right-Justified Mode  
For Right-Justified mode, the number of bit-clocks per frame should be greater than twice the programmed word-  
length of the data.  
8.3.9.2.4.2 Left Justified Mode  
Audio Serial Interface 1 can be put into Left Justified Mode by programming B0_P4_R1_D[7:5] = 011. Audio  
Serial Interface 2 can be put into Left Justified Mode by programming B0_P4_R17_D[7:5] = 011. Audio Serial  
Interface 3 can be put into Left Justified Mode by programming B0_P4_R33_D[7:5] = 011. In left-justified mode,  
the MSB of the right channel is valid on the rising edge of the bit clock following the falling edge of the word  
clock. Similarly the MSB of the left channel is valid on the rising edge of the bit clock following the rising edge of  
the word clock.  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
Figure 87. Timing Diagram for Left-Justified Mode  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
Figure 88. Timing Diagram for Left-Justified Mode with Offset=1  
100  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
Figure 89. Timing Diagram for Left-Justified Mode with Offset=0 and Inverted Bit Clock  
For Left-Justified mode, the programmed offset value should be less than the number of bit-clocks per frame by  
at least the programmed word-length of the data.  
8.3.9.2.4.3 I2S Mode  
Audio Serial Interface 1 can be put into I2S Mode by programming B0_P4_R1_D[7:5] = 000. Audio Serial  
Interface 2 can be put into I2S Mode by programming B0_P4_R17_D[7:5] = 000. Audio Serial Interface 3 can be  
put into I2S Mode by programming B0_P4_R33_D[7:5] = 000. In I2S mode, the MSB of the left channel is valid on  
the second rising edge of the bit clock after the falling edge of the word clock. Similarly the MSB of the right  
channel is valid on the second rising edge of the bit clock after the rising edge of the word clock.  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
Figure 90. Timing Diagram for I2S Mode  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
DATA  
5
4
3
2
1
0
5
4
3
2
1
0
5
1
1
1
LD(n)  
LD(n) = n'th sample of left channel data  
RD(n)  
RD(n) = n'th sample of right channel data  
LD(n+1)  
Figure 91. Timing Diagram for I2S Mode with Offset=2  
Copyright © 2014, Texas Instruments Incorporated  
101  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
WORD  
LEFT CHANNEL  
CLOCK  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
Figure 92. Timing Diagram for I2S Mode with Offset=0 and Bit Clock Inverted  
For I2S mode, the programmed offset value should be less than the number of bit-clocks per frame by at least  
the programmed word-length of the data.  
8.3.9.2.4.4 DSP Mode  
Audio Serial Interface 1 can be put into DSP Mode by programming B0_P4_R1_D[7:5] = 001. Audio Serial  
Interface 2 can be put into DSP Mode by programming B0_P4_R17_D[7:5] = 001. Audio Serial Interface 3 can  
be put into DSP Mode by programming B0_P4_R33_D[7:5] = 001. In DSP mode, the rising edge of the word  
clock starts the data transfer with the left channel data first and immediately followed by the right channel data.  
Each data bit is valid on the falling edge of the bit clock.  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
Figure 93. Timing Diagram for DSP Mode  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
LD(n) = n'th sample of left channel data  
RD(n) = n'th sample of right channel data  
Figure 94. Timing Diagram for DSP Mode with Offset = 1  
102  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
WORD  
CLOCK  
LEFT CHANNEL  
RIGHT CHANNEL  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
LD(n)  
RD(n)  
LD(n+1)  
Figure 95. Timing Diagram for DSP Mode with Offset = 0 and Bit Clock Inverted  
For DSP mode, the number of bit-clocks per frame should be greater than twice the programmed word-length of  
the data. Also the programmed offset value should be less than the number of bit-clocks per frame by at least  
the programmed word-length of the data.  
8.3.9.2.4.5 Mono PCM Mode  
Audio Serial Interface 1 can be put into Mono PCM Mode by programming B0_P4_R1_D[7:5] = 100. Audio Serial  
Interface 2 can be put into DSP Mode by programming B0_P4_R17_D[7:5] = 100. Audio Serial Interface 3 can  
be put into DSP Mode by programming B0_P4_R33_D[7:5] = 100. In mono PCM mode, the rising edge of the  
word clock starts the data transfer of the single channel of data. Each data bit is valid on the falling edge of the  
bit clock.  
WORD  
CLOCK  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
D(n)  
D(n+1)  
D(n+2)  
Figure 96. Timing Diagram for Mono PCM Mode  
WORD  
CLOCK  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
D(n+1)  
D(n)  
D(n+2)  
Figure 97. Timing Diagram for Mono PCM Mode with Offset=2  
Copyright © 2014, Texas Instruments Incorporated  
103  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
WORD  
CLOCK  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
3
2
1
0
3
2
1
0
3
DATA  
1
2
3
1
2
3
1
2
3
D(n+1)  
D(n)  
D(n+2)  
Figure 98. Timing Diagram for Mono PCM Mode with Offset=2 and Bit Clock Inverted  
For mono PCM mode, the programmed offset value should be less than the number of bit-clocks per frame by at  
least the programmed word-length of the data.  
8.3.9.2.5 Multi-channel Configurations  
The TLV320AIC3268 can utilize TDM techniques to enable several multi-channel system scenarios. First,  
multiple codecs can transmit/receive on a single digital audio interface bus. Second, multiple stereo pairs can be  
sent and received by a single TLV320AIC3268 on a single 4-wire digital audio interface bus. Lastly, up to 4  
individual stereo data pairs to/from the TLV320AIC3268 can be routed to individual DIN and DOUT lines in the  
system which are synchronized to a single BCLK and WCLK.  
8.3.9.2.5.1 Single Host, Multiple Audio Codecs  
Using the offset programmability and the DOUT line 3-state feature, the TLV320AIC3268 enables the flexibility  
where multiple TLV320AIC3268 devices can be interfaced together and can communicate to a host/multimedia  
processor using a single digital audio serial interface. Figure 99 displays a typical configuration where M devices  
are connected to a single host processor.  
CODEC-1  
TLV320AIC32x  
CODEC-2  
TLV320AIC32x  
Host  
CODEC-M  
TLV320AIC32x  
Figure 99. Interfacing Multiple TLV320AIC3268 Devices Using Single I2S Interface  
By changing the programmable offset for each device, the bit clock in each frame where the data begins can be  
changed, and the serial data output driver (DOUT) also can be programmed to a 3-state mode during all bit  
clocks except when valid data is being put onto the bus. This allows other codecs to be programmed with  
different offsets and to drive their data onto the same DOUT line, just in a different slot. For incoming data, the  
codec simply ignores data on the bus except where it is expected based on the programmed offset.  
104  
Copyright © 2014, Texas Instruments Incorporated  
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
LEFT  
CHANNEL  
1
RIGHT  
CHANNEL  
1
LEFT  
CHANNEL  
2
RIGHT  
CHANNEL  
2
LEFT  
CHANNEL  
M
RIGHT  
CHANNEL  
M
WORD  
CLOCK  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
DATA  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2
1
2
1
2
1
2
1
2
1
2
1
2
LD(n)  
CODEC-1  
RD(n)  
CODEC-1  
LD(n)  
CODEC-M  
RD(n)  
CODEC-M  
LD(n)  
CODEC-2  
RD(n)  
CODEC-2  
LD(n+1)  
CODEC-1  
Figure 100. DSP Timing for Multiple Devices Interfaced Together, Sequential Left/Right Pairs  
The digital audio serial interface timing diagram for the interface in Figure 99 is shown in Figure 100. In this  
particular configuration, the TLV320AIC3268 (or any other TLV320AIC32x codec) is programmed for DSP mode  
with N-bit word length per channel. The offset programmed for the Codec-1 is 0, for Codec-2 it is 2N, and  
likewise, the offset programmed for the Codec-M is (M-1) x 2N. In this TDM mode, the number of bit-clocks per  
frame should be greater than M*2N. The TLV320AIC3268 allows a maximum offset of 255 bit clocks, and this  
enables connections of up to 4 codecs for 32-bit stereo data and 8 codecs for 16-bit stereo data.  
For each of the three individual Digital Audio interfaces, this offset controls when data is received and sent by  
these interfaces. For Audio Serial Interface 1, this offset can be set to a value in the range of 0 to 255 bit clocks  
by programming B0_P4_R2. For Audio Serial Interface 2, this offset can be set to a value in the range of 0 to  
255 bit clocks by programming B0_P4_R18. For Audio Serial Interface 3, this offset can be set to a value in the  
range of 0 to 255 bit clocks by programming B0_P4_R34. When utilized in DSP mode, each of these offsets will  
set the start of the left channel, with the right channel data immediately following the LSB of the left channel.  
8.3.9.2.5.1.1 Time Slot Mode  
In addition, Audio Serial Interface 1 can also control the offset of the right channel with respect to the end of the  
left channel of data. This is achieved by enabling Time Slot Mode (setting B0_P4_R8_D0) and configuring the  
Right Channel Offset 2 (in the range of 0 to 255 bit clocks) in B0_P4_R3. Thus, the Right Channel Offset 2  
control allows us to place the right channel anywhere in the frame after the left channel, and this functionality can  
be utilized in each of the audio formats (DSP, left or right-justified, or I2S).  
LEFT  
CHANNEL  
1
LEFT  
CHANNEL  
2
RIGHT  
CHANNEL  
M
LEFT  
CHANNEL  
M
RIGHT  
CHANNEL  
1
WORD  
CLOCK  
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
DATA  
1
0
1
0
1
0
1
0
1
0
1
0
1
2
1
2
1
2
1
2
1
2
1
2
LD(n)  
CODEC-1  
LD(n)  
CODEC-2  
RD(n)  
CODEC-M  
LD(n)  
CODEC-M  
RD(n)  
CODEC-1  
LD(n+1)  
CODEC-1  
Figure 101. DSP Timing for Multiple Devices Interfaced Together, Grouped Left Channels and Right  
Channels  
By utilizing Time Slot Mode, the individual left and right channels can be grouped together, as shown in  
Figure 101. Assuming each channel contains N bits in this example, Codec-1 would have an offset1=0 and  
offset2=M*N, Codec-2 would have an offset1=N and offset2=M*N, and likewise, Codec-M would have an  
offset1=(M-1)*N and offset2=M*N.  
Copyright © 2014, Texas Instruments Incorporated  
105  
 
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
8.3.9.2.5.2 Multiple Channel Operation, Single Data Lines (Audio Serial Interface 1)  
The TLV320AIC3268 can receive and send multiple stereo pairs on a single 4-wire digital audio interface bus.  
This particularly useful when sending multi-channel audio data to the miniDSP for stereo downmix and playback  
over the integrated stereo headphones, speakers, or line-outs. Alternatively, the host could utilize the audio  
miniDSP engine as a multi-channel audio co-processor. This multi-channel operation is only available on Audio  
Serial Interface 1, and this is enabled by increasing the number of available channels in B0_P4_R4_D[7:6] to  
greater than 1 stereo pair. By increasing the number of stereo pairs, the interface essentially lengthens the data  
length for each channel. Thus, the first half of the X channels are interpreted as Left Channels, while the second  
half of X channels are interpreted as Right Channels. Once these channels are inside the miniDSP, they can be  
interpreted as any channel for surround processing. Figure 102 shows the timing for X channels of data utilizing  
DOUT1 and DIN1 data lines.  
WORD  
CLOCK  
CHANNEL  
1
CHANNEL  
X/2  
CHANNEL  
X/2+1  
CHANNEL  
X
CHANNEL  
2
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
DATA  
1
0
1
0
1
0
1
0
1
0
1
0
1
2
1
2
1
2
1
2
1
2
1
2
LD1(n)  
RD1(n)  
RDX/2(n)  
LD2(n)  
LDX/2(n)  
LD1(n+1)  
Figure 102. DSP Timing for Multi-channel Mode, Single DOUT and DIN Lines  
Because Audio Serial Interface 1 interprets the first X/2 channels as Left data, the last X/2 "Right" channels can  
be shifted utilizing Time Slot Mode. Figure 103 shows how, in DSP mode, the start of the first X/2 channels can  
be delayed by one bit clock (by setting offset1=1 in B0_P4_R2), while the last X/2 "Right" channels can be  
delayed by two bit clocks after the end of the first X/2 "Left" channels.  
For this multi-channel DSP mode, the number of bit-clocks per frame should be greater than M times the  
programmed word-length of the data, where M is the total number of channels set in B0_P4_R4_D[7:6]. Also the  
sum of the two programmed offset values should be less than the number of bit-clocks per frame by at least M  
times the programmed word-length of the data.  
WORD  
CLOCK  
CHANNEL  
1
CHANNEL  
X/2  
CHANNEL  
X/2+1  
CHANNEL  
X
CHANNEL  
2
BIT  
CLOCK  
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
N
-
DATA  
1
0
1
0
1
0
1
0
1
0
1
1
2
1
2
1
2
1
2
1
2
1
2
LD1(n)  
RD1(n)  
RDX/2(n)  
LD2(n)  
LDX/2(n)  
LD1(n+1)  
offset1=1  
offset1=1  
offset2=2  
Figure 103. DSP Timing for Multi-channel Mode, Single DOUT and DIN Lines  
106  
Copyright © 2014, Texas Instruments Incorporated  
 
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
8.3.9.2.5.3 Multiple Channel Operation, Multiple Data Lines (Audio Serial Interface 1)  
The TLV320AIC3268 can receive or send up to 4 individual stereo data pairs can be routed to individual DIN and  
DOUT lines in the system which are synchronized to a single BCLK and WCLK. This multi-channel, multi-  
terminal operation is only available on Audio Serial Interface 1. The multi-terminal mode is enabled by setting  
B0_P4_R6_D7 to 1. In addition to routing the channels to/from the interface, the individual terminals also need to  
be configured (refer to Table 46 and Table 47 for possible digital terminal muxing setups). Just as in the multi-  
channel, single-terminal case, the audio serial interface should configure the appropriate number of channels by  
writing to B0_P4_R4_D[7:6]. Figure 104 shows an example of multi-channel, multi-terminal mode using 4 stereo  
data pairs (8 channels) in DSP format.  
WORD  
CLOCK  
CHANNELS  
1, 3, 5, 7  
CHANNELS  
2, 4, 6, 8  
CHANNELS  
1, 3, 5, 7  
BIT  
CLOCK  
N
-
1
N
-
2
N
-
1
N
-
2
N
-
1
N
-
2
DIN1,  
DOUT1  
1
1
0
0
1
1
0
0
1
LD1(n)  
RD1(n)  
LD1(n+1)  
N
-
1
N
-
2
N
-
1
N
-
2
N
-
1
N
-
2
DIN2,  
DOUT2  
1
LD2(n)  
RD2(n)  
LD2(n+1)  
N
-
1
N
-
2
N
-
1
N
-
2
N
-
1
N
-
2
DIN3,  
DOUT3  
1
0
1
0
1
LD3(n)  
RD3(n)  
LD3(n+1)  
N
-
1
N
-
2
N
-
1
N
-
2
N
-
1
N
-
2
DIN4,  
DOUT4  
1
0
1
0
1
LD4(n)  
RD4(n)  
LD4(n+1)  
Figure 104. DSP Timing for Multi-channel Mode, Four Data Lines  
For this multi-channel DSP mode, the number of bit-clocks per frame should be greater than twice the  
programmed word-length of the data. Also, any programmed offset1 value (for shift of start of left channel) should  
be less than the number of bit-clocks per frame by at least twice the programmed word-length of the data.  
Copyright © 2014, Texas Instruments Incorporated  
107  
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
WORD  
CLOCK  
CHANNELS  
1, 3, 5, 7  
CHANNELS  
2, 4, 6, 8  
CHANNELS  
1, 3, 5, 7  
BIT  
CLOCK  
N
-
1
N
-
2
N
-
1
N
-
2
N
-
1
N
-
2
DIN1,  
DOUT1  
1
1
0
0
0
1
0
0
1
LD1(n)  
RD1(n)  
LD1(n+1)  
N
-
1
N
-
2
N
-
1
N
-
2
N
-
1
N
-
2
DIN2,  
DOUT2  
1
1
LD2(n)  
RD2(n)  
LD2(n+1)  
N
-
1
N
-
2
N
-
1
N
-
2
N
-
1
N
-
2
DIN3,  
DOUT3  
1
1
0
0
1
LD3(n)  
RD3(n)  
LD3(n+1)  
N
-
1
N
-
2
N
-
1
N
-
2
N
-
1
N
-
2
DIN4,  
DOUT4  
1
0
1
1
LD4(n)  
RD4(n)  
LD4(n+1)  
offset2=2  
offset1=1  
Figure 105. DSP Timing for Multi-channel Mode, Time Slot Mode, Four Data Lines with Offset1=1 and  
Offset2=2  
By enabling Time Slot Mode, the start of the left and right channels on each data line can be controlled by offset1  
and offset2. In other words, offset1 would control the start of all four left channels in Figure 105, and offset2  
would delay the start of all right channels after the end of the left channels' LSB. For this multi-channel, multi-  
terminal DSP mode, the number of bit-clocks per frame should be greater than twice the programmed word-  
length of the data. Also the sum of the two programmed offset values should be less than the number of bit-  
clocks per frame by at least twice the programmed word-length of the data.  
108  
Copyright © 2014, Texas Instruments Incorporated  
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
WORD  
CLOCK  
LEFT CHANNELS  
(1, 3, 5, 7)  
RIGHT CHANNELS  
(2, 4, 6, 8)  
BIT  
CLOCK  
DATA  
IN 1,  
DATA  
OUT 1  
N
-
1
N
-
2
N
-
3
N
-
1
N
-
2
N
-
3
N
-
1
N
-
2
N
-
3
3
2
2
1
1
0
0
3
2
2
1
1
0
0
3
LD1(n)  
RD1(n)  
LD1(n+1)  
DATA  
IN 2,  
DATA  
OUT 2  
N
-
1
N
-
2
N
-
3
N
-
1
N
-
2
N
-
3
N
-
1
N
-
2
N
-
3
3
3
3
LD2(n)  
RD2(n)  
LD2(n+1)  
DATA  
IN 3,  
DATA  
OUT 3  
N
-
1
N
-
2
N
-
3
N
-
1
N
-
2
N
-
3
N
-
1
N
-
2
N
-
3
3
2
2
1
1
0
0
3
2
2
1
1
0
0
3
LD3(n)  
RD3(n)  
LD3(n+1)  
DATA  
IN 4,  
DATA  
OUT 4  
N
-
1
N
-
2
N
-
3
N
-
1
N
-
2
N
-
3
N
-
1
N
-
2
N
-
3
3
3
3
LD4(n)  
RD4(n)  
LD4(n+1)  
Figure 106. I2S Timing for Multi-channel Mode, Four Data Lines  
On Audio Serial Interface 1, any format (DSP, left or right-justified, or I2S) can be utilized in multi-channel, multi-  
terminal mode. Figure 106 shows an example of multi-channel, multi-terminal mode using 4 stereo data pairs (8  
channels) in I2S format.  
Copyright © 2014, Texas Instruments Incorporated  
109  
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
WORD  
CLOCK  
LEFT CHANNELS  
(1, 3, 5, 7)  
RIGHT CHANNELS  
(2, 4, 6, 8)  
BIT  
CLOCK  
DATA  
IN 1,  
DATA  
OUT 1  
N
-
1
N
-
2
N
-
3
N
-
1
N
-
2
N
-
3
N
-
1
N
-
2
N
-
3
3
2
2
1
1
0
0
3
2
2
1
1
0
0
3
LD1(n)  
RD1(n)  
LD1(n+1)  
DATA  
IN 2,  
DATA  
OUT 2  
N
-
1
N
-
2
N
-
3
N
-
1
N
-
2
N
-
3
N
-
1
N
-
2
N
-
3
3
3
3
LD2(n)  
RD2(n)  
LD2(n+1)  
DATA  
IN 3,  
DATA  
OUT 3  
N
-
1
N
-
2
N
-
3
N
-
1
N
-
2
N
-
3
N
-
1
N
-
2
N
-
3
3
2
2
1
1
0
0
3
2
2
1
1
0
0
3
LD3(n)  
RD3(n)  
LD3(n+1)  
DATA  
IN 4,  
DATA  
OUT 4  
N
-
1
N
-
2
N
-
3
N
-
1
N
-
2
N
-
3
N
-
1
N
-
2
N
-
3
3
3
3
LD4(n)  
RD4(n)  
LD4(n+1)  
offset1=1  
offset1=1  
Figure 107. I2S Timing for Multi-channel Mode, Four Data Lines with Offset1=1  
For I2S multi-channel, multi-terminal mode, the programmed offset value should be less than the number of bit-  
clocks per frame by at least the programmed word-length of the data.  
8.3.10 miniDSP  
The TLV320AIC3268 features two fully programmable miniDSP cores. The first miniDSP core is tightly coupled  
to the ADC, the second miniDSP core is tightly coupled to the DAC. The algorithms for the miniDSP must be  
loaded into the device after power up. The miniDSPs have direct access to the digital stereo audio stream on the  
ADC and on the DAC side, offering the possibility for advanced, very-low group delay DSP algorithms. Each  
miniDSP can run up to 1229 instructions on every audio sample at a 48kHz sample rate. The two cores can run  
fully synchronized and can exchange data. The miniDSPs in TLV320AIC3268 enable advanced sound  
enhancement algorithms on an audio device.  
The TLV320AIC3268 features two fully programmable miniDSP cores and three ASI ports. The miniDSP_A is  
capable of generating 8 channels of audio data, which can either be routed to the ASIs to be output from the  
device or routed back to the miniDSP_D for a loopback function. Similarly the miniDSP_D can take in audio data  
from multiple ASIs or the miniDSP_A.  
The miniDSP_A can generate  
8
channels of data called the miniDSP_A_DataOutput[1:8]. The  
miniDSP_A_DataOutput[1,2,3,...,8] are also referred to as miniDSP_A_DataOutput[L1,R1,L2,...,R4]. When the  
device is used in pre-programmed PRB modes only miniDSP_A_DataOutput[1:2] are generated by the device for  
stereo modes and only miniDSP_A_DataOutput[1] is generated in the mono modes.  
The miniDSP_D features  
miniDSP_D_DataInput_3.  
3
input ports called miniDSP_D_DataInput_1, miniDSP_D_DataInput_2 and  
The input port miniDSP_D_DataInput_1 features channels,  
8
miniDSP_D_DataInput_1[1:8], also referred to as miniDSP_D_DataInput_1[L1,R1,...,R4]. In the pre-programmed  
stereo PRB modes only miniDSP_D_DataInput_1[1:2] are processed and other input ports are ignored. Similarly  
for the pre-programmed mono PRB modes only miniDSP_D_DataInput[1] is processed. The input port  
miniDSP_D_DataInput_2 features  
2
channels called miniDSP_D_DataInput_2[1:2] also referred to as  
110  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
miniDSP_D_DataInput_2[L1,R1]. The input port miniDSP_D_DataInput_3 also features 2 channels of audio data  
called miniDSP_D_DataInput_3[1:2] also referred to as miniDSP_D_DataInput_3[L1,R1]. Signal routing to  
miniDSP_D_DataInput_1[1:8] is controlled by programming B0_P4_R118_D[5:4]. Signal routing to  
miniDSP_D_DataInput_2[1,2] is controlled by programming B0_P4_R118_D[3:2]. Signal routing to  
miniDSP_D_DataInput_3[1,2] is controlled by programming B0_P4_R118_D[1:0].  
The audio serial port ASI1, can take in 8 channels of audio data. By default the miniDSP_A_DataOutput[1:8] is  
routed to ASI1_DataOutput. By programming B0_P4_R7_D[2:0], the default programming can be changed to  
one of ASI1_DataInput[1:8], ASI2_DataInput[1:2] or ASI3_DataInput[1:2] to acheive ASI to ASI loopback.  
Similarly the serial output of ASI1 is routed to ASI1_DOUT by default but by programming B0_P4_R15_D[1:0],  
this can be changed to route ASI1_DIN, ASI2_DIN or ASI3_DIN to achieve terminal-to-terminal loopback  
between ASIs. The ASI1's parallel output ASI1_DataInput can be routed to any of the miniDSP_D input ports.  
The audio serial port ASI2 and ASI3, can take in 2 channels of audio data each. By default the inputs to  
ASI2_DataOutput[1:2] and ASI3_DataOutput[1:2] are disabled. By programming B0_P4_R23_D[2:0], one of  
miniDSP_A_DataOutput[1:2], miniDSP_A_DataOutput[3:4], ASI1_DataInput[1:2], ASI2_DataInput[1:2] or  
ASI3_DataInput[1:2] can be routed to ASI2_DataOutput[1:2]. Similarly by programming B0_P4_R39_D[2:0], one  
of miniDSP_A_DataOutput[1:2], miniDSP_A_DataOutput[5:6], ASI1_DataInput[1:2], ASI2_DataInput[1:2] or  
ASI3_DataInput[1:2] can be routed to ASI3_DataOutput[1:2]. The ASI2_DataInput and ASI3_DataInput can be  
routed to any of the miniDSP_D input ports.  
The serial output ASI2_DOUT can be configured to route serial output of ASI2 or loop back ASI1_DIN, ASI2_DIN  
or ASI3_DIN. This feature is controlled by configuring B0_P4_R31_D[1:0]. The serial output of ASI3_DOUT can  
be configured to route serial output of ASI3 or loop back ASI1_DIN, ASI2_DIN or ASI3_DIN. This feature is  
controlled by configuring B0_P4_R47_D[1:0].  
The signal routing between ASIs and miniDSPs is shown in Figure 108.  
B0_P4_R7_D[2:0]  
‘Z’  
B0_P4_R15_D[1:0]  
000  
miniDSP_A_DataOutput[1:8]  
ASI1_DataInput[1:8]  
DOUT  
miniDSP_A_DataOutput[1:8]  
001  
00  
ASI1_DOUT  
ASI2_DOUT  
ASI3_DOUT  
ASI1_DIN  
ASI1_DataOutput[1:8]  
01  
010  
011  
100  
ASI2_DIN  
ASI2_DataInput[1:2]  
10  
ASI3_DIN  
ASI3_DataInput[1:2]  
ASI1  
11  
miniDSP_A/PRB_R<>  
ASI1_DataInput[1:8]  
AS1_DataInput[1:8]  
DIN  
ASI1_DIN  
B0_P4_R23_D[2:0]  
‘Z’  
B0_P4_R31_D[1:0]  
000  
miniDSP_A_DataOutput[1:2]  
DOUT  
00  
001  
ASI1_DIN  
ASI1_DataInput[1:2]  
ASI2_DataInput[1:2]  
ASI2_DataOutput[1:2]  
01  
010  
011  
100  
101  
ASI2_DIN  
10  
ASI3_DIN  
ASI3_DataInput[1:2]  
ASI2  
11  
miniDSP_A_DataOutput[3:4]  
B0_P4_R118_D[5:4]  
00  
ASI2_DataInput[1:2]  
ASI2_DataInput[1:2]  
miniDSP_D_DataInput_1[1:8]  
DIN  
ASI2_DIN  
01  
10  
B0_P4_R39_D[2:0]  
‘Z’  
11  
B0_P4_R47_D[1:0]  
B0_P4_R118_D[3:2]  
000  
miniDSP_D/PRB_P<>  
miniDSP_A_DataOutput[1:2]  
DOUT  
001  
00  
00  
ASI1_DIN  
ASI1_DataInput[1:2]  
ASI2_DataInput[1:2]  
ASI3_DataOutput[1:2]  
miniDSP_D_DataInput_2[1:2]  
01  
01  
010  
011  
100  
110  
ASI2_DIN  
10  
10  
ASI3_DIN  
ASI3_DataInput[1:2]  
ASI3  
B0_P4_R118_D[1:0]  
11  
miniDSP_A_DataOutput[5:6]  
00  
01  
10  
miniDSP_D_DataInput_3[1:2]  
ASI2_DataInpput[1:2]  
ASI3_DataInput[1:2]  
DIN  
ASI3_DIN  
Figure 108. Audio Routing Between ASI ports,÷ miniDSP  
Copyright © 2014, Texas Instruments Incorporated  
111  
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
8.3.11 Device Connections  
8.3.11.1 Digital Terminals  
Only a small number of digital terminals are dedicated to a single function; whenever possible, the digital  
terminals have a default function, and also can be reprogrammed to cover alternative functions for various  
applications.  
The fixed-function terminals are hardware-control terminals RESET and SPI_SELECT terminal. Depending on  
the state of SPI_SELECT, four terminals SCL_SSZ, SDA_MOSI, MISO_GPO1, and I2C_ADDR_SCLK are  
configured for either I2C or SPI protocol. Only in I2C mode, I2C_ADDR_SCLK provide two possible I2C  
addresses for the TLV320AIC3268, while this terminal receives the SPI SCLK when the device is set to SPI  
mode.  
Other digital IO terminals can be configured for various functions via register control.  
8.3.11.2 Analog Terminals  
Analog functions can also be configured to a large degree. For minimum power consumption, analog blocks are  
powered down by default. The blocks can be powered up with fine granularity according to the application needs.  
The possible analog routings of analog input terminals to ADCs and output amplifiers as well as the routing from  
DACs to output amplifiers can be seen in the Analog Routing Diagram.  
8.3.11.3 Multifunction Terminals  
Table 46 and Table 47 show the possible allocation of terminals for specific functions. The PLL input, for  
example, can be programmed to be any of 7 terminals (MCLK, BCLK1, DIN1, BCLK2,GPIO1, GPIO2, GPIO3).  
Table 46. Multifunction Terminal Assignments for Terminals SDA_MOSI, SCL_SSZ,  
I2C_ADDR_SCLK,MISO_GPO1,MCLK, WCLK1, BCLK1, DIN1, and DOUT1  
I2C_  
SDA_  
MOSI  
(1)  
SCL_  
SSZ  
(2)  
MISO_  
GPO1  
(4)  
ADDR_  
SCLK  
(3)  
MCLK  
(5)  
WCLK1  
(6)  
BCLK1  
(7)  
DIN1  
(8)  
DOUT1  
(9)  
Terminal Function  
A
B
C
D
E
F
I2C Clock  
E(1)  
I2C Data  
E(1)  
I2C Address (LSB)  
SPI Chip Select  
SPI Clock  
E(1)  
E(1)  
E(1)  
SPI Slave Data Input  
SPI Slave Data Output  
E(1)  
G
E(1), D(2)  
Word Clock  
Input,Output for ASI1  
H
I
S(3),D(2)  
Word Clock Input,  
Output for ASI2  
Word Clock Input,  
Output for ASI3  
J
Bit Clock Input, Output  
for ASI1  
K
L
S(3),D(2)  
Bit Clock Input, Output  
for ASI2  
Bit Clock Input, Output  
for ASI3  
M
N
DOUT for ASI1 All  
Channels  
E(1),D(2)  
E(1),D(2)  
O
P
Q
R
S
T
DOUT for ASI1 (L1, R1)  
DOUT for ASI1 (L2, R2)  
DOUT for ASI1 (L3, R3)  
DOUT for ASI1 (L4, R4)  
DOUT for ASI2  
E(1)  
E(1)  
E(1)  
E(1)  
DOUT for ASI3  
DIN for ASI1 All  
Channels  
U
V
E(1),D(2)  
E(1),D(2)  
DIN for ASI1 (L1, R1)  
112  
Copyright © 2014, Texas Instruments Incorporated  
 
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Table 46. Multifunction Terminal Assignments for Terminals SDA_MOSI, SCL_SSZ,  
I2C_ADDR_SCLK,MISO_GPO1,MCLK, WCLK1, BCLK1, DIN1, and DOUT1 (continued)  
I2C_  
SDA_  
MOSI  
(1)  
SCL_  
SSZ  
(2)  
MISO_  
GPO1  
(4)  
ADDR_  
SCLK  
(3)  
MCLK  
(5)  
WCLK1  
(6)  
BCLK1  
(7)  
DIN1  
(8)  
DOUT1  
(9)  
Terminal Function  
W
X
DIN for ASI1 (L2, R2)  
DIN for ASI1 (L3, R3)  
DIN for ASI1 (L4, R4)  
DIN for ASI2  
Y
Z
AA  
DIN for ASI3  
ASI1 ADC BCLK Input,  
Output  
AB  
AC  
AD  
AE  
AF  
ASI2 ADC BCLK Input,  
Output  
ASI1 ADC WCLK Input,  
Output  
ASI2 ADC WCLK Input,  
Output  
ADC_MOD_CLK  
Output  
E(1)  
AG  
AH  
AI  
Digmic Data 1  
E(1)  
E(1)  
S(3)  
Digmic Data 2  
Input to PLL_CLKIN  
Input to ADC_CLKIN  
Input to DAC_CLKIN  
Input to CDIV_CLKIN  
Input to LFR_CLKIN  
Input to HF_CLKIN  
S(3),D(2)  
S(3),D(2)  
S(3),D(2)  
S(3),D(2)  
S(3),D(2)  
S(3)  
S(3)  
S(3)  
S(3)  
S(3)  
AJ  
AK  
AL  
AM  
AN  
S(3)  
S(3)  
Input to  
REF_1MHz_CLK  
(3)  
AO  
S
AP  
AQ  
AR  
AS  
AT  
AU  
AV  
CLKOUT Output  
Bit Bang Input  
E(1)  
E(1)  
E(1)  
Bit Bang Output  
INT1 Output  
E(1)  
E(1)  
E(1)  
E(1)  
INT2 Output  
Interrupt for miniDSP  
SAR ADC Interrupt  
E(1)  
E(1)  
E(1)  
E(1)  
General Purpose  
Output  
AW  
AX  
General Purpose Input  
E(1)  
(1) E: The terminal is exclusively used for this function, no other function can be implemented with the same terminal (such as if DOUT1  
has been allocated for General Purpose Output, it cannot be used as the INT1 output at the same time)  
(2) D: The terminal is the default selection for the function  
(3) S: This terminal can be simultaneously used with other functions marked S for the same terminal. (such as MCLK terminal could be  
chosen to drive the PLL, ADC Clock, DAC Clock, CDIV Clock, LFR Clock, HF Clock, and REF_1MHz_CLK inputs simultaneously)  
(4) MISO_GPO1 can only be utilized for functions defined in this table when part utilizes I2C for control. In SPI mode, this terminal serves  
as MISO.  
Table 47. Multifunction Terminal Assignments for Terminals WCLK2, BCLK2, DIN2, DOUT2, GPIO1,  
GPIO2, GPIO3, GPIO4 and GPIO5  
WCLK2  
(10)  
BCLK2  
(11)  
DIN2  
(12)  
DOUT2  
(13)  
GPIO1  
(14)  
GPIO2  
(15)  
GPIO3  
(16)  
GPIO4  
(17)  
GPIO5  
(18)  
Terminal Function  
A
B
C
D
E
F
I2C Clock  
I2C Data  
I2C Address (LSB)  
SPI Chip Select  
SPI Clock  
SPI Slave Data Input  
SPI Slave Data Output  
G
Word Clock Input,  
Output for ASI1  
H
S(3)  
Copyright © 2014, Texas Instruments Incorporated  
113  
 
 
 
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Table 47. Multifunction Terminal Assignments for Terminals WCLK2, BCLK2, DIN2, DOUT2, GPIO1,  
GPIO2, GPIO3, GPIO4 and GPIO5 (continued)  
WCLK2  
(10)  
BCLK2  
(11)  
DIN2  
(12)  
DOUT2  
(13)  
GPIO1  
(14)  
GPIO2  
(15)  
GPIO3  
(16)  
GPIO4  
(17)  
GPIO5  
(18)  
Terminal Function  
Word Clock Input,  
Output for ASI2  
I
S(3),D(2)  
S(3)  
Word Clock Input,  
Output for ASI3  
J
S(3)  
S(3)  
S(3)  
Bit Clock Input, Output  
for ASI1  
K
L
Bit Clock Input, Output  
for ASI2  
S(3),D(2)  
Bit Clock Input, Output  
for ASI3  
M
N
S(3)  
DOUT for ASI1 All  
Channels  
E(1)  
O
P
Q
R
S
T
DOUT for ASI1 (L1, R1)  
DOUT for ASI1 (L2, R2)  
DOUT for ASI1 (L3, R3)  
DOUT for ASI1 (L4, R4)  
DOUT for ASI2  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1),D(2)  
E(1)  
DOUT for ASI3  
E(1)  
DIN for ASI1 All  
Channels  
U
V
W
X
DIN for ASI1 (L1, R1)  
DIN for ASI1 (L2, R2)  
DIN for ASI1 (L3, R3)  
DIN for ASI1 (L4, R4)  
DIN for ASI2  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
Y
E(1)  
Z
E(1),D(2)  
AA  
DIN for ASI3  
E(1)  
E(1)  
ADC BCLK1 Input,  
Output  
AB  
AC  
AD  
AE  
AF  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
ADC BCLK2 Input,  
Output  
E(1)  
E(1)  
E(1)  
E(1)  
ADC WCLK1 Input,  
Output  
ADC WCLK2 Input,  
Output  
ADC_MOD_CLK  
Output  
E(1)  
E(1)  
E(1)  
E(1)  
AG  
AH  
AI  
Digmic Data 1  
E(1)  
E(1)  
E(1)  
E(1)  
S(3)  
S(3)  
S(3)  
E(1)  
E(1)  
S(3)  
S(3)  
S(3)  
E(1)  
E(1)  
S(3)  
S(3)  
S(3)  
S(3)  
S(3)  
E(1)  
E(1)  
E(1)  
E(1)  
Digmic Data 2  
Input to PLL_CLKIN  
Input to ADC_CLKIN  
Input to DAC_CLKIN  
Input to CDIV_CLKIN  
Input to LFR_CLKIN  
Input to HF_CLKIN  
S(3)  
S(3)  
S(3)  
S(3)  
S(3)  
AJ  
AK  
AL  
AM  
AN  
S(3)  
E(1)  
S(3)  
S(3)  
Input to  
REF_1MHz_CLK  
AO  
AP  
AQ  
AR  
AS  
AT  
AU  
AV  
CLKOUT Output  
Bit Bang Input  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
Bit Bang Output  
INT1 Output  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
INT2 Output  
Interrupt for miniDSP  
SAR ADC Interrupt  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
E(1)  
General Purpose  
Output  
AW  
AX  
E(1)  
E(1)  
E(1)  
E(1)  
General Purpose Input  
E(1)  
E(1)  
E(1)  
114  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
(1) E: The terminal is exclusively used for this function, no other function can be implemented with the same terminal (such as if DOUT1  
has been allocated for General Purpose Output, it cannot be used as the INT1 output at the same time)  
(2) D: The terminal is the default selection for the function  
(3) S: This terminal can be simultaneously used with other functions marked S for the same terminal. (such as MCLK terminal could be  
chosen to drive the PLL, ADC Clock, DAC Clock, CDIV Clock, LFR Clock, HF Clock, and REF_1MHz_CLK inputs simultaneously)  
See Register Settings for Multifunction Terminals for details on register configuration of multi-function terminals.  
8.3.11.3.1 Register Settings for Multifunction Terminals  
Table 48 summarizes the register settings that must be applied to configure the terminal assignments for general  
inputs and outputs, interrupts, clocking outputs, and digital microphones. In Table 48, the letter/number  
combination represents the row and the column number from and in bold type.  
Please be aware that more settings may be necessary to obtain a full functionality matching the application  
requirement.  
Table 48. Multifunction Terminal Register Configuration - General Inputs/Outputs, Interrupts  
Description  
Required Register Setting  
Description  
Required Register Setting  
Bit Bang input for miniDSP on  
GPIO1  
B0_P4_R86_D[6:2]=00001;  
Value stored to B0_P4_R107_D[0]  
B0_P4_R87_D[6:2]=00001;  
Value stored to B0_P4_R107_D[1]  
AQ14  
AQ16  
AQ15  
AQ17  
Bit Bang input for miniDSP on GPIO2  
Bit Bang input for miniDSP on  
GPIO3  
B0_P4_R88_D[6:2]=00001;  
Value stored to B0_P4_R107_D[2]  
B0_P4_R89_D[6:2]=00001;  
Value stored to B0_P4_R107_D[3]  
Bit Bang input for miniDSP on GPIO4  
B0_P4_R86_D[6:2]=01011;  
B0_P4_R113_D[6]=0;  
Value written in B0_P4_R104_D[0]  
Host controlled Bit Bang output from  
miniDSP on GPIO1  
miniDSP_D controlled Bit Bang output  
from miniDSP on GPIO1  
B0_P4_R86_D[6:2]=01011;  
B0_P4_R113_D[6]=1;  
AR14  
AR15  
AR16  
AR17  
AR14  
AR15  
AR16  
AR17  
B0_P4_R87_D[6:2]=01011;  
B0_P4_R113_D[6]=0;  
Value written in B0_P4_R104_D[1]  
Host controlled Bit Bang output from  
miniDSP on GPIO2  
miniDSP_D controlled Bit Bang output  
from miniDSP on GPIO2  
B0_P4_R87_D[6:2]=01011;  
B0_P4_R113_D[6]=1;  
B0_P4_R88_D[6:2]=01011;  
B0_P4_R113_D[6]=0;  
Value written in B0_P4_R104_D[2]  
Host controlled Bit Bang output from  
miniDSP on GPIO3  
miniDSP_D controlled Bit Bang output  
from miniDSP on GPIO3  
B0_P4_R88_D[6:2]=01011;  
B0_P4_R113_D[6]=1;  
B0_P4_R89_D[6:2]=01011;  
B0_P4_R113_D[6]=0;  
Value written in B0_P4_R104_D[3]  
Host controlled Bit Bang output from  
miniDSP on GPIO4  
miniDSP_D controlled Bit Bang output  
from miniDSP on GPIO4  
B0_P4_R89_D[6:2]=01011;  
B0_P4_R113_D[6]=1;  
INT1 interrupt output on  
MISO_GPO1  
B0_P4_R96_D[4:1]=0100;  
Configure B0_P0_R51_D[7:6]  
B0_P4_R67_D[4:1]=0100;  
Configure B0_P0_R51_D[7:6]  
AS4  
AS9  
INT1 interrupt output on DOUT1  
INT1 interrupt output on BCLK2  
INT1 interrupt output on GPIO1  
INT1 interrupt output on GPIO3  
INT2 interrupt output on MISO_GPO1  
INT2 interrupt output on WCLK2  
INT2 interrupt output on DOUT2  
INT2 interrupt output on GPIO2  
INT2 interrupt output on GPIO4  
B0_P4_R69_D[5:2]=0101;  
Configure B0_P0_R51_D[7:6]  
B0_P4_R70_D[5:2]=0101;  
Configure B0_P0_R51_D[7:6]  
AS9  
INT1 interrupt output on WCLK2  
INT1 interrupt output on DOUT2  
INT1 interrupt output on GPIO2  
INT1 interrupt output on GPIO4  
INT2 interrupt output on DOUT1  
INT2 interrupt output on BCLK2  
INT2 interrupt output on GPIO1  
INT2 interrupt output on GPIO3  
AS11  
AS14  
AS16  
AT4  
B0_P4_R71_D[4:1]=0100;  
Configure B0_P0_R51_D[7:6]  
B0_P4_R86_D[6:2]=00101;  
Configure B0_P0_R51_D[7:6]  
AS13  
AS15  
AS17  
AT9  
B0_P4_R87_D[6:2]=00101;  
Configure B0_P0_R51_D[7:6]  
B0_P4_R88_D[6:2]=00101;  
Configure B0_P0_R51_D[7:6]  
B0_P4_R89_D[6:2]=00101;  
Configure B0_P0_R51_D[7:6]  
B0_P4_R96_D[4:1]=0101;  
Configure B0_P0_R51_D[5:4]  
B0_P4_R67_D[4:1]=0101;  
Configure B0_P0_R51_D[5:4]  
B0_P4_R69_D[5:2]=0110;  
Configure B0_P0_R51_D[5:4]  
AT9  
B0_P4_R70_D[5:2]=0110;  
Configure B0_P0_R51_D[5:4]  
B0_P4_R71_D[4:1]=0101;  
Configure B0_P0_R51_D[5:4]  
AT11  
AT14  
AT16  
AT13  
AT15  
AT17  
B0_P4_R86_D[6:2]=00110;  
Configure B0_P0_R51_D[5:4]  
B0_P4_R87_D[6:2]=00110;  
Configure B0_P0_R51_D[5:4]  
B0_P4_R88_D[6:2]=00110;  
Configure B0_P0_R51_D[5:4]  
B0_P4_R89_D[6:2]=00110;  
Configure B0_P0_R51_D[5:4]  
B0_P4_R72_D[6:5]=01;  
B0_P4_R72_D[6:5]=01;  
AU12  
AU14  
AU15  
ISR interrupt for miniDSP_A on DIN2 B100_P0_R58_D[2:0]=100;  
Configure B100_P0_R58_D[4]  
AU12  
AU14  
AU15  
ISR interrupt for miniDSP_D on DIN2  
B120_P0_R58_D[2:0]=100;  
Configure B120_P0_R58_D[4]  
B0_P4_R86_D[6:2]=00001;  
ISR interrupt for miniDSP_A on  
B100_P0_R58_D[2:0]=001;  
B0_P4_R86_D[6:2]=00001;  
ISR interrupt for miniDSP_D on GPIO1 B120_P0_R58_D[2:0]=001;  
Configure B120_P0_R58_D[4]  
GPIO1  
Configure B100_P0_R58_D[4]  
B0_P4_R87_D[6:2]=00001;  
ISR interrupt for miniDSP_A on  
B100_P0_R58_D[2:0]=010;  
B0_P4_R72_D[6:2]=00001;  
ISR interrupt for miniDSP_D on GPIO2 B120_P0_R58_D[2:0]=010;  
Configure B120_P0_R58_D[4]  
GPIO2  
Configure B100_P0_R58_D[4]  
B0_P4_R96_D[4:1]=0110;  
SAR ADC Interrupt on MISO_GPO1  
B0_P4_R67_D[4:1]=0110;  
SAR ADC Interrupt on DOUT1  
AV4  
AV9  
Configure B0_P3_R3_D[1:0]  
Configure B0_P3_R3_D[1:0]  
B0_P4_R69_D[5:2]=1001;  
SAR ADC Interrupt on WCLK2  
B0_P4_R70_D[5:2]=1001;  
SAR ADC Interrupt on BCLK2  
AV10  
AV13  
AV15  
AV11  
AV14  
AW4  
Configure B0_P3_R3_D[1:0]  
Configure B0_P3_R3_D[1:0]  
B0_P4_R71_D[4:1]=0110;  
SAR ADC Interrupt on DOUT2  
B0_P4_R86_D[6:2]=01001;  
SAR ADC Interrupt on GPIO1  
Configure B0_P3_R3_D[1:0]  
Configure B0_P3_R3_D[1:0]  
B0_P4_R87_D[6:2]=01001;  
SAR ADC Interrupt on GPIO2  
General Purpose Output on  
MISO_GPO1  
B0_P4_R96_D[4:1]=0010;  
Output value write to B0_P4_R96_D[0]  
Configure B0_P3_R3_D[1:0]  
Copyright © 2014, Texas Instruments Incorporated  
115  
 
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Table 48. Multifunction Terminal Register Configuration - General Inputs/Outputs, Interrupts (continued)  
Description  
Required Register Setting  
Description  
Required Register Setting  
B0_P4_R67_D[4:1]=0010;  
Output value write to B0_P4_R67_D[0]  
B0_P4_R69_D[5:2]=0011;  
Output value write to B0_P4_R69_D[0]  
AW9  
General Purpose Output on DOUT1  
AW10  
AW13  
AW15  
General Purpose Output on WCLK2  
B0_P4_R70_D[5:2]=0011;  
Output value write to B0_P4_R70_D[0]  
B0_P4_R71_D[4:1]=0010;  
Output value write to B0_P4_R71_D[0]  
AW11  
AW14  
General Purpose Output on BCLK2  
General Purpose Output on GPIO1  
General Purpose Output on DOUT2  
General Purpose Output on GPIO2  
B0_P4_R86_D[6:2]=00011;  
Output value write to B0_P4_R86_D[0]  
B0_P4_R87_D[6:2]=00011;  
Output value write to B0_P4_R87_D[0]  
B0_P4_R69_D[5:2]=0010;  
Input value available in  
B0_P4_R69_D[1]  
B0_P4_R68_D[6:5]=10;  
Input value available in B0_P4_R68_D[4]  
AX9  
General Purpose Input on DIN1  
General Purpose Input on BCLK2  
General Purpose Input on GPIO1  
AX10  
AX13  
AX15  
General Purpose Input on WCLK2  
General Purpose Input on DIN2  
General Purpose Input on GPIO2  
B0_P4_R72_D[6:5]=10;  
Input value available in  
B0_P4_R72_D[4]  
B0_P4_R70_D[5:2]=0010;  
Input value available in B0_P4_R70_D[1]  
AX11  
AX14  
B0_P4_R87_D[6:2]=00010;  
Input value available in  
B0_P4_R87_D[1]  
B0_P4_R86_D[6:2]=00010;  
Input value available in B0_P4_R86_D[1]  
Table 49 summarizes the register settings that must be applied to configure the terminal assignments for  
clocking inputs and outputs from the device. In Table 49, the letter/number combination represents the row and  
the column number from and in bold type.  
Please be aware that more settings may be necessary to obtain a full functionality matching the application  
requirement.  
Table 49. Multifunction Terminal Register Configuration - Clocking Inputs/Outputs  
Description  
Required Register Setting  
Description  
Required Register Setting  
AI5  
AI8  
PLL_CLKIN input on MCLK  
B0_P0_R5_D[5:2]=0000;  
AI7  
PLL_CLKIN input on BCLK1  
B0_P0_R5_D[5:2]=0001;  
B0_P0_R5_D[5:2]=0011;  
B0_P4_R68_D[6:5]=01;  
B0_P0_R5_D[5:2]=0100;  
B0_P4_R70_D[5:2]=0010;  
PLL_CLKIN input on DIN1  
PLL_CLKIN input on GPIO1  
PLL_CLKIN input on GPIO3  
ADC_CLKIN input on BCLK1  
ADC_CLKIN input on GPIO1  
ADC_CLKIN input on GPIO3  
DAC_CLKIN input on BCLK1  
DAC_CLKIN input on GPIO1  
DAC_CLKIN input on GPIO3  
CDIV_CLKIN input on BCLK1  
AI11  
PLL_CLKIN input on BCLK2  
PLL_CLKIN input on GPIO2  
ADC_CLKIN input on MCLK  
ADC_CLKIN input on BCLK2  
ADC_CLKIN input on GPIO2  
DAC_CLKIN input on MCLK  
DAC_CLKIN input on BCLK2  
DAC_CLKIN input on GPIO2  
CDIV_CLKIN input on MCLK  
CDIV_CLKIN input on DIN1  
B0_P0_R5_D[5:2]=0010;  
B0_P4_R86_D[6:2]=00001;  
B0_P0_R5_D[5:2]=0111;  
B0_P4_R87_D[6:2]=00001;  
AI14  
AI16  
AJ7  
AI15  
AJ5  
B0_P0_R5_D[5:2]=0101;  
B0_P4_R88_D[6:2]=00001;  
B0_P0_R4_D[3:0]=0000;  
B0_P0_R4_D[3:0]=0100;  
B0_P4_R70_D[5:2]=0010;  
B0_P0_R4_D[3:0]=0001;  
AJ11  
AJ15  
AK5  
AK11  
AK15  
AL5  
B0_P0_R4_D[3:0]=0010;  
B0_P4_R86_D[6:2]=00001;  
B0_P0_R4_D[3:0]=1001;  
B0_P4_R87_D[6:2]=00001;  
AJ14  
AJ16  
AK7  
B0_P0_R4_D[3:0]=0101;  
B0_P4_R88_D[6:2]=00001;  
B0_P0_R4_D[7:4]=0000;  
B0_P0_R4_D[7:4]=0100;  
B0_P4_R70_D[5:2]=0010;  
B0_P0_R4_D[7:4]=0001;  
B0_P0_R4_D[7:4]=0010;  
B0_P4_R86_D[6:2]=00001;  
B0_P0_R4_D[7:4]=1001;  
B0_P4_R87_D[6:2]=00001;  
AK14  
AK16  
AL7  
B0_P0_R4_D[7:4]=0101;  
B0_P4_R88_D[6:2]=00001;  
B0_P0_R21_D[4:0]=0000;  
B0_P0_R21_D[4:0]=0010;  
B0_P4_R68_D[6:5]=01;  
B0_P0_R21_D[4:0]=0001;  
AL8  
B0_P0_R21_D[4:0]=1000;  
B0_P4_R70_D[5:2]=0010;  
B0_P0_R21_D[4:0]=1001;  
B0_P4_R88_D[6:2]=00001;  
AL11  
AM5  
CDIV_CLKIN input on BCLK2  
LFR_CLKIN input on MCLK  
LFR_CLKIN input on WCLK2  
AL16  
AM6  
CDIV_CLKIN input on GPIO3  
LFR_CLKIN input on WCLK1  
LFR_CLKIN input on BCLK2  
B0_P0_R24_D[7:4]=0000;  
B0_P0_R24_D[7:4]=0001;  
B0_P0_R24_D[7:4]=0011;  
B0_P4_R69_D[5:2]=0010;  
B0_P0_R24_D[7:4]=0100;  
B0_P4_R70_D[5:2]=0010;  
AM10  
AM11  
B0_P0_R24_D[7:4]=0110;  
B0_P4_R72_D[6:5]=01;  
B0_P0_R24_D[7:4]=0010;  
B0_P4_R86_D[6:2]=00001;  
AM12  
LFR_CLKIN input on DIN2  
AM14  
LFR_CLKIN input on GPIO1  
B0_P0_R24_D[7:4]=1000;  
B0_P4_R87_D[6:2]=00001;  
B0_P0_R24_D[7:4]=0101;  
B0_P4_R88_D[6:2]=00001;  
AM15  
AN5  
LFR_CLKIN input on GPIO2  
HF_CLK input on MCLK  
AM16  
AO5  
LFR_CLKIN input on GPIO3  
B0_P0_R24_D[3:0]=0000;  
REF_1MHz_CLK input on MCLK  
B0_P0_R23_D[7]=1;  
B0_P4_R96_D[4:1]=0011;  
Configure B0_P0_R21_D[4:0] and  
B0_P0_R22_D[7:0]  
B0_P4_R65_D[5:2]=0100;  
Configure B0_P0_R21_D[4:0] and  
B0_P0_R22_D[7:0]  
AP4  
CLKOUT output on MISO  
CLKOUT output on DOUT1  
CLKOUT output on BCLK2  
CLKOUT output on GPIO2  
AP6  
CLKOUT output on WCLK1  
CLKOUT output on WCLK2  
CLKOUT output on GPIO1  
B0_P4_R67_D[4:1]=0011;  
Configure B0_P0_R21_D[4:0] and  
B0_P0_R22_D[7:0]  
B0_P4_R69_D[5:2]=0100;  
Configure B0_P0_R21_D[4:0] and  
B0_P0_R22_D[7:0]  
AP9  
AP10  
AP14  
B0_P4_R70_D[5:2]=0100;  
Configure B0_P0_R21_D[4:0] and  
B0_P0_R22_D[7:0]  
B0_P4_R86_D[6:2]=00100;  
Configure B0_P0_R21_D[4:0] and  
B0_P0_R22_D[7:0]  
AP11  
AP15  
B0_P4_R87_D[6:2]=00100;  
Configure B0_P0_R21_D[4:0] and  
B0_P0_R22_D[7:0]  
116  
Copyright © 2014, Texas Instruments Incorporated  
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Table 50 summarizes the register settings that must be applied to configure the terminal assignments for digital  
microphone feature in the device. In Table 50, the letter/number combination represents the row and the column  
number from and in bold type.  
Please be aware that more settings may be necessary to obtain a full functionality matching the application  
requirement.  
Table 50. Multifunction Terminal Register Configuration - Digital Microphone  
Description  
Required Register Setting  
Description  
Required Register Setting  
ADC_MOD_CLK (DigMic clock) on  
MISO_GPO1  
ADC_MOD_CLK (DigMic clock) on  
WCLK2  
AF4  
B0_P4_R96_D[4:1]=0111;  
AF10  
AF13  
AF15  
AF17  
B0_P4_R69_D[5:2]=1010;  
ADC_MOD_CLK (DigMic clock) on  
BCLK2  
ADC_MOD_CLK (DigMic clock) on  
DOUT2  
AF11  
AF14  
AF16  
AF18  
B0_P4_R70_D[5:2]=1010;  
B0_P4_R86_D[6:2]=01010;  
B0_P4_R88_D[6:2]=01010;  
B0_P4_R90_D[6:2]=01010;  
B0_P4_R71_D[4:1]=1010;  
B0_P4_R87_D[6:2]=01010;  
B0_P4_R89_D[6:2]=01010;  
ADC_MOD_CLK (DigMic clock) on  
GPIO1  
ADC_MOD_CLK (DigMic clock) on  
GPIO2  
ADC_MOD_CLK (DigMic clock) on  
GPIO3  
ADC_MOD_CLK (DigMic clock) on  
GPIO4  
ADC_MOD_CLK (DigMic clock) on  
GPIO5  
B0_P0_R81_D[5:4] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R101_D[7:4]=1000;  
B0_P4_R68_D[6:5] = 01;  
B0_P0_R81_D[5:4] = 01;  
B0_P4_R100_D[7] = 1;  
B0_P4_R101_D[7:4]=1000;  
B0_P4_R68_D[6:5] = 01;  
Digital Mic 1 Left channel data on  
DIN1 latched on rising edge of  
DigMic clock  
Digital Mic 1 Left channel data on  
DIN1 latched on falling edge of DigMic  
clock  
AG8  
AG8  
B0_P0_R81_D[3:2] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R101_D[3:0]=1000;  
B0_P4_R68_D[6:5] = 01;  
B0_P0_R81_D[3:2] = 01;  
B0_P4_R100_D[7] = 1;  
B0_P4_R101_D[3:0]=1000;  
B0_P4_R68_D[6:5] = 01;  
Digital Mic 1 Right channel data on  
DIN1 latched on rising edge of  
DigMic clock  
Digital Mic 1 Right channel data on  
DIN1 latched on falling edge of DigMic  
clock  
AG8  
AG8  
B0_P0_R81_D[5:4] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R101_D[7:4]=1001;  
B0_P4_R72_D[6:5] = 01;  
B0_P0_R81_D[5:4] = 01;  
B0_P4_R100_D[7] = 1;  
B0_P4_R101_D[7:4]=1001;  
B0_P4_R72_D[6:5] = 01;  
Digital Mic 1 Left channel data on  
DIN2 latched on rising edge of  
DigMic clock  
Digital Mic 1 Left channel data on  
DIN2 latched on falling edge of DigMic  
clock  
AG12  
AG12  
AG14  
AG14  
AG15  
AG15  
AG16  
AG16  
AG17  
AG17  
AG18  
AG18  
AG12  
AG12  
AG14  
AG14  
AG15  
AG15  
AG16  
AG16  
AG17  
AG17  
AG18  
AG18  
B0_P0_R81_D[3:2] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R101_D[3:0]=1001;  
B0_P4_R72_D[6:5] = 01;  
B0_P0_R81_D[3:2] = 01;  
B0_P4_R100_D[7] = 1;  
B0_P4_R101_D[3:0]=1001;  
B0_P4_R72_D[6:5] = 01;  
Digital Mic 1 Right channel data on  
DIN2 latched on rising edge of  
DigMic clock  
Digital Mic 1 Right channel data on  
DIN2 latched on falling edge of DigMic  
clock  
B0_P0_R81_D[5:4] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R101_D[7:4]=0000;  
B0_P4_R86_D[6:2] = 00001;  
B0_P0_R81_D[5:4] = 01;  
B0_P4_R100_D[7] = 1;  
B0_P4_R101_D[7:4]=0000;  
B0_P4_R86_D[6:2] = 00001;  
Digital Mic 1 Left channel data on  
GPIO1 latched on rising edge of  
DigMic clock  
Digital Mic 1 Left channel data on  
GPIO1 latched on falling edge of  
DigMic clock  
B0_P0_R81_D[3:2] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R101_D[3:0]=0000;  
B0_P4_R86_D[6:2] = 00001;  
B0_P0_R81_D[3:2] = 01;  
B0_P4_R100_D[7] = 1;  
B0_P4_R101_D[3:0]=0000;  
B0_P4_R86_D[6:2] = 00001;  
Digital Mic 1 Right channel data on  
GPIO1 latched on rising edge of  
DigMic clock  
Digital Mic 1 Right channel data on  
GPIO1 latched on falling edge of  
DigMic clock  
B0_P0_R81_D[5:4] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R101_D[7:4]=0001;  
B0_P4_R87_D[6:2] = 00001;  
B0_P0_R81_D[5:4] = 01;  
B0_P4_R100_D[7] = 1;  
B0_P4_R101_D[7:4]=0001;  
B0_P4_R87_D[6:2] = 00001;  
Digital Mic 1 Left channel data on  
GPIO2 latched on rising edge of  
DigMic clock  
Digital Mic 1 Left channel data on  
GPIO2 latched on falling edge of  
DigMic clock  
B0_P0_R81_D[3:2] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R101_D[3:0]=0001;  
B0_P4_R87_D[6:2] = 00001;  
B0_P0_R81_D[3:2] = 01;  
B0_P4_R100_D[7] = 1;  
B0_P4_R101_D[3:0]=0001;  
B0_P4_R87_D[6:2] = 00001;  
Digital Mic 1 Right channel data on  
GPIO2 latched on rising edge of  
DigMic clock  
Digital Mic 1 Right channel data on  
GPIO2 latched on falling edge of  
DigMic clock  
B0_P0_R81_D[5:4] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R101_D[7:4]=0010;  
B0_P4_R88_D[6:2] = 00001;  
B0_P0_R81_D[5:4] = 01;  
B0_P4_R100_D[7] = 1;  
B0_P4_R101_D[7:4]=0010;  
B0_P4_R88_D[6:2] = 00001;  
Digital Mic 1 Left channel data on  
GPIO3 latched on rising edge of  
DigMic clock  
Digital Mic 1 Left channel data on  
GPIO3 latched on falling edge of  
DigMic clock  
B0_P0_R81_D[3:2] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R101_D[3:0]=0010;  
B0_P4_R88_D[6:2] = 00001;  
B0_P0_R81_D[3:2] = 01;  
B0_P4_R100_D[7] = 1;  
B0_P4_R101_D[3:0]=0010;  
B0_P4_R88_D[6:2] = 00001;  
Digital Mic 1 Right channel data on  
GPIO3 latched on rising edge of  
DigMic clock  
Digital Mic 1 Right channel data on  
GPIO3 latched on falling edge of  
DigMic clock  
B0_P0_R81_D[5:4] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R101_D[7:4]=0011;  
B0_P4_R89_D[6:2] = 00001;  
B0_P0_R81_D[5:4] = 01;  
B0_P4_R100_D[7] = 1;  
B0_P4_R101_D[7:4]=0011;  
B0_P4_R89_D[6:2] = 00001;  
Digital Mic 1 Left channel data on  
GPIO4 latched on rising edge of  
DigMic clock  
Digital Mic 1 Left channel data on  
GPIO4 latched on falling edge of  
DigMic clock  
B0_P0_R81_D[3:2] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R101_D[3:0]=0011;  
B0_P4_R89_D[6:2] = 00001;  
B0_P0_R81_D[3:2] = 01;  
B0_P4_R100_D[7] = 1;  
B0_P4_R101_D[3:0]=0011;  
B0_P4_R89_D[6:2] = 00001;  
Digital Mic 1 Right channel data on  
GPIO4 latched on rising edge of  
DigMic clock  
Digital Mic 1 Right channel data on  
GPIO4 latched on falling edge of  
DigMic clock  
B0_P0_R81_D[5:4] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R101_D[7:4]=0100;  
B0_P4_R90_D[6:2] = 00001;  
B0_P0_R81_D[5:4] = 01;  
B0_P4_R100_D[7] = 1;  
B0_P4_R101_D[7:4]=0100;  
B0_P4_R90_D[6:2] = 00001;  
Digital Mic 1 Left channel data on  
GPIO5 latched on rising edge of  
DigMic clock  
Digital Mic 1 Left channel data on  
GPIO5 latched on falling edge of  
DigMic clock  
B0_P0_R81_D[3:2] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R101_D[3:0]=0100;  
B0_P4_R90_D[6:2] = 00001;  
B0_P0_R81_D[3:2] = 01;  
B0_P4_R100_D[7] = 1;  
B0_P4_R101_D[3:0]=0100;  
B0_P4_R90_D[6:2] = 00001;  
Digital Mic 1 Right channel data on  
GPIO5 latched on rising edge of  
DigMic clock  
Digital Mic 1 Right channel data on  
GPIO5 latched on falling edge of  
DigMic clock  
Copyright © 2014, Texas Instruments Incorporated  
117  
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Table 50. Multifunction Terminal Register Configuration - Digital Microphone (continued)  
Description  
Required Register Setting  
Description  
Required Register Setting  
B0_P0_R112_D[5:4] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R102_D[7:4]=1000;  
B0_P4_R68_D[6:5] = 01;  
Configure miniDSP_A  
B0_P0_R112_D[5:4] = 01;  
B0_P4_R100_D[7] = 1;  
DIN1 latched on falling edge of DigMic B0_P4_R102_D[7:4]=1000;  
Digital Mic 2 Left channel data on  
DIN1 latched on rising edge of  
DigMic clock  
Digital Mic 2 Left channel data on  
AH8  
AH8  
clock  
B0_P4_R68_D[6:5] = 01;  
Configure miniDSP_A  
B0_P0_R112_D[3:2] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R102_D[3:0]=1000;  
B0_P4_R68_D[6:5] = 01;  
Configure miniDSP_A  
B0_P0_R112_D[3:2] = 01;  
B0_P4_R100_D[7] = 1;  
DIN1 latched on falling edge of DigMic B0_P4_R102_D[3:0]=1000;  
Digital Mic 2 Right channel data on  
DIN1 latched on rising edge of  
DigMic clock  
Digital Mic 2 Right channel data on  
AH8  
AH8  
clock  
B0_P4_R68_D[6:5] = 01;  
Configure miniDSP_A  
B0_P0_R112_D[5:4] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R102_D[7:4]=1001;  
B0_P4_R72_D[6:5] = 01;  
Configure miniDSP_A  
B0_P0_R112_D[5:4] = 01;  
B0_P4_R100_D[7] = 1;  
DIN2 latched on falling edge of DigMic B0_P4_R102_D[7:4]=1001;  
Digital Mic 2 Left channel data on  
DIN2 latched on rising edge of  
DigMic clock  
Digital Mic 2 Left channel data on  
AH12  
AH12  
AH14  
AH14  
AH15  
AH15  
AH16  
AH16  
AH17  
AH17  
AH18  
AH18  
AH12  
AH12  
AH14  
AH14  
AH15  
AH15  
AH16  
AH16  
AH17  
AH17  
AH18  
AH18  
clock  
B0_P4_R72_D[6:5] = 01;  
Configure miniDSP_A  
B0_P0_R112_D[3:2] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R102_D[3:0]=1001;  
B0_P4_R72_D[6:5] = 01;  
Configure miniDSP_A  
B0_P0_R112_D[3:2] = 01;  
B0_P4_R100_D[7] = 1;  
DIN2 latched on falling edge of DigMic B0_P4_R102_D[3:0]=1001;  
Digital Mic 2 Right channel data on  
DIN2 latched on rising edge of  
DigMic clock  
Digital Mic 2 Right channel data on  
clock  
B0_P4_R72_D[6:5] = 01;  
Configure miniDSP_A  
B0_P0_R112_D[5:4] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R102_D[7:4]=0000;  
B0_P4_R86_D[6:2] = 00001;  
Configure miniDSP_A  
B0_P0_R112_D[5:4] = 01;  
B0_P4_R100_D[7] = 1;  
B0_P4_R102_D[7:4]=0000;  
B0_P4_R86_D[6:2] = 00001;  
Configure miniDSP_A  
Digital Mic 2 Left channel data on  
GPIO1 latched on rising edge of  
DigMic clock  
Digital Mic 2 Left channel data on  
GPIO1 latched on falling edge of  
DigMic clock  
B0_P0_R112_D[3:2] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R102_D[3:0]=0000;  
B0_P4_R86_D[6:2] = 00001;  
Configure miniDSP_A  
B0_P0_R112_D[3:2] = 01;  
B0_P4_R100_D[7] = 1;  
B0_P4_R102_D[3:0]=0000;  
B0_P4_R86_D[6:2] = 00001;  
Configure miniDSP_A  
Digital Mic 2 Right channel data on  
GPIO1 latched on rising edge of  
DigMic clock  
Digital Mic 2 Right channel data on  
GPIO1 latched on falling edge of  
DigMic clock  
B0_P0_R112_D[5:4] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R102_D[7:4]=0001;  
B0_P4_R87_D[6:2] = 00001;  
Configure miniDSP_A  
B0_P0_R112_D[5:4] = 01;  
B0_P4_R100_D[7] = 1;  
B0_P4_R102_D[7:4]=0001;  
B0_P4_R87_D[6:2] = 00001;  
Configure miniDSP_A  
Digital Mic 2 Left channel data on  
GPIO2 latched on rising edge of  
DigMic clock  
Digital Mic 2 Left channel data on  
GPIO2 latched on falling edge of  
DigMic clock  
B0_P0_R112_D[3:2] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R102_D[3:0]=0001;  
B0_P4_R87_D[6:2] = 00001;  
Configure miniDSP_A  
B0_P0_R112_D[3:2] = 01;  
B0_P4_R100_D[7] = 1;  
B0_P4_R102_D[3:0]=0001;  
B0_P4_R87_D[6:2] = 00001;  
Configure miniDSP_A  
Digital Mic 2 Right channel data on  
GPIO2 latched on rising edge of  
DigMic clock  
Digital Mic 2 Right channel data on  
GPIO2 latched on falling edge of  
DigMic clock  
B0_P0_R112_D[5:4] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R102_D[7:4]=0010;  
B0_P4_R88_D[6:2] = 00001;  
Configure miniDSP_A  
B0_P0_R112_D[5:4] = 01;  
B0_P4_R100_D[7] = 1;  
B0_P4_R102_D[7:4]=0010;  
B0_P4_R88_D[6:2] = 00001;  
Configure miniDSP_A  
Digital Mic 2 Left channel data on  
GPIO3 latched on rising edge of  
DigMic clock  
Digital Mic 2 Left channel data on  
GPIO3 latched on falling edge of  
DigMic clock  
B0_P0_R112_D[3:2] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R102_D[3:0]=0010;  
B0_P4_R88_D[6:2] = 00001;  
Configure miniDSP_A  
B0_P0_R112_D[3:2] = 01;  
B0_P4_R100_D[7] = 1;  
B0_P4_R102_D[3:0]=0010;  
B0_P4_R88_D[6:2] = 00001;  
Configure miniDSP_A  
Digital Mic 2 Right channel data on  
GPIO3 latched on rising edge of  
DigMic clock  
Digital Mic 2 Right channel data on  
GPIO3 latched on falling edge of  
DigMic clock  
B0_P0_R112_D[5:4] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R102_D[7:4]=0011;  
B0_P4_R89_D[6:2] = 00001;  
Configure miniDSP_A  
B0_P0_R112_D[5:4] = 01;  
B0_P4_R100_D[7] = 1;  
B0_P4_R102_D[7:4]=0011;  
B0_P4_R89_D[6:2] = 00001;  
Configure miniDSP_A  
Digital Mic 2 Left channel data on  
GPIO4 latched on rising edge of  
DigMic clock  
Digital Mic 2 Left channel data on  
GPIO4 latched on falling edge of  
DigMic clock  
B0_P0_R112_D[3:2] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R102_D[3:0]=0011;  
B0_P4_R89_D[6:2] = 00001;  
Configure miniDSP_A  
B0_P0_R112_D[3:2] = 01;  
B0_P4_R100_D[7] = 1;  
B0_P4_R102_D[3:0]=0011;  
B0_P4_R89_D[6:2] = 00001;  
Configure miniDSP_A  
Digital Mic 2 Right channel data on  
GPIO4 latched on rising edge of  
DigMic clock  
Digital Mic 2 Right channel data on  
GPIO4 latched on falling edge of  
DigMic clock  
B0_P0_R112_D[5:4] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R102_D[7:4]=0100;  
B0_P4_R90_D[6:2] = 00001;  
Configure miniDSP_A  
B0_P0_R112_D[5:4] = 01;  
B0_P4_R100_D[7] = 1;  
B0_P4_R102_D[7:4]=0100;  
B0_P4_R90_D[6:2] = 00001;  
Configure miniDSP_A  
Digital Mic 2 Left channel data on  
GPIO5 latched on rising edge of  
DigMic clock  
Digital Mic 2 Left channel data on  
GPIO5 latched on falling edge of  
DigMic clock  
B0_P0_R112_D[3:2] = 01;  
B0_P4_R100_D[7] = 0;  
B0_P4_R102_D[3:0]=0100;  
B0_P4_R90_D[6:2] = 00001;  
Configure miniDSP_A  
B0_P0_R112_D[3:2] = 01;  
B0_P4_R100_D[7] = 1;  
B0_P4_R102_D[3:0]=0100;  
B0_P4_R90_D[6:2] = 00001;  
Configure miniDSP_A  
Digital Mic 2 Right channel data on  
GPIO5 latched on rising edge of  
DigMic clock  
Digital Mic 2 Right channel data on  
GPIO5 latched on falling edge of  
DigMic clock  
Table 51 summarizes the register settings that must be applied to configure the terminal assignments for the  
audio serial interfaces. In Table 51, the letter/number combination represents the row and the column number  
from Table 46 and Table 47 in bold type.  
Please be aware that more settings may be necessary to obtain a full audio serial interface definition matching  
the application requirement (for example B0_P4_R1-R16 for Audio Serial Interface 1, B0_P4_R17-R32 for Audio  
Serial Interface 2, and B0_P4_R33-R48 for Audio Serial Interface 3).  
118  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Table 51. Multifunction Terminal Register Configuration - Audio Serial Interfaces  
Description  
Required Register Setting  
Description  
Required Register Setting  
B0_P4_R65_D[5:2]=0001;  
B0_P4_R10_D[7:5]=001;  
Configure B0_P4_R14_D[3:0]  
B0_P4_R65_D[5:2]=0001;  
B0_P4_R10_D[7:5]=000;  
H6  
I10  
ASI1 WCLK Output on WCLK1  
ASI2 WCLK Output for WCLK2  
H6  
I10  
ASI1 WCLK Input on WCLK1  
B0_P4_R69_D[5:2]=0001;  
B0_P4_R26_D5=1;  
B0_P4_R53_D[6:4]=000;  
Configure B0_P4_R30_D[3:0]  
B0_P4_R69_D[5:2]=0010;  
B0_P4_R26_D5=0;  
B0_P4_R53_D[6:4]=000;  
ASI2 WCLK Input for WCLK2  
B0_P4_R87_D[6:2]=10100;  
B0_P4_R55_D[6:4]=010;  
Configure B0_P4_R46_D[3:0]  
B0_P4_R87_D[6:2]=00001;  
B0_P4_R55_D[6:4]=010;  
J15  
K7  
ASI3 WCLK Output on GPIO2  
ASI1 BCLK Output on BCLK1  
J15  
K7  
ASI3 WCLK Input on GPIO2  
ASI1 BCLK Input on BCLK1  
B0_P4_R10_D[4:2]=001;  
Configure B0_P4_R14_D[7:4]  
B0_P4_R10_D[4:2]=000  
B0_P4_R53_D[2:0]=000;  
B0_P4_R26_D2 = 1;  
B0_P4_R70_D[5:2]=0001;  
Configure B0_P4_R30_D[7:4]  
B0_P4_R53_D[2:0]=000;  
B0_P4_R26_D2=0;  
B0_P4_R70_D[5:2]=0001;  
L11  
ASI2 BCLK Output on BCLK2  
ASI3 BCLK Output on GPIO1  
L11  
ASI2 BCLK Input on BCLK2  
B0_P4_R55_D[2:0]=001;  
B0_P4_R86_D[6:2=10101;  
Configure B0_P4_R46_D[7:4]  
B0_P4_R55_D[2:0]=001;  
B0_P4_R86_D[6:2=00001;  
M14  
N9  
M14  
O9  
ASI3 BCLK Input on GPIO1  
B0_P4_R4_D[7:6]=00 or 01 or 10 or 11;  
B0_P4_R6_D[7]=0;  
B0_P4_R67_D[4:1]=0001;  
B0_P4_R4_D[7:6] = 01 or 10 or 11;  
B0_P4_R6_D[7]=1;  
B0_P4_R67_D[4:1]=0001;  
Single terminal multi-channel ASI1  
DOUT on DOUT1  
ASI1 DOUT (L1,R1) on DOUT1  
ASI1 DOUT (L2,R2) on DOUT2  
ASI1 DOUT (L3,R3) on MISO_GPO1  
ASI1 DOUT (L3,R3) on GPIO1  
ASI1 DOUT (L4,R4) on WCLK2  
ASI1 DOUT (L4,R4) on GPIO2  
B0_P4_R4_D[7:6] = 01 or 10 or 11;  
ASI1 DOUT (L2,R2) on MISO_GPO1 B0_P4_R6_D[7]=1;  
B0_P4_R96_D[4:1]=1101;  
B0_P4_R4_D[7:6] = 01 or 10 or 11;  
B0_P4_R6_D[7]=1;  
B0_P4_R71_D[4:1]=1101;  
P4  
P13  
Q4  
B0_P4_R4_D[7:6] = 01 or 10 or 11;  
B0_P4_R6_D[7]=1;  
B0_P4_R87_D[6:2]=01101;  
B0_P4_R4_D[7:6] = 10 or 11;  
B0_P4_R6_D[7]=1;  
B0_P4_R96_D[4:1]=1110;  
P15  
Q11  
Q15  
ASI1 DOUT (L2,R2) on GPIO2  
ASI1 DOUT (L3,R3) on BCLK2  
ASI1 DOUT (L3,R3) on GPIO2  
B0_P4_R4_D[7:6] = 10 or 11;  
B0_P4_R6_D[7]=1;  
B0_P4_R70_D[5:2]=1110;  
B0_P4_R4_D[7:6] = 10 or 11;  
B0_P4_R6_D[7]=1;  
B0_P4_R86_D[6:2]=01110;  
Q14  
R10  
R15  
B0_P4_R4_D[7:6] = 10 or 11;  
B0_P4_R6_D[7]=1;  
B0_P4_R87_D[6:2]=01110;  
B0_P4_R4_D[7:6] = 11;  
B0_P4_R6_D[7]=1;  
B0_P4_R69_D[5:2]=1111;  
B0_P4_R4_D[7:6] = 11;  
B0_P4_R6_D[7]=1;  
B0_P4_R86_D[6:2]=01111;  
B0_P4_R4_D[7:6] = 11;  
B0_P4_R6_D[7]=1;  
B0_P4_R87_D[6:2]=01111;  
R14  
S13  
ASI1 DOUT (L4,R4) on GPIO1  
ASI2 DOUT on DOUT2  
B0_P4_R71_D[4:1]=0001;  
B0_P4_R89_D[6:2]=11101;  
B0_P4_R4_D[7:6] = 00 or 01 or 10 or  
Single terminal multi-channel ASI1 DIN 11;  
T17  
ASI3 DOUT on GPIO4  
U8  
on DIN1  
B0_P4_R6_D[7]= 0;  
B0_P4_R68_D[6:5]=01;  
B0_P4_R4_D[7:6] = 01 or 10 or 11;  
B0_P4_R6_D[7]= 1;  
B0_P4_R49_D[4:0]=00001;  
B0_P4_R68_D[6:5]=01;  
B0_P4_R4_D[7:6] = 01 or 10 or 11;  
B0_P4_R6_D[7]= 1;  
B0_P4_R50_D[4:0]=00010;  
B0_P4_R72_D[6:5]=01;  
V8  
ASI1 DIN (L1,R1) on DIN1  
ASI1 DIN (L2,R2) on GPIO2  
ASI1 DIN (L3,R3) on BCLK2  
W12  
W16  
X14  
ASI1 DIN (L2,R2) on DIN2  
ASI1 DIN (L2,R2) on GPIO3  
ASI1 DIN (L3,R3) on GPIO1  
B0_P4_R4_D[7:6] = 01 or 10 or 11;  
B0_P4_R6_D[7]= 1;  
B0_P4_R50_D[4:0]=00101;  
B0_P4_R4_D[7:6] = 01 or 10 or 11;  
B0_P4_R6_D[7]= 1;  
B0_P4_R50_D[4:0]=00110;  
W15  
X11  
B0_P4_R4_D[7:6] = 10 or 11;  
B0_P4_R6_D[7]= 1;  
B0_P4_R51_D[4:0]=01100;  
B0_P4_R70_D[5:2]=1110;  
B0_P4_R4_D[7:6] = 10 or 11;  
B0_P4_R6_D[7]= 1;  
B0_P4_R51_D[4:0]=00100;  
B0_P4_R86_D[6:2]=01110;  
B0_P4_R4_D[7:6] = 10 or 11;  
B0_P4_R6_D[7]= 1;  
B0_P4_R51_D[4:0]=00101;  
B0_P4_R87_D[6:2]=01110;  
B0_P4_R4_D[7:6] = 10 or 11;  
B0_P4_R6_D[7]= 1;  
B0_P4_R51_D[4:0]=00110;  
B0_P4_R88_D[6:2]=01110;  
X15  
X18  
Y14  
ASI1 DIN (L3,R3) on GPIO2  
ASI1 DIN (L3,R3) on GPIO5  
ASI1 DIN (L4,R4) on GPIO1  
X16  
Y10  
Y15  
ASI1 DIN (L3,R3) on GPIO3  
ASI1 DIN (L4,R4) on WCLK2  
ASI1 DIN (L4,R4) on GPIO2  
B0_P4_R4_D[7:6] = 10 or 11;  
B0_P4_R6_D[7]= 1;  
B0_P4_R51_D[4:0]=01000;  
B0_P4_R90_D[6:2]=01110;  
B0_P4_R4_D[7:6] = 11;  
B0_P4_R6_D[7]= 1;  
B0_P4_R51_D[4:0]=01110;  
B0_P4_R69_D[5:2]=1111;  
B0_P4_R4_D[7:6] = 11;  
B0_P4_R6_D[7]= 1;  
B0_P4_R51_D[4:0]=00100;  
B0_P4_R86_D[6:2]=01111;  
B0_P4_R4_D[7:6] = 11;  
B0_P4_R6_D[7]= 1;  
B0_P4_R51_D[4:0]=00101;  
B0_P4_R87_D[6:2]=01111;  
B0_P4_R4_D[7:6] = 11;  
B0_P4_R6_D[7]= 1;  
B0_P4_R51_D[4:0]=00110;  
B0_P4_R88_D[6:2]=01111;  
B0_P4_R4_D[7:6] = 11;  
B0_P4_R6_D[7]= 1;  
B0_P4_R51_D[4:0]=01000;  
B0_P4_R90_D[6:2]=01111;  
Y16  
ASI1 DIN (L4,R4) on GPIO3  
ASI2 DIN on DIN2  
Y18  
ASI1 DIN (L4,R4) on GPIO5  
ASI3 DIN on GPIO3  
B0_P4_R54_D[2:0]=000;  
B0_P4_R72_D[6:5]=01;  
B0_P4_R56_D[2:0]=011;  
B0_P4_R88_D[6:2]=11101;  
Z12  
AA16  
AB14  
B0_P4_R11_D[7]=1;  
B0_P4_R16_D[2:0]=001;  
B0_P4_R86_D[6:2]=10111;  
Configure B0_P4_R1115_D[7:4]  
B0_P4_R16_D[2:0]=001;  
B0_P4_R86_D[6:2]=00001;  
AB14  
ASI1 ADC BCLK output on GPIO1  
ASI1 ADC BCLK input on GPIO1  
Copyright © 2014, Texas Instruments Incorporated  
119  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Table 51. Multifunction Terminal Register Configuration - Audio Serial Interfaces (continued)  
Description  
Required Register Setting  
Description  
Required Register Setting  
B0_P4_R11_D[7]=1;  
B0_P4_R16_D[2:0]=010;  
B0_P4_R87_D[6:2]=10111;  
Configure B0_P4_R115_D[7:4]  
B0_P4_R16_D[2:0]=010;  
B0_P4_R87_D[6:2]=00001;  
AB15  
AB16  
AB17  
AC14  
AC15  
AC16  
AC17  
AD14  
AD15  
AD16  
AD17  
AE14  
AE15  
AE16  
AE17  
ASI1 ADC BCLK output on GPIO2  
AB15  
AB16  
AB17  
AC14  
AC15  
AC16  
AC17  
AD14  
AD15  
AD16  
AD17  
AE14  
AE15  
AE16  
AE17  
ASI1 ADC BCLK input on GPIO2  
B0_P4_R11_D[7]=1;  
B0_P4_R16_D[2:0]=011;  
B0_P4_R88_D[6:2]=10111;  
Configure B0_P4_R115_D[7:4]  
B0_P4_R16_D[2:0]=011;  
B0_P4_R88_D[6:2]=00001;  
ASI1 ADC BCLK output on GPIO3  
ASI1 ADC BCLK output on GPIO4  
ASI2 ADC BCLK output on GPIO1  
ASI2 ADC BCLK output on GPIO2  
ASI2 ADC BCLK output on GPIO3  
ASI2 ADC BCLK output on GPIO4  
ASI1 ADC WCLK output on GPIO1  
ASI1 ADC WCLK output on GPIO2  
ASI1 ADC WCLK output on GPIO3  
ASI1 ADC WCLK output on GPIO4  
ASI2 ADC WCLK output on GPIO1  
ASI2 ADC WCLK output on GPIO2  
ASI2 ADC WCLK output on GPIO3  
ASI2 ADC WCLK output on GPIO4  
ASI1 ADC BCLK input on GPIO3  
ASI1 ADC BCLK input on GPIO4  
ASI2 ADC BCLK input on GPIO1  
ASI2 ADC BCLK input on GPIO2  
ASI2 ADC BCLK input on GPIO3  
ASI2 ADC BCLK input on GPIO4  
ASI1 ADC WCLK input on GPIO1  
ASI1 ADC WCLK input on GPIO2  
ASI1 ADC WCLK input on GPIO3  
ASI1 ADC WCLK input on GPIO4  
ASI2 ADC WCLK input on GPIO1  
ASI2 ADC WCLK input on GPIO2  
ASI2 ADC WCLK input on GPIO3  
ASI2 ADC WCLK input on GPIO4  
B0_P4_R11_D[7]=1;  
B0_P4_R16_D[2:0]=100;  
B0_P4_R89_D[6:2]=10111;  
Configure B0_P4_R115_D[7:4]  
B0_P4_R16_D[2:0]=100;  
B0_P4_R89_D[6:2]=00001;  
B0_P4_R27_D[7]=1;  
B0_P4_R32_D[2:0]=001;  
B0_P4_R86_D[6:2]=11001;  
Configure B0_P4_R116_D[7:4]  
B0_P4_R32_D[2:0]=001;  
B0_P4_R86_D[6:2]=00001;  
B0_P4_R27_D[7]=1;  
B0_P4_R32_D[2:0]=010;  
B0_P4_R87_D[6:2]=11001;  
Configure B0_P4_R116_D[7:4]  
B0_P4_R32_D[2:0]=010;  
B0_P4_R87_D[6:2]=00001;  
B0_P4_R27_D[7]=1;  
B0_P4_R32_D[2:0]=011;  
B0_P4_R88_D[6:2]=11001;  
Configure B0_P4_R116_D[7:4]  
B0_P4_R32_D[2:0]=011;  
B0_P4_R88_D[6:2]=00001;  
B0_P4_R27_D[7]=1;  
B0_P4_R32_D[2:0]=100;  
B0_P4_R89_D[6:2]=11001;  
Configure B0_P4_R116_D[7:4]  
B0_P4_R32_D[2:0]=100;  
B0_P4_R89_D[6:2]=00001;  
B0_P4_R11_D[6]=1;  
B0_P4_R16_D[6:4]=001;  
B0_P4_R86_D[6:2]=10110;  
Configure B0_P4_R115_D[3:0]  
B0_P4_R16_D[6:4]=001;  
B0_P4_R86_D[6:2]=00001;  
B0_P4_R11_D[6]=1;  
B0_P4_R16_D[6:4]=010;  
B0_P4_R87_D[6:2]=10110;  
Configure B0_P4_R115_D[3:0]  
B0_P4_R16_D[6:4]=010;  
B0_P4_R87_D[6:2]=00001;  
B0_P4_R11_D[6]=1;  
B0_P4_R16_D[6:4]=011;  
B0_P4_R88_D[6:2]=10110;  
Configure B0_P4_R115_D[3:0]  
B0_P4_R16_D[6:4]=011;  
B0_P4_R88_D[6:2]=00001;  
B0_P4_R11_D[6]=1;  
B0_P4_R16_D[6:4]=100;  
B0_P4_R89_D[6:2]=10110;  
Configure B0_P4_R115_D[3:0]  
B0_P4_R16_D[6:4]=100;  
B0_P4_R89_D[6:2]=00001;  
B0_P4_R27_D[6]=1;  
B0_P4_R32_D[6:4]=001;  
B0_P4_R86_D[6:2]=11000;  
Configure B0_P4_R116_D[3:0]  
B0_P4_R32_D[6:4]=001;  
B0_P4_R86_D[6:2]=00001;  
B0_P4_R27_D[6]=1;  
B0_P4_R32_D[6:4]=010;  
B0_P4_R87_D[6:2]=11000;  
Configure B0_P4_R116_D[3:0]  
B0_P4_R32_D[6:4]=010;  
B0_P4_R87_D[6:2]=00001;  
B0_P4_R27_D[6]=1;  
B0_P4_R32_D[6:4]=011;  
B0_P4_R88_D[6:2]=11000;  
Configure B0_P4_R116_D[3:0]  
B0_P4_R32_D[6:4]=011;  
B0_P4_R88_D[6:2]=00001;  
B0_P4_R27_D[6]=1;  
B0_P4_R32_D[6:4]=100;  
B0_P4_R89_D[6:2]=11000;  
Configure B0_P4_R116_D[3:0]  
B0_P4_R32_D[6:4]=100;  
B0_P4_R89_D[6:2]=00001;  
8.4 Device Functional Modes  
Functions  
Modes  
Details  
Single Ended Input Mode  
Differential Input Mode  
Analog Inputs  
See ADC Signal Routing for details.  
High Input Impedance Mode  
Low Input Impedance Mode  
Analog Inputs  
Digital Microphone/PDM Input  
Audio Inputs  
See Digital Microphone Function for  
details.  
120  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Device Functional Modes (continued)  
Single-ended Output Mode  
Differential Output Mode  
Line Output  
See Line Out Amplifier  
Configurations for details.  
Built-in Processing Block (PRB) Mode  
Programmable miniDSP Mode  
Signal Processing  
Digital Audio Interface  
See ADC Processing Blocks, DAC  
Processing Blocks and for details.  
WCLK and BCLK Master Mode  
WCLK and BCLK Slave Mode  
See Digital Audio Interfaces for  
details.  
I2S Mode  
LJF Mode  
RJF Mode  
DSP Mode  
PCM Mode  
TDM Mode  
SPI Mode  
I2C Mode  
Control Interface  
SAR ADC  
See Control Interfaces for details.  
See SAR ADC for details.  
Internal Reference Mode  
External Reference Mode  
Auxiliary Voltage Measurement Mode  
Resistive Measurement Mode  
Pulsed Mode  
Level Mode  
Interrupts  
See Interrupt Generation and  
Diagnostic Flags for details.  
Terminal Muxing  
Multifunction Terminals  
See Multifunction Terminals for  
details.  
8.5 Programming  
To enable the TLV320AIC3268 in a particular application, it needs to be comfigured or programmed. Initialization  
Setup describes various configurations required to enable the device.  
To enable use of miniDSP in configurable modes, PurePath tools are provided. Please contact Texas  
Instruments for more details.  
8.6 Register Maps  
8.6.1 Register Map Summary  
Table 52. Summary of Register Map  
Decimal  
Hex  
DESCRIPTION  
BOOK  
NO.  
PAGE  
NO.  
REG.  
NO.  
BOOK  
NO.  
PAGE  
NO.  
REG.  
NO.  
0
0
0
0
0
0
0
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
Page Select Register  
Software Reset Register  
Reserved Registers  
1
2-3  
0x02-  
0x03  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
Clock Control Register 1, Clock Input Multiplexers  
Clock Control Register 2, PLL Input Multiplexer  
Clock Control Register 3, PLL P and R Values  
Clock Control Register 4, PLL J Value  
5
6
7
8
Clock Control Register 5, PLL D Values (MSB)  
Clock Control Register 6, PLL D Values (LSB)  
Clock Control Register 7, PLL_CLKIN Divider  
Clock Control Register 8, NDAC Divider Values  
Clock Control Register 9, MDAC Divider Values  
DAC OSR Control Register 1, MSB Value  
DAC OSR Control Register 2, LSB Value  
9
10  
11  
12  
13  
14  
Copyright © 2014, Texas Instruments Incorporated  
121  
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Register Maps (continued)  
Table 52. Summary of Register Map (continued)  
Decimal  
Hex  
DESCRIPTION  
BOOK  
NO.  
PAGE  
NO.  
REG.  
NO.  
BOOK  
NO.  
PAGE  
NO.  
REG.  
NO.  
0
0
15-17  
0x00  
0x00  
0x0F-  
0x11  
Reserved Registers  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33-35  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
Clock Control Register 10, NADC Values  
Clock Control Register 11, MADC Values  
ADC Oversampling (AOSR) Register  
CLKOUT MUX  
Clock Control Register 12, CLKOUT M Divider Value  
Timer clock  
Low Frequency Clock Generation Control  
High Frequency Clock Generation Control 1  
High Frequency Clock Generation Control 2  
High Frequency Clock Generation Control 3  
High Frequency Clock Generation Control 4  
High Frequency Clock Trim Control 1  
High Frequency Clock Trim Control 2  
High Frequency Clock Trim Control 3  
High Frequency Clock Trim Control 4  
Reserved Registers  
0x21-  
0x23  
0
0
0
0
0
0
0
0
36  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x24  
0x25  
0x26  
ADC Flag Register  
DAC Flag Register  
DAC Flag Register  
Reserved Registers  
37  
38  
39-41  
0x27-  
0x29  
0
0
0
0
0
0
0
0
0
0
42  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x2A  
0x2B  
0x2C  
0x2D  
Sticky Flag Register 1  
Reserved Register  
43  
44  
Sticky Flag Register 2  
Sticky Flag Register 3  
Reserved Register  
45  
46-47  
0x2E-  
0x2F  
0
0
0
0
0
0
0
0
0
0
48  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x30  
0x31  
0x32  
0x33  
INT1 Interrupt Control  
INT2 Interrupt Control  
SAR Control 1  
49  
50  
51  
Interrupt Format Control Register  
Reserved Registers  
52-59  
0x34-  
0x3B  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
DAC Processing Block and miniDSP Power Control  
ADC Processing Block Control  
Reserved Register  
Primary DAC Power and Soft-Stepping Control  
Primary DAC Master Volume Configuration  
Primary DAC Left Volume Control Setting  
Primary DAC Right Volume Control Setting  
Headset Detection  
Reserved Register  
Reserved Register  
122  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Register Maps (continued)  
Table 52. Summary of Register Map (continued)  
Decimal  
Hex  
DESCRIPTION  
BOOK  
NO.  
PAGE  
NO.  
REG.  
NO.  
BOOK  
NO.  
PAGE  
NO.  
REG.  
NO.  
0
0
0
0
70  
0x00  
0x00  
0x00  
0x00  
0x46  
Reserved Register  
71-80  
0x47-  
0x50  
Reserved Registers  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
ADC Channel Power Control  
ADC Fine Gain Volume Control  
Left ADC Volume Control  
Right ADC Volume Control  
ADC Phase Control  
Left AGC Control 1  
Left AGC Control 2  
Left AGC Control 3  
Left AGC Attack Time  
Left AGC Decay Time  
Left AGC Noise Debounce  
Left AGC Signal Debounce  
Left AGC Gain  
Right AGC Control 1  
Right AGC Control 2  
Right AGC Control 3  
Right AGC Attack Time  
Right AGC Decay Time  
Right AGC Noise Debounce  
Right AGC Signal Debounce  
Right AGC Gain  
102-111 0x00  
0x66-  
0x6F  
Reserved Registers  
0
0
0
0
112  
0x00  
0x00  
0x00  
0x70  
Digital Microphone 2 Control  
Reserved Registers  
113-114 0x00  
0x71-  
0x72  
0
0
0
0
115  
0x00  
0x00  
0x00  
0x73  
I2C Interface Miscellaneous Control  
Reserved Registers  
116-119 0x00  
0x74-  
0x77  
0
0
0
0
120  
0x00  
0x00  
0x00  
0x78  
miniDSP Control Register access  
Reserved Registers  
121-126 0x00  
0x79-  
0x7E  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
127  
0
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x7F  
0x00  
0x01  
0x02  
0x03  
0x04  
Book Selection Register  
Page Select Register  
1
Power Configuration Register  
Reserved Register  
2
3
Left DAC PowerTune Configuration Register  
Right DAC PowerTune Configuration Register  
Reserved Registers  
4
5-7  
0x05-  
0x07  
0
0
0
1
1
1
8
0x00  
0x00  
0x00  
0x01  
0x01  
0x01  
0x08  
0x09  
0x0A  
Common Mode Register  
9
Headphone Output Driver Control  
Receiver Output Driver Control  
10  
Copyright © 2014, Texas Instruments Incorporated  
123  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Register Maps (continued)  
Table 52. Summary of Register Map (continued)  
Decimal  
Hex  
DESCRIPTION  
BOOK  
NO.  
PAGE  
NO.  
REG.  
NO.  
BOOK  
NO.  
PAGE  
NO.  
REG.  
NO.  
0
0
0
1
1
1
11  
0x00  
0x00  
0x00  
0x01  
0x01  
0x01  
0x0B  
0x0C  
Headphone Output Driver De-pop Control  
Receiver Output Driver De-Pop Control  
Reserved Registers  
12  
13-16  
0x0D-  
0x10  
0
0
0
0
1
1
1
1
17  
0x00  
0x00  
0x00  
0x00  
0x01  
0x01  
0x01  
0x01  
0x11  
0x12  
0x13  
Mixer Amplifier Control  
18  
Left ADC PGA to Left Mixer Amplifier (MAL) Volume Control  
Right ADC PGA to Right Mixer Amplifier (MAR) Volume Control  
Reserved Registers  
19  
20-21  
0x14-  
0x15  
0
0
0
1
1
1
22  
0x00  
0x00  
0x00  
0x01  
0x01  
0x01  
0x16  
0x17  
Lineout Amplifier Control 1  
Lineout Amplifier Control 2  
Reserved  
23  
24-26  
0x18-  
0x1A  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43-44  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
Headphone Amplifier Control 1  
Headphone Amplifier Control 2  
Headphone Amplifier Control 3  
Reserved Register  
HPL Driver Volume Control  
HPR Driver Volume Control  
Reserved Register  
Reserved Register  
Ground Centered Headphone Offset Correction Control  
Receiver Amplifier Control 1  
Receiver Amplifier Control 2  
Receiver Amplifier Control 3  
Receiver Amplifier Control 4  
Receiver Amplifier Control 5  
Receiver Amplifier Control 6  
Receiver Amplifier Control 7  
Reserved Registers  
0x2B-  
0x2C  
0
0
0
0
0
1
1
1
1
1
45  
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
0x01  
0x01  
0x01  
0x01  
0x2D  
0x2E  
0x2F  
0x30  
Speaker Amplifier Control 1  
Speaker Amplifier Control 2  
Speaker Amplifier Control 3  
Speaker Amplifier Volume Controls  
Reserved Registers  
46  
47  
48  
49-50  
0x31-  
0x32  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
51  
52  
53  
54  
55  
56  
57  
58  
59  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
Microphone Bias Control  
Input Select 1 for Left Microphone PGA P-Terminal  
Input Select 2 for Left Microphone PGA P-Terminal  
Input Select for Left Microphone PGA M-Terminal  
Input Select 1 for Right Microphone PGA P-Terminal  
Input Select 2 for Right Microphone PGA P-Terminal  
Input Select for Right Microphone PGA M-Terminal  
Input Common Mode Control  
Left Microphone PGA Control  
124  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Register Maps (continued)  
Table 52. Summary of Register Map (continued)  
Decimal  
Hex  
DESCRIPTION  
BOOK  
NO.  
PAGE  
NO.  
REG.  
NO.  
BOOK  
NO.  
PAGE  
NO.  
REG.  
NO.  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
60  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
Right Microphone PGA Control  
ADC PowerTune Configuration Register  
ADC Analog PGA Gain Flag Register  
DAC Analog Gain Flags Register 1  
DAC Analog Gain Flags Register 2  
Analog Bypass Gain Flags Register  
Driver Power-Up Flags Register  
Reserved Registers  
61  
62  
63  
64  
65  
66  
67-68  
0x43-  
0x44  
0
0
1
1
69  
0x00  
0x00  
0x01  
0x01  
0x45  
Over current Flags  
Reserved Registers  
67-76  
0x43-  
0x4C  
0
0
1
1
77  
0x00  
0x00  
0x01  
0x01  
0x4D  
Reserved Registers  
Reserved Registers  
78-118  
0x4E-  
0x76  
0
0
0
0
0
1
1
1
1
1
119  
120  
121  
122  
0x00  
0x00  
0x00  
0x00  
0x01  
0x01  
0x01  
0x01  
0x01  
0x77  
0x78  
0x79  
0x7A  
Headset Detection Tuning Register 1  
Headset Detection Tuning Register 2  
Reserved Register  
Reference Powerup Control  
Reserved Registers  
123-127 0x00  
0x7B-  
0x7F  
0
0
0
0
0
3
3
3
3
3
0
0x00  
0x00  
0x00  
0x00  
0x00  
0x03  
0x03  
0x03  
0x03  
0x03  
0x00  
0x01  
0x02  
0x03  
Page Select Register  
1
Reserved Register  
2
Primary SAR ADC Control  
Primary SAR ADC Conversion Mode  
Reserved Registers  
3
4-5  
0x04-  
0x05  
0
0
3
3
6
0x00  
0x00  
0x03  
0x03  
0x06  
SAR Reference Control  
Reserved Registers  
7-8  
0x07-  
0x08  
0
0
0
3
3
3
9
0x00  
0x00  
0x00  
0x03  
0x03  
0x03  
0x09  
0x0A  
SAR ADC Flags Register 1  
SAR ADC Flags Register 2  
Reserved Registers  
10  
11-12  
0x0B-  
0x0C  
0
0
0
0
0
0
0
0
0
0
0
0
0
3
3
3
3
3
3
3
3
3
3
3
3
3
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
SAR ADC Buffer Mode Control  
Reserved Register  
Scan Mode Timer Control  
Reserved Register  
SAR ADC Clock Control  
SAR ADC Buffer Mode Data Read Control  
SAR ADC Measurement Control  
Reserved Register  
SAR ADC Measurement Threshold Flags  
IN1L Max Threshold Check Control 1  
IN1L Max Threshold Check Control 2  
IN1L Min Threshold Check Control 1  
IN1L Min Threshold Check Control 2  
Copyright © 2014, Texas Instruments Incorporated  
125  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Register Maps (continued)  
Table 52. Summary of Register Map (continued)  
Decimal  
Hex  
DESCRIPTION  
BOOK  
NO.  
PAGE  
NO.  
REG.  
NO.  
BOOK  
NO.  
PAGE  
NO.  
REG.  
NO.  
0
0
0
0
0
0
0
0
0
3
3
3
3
3
3
3
3
3
26  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
IN1R Max Threshold Check Control 1  
IN1R Max Threshold Check Control 2  
IN1R Min Threshold Check Control 1  
IN1R Min Threshold Check Control 2  
TEMP Max Threshold Check Control 1  
TEMP Max Threshold Check Control 2  
TEMP Min Threshold Check Control 1  
TEMP Min Threshold Check Control 2  
Reserved Registers  
27  
28  
29  
30  
31  
32  
33  
34-53  
0x22-  
0x35  
0
0
0
0
0
0
0
3
3
3
3
3
3
3
54  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
IN1L Measurement Data (MSB)  
IN1L Measurement Data (LSB)  
IN1R Measurement Data (MSB)  
IN1R Measurement Data (LSB)  
VBAT Measurement Data (MSB)  
VBAT Measurement Data (LSB)  
Reserved Registers  
55  
56  
57  
58  
59  
60-65  
0x3C-  
0x41  
0
0
0
0
0
3
3
3
3
3
66  
0x00  
0x00  
0x00  
0x00  
0x00  
0x03  
0x03  
0x03  
0x03  
0x03  
0x42  
0x43  
0x44  
0x45  
TEMP1 Measurement Data (MSB)  
TEMP1 Measurement Data (LSB)  
TEMP2 Measurement Data (MSB)  
TEMP2 Measurement Data (LSB)  
Reserved Registers  
67  
68  
69  
70-127  
0x46-  
0x7F  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
0
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
Page Select Register  
1
ASI1, Audio Bus Format Control Register  
ASI1, Left Ch_Offset_1 Control Register  
ASI1, Right Ch_Offset_2 Control Register  
ASI1, Channel Setup Register  
2
3
4
5
ASI1, ADC Audio Bus Format Control Register  
Audio Serial Interface 1, Multi-Pin Mode  
ASI1, ADC Input Control  
6
7
8
ASI1, DAC Output Control  
9
ASI1, Control Register 9, ADC Slot Tristate Control  
ASI1, WCLK and BCLK Control Register  
ASI1, Bit Clock N Divider Input Control  
ASI1, Bit Clock N Divider  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19-20  
ASI 1, Word Clock N Divider  
ASI1, BCLK and WCLK Output  
ASI1, Data Output  
ASI1, ADC Word Clock and Bit Clock Control  
ASI2, Audio Bus Format Control Register  
ASI2, Data Offset Control Register  
Reserved Registers  
0x13-  
0x14  
0
4
21  
0x00  
0x04  
0x15  
ASI2, ADC Audio Bus Format Control Register  
126  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Register Maps (continued)  
Table 52. Summary of Register Map (continued)  
Decimal  
Hex  
DESCRIPTION  
BOOK  
NO.  
PAGE  
NO.  
REG.  
NO.  
BOOK  
NO.  
PAGE  
NO.  
REG.  
NO.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
4
4
4
4
4
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35-36  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
Reserved Register  
ASI2, ADC Input Control  
ASI 2, DAC Output Control  
Reserved Register  
ASI2, Word Clock and Bit Clock Control Register  
ASI2, Bit Clock N Divider Input Control  
ASI2, Bit Clock N Divider  
ASI2, Word Clock N Divider  
ASI2, Bit Clock and Word Clock Output  
ASI2, Data Output  
ASI2, ADC Word Clock and Bit Clock Control  
ASI3, Audio Bus Format Control Register  
ASI3, Data Offset Control Register  
Reserved Registers  
0x23-  
0x24  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57-64  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
Reserved Register  
Reserved Register  
ASI3, ADC Input Control  
ASI3, DAC Output Control  
Reserved Register  
ASI3, Word Clock and Bit Clock Control Register  
ASI3, Bit Clock N Divider Input Control  
ASI3, Bit Clock N Divider  
ASI3, Word Clock N Divider  
ASI3, Bit Clock and Word Clock Output  
ASI3, Data Output  
Reserved Register.  
ASI1 L1, R1 Input Control  
ASI1 L2, R2 Input Control  
ASI1 L3, R3 Input Control  
ASI1 L4, R4 Input Control  
Reserved Register  
ASI2, DIN Input Multiplexer Control  
ASI3, Word Clock and Bit Clock Input Multiplexer Control  
ASI3, DIN Input Multiplexer Control  
Reserved Registers  
0x39-  
0x40  
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
65  
66  
67  
68  
69  
70  
71  
72  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
WCLK1 (Input or Output) Pin Control  
Reserved Register  
DOUT1 (Output) Pin Control  
DIN1 (Input) Pin Control  
WCLK2 (Input or Output) Pin Control  
BCLK2 (Input or Output) Pin Control  
DOUT2 (Output) Pin Control  
DIN2 (Input) Pin Control  
Copyright © 2014, Texas Instruments Incorporated  
127  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Register Maps (continued)  
Table 52. Summary of Register Map (continued)  
Decimal  
Hex  
DESCRIPTION  
BOOK  
NO.  
PAGE  
NO.  
REG.  
NO.  
BOOK  
NO.  
PAGE  
NO.  
REG.  
NO.  
0
4
73-74  
0x00  
0x04  
0x49-  
0x4A  
Reserved Register  
0
0
0
4
4
4
75  
0x00  
0x00  
0x00  
0x04  
0x04  
0x04  
0x4B  
0x4C  
Reserved Register  
Reserved Register  
Reserved Registers  
76  
77-85  
0x4D-  
0x55  
0
0
0
0
0
0
0
4
4
4
4
4
4
4
86  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
GPIO1 (Input or Output) Pin Control  
GPIO2 (Input or Output) Pin Control  
GPIO3 (Input or Output) Pin Control  
GPIO4 (Input or Output) Pin Control  
GPIO5 (Input or Output) Pin Control  
Reserved Register  
87  
88  
89  
90  
91  
92-95  
0x5C-  
0x5F  
Reserved Registers  
0
0
4
4
96  
0x00  
0x00  
0x04  
0x04  
0x60  
MISO_GPO1 (Output) Pin Control  
Reserved Registers  
97-99  
0x61-  
0x63  
0
0
0
0
0
0
4
4
4
4
4
4
100  
101  
102  
103  
104  
0x00  
0x00  
0x00  
0x00  
0x00  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x64  
0x65  
0x66  
0x67  
0x68  
Digital Microphone Clock Control  
Digital Microphone 1 Input Pin Control  
Digital Microphone 2 Input Pin Control  
Reserved Register  
Bit-Bang Output  
105-106 0x00  
0x69-  
0x6A  
Reserved Registers  
0
0
4
4
107  
0x00  
0x04  
0x04  
0x6B  
Bit-Bang Input  
108-112 0x00  
0x6C-  
0x70  
Reserved Registers  
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
113  
114  
115  
116  
117  
118  
119  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
Bit-Bang miniDSP Output Control  
Reserved Register  
ASI1, ADC Bit Clock and ADC Word Clock Output  
ASI2, ADC Bit Clock and ADC Word Clock Output  
ASI3, ADC Bit Clock and ADC Word Clock Output  
miniDSP Data Port Control  
Digital Audio Engine Synchronization Control  
Reserved Registers  
120-127 0x00  
0x78-  
0x7F  
0
0
0
0
252  
252  
252  
252  
0
0x00  
0x00  
0x00  
0x00  
0xFC  
0xFC  
0xFC  
0xFC  
0x00  
0x01  
0x02  
Page Select Register  
1
SAR Buffer Mode Data (MSB) and Buffer Flags  
SAR Buffer Mode Data (LSB)  
Reserved Registers  
2
3-127  
0x03-  
0x7F  
20  
20  
0
0
0
0x14  
0x14  
0x00  
0x00  
0x00  
Page Select Register  
Reserved Registers  
1-126  
0x01-  
0x7E  
20  
20  
0
127  
0
0x14  
0x14  
0x00  
0x7F  
0x00  
Book Selection Register  
Page Select Register  
1-26  
0x01-  
0x1A  
128  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Register Maps (continued)  
Table 52. Summary of Register Map (continued)  
Decimal  
Hex  
DESCRIPTION  
BOOK  
NO.  
PAGE  
NO.  
REG.  
NO.  
BOOK  
NO.  
PAGE  
NO.  
REG.  
NO.  
20  
1-26  
1-7  
0x14  
0x01-  
0x1A  
0x01-  
0x07  
Reserved Registers  
20  
1-26  
8-127  
0x14  
0x01-  
0x1A  
0x08-  
0x7F  
ADC Fixed Coefficients C(0:767)  
40  
40  
40  
0
0
0
0
0x28  
0x28  
0x28  
0x00  
0x00  
0x00  
0x00  
0x01  
Page Select Register  
1
ADC Adaptive CRAM Configuration Register  
Reserved Registers  
2-126  
0x02-  
0x7E  
40  
40  
0
127  
0
0x28  
0x28  
0x00  
0x7F  
0x00  
Book Selection Register  
Page Select Register  
1-17  
0x01-  
0x11  
40  
40  
1-17  
1-17  
1-7  
0x28  
0x28  
0x01-  
0x11  
0x01-  
0x07  
Reserved Registers  
8-127  
0x01-  
0x11  
0x08-  
0x7F  
ADC Adaptive Coefficients C(0:509)  
40  
40  
18  
18  
0
0x28  
0x28  
0x12  
0x12  
0x00  
Page Select Register  
Reserved Registers  
1-7  
0x01-  
0x07  
40  
40  
18  
18  
8-15  
0x28  
0x28  
0x12  
0x12  
0x08-  
0x0F  
ADC Adaptive Coefficients C(510:511)  
Reserved Registers  
16-127  
0x10-  
0x7F  
60  
60  
0
0
0
0x3C  
0x3C  
0x00  
0x00  
0x00  
Page Select Register  
Reserved Registers  
1-126  
0x01-  
0x7E  
60  
60  
0
127  
0
0x3C  
0x3C  
0x00  
0x7F  
0x00  
Book Selection Register  
Page Select Register  
1-35  
0x01-  
0x23  
60  
60  
1-35  
1-35  
1-7  
0x3C  
0x3C  
0x01-  
0x23  
0x01-  
0x07  
Reserved Registers  
8-127  
0x01-  
0x23  
0x08-  
0x7F  
DAC Fixed Coefficients C(0:1023)  
80  
80  
80  
0
0
0
0
0x50  
0x50  
0x50  
0x00  
0x00  
0x00  
0x00  
0x01  
Page Select Register  
1
DAC Adaptive Coefficient Bank 1 Configuration Register  
Reserved Registers  
2-126  
0x02-  
0x7E  
80  
80  
0
127  
0
0x50  
0x50  
0x00  
0x7F  
0x00  
Book Selection Register  
Page Select Register  
1-17  
0x01-  
0x11  
80  
80  
1-17  
1-17  
1-7  
0x50  
0x50  
0x01-  
0x11  
0x01-  
0x07  
Reserved Registers  
8-127  
0x01-  
0x11  
0x08-  
0x7F  
DAC Adaptive Coefficient Bank 1 C(0:509)  
80  
80  
18  
18  
0
0x50  
0x50  
0x12  
0x12  
0x00  
Page Select Register  
Reserved Registers  
1-7  
0x01-  
0x07  
80  
80  
82  
18  
18  
0
8-15  
16-127  
0
0x50  
0x50  
0x52  
0x12  
0x12  
0x00  
0x08-  
0x0F  
DAC Adaptive Coefficient Bank 1 C(510:511)  
Reserved Registers  
0x10-  
0x7F  
0x00  
Page Select Register  
Copyright © 2014, Texas Instruments Incorporated  
129  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Register Maps (continued)  
Table 52. Summary of Register Map (continued)  
Decimal  
Hex  
DESCRIPTION  
BOOK  
NO.  
PAGE  
NO.  
REG.  
NO.  
BOOK  
NO.  
PAGE  
NO.  
REG.  
NO.  
82  
82  
0
0
1
0x52  
0x52  
0x00  
0x00  
0x01  
DAC Adaptive Coefficient Bank 2 Configuration Register  
Reserved Registers  
2-126  
0x02-  
0x7E  
82  
82  
0
127  
0
0x52  
0x52  
0x00  
0x7F  
0x00  
Book Selection Register  
Page Select Register  
1-17  
0x01-  
0x11  
82  
82  
1-17  
1-17  
1-7  
0x52  
0x52  
0x01-  
0x11  
0x01-  
0x07  
Reserved Registers  
8-127  
0x01-  
0x11  
0x08-  
0x7F  
DAC Adaptive Coefficient Bank 2 C(0:509)  
82  
82  
18  
18  
0
0x52  
0x52  
0x12  
0x12  
0x00  
Page Select Register  
Reserved Registers  
1-7  
0x01-  
0x07  
82  
82  
18  
18  
8-15  
0x52  
0x52  
0x12  
0x12  
0x08-  
0x0F  
DAC Adaptive Coefficient Bank 2 C(510:511)  
Reserved Registers  
16-127  
0x10-  
0x7F  
100  
100  
0
0
0
0x64  
0x64  
0x00  
0x00  
0x00  
Page Select Register  
Reserved Registers  
1-46  
0x01-  
0x2E  
100  
100  
100  
100  
100  
0
0
0
0
0
47  
0x64  
0x64  
0x64  
0x64  
0x64  
0x00  
0x00  
0x00  
0x00  
0x00  
0x2F  
0x30  
0x31  
0x32  
Non-Programmable Override Options  
48  
ADC miniDSP_A Instruction Control Register 1  
ADC miniDSP_A Instruction Control Register 2  
49  
50  
ADC miniDSP_A CIC Input and Decimation Ratio Control Register  
Reserved Registers  
51-59  
0x33-  
0x3B  
100  
100  
100  
0
0
0
60  
0x64  
0x64  
0x64  
0x00  
0x00  
0x00  
0x3C  
0x3D  
ADC miniDSP_A Secondary CIC Input Control  
miniDSP_A to Audio Serial Interface Handoff Control  
Reserved Registers  
61  
62-126  
0x3E-  
0x7E  
100  
100  
0
127  
0
0x64  
0x64  
0x00  
0x7F  
0x00  
Book Selection Register  
Page Select Register  
1-52  
0x01-  
0x34  
100  
100  
1-52  
1-52  
1-7  
0x64  
0x64  
0x01-  
0x34  
0x01-  
0x07  
Reserved Registers  
8-127  
0x01-  
0x34  
0x08-  
0x7F  
miniDSP_A Instructions  
120  
120  
0
0
0
0x78  
0x78  
0x00  
0x00  
0x00  
Page Select Register  
Reserved Registers  
1-46  
0x01-  
0x2E  
120  
120  
120  
120  
120  
0
0
0
0
0
47  
0x78  
0x78  
0x78  
0x78  
0x78  
0x00  
0x00  
0x00  
0x00  
0x00  
0x2F  
0x30  
0x31  
0x32  
Non-Programmable Override Options  
DAC miniDSP_D Instruction Control Register 1  
DAC miniDSP_D Instruction Control Register 2  
DAC miniDSP_D Interpolation Factor Control Register  
Reserved Registers  
48  
49  
50  
51-126  
0x33-  
0x7E  
120  
120  
0
127  
0
0x78  
0x78  
0x00  
0x7F  
0x00  
Book Selection Register  
Page Select Register  
1-103  
0x01-  
0x67  
130  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Register Maps (continued)  
Table 52. Summary of Register Map (continued)  
Decimal  
Hex  
DESCRIPTION  
BOOK  
NO.  
PAGE  
NO.  
REG.  
NO.  
BOOK  
NO.  
PAGE  
NO.  
REG.  
NO.  
120  
1-103  
1-7  
0x78  
0x01-  
0x67  
0x01-  
0x07  
Reserved Registers  
120  
1-103  
8-127  
0x78  
0x01-  
0x67  
0x08-  
0x7F  
miniDSP_D Instructions  
8.6.2 Book 0 Page 0  
Book 0 / Page 0 / Register 0: Page Select Register - 0x00 / 0x00 / 0x00 (B0_P0_R0)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Page Select Register  
0-255: Selects the Register Page for next read or write command.  
Refer Table "Summary of Memory Map" for details.  
Book 0 / Page 0 / Register 1: Software Reset Register - 0x00 / 0x00 / 0x01 (B0_P0_R1)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D1  
D0  
R
0000 000 Reserved. Write only reset values.  
R/W  
0
Self clearing software reset bit  
0: Don't care  
1: Self clearing software reset  
Book 0 / Page 0 / Register 2-3: Reserved Registers - 0x00 / 0x00 / 0x02-0x03 (B0_P0_R2-3)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
xxxx xxxx Reserved. Write only reset values.  
Book 0 / Page 0 / Register 4: Clock Control Register 1, Clock Input Multiplexers - 0x00 / 0x00 / 0x04  
(B0_P0_R4)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D4  
R/W  
0000  
DAC_CLKIN Selection Control  
0000: DAC_CLKIN = MCLK (Device Pin) **** Refer to the clocking diagram  
0001: DAC_CLKIN = BCLK1 (Device Pin) **** Refer to the clocking diagram  
0010: DAC_CLKIN = GPIO1 (Device Pin) **** Refer to the clocking diagram  
0011: DAC_CLKIN = PLL_CLK (Generated On-Chip) **** Refer to the clocking diagram  
0100: DAC_CLKIN = BCLK2 (Device Pin) **** Refer to the clocking diagram  
0101: DAC_CLKIN = GPIO3 (Device Pin) **** Refer to the clocking diagram  
0110: DAC_CLKIN = HF_REF_CLK **** Refer to the clocking diagram  
0111: DAC_CLKIN = HF_OSC_CLK **** Refer to the clocking diagram  
1000: Reserved. Do not use.  
1001: DAC_CLKIN = GPIO2 (Device Pin) **** Refer to the clocking diagram  
1010: Reserved. Do not use.  
1011-1111: Reserved. Do not use.  
Copyright © 2014, Texas Instruments Incorporated  
131  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 0 / Register 4: Clock Control Register 1, Clock Input Multiplexers - 0x00 / 0x00 / 0x04  
(B0_P0_R4) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D3-D0  
R/W  
0000  
ADC_CLKIN Selection Control  
0000: ADC_CLKIN = MCLK (Device Pin) **** Refer to the clocking diagram  
0001: ADC_CLKIN = BCLK1 (Device Pin) **** Refer to the clocking diagram  
0010: ADC_CLKIN = GPIO1 (Device Pin) **** Refer to the clocking diagram  
0011: ADC_CLKIN = PLL_CLK (Generated On-Chip) **** Refer to the clocking diagram  
0100: ADC_CLKIN = BCLK2 (Device Pin) **** Refer to the clocking diagram  
0101: ADC_CLKIN = GPIO3 (Device Pin) **** Refer to the clocking diagram  
0110: ADC_CLKIN = HF_REF_CLK **** Refer to the clocking diagram  
0111: ADC_CLKIN = HF_OSC_CLK **** Refer to the clocking diagram  
1000: Reserved. Do not use.  
1001: ADC_CLKIN = GPIO2 (Device Pin) **** Refer to the clocking diagram  
1010: Reserved. Do not use.  
1011-1111: Reserved. Do not use.  
Book 0 / Page 0 / Register 5: Clock Control Register 2, PLL Input Multiplexer - 0x00 / 0x00 / 0x05  
(B0_P0_R5)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
D6  
R
0
0
Reserved. Write only reset values.  
R/W  
PLL Clock Range Selection Control  
0: Low PLL Clock Range  
1: High PLL Clock Range  
D5-D2  
R/W  
00 00  
PLL_CLKIN Selection Control  
0000: PLL_CLKIN = MCLK (Device Pin)  
0001: PLL_CLKIN = BCLK1 (Device Pin)  
0010: PLL_CLKIN = GPIO1 (Device Pin)  
0011: PLL_CLKIN = DIN1 (can be used for the system where DAC is not used)  
0100: PLL_CLKIN = BCLK2 (Device Pin)  
0101: PLL_CLKIN = GPIO3 (Device Pin)  
0110: PLL_CLKIN = HF_REF_CLK **** Refer to the clocking diagram  
0111: PLL_CLKIN = GPIO2 (Device Pin) **** Refer to the clocking diagram  
1000-1001: Reserved. Do not use.  
1010-1111: Reserved. Do not use.  
D1-D0  
R
00  
Reserved. Write only reset values.  
Book 0 / Page 0 / Register 6: Clock Control Register 3, PLL P and R Values - 0x00 / 0x00 / 0x06  
(B0_P0_R6)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
0
PLL Power Control  
0: PLL Power Down  
1: PLL Power Up  
D6-D4  
001  
PLL Divider P Control  
000: P=8  
001: P=1  
010: P=2  
011: P=3  
100: P=4  
101: P=5  
110: P=6  
111: P=7  
D3-D0  
R/W  
0001  
PLL Multiplier R Control  
0000: R = 16  
0001: R = 1  
0010: R = 2  
...  
1110: R = 14  
1111: R = 15  
132  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 0 / Register 7: Clock Control Register 4, PLL J Value - 0x00 / 0x00 / 0x07 (B0_P0_R7)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
D5-D0  
R/W  
R/W  
00  
Reserved. Write only reset values.  
00 0100  
PLL Multiplier J  
00 0000: Reserved. Do not use.  
00 0001: J=1  
00 0010: J=2  
11 1110: J=62  
11 1111: J=63  
Book 0 / Page 0 / Register 8: Clock Control Register 5, PLL D Values (MSB) - 0x00 / 0x00 / 0x08  
(B0_P0_R8)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
D5-D0  
R
00  
Reserved. Write only reset values.  
R/W  
00 0000  
PLL D Value MSB 6 Bits of 14-Bit Fraction  
00 0000 0000 0000: D=0000  
00 0000 0000 0001: D=0001  
...  
10 0111 0000 1110: D=9998  
10 0111 0000 1111: D=9999  
10 0111 0001 0000 ... 11 1111 1111 1111: Do not use  
Note: This register will be updated only when the B0_P0_R9 is written immediately after  
B0_P0_R8  
Book 0 / Page 0 / Register 9: Clock Control Register 6, PLL D Values (LSB) - 0x00 / 0x00 / 0x09  
(B0_P0_R9)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 PLL D Value LSB 8 Bits of 14-Bit Fraction  
00 0000 0000 0000: D=0000  
00 0000 0000 0001: D=0001  
...  
10 0111 0000 1110: D=9998  
10 0111 0000 1111: D=9999  
10 0111 0001 0000 ...11 1111 1111 1111: Do not use  
Note: B0_P0_R9 should be written immediately after B0_P0_R8.  
Book 0 / Page 0 / Register 10: Clock Control Register 7, PLL_CLKIN Divider - 0x00 / 0x00 / 0x0A  
(B0_P0_R10)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
Reserved. Write only reset values.  
D6-D0  
R/W  
000 0001 PLL_CLKIN Divider (Generates Input Clock for PLL P Divider)  
000 0000: PLL_CLKIN Divider = 128  
000 0001: PLL_CLKIN Divider = 1  
000 0010: PLL_CLKIN Divider = 2  
...  
111 1110: PLL_CLKIN Divider = 126  
111 1111: PLL_CLKIN Divider = 127  
Book 0 / Page 0 / Register 11: Clock Control Register 8, NDAC Divider Values - 0x00 / 0x00 / 0x0B  
(B0_P0_R11)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
0
NDAC Divider Power Control  
0: NDAC divider powered down  
1: NDAC divider powered up  
Copyright © 2014, Texas Instruments Incorporated  
133  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 0 / Register 11: Clock Control Register 8, NDAC Divider Values - 0x00 / 0x00 / 0x0B  
(B0_P0_R11) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D6-D0  
R/W  
000 0001 NDAC Value  
000 0000: NDAC=128  
000 0001: NDAC=1  
000 0010: NDAC=2  
...  
111 1110: NDAC=126  
111 1111: NDAC=127  
Note: Please check the clock frequency requirements in the Overview section  
Book 0 / Page 0 / Register 12: Clock Control Register 9, MDAC Divider Values - 0x00 / 0x00 / 0x0C  
(B0_P0_R12)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
0
MDAC Divider Power Control  
0: MDAC divider powered down  
1: MDAC divider powered up  
D6-D0  
000 0001 MDAC Value  
000 0000: MDAC=128  
000 0001: MDAC=1  
000 0010: MDAC=2  
...  
111 1110: MDAC=126  
111 1111: MDAC=127  
Note: Please check the clock frequency requirements in the Overview section  
Book 0 / Page 0 / Register 13: DAC OSR Control Register 1, MSB Value - 0x00 / 0x00 / 0x0D (B0_P0_R13)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D2  
D1-D0  
R
0000 00  
00  
Reserved. Write only reset values.  
R/W  
DAC OSR (DOSR) Control  
DAC OSR(MSB) and DAC OSR(LSB)  
00 0000 0000: DOSR=1024  
00 0000 0001: DOSR=1  
00 0000 0010: DOSR=2  
...  
11 1111 1110: DOSR=1022  
11 1111 1111: DOSR=1023  
Note: This register is updated when B0_P0_R14 is written to immediately after B0_P0_R13.  
Book 0 / Page 0 / Register 14: DAC OSR Control Register 2, LSB Value - 0x00 / 0x00 / 0x0E (B0_P0_R14)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
1000 0000 DAC OSR (DOSR) Control  
DAC OSR(MSB) and DAC OSR(LSB)  
00 0000 0000: DOSR=1024  
00 0000 0001: DOSR=1  
00 0000 0010: DOSR=2  
...  
11 1111 1110: DOSR=1022  
11 1111 1111: DOSR=1023  
Note: This register should be written immediately after B0_P0_R13.  
Book 0 / Page 0 / Register 15-17: Reserved Registers - 0x00 / 0x00 / 0x0F-0x11 (B0_P0_R15-17)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
134  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 0 / Register 18: Clock Control Register 10, NADC Values - 0x00 / 0x00 / 0x12 (B0_P0_R18)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
0
NADC Clock Divider Power Control  
0: NADC divider powered down, ADC_CLK is same as DAC_CLK  
1: NADC divider powered up  
D6-D0  
000 0001 NADC Value  
000 0000: NADC=128  
000 0001: NADC=1  
...  
111 1110: NADC=126  
111 1111: NADC=127  
Book 0 / Page 0 / Register 19: Clock Control Register 11, MADC Values - 0x00 / 0x00 / 0x13 (B0_P0_R19)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
0
MADC Clock Divider Power Control  
0: MADC divider powered down, ADC_MOD_CLK is same as DAC_MOD_CLK  
1: MADC divider powered up  
D6-D0  
000 0001 MADC Value  
000 0000: MADC=128  
000 0001: MADC=1  
...  
111 1110: MADC=126  
111 1111: MADC=127  
Book 0 / Page 0 / Register 20: ADC Oversampling (AOSR) Register - 0x00 / 0x00 / 0x14 (B0_P0_R20)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
1000 0000 ADC Oversampling Value  
0000 0000: ADC AOSR = 256  
0000 0001: ADC AOSR = 1  
0000 0010: ADC AOSR = 2  
...  
0010 0000: ADC AOSR=32 (Use with ADC Filter Type C)  
...  
0100 0000: AOSR=64 (Use with ADC Filter Type A or B)  
...  
1000 0000: AOSR=128 (Use with ADC Filter Type A)  
...  
1111 1110: ADC AOSR = 254  
1111 1111: ADC AOSR = 255  
Note: If the ADC miniDSP will be used for signal processing ADC (B0_P0_R61) AOSR should be  
an integral multiple of ADC DECIM factor.  
Book 0 / Page 0 / Register 21: CLKOUT MUX - 0x00 / 0x00 / 0x15 (B0_P0_R21)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D5  
D4-D0  
R
000  
Reserved. Write only reset values.  
R/W  
0 0000  
00000: CDIV_CLKIN = MCLK (Device Pin)  
00001: CDIV_CLKIN = BCLK1 (Device Pin)  
00010: CDIV_CLKIN = DIN1 (Can be used for the systems where DAC is not required)  
00011: CDIV_CLKIN = PLL_CLK (Generated On-Chip)  
00100: CDIV_CLKIN = DAC_CLK (Generated On-Chip)  
00101: CDIV_CLKIN = DAC_MOD_CLK (Generated On-Chip)  
00110: CDIV_CLKIN = ADC_CLK (Generated On-Chip)  
00111: CDIV_CLKIN = ADC_MOD_MCLK (Generated On-Chip)  
01000: CDIV_CLKIN = BCLK2 (Device Pin)  
01001: CDIV_CLKIN = GPIO3 (Device Pin)  
01010: CDIV_CLKIN = High Frequency Reference Clock Generated On-Chip using HF_OSC_CLK  
and LFR_CLKIN  
01011: CDIV_CLKIN = High Frequency Oscillator Clock (Generated On-Chip)  
01100-11111: Reserved. Do not use.  
Copyright © 2014, Texas Instruments Incorporated  
135  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 0 / Register 22: Clock Control Register 12, CLKOUT M Divider Value - 0x00 / 0x00 / 0x16  
(B0_P0_R22)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
0
CLKOUT M Divider Power Control  
0: CLKOUT M divider powered down  
1: CLKOUT M divider powered up  
D6-D0  
000 0001 CLKOUT M Divider Value  
000 0000: CLKOUT M divider = 128  
000 0001: CLKOUT M divider = 1  
000 0010: CLKOUT M divider = 2  
...  
111 1110: CLKOUT M divider = 126  
111 1111: CLKOUT M divider = 127  
Note: Please check the clock frequency requirments in the application overview section.  
Book 0 / Page 0 / Register 23: Timer clock - 0x00 / 0x00 / 0x17 (B0_P0_R23)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
0
This timer clock of 1MHz is used for multiple purpose like all the interrupt generation for GPIO1,  
GPIO2, debounce logic, and headset detection.  
Select the 1MHz Timer Clock Source  
0: REF_1MHZ_CLK = LF_OSC_CLK / 8  
1: REF_1MHZ_CLK = MCLK / M ( M as defined in D6:0 below)  
D6-D0  
R/W  
000 0001 MCLK Divider (M) Used to Generate REF_1MHZ_CLK  
000 0000: M = 128  
000 0001: M = 1  
000 0010: M = 2  
111 1110: M = 126  
111 1111: M = 127  
Book 0 / Page 0 / Register 24: Low Frequency Clock Generation Control - 0x00 / 0x00 / 0x18 (B0_P0_R24)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D4  
R/W  
0000  
0000: LFR_CLKIN (Low frequency reference clock) = MCLK (Device Pin)  
0001: LFR_CLKIN = WCLK1 (Device Pin)  
0010: LFR_CLKIN = GPIO1 (Device Pin)  
0011: LFR_CLKIN = WCLK2 (Device Pin)  
0100: LFR_CLKIN = BCLK2 (Device Pin)  
0101: LFR_CLKIN = GPIO3 (Device Pin)  
0110: LFR_CLKIN = DIN2 (Device Pin)  
0111: Reserved. Do not use.  
1000: LFR_CLKIN = GPIO2 (Device Pin)  
1001: Reserved. Do not use.  
1010-1111: Reserved. Do not use.  
D3-D0  
R/W  
1111  
0000: HF_CLKIN (High frequency clock) = MCLK (Device Pin)  
0001 - 1110: Reserved. Do not use.  
1111: HF_CLKIN = HF_OSC_CLK  
Book 0 / Page 0 / Register 25: High Frequency Clock Generation Control 1 - 0x00 / 0x00 / 0x19  
(B0_P0_R25)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
R
1
0
High Frequency Reference Clock Settling Flag  
0: High Frequency Reference Clock is Settled  
1: High Frequency Reference Clock is not Settled  
D6  
High Frequency Reference Clock Modulator Overflow Flag  
0: High Frequency Reference Clock Modulator Overflow has not occurred  
1: High Frequency Reference Clock Modulator Overflow has occurred  
136  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 0 / Register 25: High Frequency Clock Generation Control 1 - 0x00 / 0x00 / 0x19  
(B0_P0_R25) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D5-D4  
R/W  
00  
HF_REF_CLK Lock Ready Threshold  
00: 2048 reference clock cycles  
01: 512 reference clock cycles  
10: 32 reference clock cycles  
11: 8 reference clock cycles  
D3-D0  
R/W  
0000  
Ratio(27:24): Upper 4-bits of 28-bit Multiplication Ratio. Used when a low frequency clock  
is used to generate the internal reference clock (See B0_P0_R24 for low frequency  
clock settings). The recommended ratio is "round( 12,500,000 / LFR_CLKIN_FREQ)"  
Book 0 / Page 0 / Register 26: High Frequency Clock Generation Control 2 - 0x00 / 0x00 / 0x1A  
(B0_P0_R26)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Ratio(23:16): Next 8-bits of 28-bit Multiplication Ratio. Used when a low frequency clock  
is used to generate the internal reference clock (See B0_P0_R24 for low frequency  
clock settings). The recommended ratio is "round( 12,500,000 / LFR_CLKIN_FREQ)"  
Book 0 / Page 0 / Register 27: High Frequency Clock Generation Control 3 - 0x00 / 0x00 / 0x1B  
(B0_P0_R27)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0001 1000 Ratio(16:8): Next 8-bits of 28-bit Multiplication Ratio. Used when a low frequency clock  
is used to generate the internal reference clock (See B0_P0_R24 for low frequency  
clock settings). The recommended ratio is "round( 12,500,000 / LFR_CLKIN_FREQ)"  
Book 0 / Page 0 / Register 28: High Frequency Clock Generation Control 4 - 0x00 / 0x00 / 0x1C  
(B0_P0_R28)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0110 1010 Ratio(7:0): Lower 8-bits of 28-bit Multiplication Ratio. Used when a low frequency clock  
is used to generate the internal reference clock (See B0_P0_R24 for low frequency  
clock settings). The recommended ratio is "round( 12,500,000 / LFR_CLKIN_FREQ)"  
Book 0 / Page 0 / Register 29: High Frequency Clock Trim Control 1 - 0x00 / 0x00 / 0x1D (B0_P0_R29)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
0
1
High Frequency Oscillator Calibration Flag  
0: Calibration is not complete  
1: Calibration is complete  
D6  
D5  
R/W  
R/W  
High Frequency Oscillator Voltage Source Control  
0: AVDDx_18  
1: DVDD_18  
High Frequency Oscillator Calibration Enable Control  
0: Calibration is disabled  
1: Calibration is enabled  
D4-D2  
D1-D0  
R
0 00  
00  
Reserved. Write only reset values.  
R/W  
Ratio(25:24): Upper 2 bits of 26-bit integer ratio between desired high-frequency oscillator  
frequency and low-frequency reference clock input  
Book 0 / Page 0 / Register 30: High Frequency Clock Trim Control 2 - 0x00 / 0x00 / 0x1E (B0_P0_R30)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Ratio(23:16): Next 8 bits of 26-bit integer ratio between desired high-frequency oscillator frequency  
and low-frequency reference clock input  
Copyright © 2014, Texas Instruments Incorporated  
137  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 0 / Register 31: High Frequency Clock Trim Control 3 - 0x00 / 0x00 / 0x1F (B0_P0_R31)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0110 Ratio(15:8): Next 8 bits of 26-bit integer ratio between desired high-frequency oscillator  
frequency and low-frequency reference clock input  
Book 0 / Page 0 / Register 32: High Frequency Clock Trim Control 4 - 0x00 / 0x00 / 0x20 (B0_P0_R32)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0001 1010 Ratio(7:0): Lower 8 bits of 26-bit integer ratio between desired high-frequency oscillator  
frequency and low-frequency reference clock input  
Book 0 / Page 0 / Register 33-35: Reserved Registers - 0x00 / 0x00 / 0x21-0x23 (B0_P0_R33-35)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 0 / Page 0 / Register 36: ADC Flag Register - 0x00 / 0x00 / 0x24 (B0_P0_R36)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
R
R
0
0
0
Left ADC PGA Status Flag  
0: Gain Applied in Left ADC PGA is not equal to Programmed Gain in Control Register  
1: Gain Applied in Left ADC PGA is equal to Programmed Gain in Control Register  
D6  
D5  
Left ADC Power Status Flag  
0: Left ADC Powered Down  
1: Left ADC Powered Up  
Left AGC Gain Status. This sticky flag will self clear on reading  
0: Gain in Left AGC is not saturated  
1: Gain in Left ADC is equal to maximum allowed gain in Left AGC  
D4  
D3  
R
R
0
0
Reserved. Write only reset values.  
Right ADC PGA Status Flag  
0: Gain Applied in Right ADC PGA is not equal to Programmed Gain in Control Register  
1: Gain Applied in Right ADC PGA is equal to Programmed Gain in Control Register  
D2  
D1  
D0  
R
R
R
0
0
0
Right ADC Power Status Flag  
0: Right ADC Powered Down  
1: Right ADC Powered Up  
Right AGC Gain Status. This sticky flag will self clear on reading  
0: Gain in Right AGC is not saturated  
1: Gain in Right ADC is equal to maximum allowed gain in Right AGC  
Reserved. Write only reset values.  
Book 0 / Page 0 / Register 37: DAC Flag Register - 0x00 / 0x00 / 0x25 (B0_P0_R37)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
0: Left DAC Powered Down  
1: Left DAC Powered Up  
D6  
R
R
0
Reserved. Write only reset values.  
D5-D4  
00  
00: Jack is not inserted  
01: Jack is inserted without Microphone  
10: Reserved. Do not use.  
11: Jack is inserted with Microphone  
D3  
R
0
0: Right DAC Powered Down  
1: Right DAC Powered Up  
D2  
R
R
0
Reserved. Write only reset values.  
00: Headset is not inserted  
D1-D0  
00  
01: Jack is inserted with mono-HS (Ground-Centered or Capless Headphone Mode Only)  
10: Jack is inserted with stereo-HS (Ground-Centered or Capless Headphone Mode Only)  
11: Reserved. Do not use.  
138  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 0 / Register 38: DAC Flag Register - 0x00 / 0x00 / 0x26 (B0_P0_R38)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
D6  
R
R
1
1
Reserved  
0: Primary Left DAC PGA is not muted  
1: Primary Left DAC PGA is muted  
D5  
D4  
R
R
0
0
Reserved  
0: Primary Left DAC PGA , Applied Gain /= Programmed Gain  
1: Primary Left DAC PGA , Applied Gain = Programmed Gain  
D3  
D2  
R
R
1
1
Reserved  
0: Primary Right DAC PGA is not muted  
1: Primary Right DAC PGA is muted  
D1  
D0  
R
R
0
0
Reserved  
0: Primary Right DAC PGA , Applied Gain /= Programmed Gain  
1: Primary Right DAC PGA , Applied Gain = Programmed Gain  
Book 0 / Page 0 / Register 39-41: Reserved Registers - 0x00 / 0x00 / 0x27-0x29 (B0_P0_R39-41)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
xxxx xxxx Reserved. Write only default values.  
Book 0 / Page 0 / Register 42: Sticky Flag Register 1 - 0x00 / 0x00 / 0x2A (B0_P0_R42)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
R
0
0
Left DAC Overflow Status. This sticky flag will self clear on read  
0: No overflow in Left DAC  
1: Overflow has happened in Left DAC since last read of this register  
D6  
Right DAC Overflow Status. This sticky flag will self clear on read  
0: No overflow in Right DAC  
1: Overflow has happened in Right DAC since last read of this register  
D5  
D4  
D3  
R
R
R
0
0
0
miniDSP_D Barrel Shifter Output Overflow Sticky Flag. Flag is reset on register reading  
Reserved.  
Left ADC Overflow Status. This sticky flag will self clear on read  
0: No overflow in Left ADC  
1: Overflow has happened in Left ADC since last read of this register  
D2  
R
0
Right ADC Overflow Status. This sticky flag will self clear on read  
0: No overflow in Right ADC  
1: Overflow has happened in Right ADC since last read of this register  
D1  
D0  
R
R
0
0
miniDSP_A Barrel Shifter Output Overflow Sticky Flag. Flag is reset on register reading  
Reserved. Write only reset values.  
Book 0 / Page 0 / Register 43: Reserved Register - 0x00 / 0x00 / 0x2B (B0_P0_R43)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved Register  
Book 0 / Page 0 / Register 44: Sticky Flag Register 2 - 0x00 / 0x00 / 0x2C (B0_P0_R44)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
R
0
0
0: No Short Circuit detected at HPL or SPL or RECP driver.  
1: Short Circuit is detected at HPL or SPL or RECP driver. (will be cleared when the register is  
read)  
D6  
0: No Short Circuit detected at HPR or SPR or RECM driver.  
1: Short Circuit is detected at HPR or SPR or RECM driver. (will be cleared when the register is  
read)  
Copyright © 2014, Texas Instruments Incorporated  
139  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 0 / Register 44: Sticky Flag Register 2 - 0x00 / 0x00 / 0x2C (B0_P0_R44) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D5  
R
0
Headset Button Press  
0: Button Press not detected  
1: Button Press detected (will be cleared when the register is read)  
D4  
R
0
Headset Insertion or Removal Detect Flag  
0: Insertion or Removal event not detected  
1: Insertion or Removal event detected (will be cleared when the register is read)  
D3-D2  
D1  
R
R
R
00  
0
Reserved.  
miniDSP_D Standard Interrupt Port Output. This is a sticky bit  
miniDSP_D Auxilliary Interrupt Port Output. This is a sticky bit  
D0  
0
Book 0 / Page 0 / Register 45: Sticky Flag Register 3 - 0x00 / 0x00 / 0x2D (B0_P0_R45)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
0: No over-temperature detected by Speaker driver.  
1: Over-temperature detected by Speaker driver. (will be cleared when the register is read)  
D6  
D5  
R
0
Left AGC Noise Threshold Flag  
0: Signal Power is greater than Noise Threshold  
1: Signal Power was lower than Noise Threshold (will be cleared when the register is read)  
R
0
Right AGC Noise Threshold Flag  
0: Signal Power is greater than Noise Threshold  
1: Signal Power was lower than Noise Threshold (will be cleared when the register is read)  
D4  
D3  
R
R
R
0
0
miniDSP_A Standard Interrupt Port Output. This is a sticky bit  
miniDSP_A Auxilliary Interrupt Port Output. This is a sticky bit  
Reserved.  
D2-D0  
000  
Book 0 / Page 0 / Register 46-47: Reserved Register - 0x00 / 0x00 / 0x2E-0x2F (B0_P0_R46-47)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved Register  
Book 0 / Page 0 / Register 48: INT1 Interrupt Control - 0x00 / 0x00 / 0x30 (B0_P0_R48)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
0
0
INT1 Interrupt for Headset Insertion Event  
0: Headset Insertion event will not generate a INT1 interrupt  
1: Headset Insertion even will generate a INT1 interrupt  
D6  
INT1 Interrupt for Button Press Event  
0: Button Press event will not generate a INT1 interrupt  
1: Button Press event will generate a INT1 interrupt  
D5  
D4  
R/W  
R/W  
0
0
Reserved. Write only default value  
INT1 Interrupt for AGC Noise Interrupt  
0: Noise level detected by AGC will not generate a INT1 interrupt  
1: Noise level detected by either off Left or Right Channel AGC will generate a INT1 interrupt.  
Read B0_P0_R45 to distinguish between Left or Right Channel  
D3  
R/W  
0
INT1 Interrupt for Over Current Condition  
0: Headphone Over Current condition will not generate a INT1 interrupt.  
1: Headphone Over Current condition on either off Left or Right Channels will generate a INT1  
interrupt.  
Read B0_P0_R44 to distinguish between HPL and HPR  
D2  
D1  
R/W  
R/W  
0
0
INT1 Interrupt for miniDSP-generated interrupt or overflow event  
0: Engine generated interrupts and Overflow flags do not result in a INT1 interrupt  
1: Engine generated interrupts and Overflow flags will result in a INT1 interrupt.  
Read B0_P0_R42 to distinguish between miniDSP_A or miniDSP_D interrupt  
0: SPK over-tempeature detected Interrupt is not used in the generation of INT1 Interrupt  
1: SPK over-tempeature detected Interrupt is used in the generation of INT1 Interrupt  
140  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 0 / Register 48: INT1 Interrupt Control - 0x00 / 0x00 / 0x30 (B0_P0_R48) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D0  
R
0
Reserved. Write only reset values.  
Book 0 / Page 0 / Register 49: INT2 Interrupt Control - 0x00 / 0x00 / 0x31 (B0_P0_R49)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
0
0
INT2 Interrupt for Headset Insertion Event  
0: Headset Insertion event will not generate a INT2 interrupt  
1: Headset Insertion even will generate a INT2 interrupt  
D6  
INT2 Interrupt for Button Press Event  
0: Button Press event will not generate a INT2 interrupt  
1: Button Press event will generate a INT2 interrupt  
D5  
D4  
R/W  
R/W  
0
0
Reserved. Write only default value  
INT2 Interrupt for AGC Noise Interrupt  
0: Noise level detected by AGC will not generate a INT2 interrupt  
1: Noise level detected by either off Left or Right Channel AGC will generate a INT2 interrupt.  
Read B0_P0_R45 to distinguish between Left or Right Channel  
D3  
D2  
R/W  
R/W  
0
0
INT2 Interrupt for Over Current Condition  
0: Headphone Over Current condition will not generate a INT2 interrupt.  
1: Headphone Over Current condition on either off Left or Right Channels will generate a INT2  
interrupt.  
Read B0_P0_R44 to distinguish between HPL and HPR  
INT2 Interrupt for miniDSP-generated interrupt or overflow event  
0: Engine generated interrupts and Overflow flags do not result in a INT2 interrupt  
1: Engine generated interrupts and Overflow flags will result in a INT2 interrupt.  
Read B0_P0_R42 to distinguish between miniDSP_A or miniDSP_D interrupt  
D1  
D0  
R/W  
R
0
0
0: SPK over-tempeature detected Interrupt is not used in the generation of INT2 Interrupt  
1: SPK over-tempeature detected Interrupt is used in the generation of INT2 Interrupt  
Reserved. Write only reset values.  
Book 0 / Page 0 / Register 50: SAR Control 1 - 0x00 / 0x00 / 0x32 (B0_P0_R50)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
0
0: If SAR measurement data out of threshold range, interrupt is not used in the generation of INT1  
Interrupt.  
1: If SAR measurement data out of threshold range, interrupt is used in the generation of INT1  
Interrupt.  
D6  
D5  
R/W  
R/W  
0
0
0: SAR Data Available Interrupt is not used in the generation of INT1 Interrupt.  
1: SAR Data Available Interrupt is used in the generation of INT1 Interrupt.  
0: SAR measurement data out of threshold range Interrupt is not used in the generation of INT2  
Interrupt.  
1: SAR measurement data out of threshold range Interrupt is used in the generation of INT2  
Interrupt.  
D4  
R/W  
0
0: SAR Data Available Interrupt is not used in the generation of INT2 Interrupt.  
1: SAR Data Available Interrupt is used in the generation of INT2 Interrupt.  
D3  
D2  
R
R
0
0
Reserved. Write only default values.  
SAR Data Available Sticky Flag (will be cleared when the register is read)  
0: No SAR Data Available for read.  
1: SAR Data Available for read.  
D1  
D0  
R
R
0
0
SAR Data Threshold Sticky Flag (will be cleared when the register is read)  
0: SAR data is within threshold program.  
1: SAR data is out of programmed threshold range.  
Reserved. Write only default values.  
Copyright © 2014, Texas Instruments Incorporated  
141  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 0 / Register 51: Interrupt Format Control Register - 0x00 / 0x00 / 0x33 (B0_P0_R51)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
R/W  
R/W  
R
00  
INT1 pulse control  
00: INT1 is active high interrupt of 1 pulse of minimum 2ms duration  
01: INT1 is active high interrupt of multiple pulses, each of minimum duration 2ms and a total  
period of 4ms. To stop the pulse train, read B0_P0_R42, B0_P0_R44, or B0_P0_R45  
10: INT1 is active high, level-based interrupt generated out of sticky bits in Flag registers. To clear  
this interrupt, read B0_P0_R42, B0_P0_R44, or B0_P0_R45.  
11: INT1 is active high, level-based interrupt generated out of instantaneous value of interrupt port.  
D5-D4  
D3-D0  
00  
INT2 pulse control  
00: INT2 is active high interrupt of 1 pulse of approx. 2ms duration  
01: INT2 is active high interrupt of multiple pulses, each of duration 2ms. To stop the pulse train,  
read B0_P0_R42, B0_P0_R44, or B0_P0_R45  
10: INT2 is active high, level-based interrupt generated out of sticky bits in Flag registers. To clear  
this interrupt, read B0_P0_R42, B0_P0_R44, or B0_P0_R45.  
11: INT2 is active high, level-based interrupt generated out of instantaneous value of interrupt port.  
0000  
Reserved. Write only reset values.  
Book 0 / Page 0 / Register 52-59: Reserved Registers - 0x00 / 0x00 / 0x34-0x3B (B0_P0_R52-59)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only default values.  
Book 0 / Page 0 / Register 60: DAC Processing Block and miniDSP Power Control - 0x00 / 0x00 / 0x3C  
(B0_P0_R60)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
0
0
0: miniDSP_A and miniDSP_D are independently powered up  
1: miniDSP_A and miniDSP_D are powered up together. Useful when there is data transfer  
between miniDSP_A and miniDSP_D  
D6  
miniDSP_D Power Configuration  
0: miniDSP_D is powered down with DAC Channel Power Down  
1: miniDSP_D is powered up if ADC Channel is powered up  
D5  
R
0
Reserved. Write only reset values.  
D4-D0  
R/W  
0 0001  
0 0000: The miniDSP_D will be used for signal processing  
0 0001: DAC Signal Processing Block PRB_P1  
0 0010: Do not use.  
0 0011: DAC Signal Processing Block PRB_P3  
0 0100-0 0101: Do not use.  
0 0110: DAC Signal Processing Block PRB_P6  
0 0111-1 1111: Do not use.  
Book 0 / Page 0 / Register 61: ADC Processing Block Control - 0x00 / 0x00 / 0x3D (B0_P0_R61)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D5  
D4-D0  
R
000  
Reserved. Write only reset values.  
R/W  
0 0001  
0 0000: The miniDSP_A will be used for signal processing  
0 0001: ADC Singal Processing Block PRB_R1  
0 0010-0 0011: Do not use.  
0 0100: ADC Signal Processing Block PRB_R4  
0 0101-1 1111: Do not use.  
Book 0 / Page 0 / Register 62: Reserved Register - 0x00 / 0x00 / 0x3E (B0_P0_R62)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
142  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 0 / Register 63: Primary DAC Power and Soft-Stepping Control - 0x00 / 0x00 / 0x3F  
(B0_P0_R63)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
0
0: Left DAC channel is powered-down  
1: Left DAC channel is powered-up  
D6  
R/W  
0
0: Right DAC channel is powered-down  
1: Right DAC channel is powered-up  
D5-D2  
D1-D0  
R
00 00  
00  
Reserved. Write only reset values.  
R/W  
00: DAC channel volume control soft-stepping is enabled for one-step per Fs  
01: DAC channel volume control soft-stepping is enabled for one-step per 2Fs  
10: DAC channel volume control soft-stepping is disabled  
11: Reserved. Do not use.  
Book 0 / Page 0 / Register 64: Primary DAC Master Volume Configuration - 0x00 / 0x00 / 0x40  
(B0_P0_R64)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
0
Right Modulator Output Control  
0: When Right DAC Channel is powered down, the data is zero.  
1: When Right DAC Channel is powered down, the data is inverted version of Left DAC Modulator  
Output. Can be used when differential mono output is used  
D6-D4  
R/W  
000  
DAC Auto Mute Control  
000: Auto Mute disabled  
001: DAC is auto muted if input data is DC for more than 100 consecutive inputs  
010: DAC is auto muted if input data is DC for more than 200 consecutive inputs  
011: DAC is auto muted if input data is DC for more than 400 consecutive inputs  
100: DAC is auto muted if input data is DC for more than 800 consecutive inputs  
101: DAC is auto muted if input data is DC for more than 1600 consecutive inputs  
110: DAC is auto muted if input data is DC for more than 3200 consecutive inputs  
111: DAC is auto muted if input data is DC for more than 6400 consecutive inputs  
D3  
D2  
R/W  
R/W  
R/W  
1
1
Left DAC Channel Mute Control  
0: Left DAC Channel not muted  
1: Left DAC Channel muted  
Right DAC Channel Mute Control  
0: Right DAC Channel not muted  
1: Right DAC Channel muted  
D1-D0  
00  
DAC Master Volume Control  
00: Left and Right Channel have independent volume control  
01: Left Channel Volume is controlled by Right Channel Volume Control setting  
10: Right Channel Volume is controlled by Left Channel Volume Control setting  
11: Reserved. Do not use  
Book 0 / Page 0 / Register 65: Primary DAC Left Volume Control Setting - 0x00 / 0x00 / 0x41 (B0_P0_R65)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Left DAC Channel Digital Volume Control Setting  
0111 1111-0011 0001: Reserved. Do not use.  
0011 0000: Digital Volume Control = +24dB  
0010 1111: Digital Volume Control = +23.5dB  
...  
0000 0001: Digital Volume Control = +0.5dB  
0000 0000: Digital Volume Control = 0.0dB  
1111 1111: Digital Volume Control = -0.5dB  
...  
1000 0010: Digital Volume Control = -63dB  
1000 0001: Digital Volume Control = -63.5dB  
1000 0000: Reserved. Do not use.  
Copyright © 2014, Texas Instruments Incorporated  
143  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 0 / Register 66: Primary DAC Right Volume Control Setting - 0x00 / 0x00 / 0x42  
(B0_P0_R66)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Right DAC Channel Digital Volume Control Setting  
0111 1111-0011 0001: Reserved. Do not use.  
0011 0000: Digital Volume Control = +24dB  
0010 1111: Digital Volume Control = +23.5dB  
...  
0000 0001: Digital Volume Control = +0.5dB  
0000 0000: Digital Volume Control = 0.0dB  
1111 1111: Digital Volume Control = -0.5dB  
...  
1000 0010: Digital Volume Control = -63dB  
1000 0001: Digital Volume Control = -63.5dB  
1000 0000: Reserved. Do not use.  
Book 0 / Page 0 / Register 67: Headset Detection - 0x00 / 0x00 / 0x43 (B0_P0_R67)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
0
0: Headset Detection Disabled  
1: Headset Detection Enabled  
D6-D5  
D4-D2  
R
00  
Reserved. Write only reset values.  
R/W  
0 00  
Headset Detection Debounce Programmability  
000: Debounce Time = 16ms  
001: Debounce Time = 32ms  
010: Debounce Time = 64ms  
011: Debounce Time = 128ms  
100: Debounce Time = 256ms  
101: Debounce Time = 512ms  
110-111: Reserved. Do not use  
Note: All times are typical values  
D1-D0  
R/W  
00  
Headset Button Press Debounce Programmability  
00: Debounce disabled  
01: Debounce Time = 8ms  
10: Debounce Time = 16ms  
11: Debounce Time = 32ms  
Note: All times are typical values  
Book 0 / Page 0 / Register 68: Reserved Register - 0x00 / 0x00 / 0x44 (B0_P0_R68)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0110 1111 Reserved. Write only reset values.  
Book 0 / Page 0 / Register 69: Reserved Register - 0x00 / 0x00 / 0x45 (B0_P0_R69)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0011 1000 Reserved. Write only reset values.  
Book 0 / Page 0 / Register 70: Reserved Register - 0x00 / 0x00 / 0x46 (B0_P0_R70)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000  
Book 0 / Page 0 / Register 71-80: Reserved Registers - 0x00 / 0x00 / 0x47-0x50 (B0_P0_R71-80)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
xxxx xxxx Reserved. Do not write  
144  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 0 / Register 81: ADC Channel Power Control - 0x00 / 0x00 / 0x51 (B0_P0_R81)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
R/W  
0
0
Left Channel ADC Power Control  
0: Left Channel ADC power down  
1: Left Channel ADC power up  
D6  
Right Channel ADC Power Control  
0: Right Channel ADC power down  
1: Right Channel ADC power up  
D5-D4  
00  
Left Channel Digital Microphone Power Control  
00: Left Channel ADC not configured for Digital Microphone  
01: Left Channel ADC configured for Digital Microphone  
10: Left Channel DAC Modulator output fed thru ADC CIC Filter (Loopback)  
11: Reserved. Do not use.  
D3-D2  
D1-D0  
R/W  
R/W  
00  
00  
Right Channel Digital Microphone Power Control  
00: Right Channel ADC not configured for Digital Microphone  
01: Right Channel ADC configured for Digital Microphone  
10: Right Channel DAC Modulator output fed thru ADC CIC Filter (Loopback)  
11: Reserved. Do not use.  
ADC Volume Control Soft-Stepping Control  
00: ADC Volume Control changes by 1 gain step per ADC Word Clock  
01: ADC Volume Control changes by 1 gain step per two ADC Word Clocks  
10: ADC Volume Control Soft-Stepping disabled  
11: Reserved. Do not use  
Book 0 / Page 0 / Register 82: ADC Fine Gain Volume Control - 0x00 / 0x00 / 0x52 (B0_P0_R82)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
1
Left ADC Channel Mute Control  
0: Left ADC Channel Un-Mute  
1: Left ADC Channel Mute  
D6-D4  
000  
Left ADC Channel Fine Gain Adjust  
000: Left ADC Channel Fine Gain = 0 dB  
111: Left ADC Channel Fine Gain = -0.1 dB  
110: Left ADC Channel Fine Gain = -0.2 dB  
101: Left ADC Channel Fine Gain = -0.3 dB  
100: Left ADC Channel Fine Gain = -0.4 dB  
001-011: Reserved. Do not use.  
D3  
R/W  
R/W  
1
Right ADC Channel Mute Control  
0: Right ADC Channel Un-Mute  
1: Right ADC Channel Mute  
D2-D0  
000  
Right ADC Channel Fine Gain Adjust  
000: Right ADC Channel Fine Gain = 0 dB  
111: Right ADC Channel Fine Gain = -0.1 dB  
110: Right ADC Channel Fine Gain = -0.2 dB  
101: Right ADC Channel Fine Gain = -0.3 dB  
100: Right ADC Channel Fine Gain = -0.4 dB  
001-011: Reserved. Do not use.  
Book 0 / Page 0 / Register 83: Left ADC Volume Control - 0x00 / 0x00 / 0x53 (B0_P0_R83)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
Reserved. Write only reset values.  
Copyright © 2014, Texas Instruments Incorporated  
145  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 0 / Register 83: Left ADC Volume Control - 0x00 / 0x00 / 0x53 (B0_P0_R83) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D6-D0  
R/W  
000 0000 Left ADC Channel Volume Control  
000 0000-110 0111: Reserved. Do not use.  
110 1000: Left ADC Channel Volume = -12.0 dB  
110 1001: Left ADC Channel Volume = -11.5 dB  
110 1010: Left ADC Channel Volume = -11.0 dB  
111 1111: Left ADC Channel Volume = -0.5 dB  
000 0000: Left ADC Channel Volume = 0.0 dB  
000 0001: Left ADC Channel Volume = 0.5 dB  
...  
010 0110: Left ADC Channel Volume = 19.0 dB  
010 0111: Left ADC Channel Volume = 19.5 dB  
010 1000: Left ADC Channel Volume = 20.0 dB  
010 1001-111 1111: Reserved. Do not use.  
Book 0 / Page 0 / Register 84: Right ADC Volume Control - 0x00 / 0x00 / 0x54 (B0_P0_R84)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
Reserved. Write only reset values.  
D6-D0  
R/W  
000 0000 Right ADC Channel Volume Control  
000 0000-110 0111: Reserved. Do not use.  
110 1000: Right ADC Channel Volume = -12.0 dB  
110 1001: Right ADC Channel Volume = -11.5 dB  
110 1010: Right ADC Channel Volume = -11.0 dB  
111 1111: Right ADC Channel Volume = -0.5 dB  
000 0000: Right ADC Channel Volume = 0.0 dB  
000 0001: Right ADC Channel Volume = 0.5 dB  
...  
010 0110: Right ADC Channel Volume = 19.0 dB  
010 0111: Right ADC Channel Volume = 19.5 dB  
010 1000: Right ADC Channel Volume = 20.0 dB  
010 1001-111 1111: Reserved. Do not use.  
Book 0 / Page 0 / Register 85: ADC Phase Control - 0x00 / 0x00 / 0x55 (B0_P0_R85)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 ADC Phase Compensation Control  
1000 0000-1111 1111: Left ADC Channel Data is delayed with respect to Right ADC Channel  
Data.  
For details of delayed amount please refer to the description of Phase Compensation in the  
Overview  
section.  
0000 0000: Left and Right ADC Channel data are not delayed with respect to each other  
0000 0001-0111 1111: Right ADC Channel Data is delayed with respect to Left ADC Channel  
Data.  
For details of delayed amount please refer to the description of Phase Compensation in the  
Overview section.  
Book 0 / Page 0 / Register 86: Left AGC Control 1 - 0x00 / 0x00 / 0x56 (B0_P0_R86)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
0
0: Left Channel AGC Disabled  
1: Left Channel AGC Enabled  
146  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 0 / Register 86: Left AGC Control 1 - 0x00 / 0x00 / 0x56 (B0_P0_R86) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D6-D4  
R/W  
000  
Left Channel AGC Target Level Setting  
000: Left Channel AGC Target Level = -5.5 dBFS  
001: Left Channel AGC Target Level = -8.0 dBFS  
010: Left Channel AGC Target Level = -10. 0dBFS  
011: Left Channel AGC Target Level = -12.0 dBFS  
100: Left Channel AGC Target Level = -14.0 dBFS  
101: Left Channel AGC Target Level = -17.0 dBFS  
110: Left Channel AGC Target Level = -20.0 dBFS  
111: Left Channel AGC Target Level = -24.0 dBFS  
D3-D2  
D1-D0  
R
00  
00  
Reserved. Write only reset values.  
R/W  
Left Channel AGC Gain Hysteresis Control  
00: Left Channel AGC Gain Hysteresis is disabled  
01: Left Channel AGC Gain Hysteresis is +/-0.5 dB  
10: Left Channel AGC Gain Hysteresis is +/-1.0 dB  
11: Left Channel AGC Gain Hysteresis is +/-1.5 dB  
Book 0 / Page 0 / Register 87: Left AGC Control 2 - 0x00 / 0x00 / 0x57 (B0_P0_R87)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
R/W  
00  
Left Channel AGC Hysteresis Setting  
00: Left Channel AGC Hysteresis is 1.0 dB  
01: Left Channel AGC Hysteresis is 2.0 dB  
10: Left Channel AGC Hysteresis is 4.0 dB  
11: Left Channel AGC Hysteresis is disabled  
D5-D1  
R/W  
0 0000  
Left Channel AGC Noise Threshold  
0 0000: Left Channel AGC Noise Gate disabled  
0 0001: Left Channel AGC Noise Threshold is -30 dB  
0 0010: Left Channel AGC Noise Threshold is -32 dB  
0 0011: Left Channel AGC Noise Threshold is -34 dB  
...  
1 1101: Left Channel AGC Noise Threshold is -86 dB  
1 1110: Left Channel AGC Noise Threshold is -88 dB  
1 1111: Left Channel AGC Noise Threshold is -90 dB  
D0  
R
0
Reserved. Write only reset values.  
Book 0 / Page 0 / Register 88: Left AGC Control 3 - 0x00 / 0x00 / 0x58 (B0_P0_R88)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
Reserved. Write only reset values.  
D6-D0  
R/W  
111 1111 Left Channel AGC Maximum Gain Setting  
000 0000: Left Channel AGC Maximum Gain = 0.0 dB  
000 0001: Left Channel AGC Maximum Gain = 0.5 dB  
000 0010: Left Channel AGC Maximum Gain = 1.0 dB  
...  
111 1110: Left Channel AGC Maximum Gain = 63.0 dB  
111 1111: Left Channel AGC Maximum Gain = 63.5 dB  
Book 0 / Page 0 / Register 89: Left AGC Attack Time - 0x00 / 0x00 / 0x59 (B0_P0_R89)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D3  
R/W  
0000 0  
Left Channel AGC Attack Time Setting  
0 0000: Left Channel AGC Attack Time = 1*32 ADC Word Clocks  
0 0001: Left Channel AGC Attack Time = 3*32 ADC Word Clocks  
0 0010: Left Channel AGC Attack Time = 5*32 ADC Word Clocks  
...  
1 1101: Left Channel AGC Attack Time = 59*32 ADC Word Clocks  
1 1110: Left Channel AGC Attack Time = 61*32 ADC Word Clocks  
1 1111: Left Channel AGC Attack Time = 63*32 ADC Word Clocks  
Copyright © 2014, Texas Instruments Incorporated  
147  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 0 / Register 89: Left AGC Attack Time - 0x00 / 0x00 / 0x59 (B0_P0_R89) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D2-D0  
R/W  
000  
Left Channel AGC Attack Time Scale Factor Setting  
000: Scale Factor = 1  
001: Scale Factor = 2  
010: Scale Factor = 4  
...  
101: Scale Factor = 32  
110: Scale Factor = 64  
111: Scale Factor = 128  
Book 0 / Page 0 / Register 90: Left AGC Decay Time - 0x00 / 0x00 / 0x5A (B0_P0_R90)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D3  
R/W  
0000 0  
Left Channel AGC Decay Time Setting  
0 0000: Left Channel AGC Decay Time = 1*512 ADC Word Clocks  
0 0001: Left Channel AGC Decay Time = 3*512 ADC Word Clocks  
0 0010: Left Channel AGC Decay Time = 5*512 ADC Word Clocks  
...  
1 1101: Left Channel AGC Decay Time = 59*512 ADC Word Clocks  
1 1110: Left Channel AGC Decay Time = 61*512 ADC Word Clocks  
1 1111: Left Channel AGC Decay Time = 63*512 ADC Word Clocks  
D2-D0  
R/W  
000  
Left Channel AGC Decay Time Scale Factor Setting  
000: Scale Factor = 1  
001: Scale Factor = 2  
010: Scale Factor = 4  
...  
101: Scale Factor = 32  
110: Scale Factor = 64  
111: Scale Factor = 128  
Book 0 / Page 0 / Register 91: Left AGC Noise Debounce - 0x00 / 0x00 / 0x5B (B0_P0_R91)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D5  
D4-D0  
R
000  
Reserved. Write only reset values.  
R/W  
0 0000  
Left Channel AGC Noise Debounce Time Setting  
0 0001: Left Channel AGC Noise Debounce Time = 0  
0 0010: Left Channel AGC Noise Debounce Time = 4 ADC Word Clocks  
0 0011: Left Channel AGC Noise Debounce Time = 8 ADC Word Clocks  
...  
0 1010: Left Channel AGC Noise Debounce Time = 2048 ADC Word Clocks  
0 1011: Left Channel AGC Noise Debounce Time = 4096 ADC Word Clocks  
0 1100: Left Channel AGC Noise Debounce Time = 2*4096 ADC Word Clocks  
0 1101: Left Channel AGC Noise Debounce Time = 3*4096 ADC Word Clocks  
...  
1 1101: Left Channel AGC Noise Debounce Time = 19*4096 ADC Word Clocks  
1 1110: Left Channel AGC Noise Debounce Time = 20*4096 ADC Word Clocks  
1 1111: Left Channel AGC Noise Debounce Time = 21*4096 ADC Word Clocks  
Book 0 / Page 0 / Register 92: Left AGC Signal Debounce - 0x00 / 0x00 / 0x5C (B0_P0_R92)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D4  
R
0000  
Reserved. Write only reset values.  
148  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 0 / Register 92: Left AGC Signal Debounce - 0x00 / 0x00 / 0x5C (B0_P0_R92) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D3-D0  
R/W  
0000  
Left Channel AGC Signal Debounce Time Setting  
0001: Left Channel AGC Signal Debounce Time = 0  
0010: Left Channel AGC Signal Debounce Time = 4 ADC Word Clocks  
0011: Left Channel AGC Signal Debounce Time = 8 ADC Word Clocks  
...  
1001: Left Channel AGC Signal Debounce Time = 1024 ADC Word Clocks  
1010: Left Channel AGC Signal Debounce Time = 2048 ADC Word Clocks  
1011: Left Channel AGC Signal Debounce Time = 2*2048 ADC Word Clocks  
1100: Left Channel AGC Signal Debounce Time = 3*2048 ADC Word Clocks  
1101: Left Channel AGC Signal Debounce Time = 4*2048 ADC Word Clocks  
1110: Left Channel AGC Signal Debounce Time = 5*2048 ADC Word Clocks  
1111: Left Channel AGC Signal Debounce Time = 6*2048 ADC Word Clocks  
Book 0 / Page 0 / Register 93: Left AGC Gain - 0x00 / 0x00 / 0x5D (B0_P0_R93)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Left Channel AGC Gain  
1110 1000: Left Channel AGC Gain = -12.0dB  
1110 1001: Left Channel AGC Gain = -11.5dB  
1110 1010: Left Channel AGC Gain = -11.0dB  
...  
0000 0000: Left Channel AGC Gain = 0.0dB  
...  
0111 1101: Left Channel AGC Gain = 62.5dB  
0111 1110: Left Channel AGC Gain = 63.0dB  
0111 1111: Left Channel AGC Gain = 63.5dB  
Book 0 / Page 0 / Register 94: Right AGC Control 1 - 0x00 / 0x00 / 0x5E (B0_P0_R94)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
0
0: Right Channel AGC Disabled  
1: Right Channel AGC Enabled  
D6-D4  
R/W  
000  
Right Channel AGC Target Level Setting  
000: Right Channel AGC Target Level = -5.5 dBFS  
001: Right Channel AGC Target Level = -8.0 dBFS  
010: Right Channel AGC Target Level = -10.0 dBFS  
011: Right Channel AGC Target Level = -12.0 dBFS  
100: Right Channel AGC Target Level = -14.0 dBFS  
101: Right Channel AGC Target Level = -17.0 dBFS  
110: Right Channel AGC Target Level = -20.0 dBFS  
111: Right Channel AGC Target Level = -24.0 dBFS  
D3-D2  
D1-D0  
R
00  
00  
Reserved. Write only reset values.  
R/W  
Right Channel AGC Gain Hysteresis Control  
00: Right Channel AGC Gain Hysteresis is disabled  
01: Right Channel AGC Gain Hysteresis is +-0.5 dB  
10: Right Channel AGC Gain Hysteresis is +-1.0 dB  
11: Right Channel AGC Gain Hysteresis is +-1.5 dB  
Book 0 / Page 0 / Register 95: Right AGC Control 2 - 0x00 / 0x00 / 0x5F (B0_P0_R95)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
R/W  
00  
Right Channel AGC Hysteresis Setting  
00: Right Channel AGC Hysteresis is 1.0dB  
01: Right Channel AGC Hysteresis is 2.0dB  
10: Right Channel AGC Hysteresis is 4.0dB  
11: Right Channel AGC Hysteresis is disabled  
Copyright © 2014, Texas Instruments Incorporated  
149  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 0 / Register 95: Right AGC Control 2 - 0x00 / 0x00 / 0x5F (B0_P0_R95) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D5-D1  
R/W  
00 000  
Right Channel AGC Noise Threshold  
0 0000: Right Channel AGC Noise Gate disabled  
0 0001: Right Channel AGC Noise Threshold is -30dB  
0 0010: Right Channel AGC Noise Threshold is -32dB  
0 0011: Right Channel AGC Noise Threshold is -34dB  
...  
1 1101: Right Channel AGC Noise Threshold is -86dB  
1 1110: Right Channel AGC Noise Threshold is -88dB  
1 1111: Right Channel AGC Noise Threshold is -90dB  
D0  
R
0
Reserved. Write only reset values.  
Book 0 / Page 0 / Register 96: Right AGC Control 3 - 0x00 / 0x00 / 0x60 (B0_P0_R96)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
Reserved. Write only reset values.  
D6-D0  
R/W  
111 1111 Right Channel AGC Maximum Gain Setting  
000 0000: Right Channel AGC Maximum Gain = 0.0dB  
000 0001: Right Channel AGC Maximum Gain = 0.5dB  
000 0010: Right Channel AGC Maximum Gain = 1.0dB  
...  
111 1110: Right Channel AGC Maximum Gain = 63.0dB  
111 1111: Right Channel AGC Maximum Gain = 63.5dB  
Book 0 / Page 0 / Register 97: Right AGC Attack Time - 0x00 / 0x00 / 0x61 (B0_P0_R97)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D3  
R/W  
0000 0  
Right Channel AGC Attack Time Setting  
0 0000: Right Channel AGC Attack Time = 1*32 ADC Word Clocks  
0 0001: Right Channel AGC Attack Time = 3*32 ADC Word Clocks  
0 0010: Right Channel AGC Attack Time = 5*32 ADC Word Clocks  
...  
1 1101: Right Channel AGC Attack Time = 59*32 ADC Word Clocks  
1 1110: Right Channel AGC Attack Time = 61*32 ADC Word Clocks  
1 1111: Right Channel AGC Attack Time = 63*32 ADC Word Clocks  
D2-D0  
R/W  
000  
Right Channel AGC Attack Time Scale Factor Setting  
000: Scale Factor = 1  
001: Scale Factor = 2  
010: Scale Factor = 4  
...  
101: Scale Factor = 32  
110: Scale Factor = 64  
111: Scale Factor = 128  
Book 0 / Page 0 / Register 98: Right AGC Decay Time - 0x00 / 0x00 / 0x62 (B0_P0_R98)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D3  
R/W  
0 0000  
Right Channel AGC Decay Time Setting  
0 0000: Right Channel AGC Decay Time = 1*512 ADC Word Clocks  
0 0001: Right Channel AGC Decay Time = 3*512 ADC Word Clocks  
0 0010: Right Channel AGC Decay Time = 5*512 ADC Word Clocks  
...  
1 1101: Right Channel AGC Decay Time = 59*512 ADC Word Clocks  
1 1110: Right Channel AGC Decay Time = 61*512 ADC Word Clocks  
1 1111: Right Channel AGC Decay Time = 63*512 ADC Word Clocks  
150  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 0 / Register 98: Right AGC Decay Time - 0x00 / 0x00 / 0x62 (B0_P0_R98) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D2-D0  
R/W  
000  
Right Channel AGC Decay Time Scale Factor Setting  
000: Scale Factor = 1  
001: Scale Factor = 2  
010: Scale Factor = 4  
...  
101: Scale Factor = 32  
110: Scale Factor = 64  
111: Scale Factor = 128  
Book 0 / Page 0 / Register 99: Right AGC Noise Debounce - 0x00 / 0x00 / 0x63 (B0_P0_R99)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D5  
D4-D0  
R
000  
Reserved. Write only default values.  
R/W  
0 0000  
Right Channel AGC Noise Debounce Time Setting  
0 0001: Right Channel AGC Noise Debounce Time = 0  
0 0010: Right Channel AGC Noise Debounce Time = 4 ADC Word Clocks  
0 0011: Right Channel AGC Noise Debounce Time = 8 ADC Word Clocks  
...  
0 1010: Right Channel AGC Noise Debounce Time = 2048 ADC Word Clocks  
0 1011: Right Channel AGC Noise Debounce Time = 4096 ADC Word Clocks  
0 1100: Right Channel AGC Noise Debounce Time = 2*4096 ADC Word Clocks  
0 1101: Right Channel AGC Noise Debounce Time = 3*4096 ADC Word Clocks  
...  
1 1101: Right Channel AGC Noise Debounce Time = 19*4096 ADC Word Clocks  
1 1110: Right Channel AGC Noise Debounce Time = 20*4096 ADC Word Clocks  
1 1111: Right Channel AGC Noise Debounce Time = 21*4096 ADC Word Clocks  
Book 0 / Page 0 / Register 100: Right AGC Signal Debounce - 0x00 / 0x00 / 0x64 (B0_P0_R100)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D4  
D3-D0  
R
0000  
0000  
Reserved. Write only reset values.  
R/W  
Right Channel AGC Signal Debounce Time Setting  
0001: Right Channel AGC Signal Debounce Time = 0  
0010: Right Channel AGC Signal Debounce Time = 4 ADC Word Clocks  
0011: Right Channel AGC Signal Debounce Time = 8 ADC Word Clocks  
...  
1001: Right Channel AGC Signal Debounce Time = 1024 ADC Word Clocks  
1010: Right Channel AGC Signal Debounce Time = 2048 ADC Word Clocks  
1011: Right Channel AGC Signal Debounce Time = 2*2048 ADC Word Clocks  
1100: Right Channel AGC Signal Debounce Time = 3*2048 ADC Word Clocks  
1101: Right Channel AGC Signal Debounce Time = 4*2048 ADC Word Clocks  
1110: Right Channel AGC Signal Debounce Time = 5*2048 ADC Word Clocks  
1111: Right Channel AGC Signal Debounce Time = 6*2048 ADC Word Clocks  
Book 0 / Page 0 / Register 101: Right AGC Gain - 0x00 / 0x00 / 0x65 (B0_P0_R101)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Right Channel AGC Gain  
1110 1000: Left Channel AGC Gain = -12.0dB  
1110 1001: Left Channel AGC Gain = -11.5dB  
1110 1010: Left Channel AGC Gain = -11.0dB  
...  
0000 0000: Left Channel AGC Gain = 0.0dB  
...  
0111 1101: Left Channel AGC Gain = 62.5dB  
0111 1110: Left Channel AGC Gain = 63.0dB  
0111 1111: Left Channel AGC Gain = 63.5dB  
Copyright © 2014, Texas Instruments Incorporated  
151  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 0 / Register 102-111: Reserved Registers - 0x00 / 0x00 / 0x66-0x6F (B0_P0_R102-111)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Reserved. Write only default values.  
Book 0 / Page 0 / Register 112: Digital Microphone 2 Control - 0x00 / 0x00 / 0x70 (B0_P0_R112)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
R/W  
0
0: CIC2 Left Channel is disabled  
1: CIC2 Left Channel is enabled  
D6  
0
0: CIC2 Right Channel is disabled  
1: CIC2 Right Channel is enabled  
D5-D4  
00  
00: CIC2 Left Channel not in use (B0_P0_R112_D7 is set to '0')  
01: Digital Microphone is fed to CIC2 Left Channel  
10: Left DAC Modulator output is fed to CIC2 Left Channel  
11: Reserved. Do not use.  
D3-D2  
D1-D0  
R/W  
R
00  
00  
00: CIC2 Right Channel not in use (B0_P0_R112_D6 is set to '0')  
01: Digital Microphone is fed to CIC2 Right Channel  
10: Right DAC Modulator output is fed to CIC2 Right Channel  
11: Reserved. Do not use.  
Reserved. Write only reset values.  
Book 0 / Page 0 / Register 113-114: Reserved Registers - 0x00 / 0x00 / 0x71-0x72 (B0_P0_R113-114)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 0 / Page 0 / Register 115: I2C Interface Miscellaneous Control - 0x00 / 0x00 / 0x73 (B0_P0_R115)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
D5  
R
00  
0
Reserved. Write only reset values.  
R/W  
I2C General Call Address Configuration  
0: I2C General Call Address will be ignored  
1: I2C General Call Address accepted  
D4-D0  
R
0 0000  
Reserved. Write only reset values.  
Book 0 / Page 0 / Register 116-119: Reserved Registers - 0x00 / 0x00 / 0x74-0x77 (B0_P0_R116-119)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
xxxx xxxx Reserved. Do not write.  
Book 0 / Page 0 / Register 120: miniDSP Control Register access - 0x00 / 0x00 / 0x78 (B0_P0_R120)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
0
0: miniDSP does not have write access to control registers  
1: miniDSP has write access to control registers  
D6-D0  
R/W  
00 0000  
Reserved. Write only default value  
Book 0 / Page 0 / Register 121-126: Reserved Registers - 0x00 / 0x00 / 0x79-0x7E (B0_P0_R121-126)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
xxxx xxxx Reserved. Do not write  
152  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 0 / Register 127: Book Selection Register - 0x00 / 0x00 / 0x7F (B0_P0_R127)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 0000 0000: Book 0 selected  
0000 0001: Book 1 selected  
...  
1111 1110: Book 254 selected  
1111 1111: Book 255 selected  
8.6.3 Book 0 Page 1  
Book 0 / Page 1 / Register 0: Page Select Register - 0x00 / 0x01 / 0x00 (B0_P1_R0)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Page Select Register  
0-255: Selects the Register Page for next read or write command.  
Book 0 / Page 1 / Register 1: Power Configuration Register - 0x00 / 0x01 / 0x01 (B0_P1_R1)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D4  
D3  
R
0000  
1
Reserved. Write only reset values.  
R/W  
0: Disable weak connection of AVDDx_18 with DVDD_18  
1: AVDDx_18 is weakly connected to DVDD_18. Use when DVDD_18 is powered-up and  
AVDDx_18 is not externally powered-up.  
D2  
R/W  
R
1
0: All the external analog supplies are available.  
1: All the external analog supplies are not available.  
D1-D0  
00  
Reserved. Write only reset values.  
Book 0 / Page 1 / Register 2: Reserved Register - 0x00 / 0x01 / 0x02 (B0_P1_R2)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 0 / Page 1 / Register 3: Left DAC PowerTune Configuration Register - 0x00 / 0x01 / 0x03 (B0_P1_R3)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D5  
D4-D2  
R
000  
Reserved. Write only reset values.  
R/W  
0 00  
Left DAC PTM Control  
000: Left DAC in mode PTM_P3, PTM_P4  
001: Left DAC in mode PTM_P2  
010: Left DAC in mode PTM_P1  
011-111: Reserved. Do not use  
D1-D0  
R
00  
Reserved. Write only reset values.  
Book 0 / Page 1 / Register 4: Right DAC PowerTune Configuration Register - 0x00 / 0x01 / 0x04  
(B0_P1_R4)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D5  
D4-D2  
R
000  
Reserved. Write only reset values.  
Right DAC PTM Control  
R/W  
0 00  
000: Right DAC in mode PTM_P3, PTM_P4  
001: Right DAC in mode PTM_P2  
010: Right DAC in mode PTM_P1  
011-111: Reserved. Do not use  
D1-D0  
R
00  
Reserved. Write only reset values.  
Copyright © 2014, Texas Instruments Incorporated  
153  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 1 / Register 5-7: Reserved Registers - 0x00 / 0x01 / 0x05-0x07 (B0_P1_R5-7)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 0 / Page 1 / Register 8: Common Mode Register - 0x00 / 0x01 / 0x08 (B0_P1_R8)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
0
0: Soft-stepping of all the PGA are enabled for DAC channel.  
1: Soft-stepping of all the PGA are disabled for DAC channel.  
D6  
R/W  
0
0: Normal Mode  
1: Soft-stepping time for all the PGA of DAC channel is doubled.  
D5  
R
0
Reserved. Write only reset values.  
D4-D3  
R/W  
00  
00: Output Common Mode for HP (valid only if the cap-coupled mode is enabled) Output Drivers =  
Input Common Mode  
01: Output Common Mode for HP (valid only if the cap-coupled mode is enabled) Output Drivers =  
1.25V  
10: Output Common Mode for HP (valid only if the cap-coupled mode is enabled) Output Drivers =  
1.5V  
11: Output Common Mode for HP (valid only if the cap-coupled mode is enabled) Output Drivers =  
1.65V  
D2  
R/W  
R/W  
0
0: Input Common Mode for full-chip (ADC and All Output Drivers except Receiver Output) = 0.9V  
1: Input Common Mode for full-chip (ADC and All Output Drivers except Receiver Output) = 0.75V  
D1-D0  
00  
00: Output Common Mode for REC Output Drivers = Input Common Mode  
01: Output Common Mode for REC Output Drivers = 1.25V  
10: Output Common Mode for REC Output Drivers = 1.5V  
11: Output Common Mode for REC Output Drivers = 1.65V  
Book 0 / Page 1 / Register 9: Headphone Output Driver Control - 0x00 / 0x01 / 0x09 (B0_P1_R9)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
Reserved. Write only reset values.  
D6-D5  
R/W  
00  
00: Headphone Driver Output Stage is 100%.  
01: Headphone Driver Output Stage is 75%.  
10: Headphone Driver Output Stage is 50%.  
11: Headphone Driver Output Stage is 25%.  
D4  
R
1
Reserved. Write only reset values.  
D3-D1  
R/W  
000  
Debounce Programming for Glitch Rejection during Short Circuit Detection  
000: 0us  
001: 8us  
010: 16us  
011: 32us  
100: 64us  
101: 128us  
110: 256us  
111: 512us  
D0  
R/W  
0
HPL and HPR Over Current Response Control  
0: If Over Current Detected Limit the current delivered by HPL and HPR  
1: If Over Current Detected Power-Down the HPL and HPR driver.  
Book 0 / Page 1 / Register 10: Receiver Output Driver Control - 0x00 / 0x01 / 0x0A (B0_P1_R10)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D4  
R
0001  
Reserved. Write only reset values.  
154  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 1 / Register 10: Receiver Output Driver Control - 0x00 / 0x01 / 0x0A  
(B0_P1_R10) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D3-D1  
R/W  
000  
Debounce Programming for Glitch Rejection during Short Circuit Detection  
000: 0us  
001: 8us  
010: 16us  
011: 32us  
100: 64us  
101: 128us  
110: 256us  
111: 512us  
D0  
R/W  
0
Receiver RECP and RECM Over-Current Response Control  
0: If Over-Current Detected Limit the current.  
1: If Over-Current Detected Power-Down the RECP and RECM driver  
Book 0 / Page 1 / Register 11: Headphone Output Driver De-pop Control - 0x00 / 0x01 / 0x0B (B0_P1_R11)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
R/W  
00  
Headphone De-Pop Due to Input Offset Control (Note: Headphone depop control should only be  
used in unipolar configuration. This control should be disabled in Ground-Centered Headphone  
configuration.)  
00: Disable  
01: Enable (Duration = 50ms)  
10: Enable (Duration = 100ms)  
11: Enable (Duration = 200ms)  
D5-D2  
R/W  
00 00  
Headphone Output Driver De-Pop Control (Note: Headphone depop control should only be used in  
unipolar configuration. This control should be disabled in Ground-Centered Headphone  
configuration.)  
0000: Disabled  
0001: Enabled (Duration = 0.500*RC)  
0010: Enabled (Duration = 0.625*RC)  
0011: Enabled (Duration = 0.750*RC}  
0100: Enabled (Duration = 0.875*RC)  
0101: Enabled (Duration = 1.000*RC)  
0110: Enabled (Duration = 2.000*RC)  
0111: Enabled (Duration = 3.000*RC)  
1000: Enabled (Duration = 4.000*RC)  
1001: Enabled (Duration = 5.000*RC)  
1010: Enabled (Duration = 6.000*RC)  
1011: Enabled (Duration = 7.000*RC)  
1100: Enabled (Duration = 8.000*RC)  
1101: Enabled (Duration = 16.000*RC - do not use for Rchg=25K)  
1110: Enabled (Duration = 24.000*RC - do not use for Rchg=25K)  
1111: Enabled (Duration = 32.000*RC - do not use for Rchg=25K)  
D1-D0  
R/W  
00  
Headphone De-Pop Scheme Duration Based on RC Delay Control  
00: Internal R = 25K typical and C is external cap.assumed to be 47uF  
01: Internal R = 6K typical and C is external cap. assumed to be 47uF  
10: Internal R = 2K typical and C is external cap. assumed to be 47uF  
11: Reserved.  
Book 0 / Page 1 / Register 12: Receiver Output Driver De-Pop Control - 0x00 / 0x01 / 0x0C (B0_P1_R12)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
R/W  
00  
Receiver De-Pop Due to Input Offset Control  
00: Disable  
01: Enable (Duration = 50ms)  
10: Enable (Duration = 100ms)  
11: Enable (Duration = 200ms)  
Copyright © 2014, Texas Instruments Incorporated  
155  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 1 / Register 12: Receiver Output Driver De-Pop Control - 0x00 / 0x01 / 0x0C  
(B0_P1_R12) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D5-D2  
R/W  
00 00  
Receiver Output Driver De-Pop Control  
0000: Disabled  
0001: Enabled (Duration = 0.500*RC)  
0010: Enabled (Duration = 0.625*RC)  
0011: Enabled (Duration = 0.750*RC}  
0100: Enabled (Duration = 0.875*RC)  
0101: Enabled (Duration = 1.000*RC)  
0110: Enabled (Duration = 2.000*RC)  
0111: Enabled (Duration = 3.000*RC)  
1000: Enabled (Duration = 4.000*RC)  
1001: Enabled (Duration = 5.000*RC)  
1010: Enabled (Duration = 6.000*RC)  
1011: Enabled (Duration = 7.000*RC)  
1100: Enabled (Duration = 8.000*RC)  
1101: Enabled (Duration = 16.000*RC - do not use for Rchg=25K)  
1110: Enabled (Duration = 24.000*RC - do not use for Rchg=25K)  
1111: Enabled (Duration = 32.000*RC - do not use for Rchg=25K)  
D1-D0  
R/W  
00  
Receiver De-Pop Scheme Duration Based on RC Delay Control  
00: Internal R = 25K typical and C is external cap.assumed to be 47uF  
01: Internal R = 6K typical and C is external cap. assumed to be 47uF  
10: Internal R = 2K typical and C is external cap. assumed to be 47uF  
11: Reserved.  
Book 0 / Page 1 / Register 13-16: Reserved Registers - 0x00 / 0x01 / 0x0D-0x10 (B0_P1_R13-16)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 0 / Page 1 / Register 17: Mixer Amplifier Control - 0x00 / 0x01 / 0x11 (B0_P1_R17)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
D5  
R
00  
0
Reserved. Write only reset values.  
R/W  
IN1L to Mixer Amplifier Left (MAL) Routing Control  
0: IN1L input for high-impedance mode is not routed to MAL  
1: IN1L input for high-impedance mode is routed to MAL  
D4  
D3  
R/W  
R/W  
R/W  
R
0
0
IN1R to Mixer Amplifier Right (MAR) Routing Control  
0: IN1R input for high-impedance mode is not routed to MAR  
1: IN1R input for high-impedance mode is routed to MAR  
Mixer Amp Left (MAL) Power Control  
0: MAL is powered down  
1: MAL is powered up  
D2  
0
Mixer Amp Right (MAR) Power Control  
0: MAR is powered down  
1: MAR is powered up  
D1-D0  
00  
Reserved. Write only reset values.  
Book 0 / Page 1 / Register 18: Left ADC PGA to Left Mixer Amplifier (MAL) Volume Control - 0x00 / 0x01 /  
0x12 (B0_P1_R18)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
R
00  
Reserved. Write only reset values.  
156  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 1 / Register 18: Left ADC PGA to Left Mixer Amplifier (MAL) Volume Control - 0x00 / 0x01 /  
0x12 (B0_P1_R18) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D5-D0  
R/W  
11 1111  
Left ADC PGA Output Routed to Left Mixer Amplifier (MAL) Volume Control:  
00 0000: Volume Control = 0.0 dB  
00 0001: Volume Control = -0.4 dB  
00 0010: Volume Control = -0.9 dB  
00 0011: Volume Control = -1.3 dB  
00 0100: Volume Control = -1.8 dB  
00 0101: Volume Control = -2.3 dB  
00 0110: Volume Control = -2.9 dB  
00 0111: Volume Control = -3.3 dB  
00 1000: Volume Control = -3.9 dB  
00 1001: Volume Control = -4.3 dB  
00 1010: Volume Control = -4.8 dB  
00 1011: Volume Control = -5.2 dB  
00 1100: Volume Control = -5.8 dB  
00 1101: Volume Control = -6.3 dB  
00 1110: Volume Control = -6.6 dB  
00 1111: Volume Control = -7.2 dB  
01 0000: Volume Control = -7.8 dB  
01 0001: Volume Control = -8.2 dB  
01 0010: Volume Control = -8.5 dB  
01 0011: Volume Control = -9.3 dB  
01 0100: Volume Control = -9.7 dB  
01 0101: Volume Control = -10.1 dB  
01 0110: Volume Control = -10.6 dB  
01 0111: Volume Control = -11.0 dB  
01 1000: Volume Control = -11.5 dB  
01 1001: Volume Control = -12.0 dB  
01 1010: Volume Control = -12.6 dB  
01 1011: Volume Control = -13.2 dB  
01 1100: Volume Control = -13.8 dB  
01 1101: Volume Control = -14.5 dB  
01 1110: Volume Control = -15.3 dB  
01 1111: Volume Control = -16.1 dB  
10 0000: Volume Control = -17.0 dB  
10 0001: Volume Control = -18.1 dB  
10 0010: Volume Control = -19.2 dB  
10 0011: Volume Control = -20.6 dB  
10 0100: Volume Control = -22.1 dB  
10 0101: Volume Control = -24.1 dB  
10 0110: Volume Control = -26.6 dB  
10 0111: Volume Control = -30.1 dB  
10 1000: Volume Control = -36.1 dB  
10 1001 - 11 1110: Reserved  
11 1111: Left ADC PGA output is not routed to Left Mixer Amplifier (MAL)  
Book 0 / Page 1 / Register 19: Right ADC PGA to Right Mixer Amplifier (MAR) Volume Control - 0x00 /  
0x01 / 0x13 (B0_P1_R19)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R
0
0
0: Use the Right ADC PGA output routing setting to MAR as defined in this Register D5-D0  
1: Use the Right ADC PGA output routing setting to MAR same as defined for Left ADC PGA in  
Page 1, Register 18, bits D5-D0 (previous register)  
D6  
Reserved. Write only reset values.  
Copyright © 2014, Texas Instruments Incorporated  
157  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 1 / Register 19: Right ADC PGA to Right Mixer Amplifier (MAR) Volume Control - 0x00 /  
0x01 / 0x13 (B0_P1_R19) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D5-D0  
R/W  
11 1111  
Right ADC PGA Output Routed to Right Mixer Amplifier Volume Control:  
00 0000: Volume Control = 0.0 dB  
00 0001: Volume Control = -0.4 dB  
00 0010: Volume Control = -0.9 dB  
00 0011: Volume Control = -1.3 dB  
00 0100: Volume Control = -1.8 dB  
00 0101: Volume Control = -2.3 dB  
00 0110: Volume Control = -2.9 dB  
00 0111: Volume Control = -3.3 dB  
00 1000: Volume Control = -3.9 dB  
00 1001: Volume Control = -4.3 dB  
00 1010: Volume Control = -4.8 dB  
00 1011: Volume Control = -5.2 dB  
00 1100: Volume Control = -5.8 dB  
00 1101: Volume Control = -6.3 dB  
00 1110: Volume Control = -6.6 dB  
00 1111: Volume Control = -7.2 dB  
01 0000: Volume Control = -7.8 dB  
01 0001: Volume Control = -8.2 dB  
01 0010: Volume Control = -8.5 dB  
01 0011: Volume Control = -9.3 dB  
01 0100: Volume Control = -9.7 dB  
01 0101: Volume Control = -10.1 dB  
01 0110: Volume Control = -10.6 dB  
01 0111: Volume Control = -11.0 dB  
01 1000: Volume Control = -11.5 dB  
01 1001: Volume Control = -12.0 dB  
01 1010: Volume Control = -12.6 dB  
01 1011: Volume Control = -13.2 dB  
01 1100: Volume Control = -13.8 dB  
01 1101: Volume Control = -14.5 dB  
01 1110: Volume Control = -15.3 dB  
01 1111: Volume Control = -16.1 dB  
10 0000: Volume Control = -17.0 dB  
10 0001: Volume Control = -18.1 dB  
10 0010: Volume Control = -19.2 dB  
10 0011: Volume Control = -20.6 dB  
10 0100: Volume Control = -22.1 dB  
10 0101: Volume Control = -24.1dB  
10 0110: Volume Control = -26.6dB  
10 0111: Volume Control = -30.1dB  
10 1000: Volume Control = -36.1dB  
10 1001 - 11 1110: Reserved  
11 1111: Right ADC PGA output is not routed to Right Mixer Amplifer (MAR)  
Book 0 / Page 1 / Register 20-21: Reserved Registers - 0x00 / 0x01 / 0x14-0x15 (B0_P1_R20-21)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 0 / Page 1 / Register 22: Lineout Amplifier Control 1 - 0x00 / 0x01 / 0x16 (B0_P1_R22)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
0
0
Left DAC to LOL Driver Routing Control:  
0: Left DAC is not routed to LOL driver.  
1: Left DAC M-terminal is routed to LOL driver.  
D6  
Right DAC to LOR Driver Routing Control:  
0: Right DAC is not routed to LOR driver.  
1: Right DAC M-terminal is routed to LOR driver.  
158  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 1 / Register 22: Lineout Amplifier Control 1 - 0x00 / 0x01 / 0x16 (B0_P1_R22) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D5  
R/W  
0
Right DAC to LOL Driver Routing Control:  
0: Right DAC is not routed to LOL driver.  
1: Right DAC P-terminal is routed to LOL driver.(This is provided to support differential DAC output  
to LO and should be done only when B0_P1_R22_D6=1 and B0_P1_R27_D4=0)  
D4-D3  
D2  
R
0 0  
0
Reserved. Write only reset values.  
R/W  
LOL to LOR Driver Routing Control:  
0: LOL output not routed to LOR driver.  
1: LOL output routed to LOR driver.  
D1  
D0  
R/W  
R/W  
0
0
LOL Output Driver Power Control:  
0: LOL output driver power-down  
1: LOL output driver power-up  
LOR Output Driver Power Control:  
0: LOR output driver power-down  
1: LOR output driver power-up  
Book 0 / Page 1 / Register 23: Lineout Amplifier Control 2 - 0x00 / 0x01 / 0x17 (B0_P1_R23)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
0
0
Left Mixer Amplifier to LOL Driver Routing Control:  
0: MAL output is not routed to LOL driver.  
1: MAL output is routed to LOL driver.  
D6  
Right Mixer Amplifier to LOR Driver Routing Control:  
0: MAR output is not routed to LOR driver.  
1: MAR output is routed to LOR driver.  
D5  
R
0
Reserved. Write only reset values.  
D4-D3  
R/W  
0 0  
IN1L Input to LOL Driver Routing and Gain Control:  
00: IN1L input is not routed to LOL driver.  
01: IN1L input is routed to LOL driver with gain = 0dB  
10: IN1L input is routed to LOL driver with gain = -6dB  
11: IN1L input is routed to LOL driver with gain = -12dB  
D2  
R
0
Reserved. Write only reset values.  
D1-D0  
R/W  
00  
IN1R Input to LOR Driver Routing and Gain Control:  
00: IN1R input is not routed to LOR driver.  
01: IN1R input is routed to LOR driver with gain = 0dB  
10: IN1R input is routed to LOR driver with gain = -6dB  
11: IN1R input is routed to LOR driver with gain = -12dB  
Book 0 / Page 1 / Register 24-26: Reserved - 0x00 / 0x01 / 0x18-0x1A (B0_P1_R24-26)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 0 / Page 1 / Register 27: Headphone Amplifier Control 1 - 0x00 / 0x01 / 0x1B (B0_P1_R27)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Left Mixer Amplifier to HPL Driver Routing Control:  
0: MAL output is not routed to HPL driver.  
1: MAL output is routed to HPL driver.  
D6  
D5  
D4  
Right Mixer Amplifier to HPL Driver Routing Control:  
0: MAR output is not routed to HPR driver.  
1: MAR output is routed to HPR driver.  
Left DAC to HPL Driver Routing Control:  
0: Left DAC is not routed to HPL driver.  
1: Left DAC is routed to HPL driver.  
Right DAC to HPR Driver Routing Control:  
0: Right DAC is not routed to HPR driver.  
1: Right DAC is routed to HPR driver.  
Copyright © 2014, Texas Instruments Incorporated  
159  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 1 / Register 27: Headphone Amplifier Control 1 - 0x00 / 0x01 / 0x1B  
(B0_P1_R27) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D3  
D2  
R
0
0
Reserved. Write only reset values.  
R/W  
Left DAC to HPR Driver Routing Control:  
0: Left DAC is not routed to HPR driver.  
1: Left DAC M-terminal is routed to HPR driver. (This is provided to support differential DAC output  
for HP and should be done only when B0_P1_R27_D5=1 and B0_P1_R22_D7=0)  
D1  
D0  
R/W  
R/W  
0
0
HPL Output Driver Power Control:  
0: HPL output driver is powered down  
1: HPL output driver is powered up  
HPR Output Driver Power Control:  
0: HPR output driver is powered down  
1: HPR output driver is powered up  
Book 0 / Page 1 / Register 28: Headphone Amplifier Control 2 - 0x00 / 0x01 / 0x1C (B0_P1_R28)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
Reserved. Write only reset values.  
160  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 1 / Register 28: Headphone Amplifier Control 2 - 0x00 / 0x01 / 0x1C  
(B0_P1_R28) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D6-D0  
R/W  
111 1111 LOL Output Routed to HPL Driver Volume Control:  
000 0000: Volume Control = 0.00 dB  
000 0001: Volume Control = -0.5 dB  
000 0010: Volume Control = -1.0 dB  
000 0011: Volume Control = -1.5 dB  
000 0100: Volume Control = -2.0 dB  
000 0101: Volume Control = -2.5 dB  
000 0110: Volume Control = -3.0 dB  
000 0111: Volume Control = -3.5 dB  
000 1000: Volume Control = -4.0 dB  
000 1001: Volume Control = -4.5 dB  
000 1010: Volume Control = -5.0 dB  
000 1011: Volume Control = -5.5 dB  
000 1100: Volume Control = -6.0 dB  
000 1101: Volume Control = -6.5 dB  
000 1110: Volume Control = -7.0 dB  
000 1111: Volume Control = -7.5 dB  
001 0000: Volume Control = -8.0 dB  
001 0001: Volume Control = -8.5 dB  
001 0010: Volume Control = -9.0 dB  
001 0011: Volume Control = -9.5 dB  
001 0100: Volume Control = -10.0 dB  
001 0101: Volume Control = -10.5 dB  
001 0110: Volume Control = -11.0 dB  
001 0111: Volume Control = -11.5 dB  
001 1000: Volume Control = -12.0 dB  
001 1001: Volume Control = -12.5 dB  
001 1010: Volume Control = -13.0 dB  
001 1011: Volume Control = -13.5 dB  
001 1100: Volume Control = -14.1 dB  
001 1101: Volume Control = -14.6 dB  
001 1110: Volume Control = -15.1 dB  
001 1111: Volume Control = -15.6 dB  
010 0000: Volume Control = -16.0 dB  
010 0001: Volume Control = -16.5 dB  
010 0010: Volume Control = -17.1 dB  
010 0011: Volume Control = -17.5 dB  
010 0100: Volume Control = -18.1 dB  
010 0101: Volume Control = -18.6 dB  
010 0110: Volume Control = -19.1 dB  
010 0111: Volume Control = -19.6 dB  
010 1000: Volume Control = -20.1 dB  
010 1001: Volume Control = -20.6 dB  
010 1010: Volume Control = -21.1 dB  
010 1011: Volume Control = -21.6 dB  
010 1100: Volume Control = -22.1 dB  
010 1101: Volume Control = -22.6 dB  
010 1110: Volume Control = -23.1 dB  
010 1111: Volume Control = -23.6 dB  
011 0000: Volume Control = -24.1 dB  
011 0001: Volume Control = -24.6 dB  
011 0010: Volume Control = -25.1 dB  
011 0011: Volume Control = -25.6 dB  
011 0100: Volume Control = -26.1 dB  
011 0101: Volume Control = -26.6 dB  
011 0110: Volume Control = -27.1 dB  
011 0111: Volume Control = -27.6 dB  
011 1000: Volume Control = -28.1 dB  
011 1001: Volume Control = -28.6 dB  
011 1010: Volume Control = -29.1 dB  
011 1011: Volume Control = -29.6 dB  
011 1100: Volume Control = -30.1 dB  
011 1101: Volume Control = -30.6 dB  
011 1110: Volume Control = -31.1 dB  
011 1111: Volume Control = -31.6 dB  
100 0000: Volume Control = -32.1 dB  
100 0001: Volume Control = -32.7 dB  
Copyright © 2014, Texas Instruments Incorporated  
161  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 1 / Register 28: Headphone Amplifier Control 2 - 0x00 / 0x01 / 0x1C  
(B0_P1_R28) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
100 0010: Volume Control = -33.1 dB  
100 0011: Volume Control = -33.6 dB  
100 0100: Volume Control = -34.1 dB  
100 0101: Volume Control = -34.6 dB  
100 0110: Volume Control = -35.2 dB  
100 0111: Volume Control = -35.7 dB  
100 1000: Volume Control = -36.1 dB  
100 1001: Volume Control = -36.7 dB  
100 1010: Volume Control = -37.1 dB  
100 1011: Volume Control = -37.7 dB  
100 1100: Volume Control = -38.2 dB  
100 1101: Volume Control = -38.7 dB  
100 1110: Volume Control = -39.2 dB  
100 1111: Volume Control = -39.7 dB  
101 0000: Volume Control = -40.2 dB  
101 0001: Volume Control = -40.7 dB  
101 0010: Volume Control = -41.2 dB  
101 0011: Volume Control = -41.8 dB  
101 0100: Volume Control = -42.1 dB  
101 0101: Volume Control = -42.7 dB  
101 0110: Volume Control = -43.2 dB  
101 0111: Volume Control = -43.8 dB  
101 1000: Volume Control = -44.3 dB  
101 1001: Volume Control = -44.8 dB  
101 1010: Volume Control = -45.2 dB  
101 1011: Volume Control = -45.8 dB  
101 1100: Volume Control = -46.2 dB  
101 1101: Volume Control = -46.7 dB  
101 1110: Volume Control = -47.4 dB  
101 1111: Volume Control = -47.9 dB  
110 0000: Volume Control = -48.2 dB  
110 0001: Volume Control = -48.7 dB  
110 0010: Volume Control = -49.3 dB  
110 0011: Volume Control = -50.0 dB  
110 0100: Volume Control = -50.3 dB  
110 0101: Volume Control = -51.0 dB  
110 0110: Volume Control = -51.4 dB  
110 0111: Volume Control = -51.8 dB  
110 1000: Volume Control = -52.3 dB  
110 1001: Volume Control = -52.7 dB  
110 1010: Volume Control = -53.7 dB  
110 1011: Volume Control = -54.2 dB  
110 1100: Volume Control = -55.4 dB  
110 1101: Volume Control = -56.7 dB  
110 1110: Volume Control = -58.3 dB  
110 1111: Volume Control = -60.2 dB  
111 0000: Volume Control = -62.7 dB  
111 0001: Volume Control = -64.3 dB  
111 0010: Volume Control = -66.2 dB  
111 0011: Volume Control = -68.7 dB  
111 0100: Volume Control = -72.3 dB  
111 0101: Volume Control = -78.3 dB  
111 0110 - 1111110: Reserved. Do not use.  
111 1111: LOL Output Not Routed to HPL Driver (Default)  
Book 0 / Page 1 / Register 29: Headphone Amplifier Control 3 - 0x00 / 0x01 / 0x1D (B0_P1_R29)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
0
LOR Output to HPR Driver Master Volume Control  
0: LOL to HPL and LOR to HPR Volume are Independently Controlled  
1: LOL to HPL and LOR to HPR Volume are Both Controlled by Page 1, Register 28, bits D6-D0  
162  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 1 / Register 29: Headphone Amplifier Control 3 - 0x00 / 0x01 / 0x1D  
(B0_P1_R29) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D6-D0  
R/W  
111 1111 LOR Output Routed to HPR Driver Volume Control:  
000 0000: Volume Control = 0.00 dB  
000 0001: Volume Control = -0.5 dB  
000 0010: Volume Control = -1.0 dB  
000 0011: Volume Control = -1.5 dB  
000 0100: Volume Control = -2.0 dB  
000 0101: Volume Control = -2.5 dB  
000 0110: Volume Control = -3.0 dB  
000 0111: Volume Control = -3.5 dB  
000 1000: Volume Control = -4.0 dB  
000 1001: Volume Control = -4.5 dB  
000 1010: Volume Control = -5.0 dB  
000 1011: Volume Control = -5.5 dB  
000 1100: Volume Control = -6.0 dB  
000 1101: Volume Control = -6.5 dB  
000 1110: Volume Control = -7.0 dB  
000 1111: Volume Control = -7.5 dB  
001 0000: Volume Control = -8.0 dB  
001 0001: Volume Control = -8.5 dB  
001 0010: Volume Control = -9.0 dB  
001 0011: Volume Control = -9.5 dB  
001 0100: Volume Control = -10.0 dB  
001 0101: Volume Control = -10.5 dB  
001 0110: Volume Control = -11.0 dB  
001 0111: Volume Control = -11.5 dB  
001 1000: Volume Control = -12.0 dB  
001 1001: Volume Control = -12.5 dB  
001 1010: Volume Control = -13.0 dB  
001 1011: Volume Control = -13.5 dB  
001 1100: Volume Control = -14.1 dB  
001 1101: Volume Control = -14.6 dB  
001 1110: Volume Control = -15.1 dB  
001 1111: Volume Control = -15.6 dB  
010 0000: Volume Control = -16.0 dB  
010 0001: Volume Control = -16.5 dB  
010 0010: Volume Control = -17.1 dB  
010 0011: Volume Control = -17.5 dB  
010 0100: Volume Control = -18.1 dB  
010 0101: Volume Control = -18.6 dB  
010 0110: Volume Control = -19.1 dB  
010 0111: Volume Control = -19.6 dB  
010 1000: Volume Control = -20.1 dB  
010 1001: Volume Control = -20.6 dB  
010 1010: Volume Control = -21.1 dB  
010 1011: Volume Control = -21.6 dB  
010 1100: Volume Control = -22.1 dB  
010 1101: Volume Control = -22.6 dB  
010 1110: Volume Control = -23.1 dB  
010 1111: Volume Control = -23.6 dB  
011 0000: Volume Control = -24.1 dB  
011 0001: Volume Control = -24.6 dB  
011 0010: Volume Control = -25.1 dB  
011 0011: Volume Control = -25.6 dB  
011 0100: Volume Control = -26.1 dB  
011 0101: Volume Control = -26.6 dB  
011 0110: Volume Control = -27.1 dB  
011 0111: Volume Control = -27.6 dB  
011 1000: Volume Control = -28.1 dB  
011 1001: Volume Control = -28.6 dB  
011 1010: Volume Control = -29.1 dB  
011 1011: Volume Control = -29.6 dB  
011 1100: Volume Control = -30.1 dB  
011 1101: Volume Control = -30.6 dB  
011 1110: Volume Control = -31.1 dB  
011 1111: Volume Control = -31.6 dB  
100 0000: Volume Control = -32.1 dB  
100 0001: Volume Control = -32.7 dB  
Copyright © 2014, Texas Instruments Incorporated  
163  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 1 / Register 29: Headphone Amplifier Control 3 - 0x00 / 0x01 / 0x1D  
(B0_P1_R29) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
100 0010: Volume Control = -33.1 dB  
100 0011: Volume Control = -33.6 dB  
100 0100: Volume Control = -34.1 dB  
100 0101: Volume Control = -34.6 dB  
100 0110: Volume Control = -35.2 dB  
100 0111: Volume Control = -35.7 dB  
100 1000: Volume Control = -36.1 dB  
100 1001: Volume Control = -36.7 dB  
100 1010: Volume Control = -37.1 dB  
100 1011: Volume Control = -37.7 dB  
100 1100: Volume Control = -38.2 dB  
100 1101: Volume Control = -38.7 dB  
100 1110: Volume Control = -39.2 dB  
100 1111: Volume Control = -39.7 dB  
101 0000: Volume Control = -40.2 dB  
101 0001: Volume Control = -40.7 dB  
101 0010: Volume Control = -41.2 dB  
101 0011: Volume Control = -41.8 dB  
101 0100: Volume Control = -42.1 dB  
101 0101: Volume Control = -42.7 dB  
101 0110: Volume Control = -43.2 dB  
101 0111: Volume Control = -43.8 dB  
101 1000: Volume Control = -44.3 dB  
101 1001: Volume Control = -44.8 dB  
101 1010: Volume Control = -45.2 dB  
101 1011: Volume Control = -45.8 dB  
101 1100: Volume Control = -46.2 dB  
101 1101: Volume Control = -46.7 dB  
101 1110: Volume Control = -47.4 dB  
101 1111: Volume Control = -47.9 dB  
110 0000: Volume Control = -48.2 dB  
110 0001: Volume Control = -48.7 dB  
110 0010: Volume Control = -49.3 dB  
110 0011: Volume Control = -50.0 dB  
110 0100: Volume Control = -50.3 dB  
110 0101: Volume Control = -51.0 dB  
110 0110: Volume Control = -51.4 dB  
110 0111: Volume Control = -51.8 dB  
110 1000: Volume Control = -52.3 dB  
110 1001: Volume Control = -52.7 dB  
110 1010: Volume Control = -53.7 dB  
110 1011: Volume Control = -54.2 dB  
110 1100: Volume Control = -55.4 dB  
110 1101: Volume Control = -56.7 dB  
110 1110: Volume Control = -58.3 dB  
110 1111: Volume Control = -60.2 dB  
111 0000: Volume Control = -62.7 dB  
111 0001: Volume Control = -64.3 dB  
111 0010: Volume Control = -66.2 dB  
111 0011: Volume Control = -68.7 dB  
111 0100: Volume Control = -72.3 dB  
111 0101: Volume Control = -78.3 dB  
111 0110 - 1111110: Reserved. Do not use.  
111 1111: LOR Output Not Routed to HPR Driver (Default)  
Book 0 / Page 1 / Register 30: Reserved Register - 0x00 / 0x01 / 0x1E (B0_P1_R30)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
164  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 1 / Register 31: HPL Driver Volume Control - 0x00 / 0x01 / 0x1F (B0_P1_R31)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
1
Headphone Configuration:  
0: Headphone driver is configured for unipolar or cap-coupled mode.  
1: Headphone driver is configured for ground-centered mode. B0_P1_R8_D[4:3] should be set to  
"00".  
D6  
R
0
Reserved. Write only reset values.  
D5-D0  
R/W  
11 1001  
HPL Driver Gain Control:  
Do not change after HP amp power-up  
10 0000 - 11 1000: Reserved. Do not use.  
11 1001: Output is Muted (Default)  
11 1010: Gain = -6 dB  
11 1011: Gain = -5 dB  
11 1100: Gain = -4 dB  
11 1101: Gain = -3 dB  
11 1110: Gain = -2 dB  
11 1111: Gain = -1 dB  
00 0000: Gain = 0 dB  
00 0001: Gain = 1 dB  
00 0010: Gain = 2 dB  
00 0011: Gain = 3 dB  
00 0100: Gain = 4 dB  
00 0101: Gain = 5 dB  
00 0110: Gain = 6 dB  
00 0111: Gain = 7 dB  
00 1000: Gain = 8 dB  
00 1001: Gain = 9 dB  
00 1010: Gain = 10 dB  
00 1011: Gain = 11 dB  
00 1100: Gain = 12 dB  
00 1101: Gain = 13 dB  
00 1110: Gain = 14 dB  
001111 - 111111: Reserved. Do not use.  
Book 0 / Page 1 / Register 32: HPR Driver Volume Control - 0x00 / 0x01 / 0x20 (B0_P1_R32)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
1
Headphone Right (HPR) Driver Configuration:  
0: Use the HPR driver volume setting as defined in B0_P1_R32_D[5:0]. (Only to be used in  
unipolar or cap-coupled configuration)  
1: Use the HPR driver volume setting as defined as same as the HPL volume of  
B0_P1_R31_D[5:0].  
D6  
R
0
Reserved. Write only reset values.  
Copyright © 2014, Texas Instruments Incorporated  
165  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 1 / Register 32: HPR Driver Volume Control - 0x00 / 0x01 / 0x20 (B0_P1_R32) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D5-D0  
R/W  
11 1001  
HPR Driver Volume Control (Only used in Unipolar o rCap-Coupled Configuration):  
10 0000 - 11 1000: Reserved. Do not use.  
11 1001: Volume Control is Muted (Default)  
11 1010: Volume Control = -6 dB  
11 1011: Volume Control = -5 dB  
11 1100: Volume Control = -4 dB  
11 1101: Volume Control = -3 dB  
11 1110: Volume Control = -2 dB  
11 1111: Volume Control = -1 dB  
00 0000: Volume Control = 0 dB  
00 0001: Volume Control = 1 dB  
00 0010: Volume Control = 2 dB  
00 0011: Volume Control = 3 dB  
00 0100: Volume Control = 4 dB  
00 0101: Volume Control = 5 dB  
00 0110: Volume Control = 6 dB  
00 0111: Volume Control = 7 dB  
00 1000: Volume Control = 8 dB  
00 1001: Volume Control = 9 dB  
00 1010: Volume Control = 10 dB  
00 1011: Volume Control = 11 dB  
00 1100: Volume Control = 12 dB  
00 1101: Volume Control = 13 dB  
00 1110: Volume Control = 14 dB  
001111 - 111111: Reserved. Do not use.  
Book 0 / Page 1 / Register 33: Reserved Register - 0x00 / 0x01 / 0x21 (B0_P1_R33)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0010 1000 Reserved. Write only reset values.  
Book 0 / Page 1 / Register 34: Reserved Register - 0x00 / 0x01 / 0x22 (B0_P1_R34)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0011 1110 Reserved. Write only reset values.  
Book 0 / Page 1 / Register 35: Ground Centered Headphone Offset Correction Control - 0x00 / 0x01 / 0x23  
(B0_P1_R35)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
D5  
R
00  
0
Reserved. Write only reset values.  
R/W  
Ground Centered Headphone Offset Calibration  
0: For ground-centered headphone amplifier, offset correction happens only for first power-up of  
amplifier after hardware reset  
1: For ground-centered headphone amplifier, offset correction happens at every power-up of  
headphone amplifier  
D4-D0  
R
1 0000  
Reserved. Write only reset values.  
Book 0 / Page 1 / Register 36: Receiver Amplifier Control 1 - 0x00 / 0x01 / 0x24 (B0_P1_R36)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
Reserved. Write only reset values.  
166  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 1 / Register 36: Receiver Amplifier Control 1 - 0x00 / 0x01 / 0x24 (B0_P1_R36) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D6-D0  
R/W  
111 1111 LOL Output Routed to RECP Driver Volume Control:  
000 0000: Volume Control = 0.00 dB  
000 0001: Volume Control = -0.5 dB  
000 0010: Volume Control = -1.0 dB  
000 0011: Volume Control = -1.5 dB  
000 0100: Volume Control = -2.0 dB  
000 0101: Volume Control = -2.5 dB  
000 0110: Volume Control = -3.0 dB  
000 0111: Volume Control = -3.5 dB  
000 1000: Volume Control = -4.0 dB  
000 1001: Volume Control = -4.5 dB  
000 1010: Volume Control = -5.0 dB  
000 1011: Volume Control = -5.5 dB  
000 1100: Volume Control = -6.0 dB  
000 1101: Volume Control = -6.5 dB  
000 1110: Volume Control = -7.0 dB  
000 1111: Volume Control = -7.5 dB  
001 0000: Volume Control = -8.0 dB  
001 0001: Volume Control = -8.5 dB  
001 0010: Volume Control = -9.0 dB  
001 0011: Volume Control = -9.5 dB  
001 0100: Volume Control = -10.0 dB  
001 0101: Volume Control = -10.5 dB  
001 0110: Volume Control = -11.0 dB  
001 0111: Volume Control = -11.5 dB  
001 1000: Volume Control = -12.0 dB  
001 1001: Volume Control = -12.5 dB  
001 1010: Volume Control = -13.0 dB  
001 1011: Volume Control = -13.5 dB  
001 1100: Volume Control = -14.1 dB  
001 1101: Volume Control = -14.6 dB  
001 1110: Volume Control = -15.1 dB  
001 1111: Volume Control = -15.6 dB  
010 0000: Volume Control = -16.0 dB  
010 0001: Volume Control = -16.5 dB  
010 0010: Volume Control = -17.1 dB  
010 0011: Volume Control = -17.5 dB  
010 0100: Volume Control = -18.1 dB  
010 0101: Volume Control = -18.6 dB  
010 0110: Volume Control = -19.1 dB  
010 0111: Volume Control = -19.6 dB  
010 1000: Volume Control = -20.1 dB  
010 1001: Volume Control = -20.6 dB  
010 1010: Volume Control = -21.1 dB  
010 1011: Volume Control = -21.6 dB  
010 1100: Volume Control = -22.1 dB  
010 1101: Volume Control = -22.6 dB  
010 1110: Volume Control = -23.1 dB  
010 1111: Volume Control = -23.6 dB  
011 0000: Volume Control = -24.1 dB  
011 0001: Volume Control = -24.6 dB  
011 0010: Volume Control = -25.1 dB  
011 0011: Volume Control = -25.6 dB  
011 0100: Volume Control = -26.1 dB  
011 0101: Volume Control = -26.6 dB  
011 0110: Volume Control = -27.1 dB  
011 0111: Volume Control = -27.6 dB  
011 1000: Volume Control = -28.1 dB  
011 1001: Volume Control = -28.6 dB  
011 1010: Volume Control = -29.1 dB  
011 1011: Volume Control = -29.6 dB  
011 1100: Volume Control = -30.1 dB  
011 1101: Volume Control = -30.6 dB  
011 1110: Volume Control = -31.1 dB  
011 1111: Volume Control = -31.6 dB  
100 0000: Volume Control = -32.1 dB  
100 0001: Volume Control = -32.7 dB  
100 0010: Volume Control = -33.1 dB  
Copyright © 2014, Texas Instruments Incorporated  
167  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 1 / Register 36: Receiver Amplifier Control 1 - 0x00 / 0x01 / 0x24 (B0_P1_R36) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
100 0011: Volume Control = -33.6 dB  
100 0100: Volume Control = -34.1 dB  
100 0101: Volume Control = -34.6 dB  
100 0110: Volume Control = -35.2 dB  
100 0111: Volume Control = -35.7 dB  
100 1000: Volume Control = -36.1 dB  
100 1001: Volume Control = -36.7 dB  
100 1010: Volume Control = -37.1 dB  
100 1011: Volume Control = -37.7 dB  
100 1100: Volume Control = -38.2 dB  
100 1101: Volume Control = -38.7 dB  
100 1110: Volume Control = -39.2 dB  
100 1111: Volume Control = -39.7 dB  
101 0000: Volume Control = -40.2 dB  
101 0001: Volume Control = -40.7 dB  
101 0010: Volume Control = -41.2 dB  
101 0011: Volume Control = -41.8 dB  
101 0100: Volume Control = -42.1 dB  
101 0101: Volume Control = -42.7 dB  
101 0110: Volume Control = -43.2 dB  
101 0111: Volume Control = -43.8 dB  
101 1000: Volume Control = -44.3 dB  
101 1001: Volume Control = -44.8 dB  
101 1010: Volume Control = -45.2 dB  
101 1011: Volume Control = -45.8 dB  
101 1100: Volume Control = -46.2 dB  
101 1101: Volume Control = -46.7 dB  
101 1110: Volume Control = -47.4 dB  
101 1111: Volume Control = -47.9 dB  
110 0000: Volume Control = -48.2 dB  
110 0001: Volume Control = -48.7 dB  
110 0010: Volume Control = -49.3 dB  
110 0011: Volume Control = -50.0 dB  
110 0100: Volume Control = -50.3 dB  
110 0101: Volume Control = -51.0 dB  
110 0110: Volume Control = -51.4 dB  
110 0111: Volume Control = -51.8 dB  
110 1000: Volume Control = -52.3 dB  
110 1001: Volume Control = -52.7 dB  
110 1010: Volume Control = -53.7 dB  
110 1011: Volume Control = -54.2 dB  
110 1100: Volume Control = -55.4 dB  
110 1101: Volume Control = -56.7 dB  
110 1110: Volume Control = -58.3 dB  
110 1111: Volume Control = -60.2 dB  
111 0000: Volume Control = -62.7 dB  
111 0001: Volume Control = -64.3 dB  
111 0010: Volume Control = -66.2 dB  
111 0011: Volume Control = -68.7 dB  
111 0100: Volume Control = -72.3 dB  
111 0101: Volume Control = -78.3 dB  
111 0110 - 1111110: Reserved. Do not use.  
111 1111: LOL Output Not Routed to RECP Driver (Default)  
Book 0 / Page 1 / Register 37: Receiver Amplifier Control 2 - 0x00 / 0x01 / 0x25 (B0_P1_R37)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
0
LOR Output to RECM Driver Master Volume Control  
0: LOL to RECP and LOR to RECM Volume are Independently Controlled  
1: LOL to RECP and LOR to RECM Volume are Both Controlled by B0_P1_R36_D[6:0]. Should  
only be used when load of receiver amplifier is differential.  
168  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 1 / Register 37: Receiver Amplifier Control 2 - 0x00 / 0x01 / 0x25 (B0_P1_R37) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D6-D0  
R/W  
111 1111 LOR Output Routed to RECM Driver Volume Control:  
000 0000: Volume Control = 0.00 dB  
000 0001: Volume Control = -0.5 dB  
000 0010: Volume Control = -1.0 dB  
000 0011: Volume Control = -1.5 dB  
000 0100: Volume Control = -2.0 dB  
000 0101: Volume Control = -2.5 dB  
000 0110: Volume Control = -3.0 dB  
000 0111: Volume Control = -3.5 dB  
000 1000: Volume Control = -4.0 dB  
000 1001: Volume Control = -4.5 dB  
000 1010: Volume Control = -5.0 dB  
000 1011: Volume Control = -5.5 dB  
000 1100: Volume Control = -6.0 dB  
000 1101: Volume Control = -6.5 dB  
000 1110: Volume Control = -7.0 dB  
000 1111: Volume Control = -7.5 dB  
001 0000: Volume Control = -8.0 dB  
001 0001: Volume Control = -8.5 dB  
001 0010: Volume Control = -9.0 dB  
001 0011: Volume Control = -9.5 dB  
001 0100: Volume Control = -10.0 dB  
001 0101: Volume Control = -10.5 dB  
001 0110: Volume Control = -11.0 dB  
001 0111: Volume Control = -11.5 dB  
001 1000: Volume Control = -12.0 dB  
001 1001: Volume Control = -12.5 dB  
001 1010: Volume Control = -13.0 dB  
001 1011: Volume Control = -13.5 dB  
001 1100: Volume Control = -14.1 dB  
001 1101: Volume Control = -14.6 dB  
001 1110: Volume Control = -15.1 dB  
001 1111: Volume Control = -15.6 dB  
010 0000: Volume Control = -16.0 dB  
010 0001: Volume Control = -16.5 dB  
010 0010: Volume Control = -17.1 dB  
010 0011: Volume Control = -17.5 dB  
010 0100: Volume Control = -18.1 dB  
010 0101: Volume Control = -18.6 dB  
010 0110: Volume Control = -19.1 dB  
010 0111: Volume Control = -19.6 dB  
010 1000: Volume Control = -20.1 dB  
010 1001: Volume Control = -20.6 dB  
010 1010: Volume Control = -21.1 dB  
010 1011: Volume Control = -21.6 dB  
010 1100: Volume Control = -22.1 dB  
010 1101: Volume Control = -22.6 dB  
010 1110: Volume Control = -23.1 dB  
010 1111: Volume Control = -23.6 dB  
011 0000: Volume Control = -24.1 dB  
011 0001: Volume Control = -24.6 dB  
011 0010: Volume Control = -25.1 dB  
011 0011: Volume Control = -25.6 dB  
011 0100: Volume Control = -26.1 dB  
011 0101: Volume Control = -26.6 dB  
011 0110: Volume Control = -27.1 dB  
011 0111: Volume Control = -27.6 dB  
011 1000: Volume Control = -28.1 dB  
011 1001: Volume Control = -28.6 dB  
011 1010: Volume Control = -29.1 dB  
011 1011: Volume Control = -29.6 dB  
011 1100: Volume Control = -30.1 dB  
011 1101: Volume Control = -30.6 dB  
011 1110: Volume Control = -31.1 dB  
011 1111: Volume Control = -31.6 dB  
100 0000: Volume Control = -32.1 dB  
100 0001: Volume Control = -32.7 dB  
100 0010: Volume Control = -33.1 dB  
Copyright © 2014, Texas Instruments Incorporated  
169  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 1 / Register 37: Receiver Amplifier Control 2 - 0x00 / 0x01 / 0x25 (B0_P1_R37) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
100 0011: Volume Control = -33.6 dB  
100 0100: Volume Control = -34.1 dB  
100 0101: Volume Control = -34.6 dB  
100 0110: Volume Control = -35.2 dB  
100 0111: Volume Control = -35.7 dB  
100 1000: Volume Control = -36.1 dB  
100 1001: Volume Control = -36.7 dB  
100 1010: Volume Control = -37.1 dB  
100 1011: Volume Control = -37.7 dB  
100 1100: Volume Control = -38.2 dB  
100 1101: Volume Control = -38.7 dB  
100 1110: Volume Control = -39.2 dB  
100 1111: Volume Control = -39.7 dB  
101 0000: Volume Control = -40.2 dB  
101 0001: Volume Control = -40.7 dB  
101 0010: Volume Control = -41.2 dB  
101 0011: Volume Control = -41.8 dB  
101 0100: Volume Control = -42.1 dB  
101 0101: Volume Control = -42.7 dB  
101 0110: Volume Control = -43.2 dB  
101 0111: Volume Control = -43.8 dB  
101 1000: Volume Control = -44.3 dB  
101 1001: Volume Control = -44.8 dB  
101 1010: Volume Control = -45.2 dB  
101 1011: Volume Control = -45.8 dB  
101 1100: Volume Control = -46.2 dB  
101 1101: Volume Control = -46.7 dB  
101 1110: Volume Control = -47.4 dB  
101 1111: Volume Control = -47.9 dB  
110 0000: Volume Control = -48.2 dB  
110 0001: Volume Control = -48.7 dB  
110 0010: Volume Control = -49.3 dB  
110 0011: Volume Control = -50.0 dB  
110 0100: Volume Control = -50.3 dB  
110 0101: Volume Control = -51.0 dB  
110 0110: Volume Control = -51.4 dB  
110 0111: Volume Control = -51.8 dB  
110 1000: Volume Control = -52.3 dB  
110 1001: Volume Control = -52.7 dB  
110 1010: Volume Control = -53.7 dB  
110 1011: Volume Control = -54.2 dB  
110 1100: Volume Control = -55.4 dB  
110 1101: Volume Control = -56.7 dB  
110 1110: Volume Control = -58.3 dB  
110 1111: Volume Control = -60.2 dB  
111 0000: Volume Control = -62.7 dB  
111 0001: Volume Control = -64.3 dB  
111 0010: Volume Control = -66.2 dB  
111 0011: Volume Control = -68.7 dB  
111 0100: Volume Control = -72.3 dB  
111 0101: Volume Control = -78.3 dB  
111 0110 - 1111110: Reserved. Do not use.  
111 1111: LOR Output Not Routed to RECM Driver (Default)  
Book 0 / Page 1 / Register 38: Receiver Amplifier Control 3 - 0x00 / 0x01 / 0x26 (B0_P1_R38)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
Reserved. Write only reset values.  
170  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 1 / Register 38: Receiver Amplifier Control 3 - 0x00 / 0x01 / 0x26 (B0_P1_R38) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D6-D0  
R/W  
111 1111 IN1L Input Routed to RECP Driver Volume Control:  
000 0000: Volume Control = 0.00 dB  
000 0001: Volume Control = -0.5 dB  
000 0010: Volume Control = -1.0 dB  
000 0011: Volume Control = -1.5 dB  
000 0100: Volume Control = -2.0 dB  
000 0101: Volume Control = -2.5 dB  
000 0110: Volume Control = -3.0 dB  
000 0111: Volume Control = -3.5 dB  
000 1000: Volume Control = -4.0 dB  
000 1001: Volume Control = -4.5 dB  
000 1010: Volume Control = -5.0 dB  
000 1011: Volume Control = -5.5 dB  
000 1100: Volume Control = -6.0 dB  
000 1101: Volume Control = -6.5 dB  
000 1110: Volume Control = -7.0 dB  
000 1111: Volume Control = -7.5 dB  
001 0000: Volume Control = -8.0 dB  
001 0001: Volume Control = -8.5 dB  
001 0010: Volume Control = -9.0 dB  
001 0011: Volume Control = -9.5 dB  
001 0100: Volume Control = -10.0 dB  
001 0101: Volume Control = -10.5 dB  
001 0110: Volume Control = -11.0 dB  
001 0111: Volume Control = -11.5 dB  
001 1000: Volume Control = -12.0 dB  
001 1001: Volume Control = -12.5 dB  
001 1010: Volume Control = -13.0 dB  
001 1011: Volume Control = -13.5 dB  
001 1100: Volume Control = -14.1 dB  
001 1101: Volume Control = -14.6 dB  
001 1110: Volume Control = -15.1 dB  
001 1111: Volume Control = -15.6 dB  
010 0000: Volume Control = -16.0 dB  
010 0001: Volume Control = -16.5 dB  
010 0010: Volume Control = -17.1 dB  
010 0011: Volume Control = -17.5 dB  
010 0100: Volume Control = -18.1 dB  
010 0101: Volume Control = -18.6 dB  
010 0110: Volume Control = -19.1 dB  
010 0111: Volume Control = -19.6 dB  
010 1000: Volume Control = -20.1 dB  
010 1001: Volume Control = -20.6 dB  
010 1010: Volume Control = -21.1 dB  
010 1011: Volume Control = -21.6 dB  
010 1100: Volume Control = -22.1 dB  
010 1101: Volume Control = -22.6 dB  
010 1110: Volume Control = -23.1 dB  
010 1111: Volume Control = -23.6 dB  
011 0000: Volume Control = -24.1 dB  
011 0001: Volume Control = -24.6 dB  
011 0010: Volume Control = -25.1 dB  
011 0011: Volume Control = -25.6 dB  
011 0100: Volume Control = -26.1 dB  
011 0101: Volume Control = -26.6 dB  
011 0110: Volume Control = -27.1 dB  
011 0111: Volume Control = -27.6 dB  
011 1000: Volume Control = -28.1 dB  
011 1001: Volume Control = -28.6 dB  
011 1010: Volume Control = -29.1 dB  
011 1011: Volume Control = -29.6 dB  
011 1100: Volume Control = -30.1 dB  
011 1101: Volume Control = -30.6 dB  
011 1110: Volume Control = -31.1 dB  
011 1111: Volume Control = -31.6 dB  
100 0000: Volume Control = -32.1 dB  
100 0001: Volume Control = -32.7 dB  
100 0010: Volume Control = -33.1 dB  
Copyright © 2014, Texas Instruments Incorporated  
171  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 1 / Register 38: Receiver Amplifier Control 3 - 0x00 / 0x01 / 0x26 (B0_P1_R38) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
100 0011: Volume Control = -33.6 dB  
100 0100: Volume Control = -34.1 dB  
100 0101: Volume Control = -34.6 dB  
100 0110: Volume Control = -35.2 dB  
100 0111: Volume Control = -35.7 dB  
100 1000: Volume Control = -36.1 dB  
100 1001: Volume Control = -36.7 dB  
100 1010: Volume Control = -37.1 dB  
100 1011: Volume Control = -37.7 dB  
100 1100: Volume Control = -38.2 dB  
100 1101: Volume Control = -38.7 dB  
100 1110: Volume Control = -39.2 dB  
100 1111: Volume Control = -39.7 dB  
101 0000: Volume Control = -40.2 dB  
101 0001: Volume Control = -40.7 dB  
101 0010: Volume Control = -41.2 dB  
101 0011: Volume Control = -41.8 dB  
101 0100: Volume Control = -42.1 dB  
101 0101: Volume Control = -42.7 dB  
101 0110: Volume Control = -43.2 dB  
101 0111: Volume Control = -43.8 dB  
101 1000: Volume Control = -44.3 dB  
101 1001: Volume Control = -44.8 dB  
101 1010: Volume Control = -45.2 dB  
101 1011: Volume Control = -45.8 dB  
101 1100: Volume Control = -46.2 dB  
101 1101: Volume Control = -46.7 dB  
101 1110: Volume Control = -47.4 dB  
101 1111: Volume Control = -47.9 dB  
110 0000: Volume Control = -48.2 dB  
110 0001: Volume Control = -48.7 dB  
110 0010: Volume Control = -49.3 dB  
110 0011: Volume Control = -50.0 dB  
110 0100: Volume Control = -50.3 dB  
110 0101: Volume Control = -51.0 dB  
110 0110: Volume Control = -51.4 dB  
110 0111: Volume Control = -51.8 dB  
110 1000: Volume Control = -52.3 dB  
110 1001: Volume Control = -52.7 dB  
110 1010: Volume Control = -53.7 dB  
110 1011: Volume Control = -54.2 dB  
110 1100: Volume Control = -55.4 dB  
110 1101: Volume Control = -56.7 dB  
110 1110: Volume Control = -58.3 dB  
110 1111: Volume Control = -60.2 dB  
111 0000: Volume Control = -62.7 dB  
111 0001: Volume Control = -64.3 dB  
111 0010: Volume Control = -66.2 dB  
111 0011: Volume Control = -68.7 dB  
111 0100: Volume Control = -72.3 dB  
111 0101: Volume Control = -78.3 dB  
111 0110 - 1111110: Reserved. Do not use.  
111 1111: IN1L Input Not Routed to RECP Driver (Default)  
Book 0 / Page 1 / Register 39: Receiver Amplifier Control 4 - 0x00 / 0x01 / 0x27 (B0_P1_R39)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
0
IN1L Input to RECP and IN1R Input to RECM Driver Master Volume Control  
0: IN1L to RECP and IN1R to RECM Volume are Independently Controlled  
1: IN1L to RECP and INI1R to RECM Volume are Both Controlled by B0_P1_R38_D[6:0]. Should  
only be used when load of receiver amplifier is differential.  
172  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 1 / Register 39: Receiver Amplifier Control 4 - 0x00 / 0x01 / 0x27 (B0_P1_R39) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D6-D0  
R/W  
111 1111 IN1R Input Routed to RECM Driver Volume Control:  
000 0000: Volume Control = 0.00 dB  
000 0001: Volume Control = -0.5 dB  
000 0010: Volume Control = -1.0 dB  
000 0011: Volume Control = -1.5 dB  
000 0100: Volume Control = -2.0 dB  
000 0101: Volume Control = -2.5 dB  
000 0110: Volume Control = -3.0 dB  
000 0111: Volume Control = -3.5 dB  
000 1000: Volume Control = -4.0 dB  
000 1001: Volume Control = -4.5 dB  
000 1010: Volume Control = -5.0 dB  
000 1011: Volume Control = -5.5 dB  
000 1100: Volume Control = -6.0 dB  
000 1101: Volume Control = -6.5 dB  
000 1110: Volume Control = -7.0 dB  
000 1111: Volume Control = -7.5 dB  
001 0000: Volume Control = -8.0 dB  
001 0001: Volume Control = -8.5 dB  
001 0010: Volume Control = -9.0 dB  
001 0011: Volume Control = -9.5 dB  
001 0100: Volume Control = -10.0 dB  
001 0101: Volume Control = -10.5 dB  
001 0110: Volume Control = -11.0 dB  
001 0111: Volume Control = -11.5 dB  
001 1000: Volume Control = -12.0 dB  
001 1001: Volume Control = -12.5 dB  
001 1010: Volume Control = -13.0 dB  
001 1011: Volume Control = -13.5 dB  
001 1100: Volume Control = -14.1 dB  
001 1101: Volume Control = -14.6 dB  
001 1110: Volume Control = -15.1 dB  
001 1111: Volume Control = -15.6 dB  
010 0000: Volume Control = -16.0 dB  
010 0001: Volume Control = -16.5 dB  
010 0010: Volume Control = -17.1 dB  
010 0011: Volume Control = -17.5 dB  
010 0100: Volume Control = -18.1 dB  
010 0101: Volume Control = -18.6 dB  
010 0110: Volume Control = -19.1 dB  
010 0111: Volume Control = -19.6 dB  
010 1000: Volume Control = -20.1 dB  
010 1001: Volume Control = -20.6 dB  
010 1010: Volume Control = -21.1 dB  
010 1011: Volume Control = -21.6 dB  
010 1100: Volume Control = -22.1 dB  
010 1101: Volume Control = -22.6 dB  
010 1110: Volume Control = -23.1 dB  
010 1111: Volume Control = -23.6 dB  
011 0000: Volume Control = -24.1 dB  
011 0001: Volume Control = -24.6 dB  
011 0010: Volume Control = -25.1 dB  
011 0011: Volume Control = -25.6 dB  
011 0100: Volume Control = -26.1 dB  
011 0101: Volume Control = -26.6 dB  
011 0110: Volume Control = -27.1 dB  
011 0111: Volume Control = -27.6 dB  
011 1000: Volume Control = -28.1 dB  
011 1001: Volume Control = -28.6 dB  
011 1010: Volume Control = -29.1 dB  
011 1011: Volume Control = -29.6 dB  
011 1100: Volume Control = -30.1 dB  
011 1101: Volume Control = -30.6 dB  
011 1110: Volume Control = -31.1 dB  
011 1111: Volume Control = -31.6 dB  
100 0000: Volume Control = -32.1 dB  
100 0001: Volume Control = -32.7 dB  
100 0010: Volume Control = -33.1 dB  
Copyright © 2014, Texas Instruments Incorporated  
173  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 1 / Register 39: Receiver Amplifier Control 4 - 0x00 / 0x01 / 0x27 (B0_P1_R39) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
100 0011: Volume Control = -33.6 dB  
100 0100: Volume Control = -34.1 dB  
100 0101: Volume Control = -34.6 dB  
100 0110: Volume Control = -35.2 dB  
100 0111: Volume Control = -35.7 dB  
100 1000: Volume Control = -36.1 dB  
100 1001: Volume Control = -36.7 dB  
100 1010: Volume Control = -37.1 dB  
100 1011: Volume Control = -37.7 dB  
100 1100: Volume Control = -38.2 dB  
100 1101: Volume Control = -38.7 dB  
100 1110: Volume Control = -39.2 dB  
100 1111: Volume Control = -39.7 dB  
101 0000: Volume Control = -40.2 dB  
101 0001: Volume Control = -40.7 dB  
101 0010: Volume Control = -41.2 dB  
101 0011: Volume Control = -41.8 dB  
101 0100: Volume Control = -42.1 dB  
101 0101: Volume Control = -42.7 dB  
101 0110: Volume Control = -43.2 dB  
101 0111: Volume Control = -43.8 dB  
101 1000: Volume Control = -44.3 dB  
101 1001: Volume Control = -44.8 dB  
101 1010: Volume Control = -45.2 dB  
101 1011: Volume Control = -45.8 dB  
101 1100: Volume Control = -46.2 dB  
101 1101: Volume Control = -46.7 dB  
101 1110: Volume Control = -47.4 dB  
101 1111: Volume Control = -47.9 dB  
110 0000: Volume Control = -48.2 dB  
110 0001: Volume Control = -48.7 dB  
110 0010: Volume Control = -49.3 dB  
110 0011: Volume Control = -50.0 dB  
110 0100: Volume Control = -50.3 dB  
110 0101: Volume Control = -51.0 dB  
110 0110: Volume Control = -51.4 dB  
110 0111: Volume Control = -51.8 dB  
110 1000: Volume Control = -52.3 dB  
110 1001: Volume Control = -52.7 dB  
110 1010: Volume Control = -53.7 dB  
110 1011: Volume Control = -54.2 dB  
110 1100: Volume Control = -55.4 dB  
110 1101: Volume Control = -56.7 dB  
110 1110: Volume Control = -58.3 dB  
110 1111: Volume Control = -60.2 dB  
111 0000: Volume Control = -62.7 dB  
111 0001: Volume Control = -64.3 dB  
111 0010: Volume Control = -66.2 dB  
111 0011: Volume Control = -68.7 dB  
111 0100: Volume Control = -72.3 dB  
111 0101: Volume Control = -78.3 dB  
111 0110 - 1111110: Reserved. Do not use.  
111 1111: IN1R Input Not Routed to RECM Driver (Default)  
Book 0 / Page 1 / Register 40: Receiver Amplifier Control 5 - 0x00 / 0x01 / 0x28 (B0_P1_R40)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
0
0
RECP Output Driver Power Control  
0: RECP Output Driver Power-Down  
1: RECP Output Driver Power-Up  
D6  
RECM Output Driver Power Control  
0: RECM Output Driver Power-Down  
1: RECM Output Driver Power-Up  
174  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 1 / Register 40: Receiver Amplifier Control 5 - 0x00 / 0x01 / 0x28 (B0_P1_R40) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D5-D0  
R/W  
11 1001  
RECP Driver Volume Control:  
10 0000 - 11 1000: Reserved. Do not use.  
11 1001: Volume Control is Muted (Default)  
11 1010: Volume Control = -6 dB  
11 1011: Volume Control = -5 dB  
11 1100: Volume Control = -4 dB  
11 1101: Volume Control = -3 dB  
11 1110: Volume Control = -2 dB  
11 1111: Volume Control = -1 dB  
00 0000: Volume Control = 0 dB  
00 0001: Volume Control = 1 dB  
00 0010: Volume Control = 2 dB  
...  
01 1100: Volume Control = 28 dB  
01 1101: Volume Control = 29 dB  
Book 0 / Page 1 / Register 41: Receiver Amplifier Control 6 - 0x00 / 0x01 / 0x29 (B0_P1_R41)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
1
Receiver Master Volume Control  
0: RECP and RECM Volume are Independently Controlled  
1: RECP and RECM Volume are Both Controlled by B0_P1_R40_D[5:0]. Should only be used  
when load of receiver amplifier is differential.  
D6  
R
0
Reserved. Write only reset values.  
D5-D0  
R/W  
11 1001  
RECM Driver Volume Control:  
10 0000 - 11 1000: Reserved. Do not use.  
11 1001: Volume Control is Muted (Default)  
11 1010: Volume Control = -6 dB  
11 1011: Volume Control = -5 dB  
11 1100: Volume Control = -4 dB  
11 1101: Volume Control = -3 dB  
11 1110: Volume Control = -2 dB  
11 1111: Volume Control = -1 dB  
00 0000: Volume Control = 0 dB  
00 0001: Volume Control = 1 dB  
00 0010: Volume Control = 2 dB  
...  
01 1100: Volume Control = 28 dB  
01 1101: Volume Control = 29 dB  
Book 0 / Page 1 / Register 42: Receiver Amplifier Control 7 - 0x00 / 0x01 / 0x2A (B0_P1_R42)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
0
Receiver Amplifier Offset Calibration Flag  
0: Offset Calibration is Not Done  
1: Offset Calibration is Done  
D6  
D5  
R/W  
R/W  
R/W  
Left DAC Routing to RECP:  
0: Left DAC is not routed to RECP  
1: Left DAC P-terminal is routed to RECP  
0
Left DAC Routing to RECM:  
0: Left DAC is not routed to RECM  
1: Left DAC M-terminal is routed to RECM  
D4-D3  
0 1  
Receiver Amplifier Offset Calibration Control  
00: Offset calibration is disabled  
01: Force calibrate for offset at receiver amp power-up for routings selected (Default)  
10: Calibrate for offset at receiver amp power-up for selected routings only for the first-power-up of  
receiver amp.  
11: Reserved  
D2-D0  
R/W  
000  
Reserved. Write only default value.  
Copyright © 2014, Texas Instruments Incorporated  
175  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 1 / Register 43-44: Reserved Registers - 0x00 / 0x01 / 0x2B-0x2C (B0_P1_R43-44)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 0 / Page 1 / Register 45: Speaker Amplifier Control 1 - 0x00 / 0x01 / 0x2D (B0_P1_R45)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
0
0
Left Mixer Amplifier (MAL) to Speaker Driver (SPK) Routing Control:  
0: MAL output is not routed to SPK driver.  
1: MAL output is routed to SPK driver.  
D6  
Right Mixer Amplifier (MAR) to Speaker Driver (SPK_RIGHT_CH_IN) Routing Control:  
0: MAR output is not routed to SPK_RIGHT_CH_IN.  
1: MAR output is routed to SPK_RIGHT_CH_IN.  
D5-D3  
D2  
R
0
0
Reserved. Write only reset values.  
R/W  
Mono Speaker Control:  
0: SPK_RIGHT_CH_IN is not routed to Speaker Driver (SPK).  
1: SPK_RIGHT_CH_IN is routed to Speaker Driver (SPK).  
D1  
D0  
R/W  
R
0
0
Speaker Driver Power Control:  
0: SPK Driver Power-Down  
1: SPK Driver Power-Up  
Reserved. Write only reset values.  
Book 0 / Page 1 / Register 46: Speaker Amplifier Control 2 - 0x00 / 0x01 / 0x2E (B0_P1_R46)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
Reserved. Write only reset values.  
176  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 1 / Register 46: Speaker Amplifier Control 2 - 0x00 / 0x01 / 0x2E (B0_P1_R46) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D6-D0  
R/W  
111 1111 LOL Output Routed to SPK Driver Volume Control:  
000 0000: Volume Control = 0.00 dB  
000 0001: Volume Control = -0.5 dB  
000 0010: Volume Control = -1.0 dB  
000 0011: Volume Control = -1.5 dB  
000 0100: Volume Control = -2.0 dB  
000 0101: Volume Control = -2.5 dB  
000 0110: Volume Control = -3.0 dB  
000 0111: Volume Control = -3.5 dB  
000 1000: Volume Control = -4.0 dB  
000 1001: Volume Control = -4.5 dB  
000 1010: Volume Control = -5.0 dB  
000 1011: Volume Control = -5.5 dB  
000 1100: Volume Control = -6.0 dB  
000 1101: Volume Control = -6.5 dB  
000 1110: Volume Control = -7.0 dB  
000 1111: Volume Control = -7.5 dB  
001 0000: Volume Control = -8.0 dB  
001 0001: Volume Control = -8.5 dB  
001 0010: Volume Control = -9.0 dB  
001 0011: Volume Control = -9.5 dB  
001 0100: Volume Control = -10.0 dB  
001 0101: Volume Control = -10.5 dB  
001 0110: Volume Control = -11.0 dB  
001 0111: Volume Control = -11.5 dB  
001 1000: Volume Control = -12.0 dB  
001 1001: Volume Control = -12.5 dB  
001 1010: Volume Control = -13.0 dB  
001 1011: Volume Control = -13.5 dB  
001 1100: Volume Control = -14.1 dB  
001 1101: Volume Control = -14.6 dB  
001 1110: Volume Control = -15.1 dB  
001 1111: Volume Control = -15.6 dB  
010 0000: Volume Control = -16.0 dB  
010 0001: Volume Control = -16.5 dB  
010 0010: Volume Control = -17.1 dB  
010 0011: Volume Control = -17.5 dB  
010 0100: Volume Control = -18.1 dB  
010 0101: Volume Control = -18.6 dB  
010 0110: Volume Control = -19.1 dB  
010 0111: Volume Control = -19.6 dB  
010 1000: Volume Control = -20.1 dB  
010 1001: Volume Control = -20.6 dB  
010 1010: Volume Control = -21.1 dB  
010 1011: Volume Control = -21.6 dB  
010 1100: Volume Control = -22.1 dB  
010 1101: Volume Control = -22.6 dB  
010 1110: Volume Control = -23.1 dB  
010 1111: Volume Control = -23.6 dB  
011 0000: Volume Control = -24.1 dB  
011 0001: Volume Control = -24.6 dB  
011 0010: Volume Control = -25.1 dB  
011 0011: Volume Control = -25.6 dB  
011 0100: Volume Control = -26.1 dB  
011 0101: Volume Control = -26.6 dB  
011 0110: Volume Control = -27.1 dB  
011 0111: Volume Control = -27.6 dB  
011 1000: Volume Control = -28.1 dB  
011 1001: Volume Control = -28.6 dB  
011 1010: Volume Control = -29.1 dB  
011 1011: Volume Control = -29.6 dB  
011 1100: Volume Control = -30.1 dB  
011 1101: Volume Control = -30.6 dB  
011 1110: Volume Control = -31.1 dB  
011 1111: Volume Control = -31.6 dB  
100 0000: Volume Control = -32.1 dB  
100 0001: Volume Control = -32.7 dB  
100 0010: Volume Control = -33.1 dB  
Copyright © 2014, Texas Instruments Incorporated  
177  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 1 / Register 46: Speaker Amplifier Control 2 - 0x00 / 0x01 / 0x2E (B0_P1_R46) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
100 0011: Volume Control = -33.6 dB  
100 0100: Volume Control = -34.1 dB  
100 0101: Volume Control = -34.6 dB  
100 0110: Volume Control = -35.2 dB  
100 0111: Volume Control = -35.7 dB  
100 1000: Volume Control = -36.1 dB  
100 1001: Volume Control = -36.7 dB  
100 1010: Volume Control = -37.1 dB  
100 1011: Volume Control = -37.7 dB  
100 1100: Volume Control = -38.2 dB  
100 1101: Volume Control = -38.7 dB  
100 1110: Volume Control = -39.2 dB  
100 1111: Volume Control = -39.7 dB  
101 0000: Volume Control = -40.2 dB  
101 0001: Volume Control = -40.7 dB  
101 0010: Volume Control = -41.2 dB  
101 0011: Volume Control = -41.8 dB  
101 0100: Volume Control = -42.1 dB  
101 0101: Volume Control = -42.7 dB  
101 0110: Volume Control = -43.2 dB  
101 0111: Volume Control = -43.8 dB  
101 1000: Volume Control = -44.3 dB  
101 1001: Volume Control = -44.8 dB  
101 1010: Volume Control = -45.2 dB  
101 1011: Volume Control = -45.8 dB  
101 1100: Volume Control = -46.2 dB  
101 1101: Volume Control = -46.7 dB  
101 1110: Volume Control = -47.4 dB  
101 1111: Volume Control = -47.9 dB  
110 0000: Volume Control = -48.2 dB  
110 0001: Volume Control = -48.7 dB  
110 0010: Volume Control = -49.3 dB  
110 0011: Volume Control = -50.0 dB  
110 0100: Volume Control = -50.3 dB  
110 0101: Volume Control = -51.0 dB  
110 0110: Volume Control = -51.4 dB  
110 0111: Volume Control = -51.8 dB  
110 1000: Volume Control = -52.3 dB  
110 1001: Volume Control = -52.7 dB  
110 1010: Volume Control = -53.7 dB  
110 1011: Volume Control = -54.2 dB  
110 1100: Volume Control = -55.4 dB  
110 1101: Volume Control = -56.7 dB  
110 1110: Volume Control = -58.3 dB  
110 1111: Volume Control = -60.2 dB  
111 0000: Volume Control = -62.7 dB  
111 0001: Volume Control = -64.3 dB  
111 0010: Volume Control = -66.2 dB  
111 0011: Volume Control = -68.7 dB  
111 0100: Volume Control = -72.3 dB  
111 0101: Volume Control = -78.3 dB  
111 0110 - 1111110: Reserved. Do not use.  
111 1111: LOL Output Not Routed to SPK Driver (Default)  
Book 0 / Page 1 / Register 47: Speaker Amplifier Control 3 - 0x00 / 0x01 / 0x2F (B0_P1_R47)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
0
LOL Output to SPK and LOR Output to SPK_RIGHT_CH_IN Master Volume Control  
0: LOL Output to SPK and LOR Output to SPK_RIGHT_CH_IN Volume are Independently  
Controlled  
1: LOL Output to SPK and LOR Output to SPK_RIGHT_CH_IN Volume are Both Controlled by  
B0_P1_R46_D[6:0]  
178  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 1 / Register 47: Speaker Amplifier Control 3 - 0x00 / 0x01 / 0x2F (B0_P1_R47) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D6-D0  
R/W  
111 1111 LOR Output Routed to SPK_RIGHT_CH_IN Volume Control:  
000 0000: Volume Control = 0.00 dB  
000 0001: Volume Control = -0.5 dB  
000 0010: Volume Control = -1.0 dB  
000 0011: Volume Control = -1.5 dB  
000 0100: Volume Control = -2.0 dB  
000 0101: Volume Control = -2.5 dB  
000 0110: Volume Control = -3.0 dB  
000 0111: Volume Control = -3.5 dB  
000 1000: Volume Control = -4.0 dB  
000 1001: Volume Control = -4.5 dB  
000 1010: Volume Control = -5.0 dB  
000 1011: Volume Control = -5.5 dB  
000 1100: Volume Control = -6.0 dB  
000 1101: Volume Control = -6.5 dB  
000 1110: Volume Control = -7.0 dB  
000 1111: Volume Control = -7.5 dB  
001 0000: Volume Control = -8.0 dB  
001 0001: Volume Control = -8.5 dB  
001 0010: Volume Control = -9.0 dB  
001 0011: Volume Control = -9.5 dB  
001 0100: Volume Control = -10.0 dB  
001 0101: Volume Control = -10.5 dB  
001 0110: Volume Control = -11.0 dB  
001 0111: Volume Control = -11.5 dB  
001 1000: Volume Control = -12.0 dB  
001 1001: Volume Control = -12.5 dB  
001 1010: Volume Control = -13.0 dB  
001 1011: Volume Control = -13.5 dB  
001 1100: Volume Control = -14.1 dB  
001 1101: Volume Control = -14.6 dB  
001 1110: Volume Control = -15.1 dB  
001 1111: Volume Control = -15.6 dB  
010 0000: Volume Control = -16.0 dB  
010 0001: Volume Control = -16.5 dB  
010 0010: Volume Control = -17.1 dB  
010 0011: Volume Control = -17.5 dB  
010 0100: Volume Control = -18.1 dB  
010 0101: Volume Control = -18.6 dB  
010 0110: Volume Control = -19.1 dB  
010 0111: Volume Control = -19.6 dB  
010 1000: Volume Control = -20.1 dB  
010 1001: Volume Control = -20.6 dB  
010 1010: Volume Control = -21.1 dB  
010 1011: Volume Control = -21.6 dB  
010 1100: Volume Control = -22.1 dB  
010 1101: Volume Control = -22.6 dB  
010 1110: Volume Control = -23.1 dB  
010 1111: Volume Control = -23.6 dB  
011 0000: Volume Control = -24.1 dB  
011 0001: Volume Control = -24.6 dB  
011 0010: Volume Control = -25.1 dB  
011 0011: Volume Control = -25.6 dB  
011 0100: Volume Control = -26.1 dB  
011 0101: Volume Control = -26.6 dB  
011 0110: Volume Control = -27.1 dB  
011 0111: Volume Control = -27.6 dB  
011 1000: Volume Control = -28.1 dB  
011 1001: Volume Control = -28.6 dB  
011 1010: Volume Control = -29.1 dB  
011 1011: Volume Control = -29.6 dB  
011 1100: Volume Control = -30.1 dB  
011 1101: Volume Control = -30.6 dB  
011 1110: Volume Control = -31.1 dB  
011 1111: Volume Control = -31.6 dB  
100 0000: Volume Control = -32.1 dB  
100 0001: Volume Control = -32.7 dB  
100 0010: Volume Control = -33.1 dB  
Copyright © 2014, Texas Instruments Incorporated  
179  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 1 / Register 47: Speaker Amplifier Control 3 - 0x00 / 0x01 / 0x2F (B0_P1_R47) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
100 0011: Volume Control = -33.6 dB  
100 0100: Volume Control = -34.1 dB  
100 0101: Volume Control = -34.6 dB  
100 0110: Volume Control = -35.2 dB  
100 0111: Volume Control = -35.7 dB  
100 1000: Volume Control = -36.1 dB  
100 1001: Volume Control = -36.7 dB  
100 1010: Volume Control = -37.1 dB  
100 1011: Volume Control = -37.7 dB  
100 1100: Volume Control = -38.2 dB  
100 1101: Volume Control = -38.7 dB  
100 1110: Volume Control = -39.2 dB  
100 1111: Volume Control = -39.7 dB  
101 0000: Volume Control = -40.2 dB  
101 0001: Volume Control = -40.7 dB  
101 0010: Volume Control = -41.2 dB  
101 0011: Volume Control = -41.8 dB  
101 0100: Volume Control = -42.1 dB  
101 0101: Volume Control = -42.7 dB  
101 0110: Volume Control = -43.2 dB  
101 0111: Volume Control = -43.8 dB  
101 1000: Volume Control = -44.3 dB  
101 1001: Volume Control = -44.8 dB  
101 1010: Volume Control = -45.2 dB  
101 1011: Volume Control = -45.8 dB  
101 1100: Volume Control = -46.2 dB  
101 1101: Volume Control = -46.7 dB  
101 1110: Volume Control = -47.4 dB  
101 1111: Volume Control = -47.9 dB  
110 0000: Volume Control = -48.2 dB  
110 0001: Volume Control = -48.7 dB  
110 0010: Volume Control = -49.3 dB  
110 0011: Volume Control = -50.0 dB  
110 0100: Volume Control = -50.3 dB  
110 0101: Volume Control = -51.0 dB  
110 0110: Volume Control = -51.4 dB  
110 0111: Volume Control = -51.8 dB  
110 1000: Volume Control = -52.3 dB  
110 1001: Volume Control = -52.7 dB  
110 1010: Volume Control = -53.7 dB  
110 1011: Volume Control = -54.2 dB  
110 1100: Volume Control = -55.4 dB  
110 1101: Volume Control = -56.7 dB  
110 1110: Volume Control = -58.3 dB  
110 1111: Volume Control = -60.2 dB  
111 0000: Volume Control = -62.7 dB  
111 0001: Volume Control = -64.3 dB  
111 0010: Volume Control = -66.2 dB  
111 0011: Volume Control = -68.7 dB  
111 0100: Volume Control = -72.3 dB  
111 0101: Volume Control = -78.3 dB  
111 0110 - 1111110: Reserved. Do not use.  
111 1111: LOR Output Not Routed to SPK_RIGHT_CH_IN (Default)  
Book 0 / Page 1 / Register 48: Speaker Amplifier Volume Controls - 0x00 / 0x01 / 0x30 (B0_P1_R48)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
Reserved. Write only reset values.  
D6-D0  
R/W  
000 0000 Speaker Amplifier (SPK) Volume Control:  
000 0000: SPK Driver is Muted (Default)  
001 0001: SPK Driver Volume = 6 dB  
010 0001: SPK Driver Volume = 12 dB  
011 0001: SPK Driver Volume = 18 dB  
100 0001: SPK Driver Volume = 24 dB  
101 0001: SPK Driver Volume = 30 dB  
Others: Reserved. Do not use.  
180  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 1 / Register 49-50: Reserved Registers - 0x00 / 0x01 / 0x31-0x32 (B0_P1_R49-50)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 0 / Page 1 / Register 51: Microphone Bias Control - 0x00 / 0x01 / 0x33 (B0_P1_R51)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
0
External Mic Bias Power Control  
0: MICBIAS_EXT Powered Down if Jack is not inserted.  
1: MICBIAS_EXT Powered On and Off based only on P1_R51_D6, even if Jack is not inserted.  
D6-D4  
000  
External Mic Bias Power and Voltage Control  
000: MICBIAS_EXT is powered down with pull-down enabled  
001: MICBIAS_EXT is powered down with tristate (this should only be used if external microphone  
bias is driven from external source  
010: MICBIAS_EXT powered on with MICBIAS_EXT = 1.50 V (if Input Common Mode = 0.75 V) or  
1.80 V (if Input Common Mode = 0.9 V).  
011: MICBIAS_EXT powered on with MICBIAS_EXT = 1.67 V (if Input Common Mode = 0.75 V) or  
2.00 V (if Input Common Mode = 0.9 V).  
100-101: Do not use.  
110: MICBIAS_EXT powered on with MICBIAS_EXT = 2.37 V (if Input Common Mode = 0.75 V) or  
2.85 V (if Input Common Mode = 0.9 V).  
111: MICBIAS_EXT powered on with MICBIAS_EXT = 2.50 V (if Input Common Mode = 0.75 V) or  
3.00 V (if Input Common Mode = 0.9 V).  
D3  
R/W  
R/W  
0
0: MICBIAS_EXT is not powered up upon insertion if microphone is not detected on inserted jack  
1: MICBIAS_EXT is powered up upon jack detect irrespective of whether microphone is detected  
or not  
D2-D0  
000  
Mic Bias Power and Voltage Control  
000: MICBIAS is powered down with pull-down enabled  
001: MICBIAS is powered down with tristate (this should only be used if microphone bias is driven  
from external source)  
010: MICBIAS powered on with MICBIAS = 1.50 V (if Input Common Mode = 0.75 V) or 1.80 V (if  
Input Common Mode = 0.9 V).  
011: MICBIAS powered on with MICBIAS = 1.67 V (if Input Common Mode = 0.75 V) or 2.00 V (if  
Input Common Mode = 0.9 V).  
100-101: Do not use.  
110: MICBIAS powered on with MICBIAS = 2.37 V (if Input Common Mode = 0.75 V) or 2.85 V (if  
Input Common Mode = 0.9 V).  
111: MICBIAS powered on with MICBIAS = 2.50 V (if Input Common Mode = 0.75 V) or 3.00 V (if  
Input Common Mode = 0.9 V).  
Book 0 / Page 1 / Register 52: Input Select 1 for Left Microphone PGA P-Terminal - 0x00 / 0x01 / 0x34  
(B0_P1_R52)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
R/W  
R/W  
R/W  
00  
00  
00  
IN1L to Left Mic PGA (P-Terminal) Selection Control  
00: IN1L Not Selected  
01: IN1L Selected (RIN = 10K)  
10: IN1L Selected (RIN = 20K)  
11: IN1L Selected (RIN = 40K)  
D5-D4  
D3-D2  
IN2L to Left Mic PGA (P-Terminal) Selection Control  
00: IN2L Not Selected  
01: IN2L Selected (RIN = 10K)  
10: IN2L Selected (RIN = 20K)  
11: IN2L Selected (RIN = 40K)  
IN3L to Left Mic PGA (P-Terminal) Selection Control  
00: IN3L Not Selected  
01: IN3L Selected (RIN = 10K)  
10: IN3L Selected (RIN = 20K)  
11: IN3L Selected (RIN = 40K)  
Copyright © 2014, Texas Instruments Incorporated  
181  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 1 / Register 52: Input Select 1 for Left Microphone PGA P-Terminal - 0x00 / 0x01 / 0x34  
(B0_P1_R52) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D1-D0  
R/W  
00  
IN1R to Left Mic PGA (P-Terminal) Selection Control  
00: IN1R Not Selected  
01: IN1R Selected (RIN = 10K)  
10: IN1R Selected (RIN = 20K)  
11: IN1R Selected (RIN = 40K)  
NOTE (For All Inputs to PGA):  
PGA Value = 0 dB for Singled Ended Input with RIN = 10K  
PGA Value = +6 dB for Differential Input with RIN = 10K  
PGA Value = -6 dB for Singled Ended Input with RIN = 20K  
PGA Value = 0 dB for Differential Input with RIN = 20K  
PGA Value = -12 dB for Singled Ended Input with RIN = 40K  
PGA Value = -6 dB for Differential Input with RIN = 40K  
Book 0 / Page 1 / Register 53: Input Select 2 for Left Microphone PGA P-Terminal - 0x00 / 0x01 / 0x35  
(B0_P1_R53)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
D5  
R
00  
0
Reserved. Write only reset values.  
R/W  
IN4L to Left Mic PGA (P-Terminal) Selection Control  
00: IN4L Not Selected  
01: IN4L Selected (RIN = 20K)  
D4  
R/W  
R
0
IN4R to Left Mic PGA (M-Terminal) Selection Control  
00: IN4R Not Selected  
01: IN4R Selected (RIN = 20K)  
D3-D0  
0000  
Reserved. Write only reset values.  
Book 0 / Page 1 / Register 54: Input Select for Left Microphone PGA M-Terminal - 0x00 / 0x01 / 0x36  
(B0_P1_R54)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
R/W  
R/W  
R/W  
R/W  
00  
00  
00  
00  
Internal Common Mode (CM1) to Left Mic PGA (M-Terminal) Selection Control  
00: CM1 Not Selected  
01: CM1 Selected (RIN = 10K)  
10: CM1 Selected (RIN = 20K)  
11: CM1 Selected (RIN = 40K)  
D5-D4  
D3-D2  
D1-D0  
IN2R to Left Mic PGA (M-Terminal) Selection Control  
00: IN2R Not Selected  
01: IN2R Selected (RIN = 10K)  
10: IN2R Selected (RIN = 20K)  
11: IN2R Selected (RIN = 40K)  
IN3R to Left Mic PGA (M-Terminal) Selection Control  
00: IN3R Not Selected  
01: IN3R Selected (RIN = 10K)  
10: IN3R Selected (RIN = 20K)  
11: IN3R Selected (RIN = 40K)  
Internal Common Mode (CM2) to Left Mic PGA (M-Terminal) Selection Control  
00: CM2 Not Selected  
01: CM2 Selected (RIN = 10K)  
10: CM2 Selected (RIN = 20K)  
11: CM2 Selected (RIN = 40K)  
182  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 1 / Register 55: Input Select 1 for Right Microphone PGA P-Terminal - 0x00 / 0x01 / 0x37  
(B0_P1_R55)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
R/W  
R/W  
R/W  
R/W  
00  
00  
00  
00  
IN1R to Right Mic PGA (P-Terminal) Selection Control  
00: IN1R Not Selected  
01: IN1R Selected (RIN = 10K)  
10: IN1R Selected (RIN = 20K)  
11: IN1R Selected (RIN = 40K)  
D5-D4  
D3-D2  
D1-D0  
IN2R to Right Mic PGA (P-Terminal) Selection Control  
00: IN2R Not Selected  
01: IN2R Selected (RIN = 10K)  
10: IN2R Selected (RIN = 20K)  
11: IN2R Selected (RIN = 40K)  
IN3R to Right Mic PGA (P-Terminal) Selection Control  
00: IN3R Not Selected  
01: IN3R Selected (RIN = 10K)  
10: IN3R Selected (RIN = 20K)  
11: IN3R Selected (RIN = 40K)  
IN2L to Right Mic PGA (P-Terminal) Selection Control  
00: IN2L Not Selected  
01: IN2L Selected (RIN = 10K)  
10: IN2L Selected (RIN = 20K)  
11: IN2L Selected (RIN = 40K)  
Book 0 / Page 1 / Register 56: Input Select 2 for Right Microphone PGA P-Terminal - 0x00 / 0x01 / 0x38  
(B0_P1_R56)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
D5  
R
00  
0
Reserved. Write only reset values.  
R/W  
IN4R to Right Mic PGA (P-Terminal) Selection Control  
00: IN4R Not Selected  
01: IN4R Selected (RIN = 20K)  
D4  
R/W  
R
0
IN4L to Right Mic PGA (M-Terminal) Selection Control  
00: IN4L Not Selected  
01: IN4L Selected (RIN = 20K)  
D3-D0  
0000  
Reserved. Write only reset values.  
Book 0 / Page 1 / Register 57: Input Select for Right Microphone PGA M-Terminal - 0x00 / 0x01 / 0x39  
(B0_P1_R57)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
R/W  
R/W  
R/W  
R/W  
00  
00  
00  
00  
Internal Common Mode (CM1) to Right Mic PGA (M-Terminal) Selection Control  
00: CM1 Not Selected  
01: CM1 Selected (RIN = 10K)  
10: CM1 Selected (RIN = 20K)  
11: CM1 Selected (RIN = 40K)  
D5-D4  
D3-D2  
D1-D0  
IN1L to Right Mic PGA (M-Terminal) Selection Control  
00: IN1L Not Selected  
01: IN1L Selected (RIN = 10K)  
10: IN1L Selected (RIN = 20K)  
11: IN1L Selected (RIN = 40K)  
IN3L to Right Mic PGA (M-Terminal) Selection Control  
00: IN3L Not Selected  
01: IN3L Selected (RIN = 10K)  
10: IN3L Selected (RIN = 20K)  
11: IN3L Selected (RIN = 40K)  
Internal Common Mode (CM2) to Right Mic PGA (M-Terminal) Selection Control  
00: CM2 Not Selected  
01: CM2 Selected (RIN = 10K)  
10: CM2 Selected (RIN = 20K)  
11: CM2 Selected (RIN = 40K)  
Copyright © 2014, Texas Instruments Incorporated  
183  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 1 / Register 58: Input Common Mode Control - 0x00 / 0x01 / 0x3A (B0_P1_R58)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0
IN1L Common-Mode Control When Not Connected to PGAs  
0: Floating  
1: Connected to Internal Common Mode  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
IN1R Common-Mode Control When Not Connected to PGAs  
0: Floating  
1: Connected to Internal Common Mode  
IN2L Common-Mode Control When Not Connected to PGAs  
0: Floating  
1: Connected to Internal Common Mode  
IN2R Common-Mode Control When Not Connected to PGAs  
0: Floating  
1: Connected to Internal Common Mode  
IN3L Common-Mode Control When Not Connected to PGAs  
0: Floating  
1: Connected to Internal Common Mode  
IN3R Common-Mode Control When Not Connected to PGAs  
0: Floating  
1: Connected to Internal Common Mode  
IN4L Common-Mode Control When Not Connected to PGAs  
0: Floating  
1: Connected to Internal Common Mode  
IN4R Common-Mode Control When Not Connected to PGAs  
0: Floating  
1: Connected to Internal Common Mode  
Book 0 / Page 1 / Register 59: Left Microphone PGA Control - 0x00 / 0x01 / 0x3B (B0_P1_R59)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
1
0: Left MICPGA Gain is enabled  
1: Left MICPGA Gain is set to 0dB  
D6-D0  
R/W  
000 0000 Left MICPGA Volume Control  
000 0000: Volume Control = 0.0dB  
000 0001: Volume Control = 0.5dB  
000 0010: Volume Control = 1.0dB  
...  
101 1101: Volume Control = 46.5dB  
101 1110: Volume Control = 47.0dB  
101 1111: Volume Control = 47.5dB  
110 0000-111 1111: Reserved. Do not use.  
Book 0 / Page 1 / Register 60: Right Microphone PGA Control - 0x00 / 0x01 / 0x3C (B0_P1_R60)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
1
0: Right MICPGA Gain is enabled  
1: Right MICPGA Gain is set to 0dB  
D6-D0  
R/W  
000 0000 Right MICPGA Volume Control  
000 0000: Volume Control = 0.0dB  
000 0001: Volume Control = 0.5dB  
000 0010: Volume Control = 1.0dB  
...  
101 1101: Volume Control = 46.5dB  
101 1110: Volume Control = 47.0dB  
101 1111: Volume Control = 47.5dB  
110 0000-111 1111: Reserved. Do not use.  
184  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 1 / Register 61: ADC PowerTune Configuration Register - 0x00 / 0x01 / 0x3D (B0_P1_R61)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
R/W  
00  
00: PTM_R4 (Default)  
01: PTM_R3  
10: PTM_R2  
11: PTM_R1  
D5-D0  
R/W  
00 0000  
Reserved. Write only reset values.  
Book 0 / Page 1 / Register 62: ADC Analog PGA Gain Flag Register - 0x00 / 0x01 / 0x3E (B0_P1_R62)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D2  
D1  
R
R
0000 00  
0
Reserved. Write only reset values.  
Left Channel Analog Volume Control Flag  
0: Applied Volume is not equal to Programmed Volume  
1: Applied Volume is equal to Programmed Volume  
D0  
R
0
Right Channel Analog Volume Control Flag  
0: Applied Volume is not equal to Programmed Volume  
1: Applied Volume is equal to Programmed Volume  
Book 0 / Page 1 / Register 63: DAC Analog Gain Flags Register 1 - 0x00 / 0x01 / 0x3F (B0_P1_R63)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
R
R
R
R
0
0
HPL Gain Flag  
0: Applied Gain is not equal to Programmed Gain  
1: Applied Gain is equal to Programmed Gain  
D6  
D5  
HPR Gain Flag  
0: Applied Gain is not equal to Programmed Gain  
1: Applied Gain is equal to Programmed Gain  
0
RECP Gain Flag  
0: Applied Gain is not equal to Programmed Gain  
1: Applied Gain is equal to Programmed Gain  
D4  
0
RECM Gain Flag  
0: Applied Gain is not equal to Programmed Gain  
1: Applied Gain is equal to Programmed Gain  
D3-D0  
0000  
Reserved. Write only reset values.  
Book 0 / Page 1 / Register 64: DAC Analog Gain Flags Register 2 - 0x00 / 0x01 / 0x40 (B0_P1_R64)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
R
R
R
R
0
0
0
0
0
LOL to HPL Driver Gain Flag  
0: Applied Gain is not equal to Programmed Gain  
1: Applied Gain is equal to Programmed Gain  
D6  
D5  
D4  
D3  
LOR to HPR Driver Gain Flag  
0: Applied Gain is not equal to Programmed Gain  
1: Applied Gain is equal to Programmed Gain  
LOL to RECP Driver Gain Flag  
0: Applied Gain is not equal to Programmed Gain  
1: Applied Gain is equal to Programmed Gain  
LOR to RECM Driver Gain Flag  
0: Applied Gain is not equal to Programmed Gain  
1: Applied Gain is equal to Programmed Gain  
LOL to SPK Driver Gain Flag  
0: Applied Gain is not equal to Programmed Gain  
1: Applied Gain is equal to Programmed Gain  
D2  
D1  
R
R
0
0
Reserved. Write only reset values.  
Reserved. Write only reset values.  
Copyright © 2014, Texas Instruments Incorporated  
185  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 1 / Register 64: DAC Analog Gain Flags Register 2 - 0x00 / 0x01 / 0x40  
(B0_P1_R64) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D0  
R
0
0: Charge Pump is not Powered-Up  
1: Charge Pump is Powered-Up  
Book 0 / Page 1 / Register 65: Analog Bypass Gain Flags Register - 0x00 / 0x01 / 0x41 (B0_P1_R65)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
R
R
R
R
0
0
IN1L to Receiver Left (RECP) Driver Gain Flag  
0: Applied Gain is not equal to Programmed Gain  
1: Applied Gain is equal to Programmed Gain  
D6  
D5  
IN1R to RECM Driver Gain Flag  
0: Applied Gain is not equal to Programmed Gain  
1: Applied Gain is equal to Programmed Gain  
0
Left ADC PGA to Mixer Amp Left (MAL) Driver Gain Flag  
0: Applied Gain is not equal to Programmed Gain  
1: Applied Gain is equal to Programmed Gain  
D4  
0
Right ADC PGA to Mixer Amp Right (MAR) Driver Gain Flag  
0: Applied Gain is not equal to Programmed Gain  
1: Applied Gain is equal to Programmed Gain  
D3-D0  
0000  
Reserved. Write only reset values.  
Book 0 / Page 1 / Register 66: Driver Power-Up Flags Register - 0x00 / 0x01 / 0x42 (B0_P1_R66)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Line Out Left Driver (LOL) Power-Up Flag  
0: LOL Driver Powered Down  
1: LOL Driver Powered Up  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Line Out Right Driver (LOR) Power-Up Flag  
0: LOR Driver Powered Down  
1: LOR Driver Powered Up  
Headphone Left Driver (HPL) Power-Up Flag  
0: HPL Driver Powered Down  
1: HPL Driver Powered Up  
Headphone Right Driver (HPR) Power-Up Flag  
0: HPR Driver Powered Down  
1: HPR Driver Powered Up  
Receiver Left Driver (RECP) Power-Up Flag  
0: RECP Driver Powered Down  
1: RECP Driver Powered Up  
Receiver Right Driver (RECM) Power-Up Flag  
0: RECM Driver Powered Down  
1: RECM Driver Powered Up  
Speaker Left Driver (SPK) Power-Up Flag  
0: SPK Driver Powered Down  
1: SPK Driver Powered Up  
Reserved. Write only reset values.  
Book 0 / Page 1 / Register 67-68: Reserved Registers - 0x00 / 0x01 / 0x43-0x44 (B0_P1_R67-68)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
186  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 1 / Register 69: Over current Flags - 0x00 / 0x01 / 0x45 (B0_P1_R69)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
R
R
R
0
Receiver Driver Over Current Sticky Flag  
0: No over current was detected on Receiver driver  
1: Over Current was detected on Receiver driver  
D6  
D5  
0
0
Headphone Driver Over Current Sticky Flag  
0: No over current was detected on Receiver driver  
1: Over Current was detected on Receiver driver  
Speaker Driver Over Current Sticky Flag  
0: No over current was detected on Speaker driver  
1: Over Current was detected on Speaker driver  
D4-D0  
x xxxx  
Reserved.  
Book 0 / Page 1 / Register 67-76: Reserved Registers - 0x00 / 0x01 / 0x43-0x4C (B0_P1_R67-76)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 0 / Page 1 / Register 77: Reserved Registers - 0x00 / 0x01 / 0x4D (B0_P1_R77)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D1  
D0  
R
000 0000 Reserved. Write only reset values.  
R/W  
0
Headphone Over Current Protection Enable  
0: Default  
1: Write '1' to enable headphone overcurrent protection  
Book 0 / Page 1 / Register 78-118: Reserved Registers - 0x00 / 0x01 / 0x4E-0x76 (B0_P1_R78-118)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 0 / Page 1 / Register 119: Headset Detection Tuning Register 1 - 0x00 / 0x01 / 0x77 (B0_P1_R119)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
R/W  
10  
Headphone Load Detection Pulse Period. Detection pulse is used to identify the headphone load  
type after insertion is detected.  
0: Detector pulse mode is disabled  
1: Detector pulse mode period is enabled with period of 144 cycles of LF_OSC_CLK (typ. 18us)  
2: Detector pulse mode period is enabled with period of 288 cycles of LF_OSC_CLK (default, typ.  
36us)  
3: Detector pulse mode period is enabled with period of 4608 cycles of LF_OSC_CLK (typ. 576us)  
D5-D2  
R/W  
01 01  
Headphone Load Detection Pulse High Duration. Detection pulse is used to identify the headphone  
load type after insertion is detected.  
0000: Reserved.  
0001: Detector pulse high duration is 1*Detector Pulse High Width Scale Factor*LF_OSC_CLK.  
See bit D1 for Detector Pulse High Width Scale Factor.  
0010: Detector pulse high duration is 2*Detector Pulse High Width Scale Factor*LF_OSC_CLK.  
0011: Detector pulse high duration is 3*Detector Pulse High Width Scale Factor*LF_OSC_CLK.  
0100: Detector pulse high duration is 4*Detector Pulse High Width Scale Factor*LF_OSC_CLK.  
0101: Detector pulse high duration is 5*Detector Pulse High Width Scale Factor*LF_OSC_CLK.  
(default)  
...  
1110: Detector pulse high duration is 14*Detector Pulse High Width Scale Factor*LF_OSC_CLK.  
1111: Detector pulse high duration is 15*Detector Pulse High Width Scale Factor*LF_OSC_CLK.  
D1  
R/W  
0
Headphone Load Detection Pulse High Width Scale Factor  
0: Headphone Load Detection Pulse High Width Scale Factor =1  
1: Headphone Load Detection Pulse High Width Scale Factor =8  
Copyright © 2014, Texas Instruments Incorporated  
187  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 1 / Register 119: Headset Detection Tuning Register 1 - 0x00 / 0x01 / 0x77  
(B0_P1_R119) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D0  
R/W  
0
Headset Detection Pulse Auto configuration  
0: Upon microphone insertion detection, the auto configuration of detection is enabled. This  
enables the detector pulse mode with period of 4608 cycles of the LF_OSC_CLK, and sets  
Detector Pulse High Width Scale Factor to 8. (default)  
1: Upon microphone insertion detection, the auto configuration of detection is disabled. Therefor,  
detector pulse mode period and Detector Pulse High Width Scale Factor does not change upon  
insertion.  
Book 0 / Page 1 / Register 120: Headset Detection Tuning Register 2 - 0x00 / 0x01 / 0x78 (B0_P1_R120)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D4  
R/W  
0100  
Headset Detection Pulse Width control. This pulse is used to detect button press and headset  
removal.  
0000: Headset Detection Pulse Width is 1*(Headphone Load Detector_Pulse_Period*0.5+1) cycles  
of LF_OSC_CLK, where Headphone Load Detector_Pulse_Period is set by B0_P1_R119_D[7:6].  
0001: Headset Detection Pulse Width is 1.5*(Headphone Load Detector_Pulse_Period*0.5+1)  
cycles of LF_OSC_CLK.  
0010: Headset Detection Pulse Width is 2*(Headphone Load Detector_Pulse_Period*0.5+1) cycles  
of LF_OSC_CLK.  
0011: Headset Detection Pulse Width is 2.5*(Headphone Load Detector_Pulse_Period*0.5+1)  
cycles of LF_OSC_CLK.  
0100: Headset Detection Pulse Width is 3*(Headphone Load Detector_Pulse_Period*0.5+1) cycles  
of LF_OSC_CLK. (default)  
...  
1110: Headset Detection Pulse Width is 8*(Headphone Load Detector_Pulse_Period*0.5+1) cycles  
of LF_OSC_CLK.  
1111: Headset Detection Pulse Width is 8.5*(Headphone Load Detector_Pulse_Period*0.5+1)  
cycles of LF_OSC_CLK.  
D3  
D2  
R
0
0
Reserved. Write only reset values.  
R/W  
Headphone Load Detection Range control  
0: Headphone detection supported in the range of 16-Ohms to 300-Ohms.  
1: Headphone detection supported in the range of 16-Ohms to 64-Ohms.  
D1-D0  
R/W  
10  
Headset Detection using microphone inputs on IN4L, IN4R control:  
00: Reserved. Do not use.  
01: IN4L, IN4R enabled for headset microphone inputs.  
10: IN4L, IN4R disabled for headset microphone inputs.  
11: Reserved. Do not use.  
Book 0 / Page 1 / Register 121: Reserved Register - 0x00 / 0x01 / 0x79 (B0_P1_R121)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0011 0011 Reserved. Write only reset values.  
Book 0 / Page 1 / Register 122: Reference Powerup Control - 0x00 / 0x01 / 0x7A (B0_P1_R122)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D3  
D2  
R
0 0000  
0
Reserved. Write only reset values.  
R/W  
0: Chip-Reference powered-up and powered-down internally based on other on-chip block  
requirements  
1: Chip-Reference will be force-fully powered-up  
D1-D0  
R/W  
01  
Reserved. Write only reset values.  
Book 0 / Page 1 / Register 123-127: Reserved Registers - 0x00 / 0x01 / 0x7B-0x7F (B0_P1_R123-127)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
188  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
8.6.4 Book 0 Page 3  
Book 0 / Page 3 / Register 0: Page Select Register - 0x00 / 0x03 / 0x00 (B0_P3_R0)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Page Select Register  
0-255: Selects the Register Page for next read or write command.  
Book 0 / Page 3 / Register 1: Reserved Register - 0x00 / 0x03 / 0x01 (B0_P3_R1)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 0 / Page 3 / Register 2: Primary SAR ADC Control - 0x00 / 0x03 / 0x02 (B0_P3_R2)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
0
0: Normal Mode  
1: Stop Conversion and power down SAR ADC  
D6-D5  
D4-D3  
R/W  
00  
00: SAR ADC resolution = 12-bit  
01: SAR ADC resolution = 8-bit  
10: SAR ADC resolution = 10-bit  
11: SAR ADC resolution = 12-bit  
R/W  
1 1  
00: SAR ADC clock divider = 1 (Use for 8-bit resolution case only)  
01: SAR ADC clock divider = 2 (Use for 8-bit/10-bit resolution case only)  
10: SAR ADC clock divider = 4 (For better performance in 8-bit/10-bit resolution mode, this setting  
is recommended)  
11: SAR ADC clock divider = 8 (For better performance in 12-bit resolution mode, this setting is  
recommended)  
D2  
R/W  
R/W  
0
0: Mean filter is used for on-chip data averaging (if enabled)  
1: Median filter is used for on-chip data averaging (if enabled)  
D1-D0  
00  
00: On-chip data averaging is disabled.  
01: 4-data averaging in case mean filter / 5-data averaging in case of median filter.  
10: 8-data averaging in case mean filter / 9-data averaging in case of median filter.  
11: 16-data averaging in case mean filter / 15-data averaging in case of median filter.  
Book 0 / Page 3 / Register 3: Primary SAR ADC Conversion Mode - 0x00 / 0x03 / 0x03 (B0_P3_R3)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
D5-D2  
R
00  
Reserved. Write only reset values.  
R/W  
00 00  
Conversion Mode  
0000: No Scan  
0001 - 0101: Reserved. Do not use.  
0110: VBAT Measurement  
0111: IN1R Measurement  
1000: IN1L Measurment  
1001: Auto Scan. Sequence used is IN1L, IN1R, VBAT, TEMP1(or TEMP2). Each of these input  
can be enabled or disabled independently using register-19 and with that sequence will get  
modified accordingly. Scan continues until stop bit(D7 of reg-2) is sent or D5-D2 of this register is  
changed.  
1010: TEMP1 Measurement  
1011: PortScan : IN1L, IN1R, VBAT  
1100: TEMP2 Measurement  
1101 - 1111: Reserved. Do not use.  
D1-D0  
R/W  
00  
00: Interrupt Disabled  
01: Interrupt = Data-Available (active LOW)  
10-11: Reserved. Do not use.  
Book 0 / Page 3 / Register 4-5: Reserved Registers - 0x00 / 0x03 / 0x04-0x05 (B0_P3_R4-5)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
x000 0000 Reserved. Write only reset values.  
Copyright © 2014, Texas Instruments Incorporated  
189  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 3 / Register 6: SAR Reference Control - 0x00 / 0x03 / 0x06 (B0_P3_R6)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
0
SAR Reference Selection  
0: Use External Reference for SAR Measurement  
1: Use Internal Reference (1.25V) for SAR Measurement  
D6  
D5  
R
0
1
Reserved. Write only reset values.  
R/W  
SAR Internal Reference Power Options  
0: Internal Reference powered forever for conversions  
1: Internal Reference powered up or powered down automatically based on whether conversions  
are going on or not.  
D4  
R
0
Reserved. Write only reset values.  
D3-D2  
R/W  
10  
SAR Reference Stabilization Time Before Conversion  
00: 0 ms  
01: 1 ms  
10: 4 ms  
11: 8 ms  
D1-D0  
R
00  
Reserved. Write only reset values.  
Book 0 / Page 3 / Register 7-8: Reserved Registers - 0x00 / 0x03 / 0x07-0x08 (B0_P3_R7-8)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 0 / Page 3 / Register 9: SAR ADC Flags Register 1 - 0x00 / 0x03 / 0x09 (B0_P3_R9)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
D6  
R
R
0
1
Reserved. Write only reset values.  
SAR Busy Flag  
0: SAR ADC is Busy  
1: SAR ADC is not Busy  
D5  
R
R
0
SAR Data Available Flag  
0: No New Data Available  
1: New Data is Available  
D4-D0  
0 0000  
Reserved. Write only reset values.  
Book 0 / Page 3 / Register 10: SAR ADC Flags Register 2 - 0x00 / 0x03 / 0x0A (B0_P3_R10)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
R
R
0
0
0
IN1L Data Available Flag  
0: No New Data Available  
1: New Data is Available (This bit cleared only after the converted data has been read. Not valid for  
the buffer mode.)  
D6  
D5  
IN1R Data Available Flag  
0: No New Data Available  
1: New Data is Available (This bit cleared only after the converted data has been read. Not valid for  
the buffer mode.)  
VBAT Data Available Flag  
0: No New Data Available  
1: New Data is Available (This bit cleared only after the converted data has been read. Not valid for  
the buffer mode.)  
D4-D2  
D1  
R
R
000  
0
Reserved. Write only reset values.  
TEMP1 Data Available Flag  
0: No New Data Available  
1: New Data is Available (This bit cleared only after the converted data has been read. Not valid for  
the buffer mode.)  
D0  
R
0
TEMP2 Data Available Flag  
0: No New Data Available  
1: New Data is Available (This bit cleared only after the converted data has been read. Not valid for  
the buffer mode.)  
190  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 3 / Register 11-12: Reserved Registers - 0x00 / 0x03 / 0x0B-0x0C (B0_P3_R11-12)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 0 / Page 3 / Register 13: SAR ADC Buffer Mode Control - 0x00 / 0x03 / 0x0D (B0_P3_R13)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
R/W  
0
0
Buffer Mode Enable Select  
0: Buffer mode is disabled and RDPTR, WRPTR and TGPTR are set to their default value.  
1: Buffer mode is enabled.  
D6  
Buffer Conversion Mode Select  
0: Buffer mode is enabled as continuous conversion mode.  
1: Buffer mode is enabled as single shot mode.  
D5-D3  
00 0  
Buffer Mode Conversion Trigger Level Select  
000: Trigger Level for conversion = 8 converted data values  
001: Trigger Level for conversion = 16 converted data values  
010: Trigger Level for conversion = 24 converted data values  
011: Trigger Level for conversion = 32 converted data values  
100: Trigger Level for conversion = 40 converted data values  
101: Trigger Level for conversion = 48 converted data values  
110: Trigger Level for conversion = 56 converted data values  
111: Trigger Level for conversion = 64 converted data values  
D2  
D1  
R
R
0
0
Reserved. Write only reset values.  
Buffer Full Flag  
0: Buffer is not full  
1: Buffer is full (buffer contains 64 unread converted data).  
D0  
R
1
Buffer Empty Flag  
0: Buffer is not empty  
1: Buffer is empty (there is no unread converted data in the buffer).  
Book 0 / Page 3 / Register 14: Reserved Register - 0x00 / 0x03 / 0x0E (B0_P3_R14)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 0 / Page 3 / Register 15: Scan Mode Timer Control - 0x00 / 0x03 / 0x0F (B0_P3_R15)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D4  
D3  
R
0100  
0
Reserved. Write only reset values.  
R/W  
Programmable Delay for SAR Auto-Scan Enable  
0: Disabled  
1: Enabled  
D2-D0  
R/W  
000  
Programmable Interval Timer for Auto Scan delay  
000: Delay = 1.12 min.  
001: Delay = 3.36 min.  
010: Delay = 5.59 min.  
011: Delay = 7.83 min.  
100: Delay = 10.01 min.  
101: Delay = 12.30 min.  
110: Delay = 14.54 min.  
111: Delay = 16.78 min.  
(Note: Based on an 8 MHz Internal Oscillator or MCLK/DIV(Page-0, Reg-23) = 1MHz)  
Book 0 / Page 3 / Register 16: Reserved Register - 0x00 / 0x03 / 0x10 (B0_P3_R16)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Copyright © 2014, Texas Instruments Incorporated  
191  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 3 / Register 17: SAR ADC Clock Control - 0x00 / 0x03 / 0x11 (B0_P3_R17)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
0
SAR ADC Clock Selection  
0: Internal Oscillator  
1: External MCLK  
D6-D0  
000 0001 MCLK to SAR ADC Clock Divider Selection  
000 0000: MCLK Divider = 128  
000 0001: MCLK Divider = 1  
000 0010: MCLK Divider = 2  
111 1110: MCLK Divider = 126  
111 1111: MCLK Divider = 127  
Book 0 / Page 3 / Register 18: SAR ADC Buffer Mode Data Read Control - 0x00 / 0x03 / 0x12 (B0_P3_R18)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
0
0: SPI Interface is used for the SAR or Buffer data reading.  
1: I2C Interface is used for the SAR or Buffer data reading.  
D6  
D5  
R/W  
0
0: SAR data update is automatically halted (to avoid simultaneous buffer read and write  
operations) based on internal detection logic. Valid only for SPI interface.  
1: SAR data update is held using software control (P3_R18_D5).  
R/W  
R
0
0: SAR data update is enabled all the time (valid only if P3_R18_D6 = 1)  
1: SAR data update is stopped so that user can read the last updated data without any data  
corruption (valid only if P3_R18_D6 = 1).  
D4-D0  
0 0000  
Reserved. Write only reset values.  
Book 0 / Page 3 / Register 19: SAR ADC Measurement Control - 0x00 / 0x03 / 0x13 (B0_P3_R19)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0
Automatic IN1L Measurement Enable  
0: Disable  
1: Enable  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Automatic IN1R Measurement Enable  
0: Disable  
1: Enable  
Automatic VBAT Measurement Enable  
0: Disable  
1: Enable  
Automatic TEMP Measurement Enable  
0: Disable  
1: Enable  
Automatic TEMP Measurement Sensor Selection  
0: TEMP1  
1: TEMP2  
IN1L Measurement Type Selection  
0: Voltage Measurement  
1: Resistance Measurement  
IN1R Measurement Type Selection  
0: Voltage Measurement  
1: Resistance Measurement  
Resistance Measurement Mode Selection  
0: Internal Bias Resistance Measurment Mode  
1: External Bias Resistance Measurment Mode  
Book 0 / Page 3 / Register 20: Reserved Register - 0x00 / 0x03 / 0x14 (B0_P3_R20)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
192  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 3 / Register 21: SAR ADC Measurement Threshold Flags - 0x00 / 0x03 / 0x15 (B0_P3_R21)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
D5  
R
R
00  
0
Reserved. Write only reset values.  
IN1L Measurement Max Threshold Flag  
0: IN1L Measurement < Programmed Max Threshold Setting  
1: IN1L Measurement >= Programmed Max Threshold Setting  
D4  
D3  
D2  
D1  
D0  
R
R
R
R
R
0
0
0
0
0
IN1L Measurement Min Threshold Flag  
0: IN1L Measurement > Programmed Min Threshold Setting  
1: IN1L Measurement <= Programmed Min Threshold Setting  
IN1R Measurement Max Threshold Flag  
0: IN1R Measurement < Programmed Max Threshold Setting  
1: IN1R Measurement >= Programmed Max Threshold Setting  
IN1R Measurement Min Threshold Flag  
0: IN1R Measurement > Programmed Min Threshold Setting  
1: IN1R Measurement <= Programmed Min Threshold Setting  
TEMP (TEMP1 or TEMP2) Measurement Max Threshold Flag  
0: TEMP Measurement < Programmed Max Threshold Setting  
1: TEMP Measurement >= Programmed Max Threshold Setting  
3
Book 0 / Page 3 / Register 22: IN1L Max Threshold Check Control 1 - 0x00 / 0x03 / 0x16 (B0_P3_R22)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D5  
D4  
R
000  
0
Reserved. Write only reset values.  
R/W  
IN1L Max Threshold Check Enable Control  
0: Disable (Valid For Both Auto and non-Auto Scan Measurement)  
1: Enable (Valid For Both Auto and non-Auto Scan Measurement)  
D3-D0  
R/W  
0000  
IN1L Max Threshold 12-bit Code (MSB 4-bits)  
Book 0 / Page 3 / Register 23: IN1L Max Threshold Check Control 2 - 0x00 / 0x03 / 0x17 (B0_P3_R23)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 IN1L Max Threshold 12-bit Code (LSB 8-bits)  
Book 0 / Page 3 / Register 24: IN1L Min Threshold Check Control 1 - 0x00 / 0x03 / 0x18 (B0_P3_R24)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D5  
D4  
R
000  
0
Reserved. Write only reset values.  
R/W  
IN1L Min Threshold Check Enable Control  
0: Disable (Valid For Both Auto and non-Auto Scan Measurement)  
1: Enable (Valid For Both Auto and non-Auto Scan Measurement)  
D3-D0  
R/W  
0000  
IN1L Min Threshold 12-bit Code (MSB 4-bits)  
Book 0 / Page 3 / Register 25: IN1L Min Threshold Check Control 2 - 0x00 / 0x03 / 0x19 (B0_P3_R25)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 IN1L Min Threshold 12-bit Code (LSB 8-bits)  
Book 0 / Page 3 / Register 26: IN1R Max Threshold Check Control 1 - 0x00 / 0x03 / 0x1A (B0_P3_R26)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D5  
D4  
R
000  
0
Reserved. Write only reset values.  
R/W  
IN1R Max Threshold Check Enable Control  
0: Disable (Valid For Both Auto and non-Auto Scan Measurement)  
1: Enable (Valid For Both Auto and non-Auto Scan Measurement)  
D3-D0  
R/W  
0000  
IN1R Max Threshold 12-bit Code (MSB 4-bits)  
Copyright © 2014, Texas Instruments Incorporated  
193  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 3 / Register 27: IN1R Max Threshold Check Control 2 - 0x00 / 0x03 / 0x1B (B0_P3_R27)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 IN1R Max Threshold 12-bit Code (LSB 8-bits)  
Book 0 / Page 3 / Register 28: IN1R Min Threshold Check Control 1 - 0x00 / 0x03 / 0x1C (B0_P3_R28)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D5  
D4  
R
000  
0
Reserved. Write only reset values.  
R/W  
IN1R Min Threshold Check Enable Control  
0: Disable (Valid For Both Auto and non-Auto Scan Measurement)  
1: Enable (Valid For Both Auto and non-Auto Scan Measurement)  
D3-D0  
R/W  
0000  
IN1R Min Threshold 12-bit Code (MSB 4-bits)  
Book 0 / Page 3 / Register 29: IN1R Min Threshold Check Control 2 - 0x00 / 0x03 / 0x1D (B0_P3_R29)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 IN1R Min Threshold 12-bit Code (LSB 8-bits)  
Book 0 / Page 3 / Register 30: TEMP Max Threshold Check Control 1 - 0x00 / 0x03 / 0x1E (B0_P3_R30)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D5  
D4  
R
000  
0
Reserved. Write only reset values.  
R/W  
TEMP (TEMP1 or TEMP2) Max Threshold Check Enable Control  
0: Disable (Valid For Both Auto and non-Auto Scan Measurement)  
1: Enable (Valid For Both Auto and non-Auto Scan Measurement)  
D3-D0  
R/W  
0000  
IN1R Max Threshold 12-bit Code (MSB 4-bits)  
Book 0 / Page 3 / Register 31: TEMP Max Threshold Check Control 2 - 0x00 / 0x03 / 0x1F (B0_P3_R31)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 TEMP (TEMP1 or TEMP2) Max Threshold 12-bit Code (LSB 8-bits)  
Book 0 / Page 3 / Register 32: TEMP Min Threshold Check Control 1 - 0x00 / 0x03 / 0x20 (B0_P3_R32)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D5  
D4  
R
000  
0
Reserved. Write only reset values.  
R/W  
TEMP (TEMP1 or TEMP2) Min Threshold Check Enable Control  
0: Disable (Valid For Both Auto and non-Auto Scan Measurement)  
1: Enable (Valid For Both Auto and non-Auto Scan Measurement)  
D3-D0  
R/W  
0000  
TEMP Min Threshold 12-bit Code (MSB 4-bits)  
Book 0 / Page 3 / Register 33: TEMP Min Threshold Check Control 2 - 0x00 / 0x03 / 0x21 (B0_P3_R33)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 TEMP (TEMP1 or TEMP2) Min Threshold 12-bit Code (LSB 8-bits)  
Book 0 / Page 3 / Register 34-53: Reserved Registers - 0x00 / 0x03 / 0x22-0x35 (B0_P3_R34-53)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
194  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 3 / Register 54: IN1L Measurement Data (MSB) - 0x00 / 0x03 / 0x36 (B0_P3_R54)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 MSB 8-bits of IN1L Measurement 16-bit Data  
Book 0 / Page 3 / Register 55: IN1L Measurement Data (LSB) - 0x00 / 0x03 / 0x37 (B0_P3_R55)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 LSB 8-bits of IN1L Measurement 16-bit Data  
Book 0 / Page 3 / Register 56: IN1R Measurement Data (MSB) - 0x00 / 0x03 / 0x38 (B0_P3_R56)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 MSB 8-bits of IN1R Measurement 16-bit Data  
Book 0 / Page 3 / Register 57: IN1R Measurement Data (LSB) - 0x00 / 0x03 / 0x39 (B0_P3_R57)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 LSB 8-bits of IN1R Measurement 16-bit Data  
Book 0 / Page 3 / Register 58: VBAT Measurement Data (MSB) - 0x00 / 0x03 / 0x3A (B0_P3_R58)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 MSB 8-bits of VBAT Measurement 16-bit Data  
Book 0 / Page 3 / Register 59: VBAT Measurement Data (LSB) - 0x00 / 0x03 / 0x3B (B0_P3_R59)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 LSB 8-bits of VBAT Measurement 16-bit Data  
Book 0 / Page 3 / Register 60-65: Reserved Registers - 0x00 / 0x03 / 0x3C-0x41 (B0_P3_R60-65)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 0 / Page 3 / Register 66: TEMP1 Measurement Data (MSB) - 0x00 / 0x03 / 0x42 (B0_P3_R66)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 MSB 8-bits of TEMP1 Measurement 16-bit Data  
Book 0 / Page 3 / Register 67: TEMP1 Measurement Data (LSB) - 0x00 / 0x03 / 0x43 (B0_P3_R67)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 LSB 8-bits of TEMP1 Measurement 16-bit Data  
Book 0 / Page 3 / Register 68: TEMP2 Measurement Data (MSB) - 0x00 / 0x03 / 0x44 (B0_P3_R68)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 MSB 8-bits of TEMP1 Measurement 16-bit Data  
Book 0 / Page 3 / Register 69: TEMP2 Measurement Data (LSB) - 0x00 / 0x03 / 0x45 (B0_P3_R69)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 LSB 8-bits of TEMP1 Measurement 16-bit Data  
Copyright © 2014, Texas Instruments Incorporated  
195  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 3 / Register 70-127: Reserved Registers - 0x00 / 0x03 / 0x46-0x7F (B0_P3_R70-127)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
8.6.5 Book 0 Page 4  
Book 0 / Page 4 / Register 0: Page Select Register - 0x00 / 0x04 / 0x00 (B0_P4_R0)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Page Select Register  
0-255: Selects the Register Page for next read or write command.  
Refer Table ""Summary of Memory Map" for details.  
Book 0 / Page 4 / Register 1: ASI1, Audio Bus Format Control Register - 0x00 / 0x04 / 0x01 (B0_P4_R1)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D5  
R/W  
000  
ASI1, format selection  
000: ASI1 Audio Interface = I2S  
001: ASI1 Audio Interface = DSP  
010: ASI1 Audio Interface = RJF  
011: ASI1 Audio Interface = LJF  
100: ASI1 Audio Interface = Mono PCM  
101-111: Reserved. Do not use.  
D4-D3  
R/W  
0 0  
ASI1 Data Word Length Selection  
00: ASI1 Data Word length = 16 bits  
01: ASI1 Data Word length = 20 bits  
10: ASI1 Data Word length = 24 bits  
11: ASI1 Data Word length = 32 bits  
D2-D1  
D0  
R
00  
0
Reserved. Write only default values.  
R/W  
DOUT1 High Impendance Output Control  
0: DOUT1 will not be high impedance while ASI1 is active  
1: DOUT1 will be high impedance after data has been transferred  
Book 0 / Page 4 / Register 2: ASI1, Left Ch_Offset_1 Control Register - 0x00 / 0x04 / 0x02 (B0_P4_R2)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 ASI1 Data Offset Value (Ch_Offset_1) relative to rising edge of Word Clock (Offset measured from  
Rising Edge of Word Clock in DSP mode)  
0000 0000: Data Offset 1 = 0 BCLK's  
0000 0001: Data Offset 1= 1 BCLK's  
...  
1111 1110: Data Offset 1 = 254 BCLK's  
1111 1111: Data Offset 1 = 255 BCLK's  
Book 0 / Page 4 / Register 3: ASI1, Right Ch_Offset_2 Control Register - 0x00 / 0x04 / 0x03 (B0_P4_R3)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 ASI1 Data Offset Value (Ch_Offset_2) relative to last bit of left channel (applicable only if slot mode  
enabled)  
0000 0000: Data Offset 2 = 0 BCLK's  
0000 0001: Data Offset 2= 1 BCLK's  
...  
1111 1110: Data Offset 2 = 254 BCLK's  
1111 1111: Data Offset 2 = 255 BCLK's  
Book 0 / Page 4 / Register 4: ASI1, Channel Setup Register - 0x00 / 0x04 / 0x04 (B0_P4_R4)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
R/W  
00  
196  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 4 / Register 4: ASI1, Channel Setup Register - 0x00 / 0x04 / 0x04 (B0_P4_R4) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D5-D4  
D3-D2  
R
00  
00  
Reserved. Write only default values.  
R/W  
00: For DAC all the left and right channels are enabled  
01: For DAC all the left channels are disabled  
10: For DAC all the right channels are disabled.  
11: For DAC all the left and right channel are disabled.  
D1-D0  
R/W  
00  
00: For ADC all the left and right channels are enabled  
01: For ADC all the left channels are disabled  
10: For ADC all the right channels are disabled.  
11: For ADC all the left and right channel are disabled.  
Book 0 / Page 4 / Register 5: ASI1, ADC Audio Bus Format Control Register - 0x00 / 0x04 / 0x05  
(B0_P4_R5)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D5  
R/W  
000  
Primary Audio Serial ADC Interface Format Selection (This control is only valid if D2 bit = '1'.)  
000: ASI1 ADC Audio Interface = I2S  
001: ASI1 ADC Audio Interface = DSP  
010: ASI1 ADC Audio Interface = RJF  
011: ASI1 ADC Audio Interface = LJF  
100: ASI1 ADC Audio Interface = Mono PCM  
101-111: Reserved. Do not use.  
D4-D3  
R/W  
0 0  
Primary Audio Serial ADC Interface Data Word Length Selection (This control is only valid if D2 bit  
= '1'.)  
00: ASI1 ADC Data Word length = 16 bits  
01: ASI1 ADC Data Word length = 20 bits  
10: ASI1 ADC Data Word length = 24 bits  
11: ASI1 ADC Data Word length = 32 bits  
D2  
R/W  
R
0
Primary Audio Serial ADC Six-Wire Format and Wordlength Enable  
0: ASI1 ADC pathway uses same interface format and wordlength as in B0_P4_R1.  
1: ASI1 ADC pathway use interface format defined in D[7:5] and wordlength defined in D[4:2] of  
this register.  
D1-D0  
00  
Reserved. Write only default values.  
Book 0 / Page 4 / Register 6: Audio Serial Interface 1, Multi-Pin Mode - 0x00 / 0x04 / 0x06 (B0_P4_R6)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R
0
ASI1 Data Input and Output Mode  
0: Single Data Input Pin, Single Data Output Pin  
1: Multiple Data Input Pin, Multiple Data Output Pin  
D6-D0  
000 0000 Reserved. Write only default values.  
Book 0 / Page 4 / Register 7: ASI1, ADC Input Control - 0x00 / 0x04 / 0x07 (B0_P4_R7)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D3  
D2-D0  
R
0000 0  
001  
Reserved. Write only default values.  
ASI1 ADC Input Control  
R/W  
000: ASI1 digital audio output data source disabled (No serial data output on external ASI1 bus.  
ASI1 digital output is tri-stated.)  
001: ASI1_DataOutput[1:8] is sourced from miniDSP_A_DataOutput[1:8] (ADC signal fed to ASI1.)  
010: ASI1_DataOutput[1:8] is sourced from ASI1_DataInput[1:8] (ASI1-to-ASI1 loopback)  
011: ASI1_DataOutput[1:2] is sourced from ASI2_DataInput[1:2] (ASI2-to-ASI1 loopback)  
100: ASI1_DataOutput[1:2] is sourced from ASI3_DataInput[1:2] (ASI3-to-ASI1 loopback)  
Copyright © 2014, Texas Instruments Incorporated  
197  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 4 / Register 8: ASI1, DAC Output Control - 0x00 / 0x04 / 0x08 (B0_P4_R8)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
R/W  
01  
ASI1 Left DAC Datapath  
00: ASI1 Left DAC Datapath = Off  
01: ASI1 Left DAC Datapath = Left Data  
10: ASI1 Left DAC Datapath = Right Data  
11: ASI1 Left DAC Datapath = Mono Mix of Left and Right  
D5-D4  
R/W  
01  
ASI1 Right DAC Datapath  
00: ASI1 Right DAC Datapath = Off  
01: ASI1 Right DAC Datapath = Right Data  
10: ASI1 Right DAC Datapath = Left Data  
11: ASI1 Right DAC Datapath = Mono Mix of Left and Right  
D3-D2  
D1  
R
00  
0
Reserved. Write only default values.  
R/W  
0: Left and right channel slot-swapping is disabled for ADC datapath.  
1: Left and right channel slot-swapping is enabled for ADC datapath.  
D0  
R/W  
0
0: Time slot mode is disabled which means the position for left and right channels will be controlled  
by WCLK and offset1 programming controlled by B0_P4_R2.  
1: Time slot mode is enabled which means the position for the left channels are controlled by  
WCLK and offset1 programming controlled by B0_P4_R2 and for right channel the relative offset  
with respect to last bit of left channel will be contolled by B0_P4_R3.  
Book 0 / Page 4 / Register 9: ASI1, Control Register 9, ADC Slot Tristate Control - 0x00 / 0x04 / 0x09  
(B0_P4_R9)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0: ADC left channel <L4> slot is not tri-stated  
1: ADC left channel <L4> slot is tri-stated. Must also set B0_P4_R1_D0='1'. This should only be  
used in single-pin mode for ASI1 (that is cannot use multi-pin mode).  
D6  
D5  
D4  
0: ADC left channel <L3> slot is not tri-stated  
1: ADC left channel <L3> slot is tri-stated. Must also set B0_P4_R1_D0='1'. This should only be  
used in single-pin mode for ASI1 (that is cannot use multi-pin mode).  
0: ADC left channel <L2> slot is not tri-stated  
1: ADC left channel <L2> slot is tri-stated. Must also set B0_P4_R1_D0='1'. This should only be  
used in single-pin mode for ASI1 (that is cannot use multi-pin mode).  
0: ADC left channel <L1> slot is not tri-stated  
1: ADC left channel <L1> slot is tri-stated. Must also set B0_P4_R1_D0='1'. (Note that, in multi-  
channel mode, this will tristate all Left channels. If individual Left channels need to be tri-stated,  
this can be achieved on the bus by disconnecting the output pin.)  
D3  
D2  
D1  
D0  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0: ADC left channel <R4> slot is not tri-stated  
1: ADC left channel <R4> slot is tri-stated. Must also set B0_P4_R1_D0='1'. This should only be  
used in single-pin mode for ASI1 (that is cannot use multi-pin mode).  
0: ADC left channel <R3> slot is not tri-stated  
1: ADC left channel <R3> slot is tri-stated. Must also set B0_P4_R1_D0='1'. This should only be  
used in single-pin mode for ASI1 (that is cannot use multi-pin mode).  
0: ADC left channel <R2> slot is not tri-stated  
1: ADC left channel <R2> slot is tri-stated. Must also set B0_P4_R1_D0='1'. This should only be  
used in single-pin mode for ASI1 (that is cannot use multi-pin mode).  
0: ADC right channel <R1> slot is not tri-stated  
1: ADC right channel <R1> slot is tri-stated. Must also set B0_P4_R1_D0='1'. (Note that, in multi-  
channel mode, this will tristate all Right channels. If individual Right channels need to be tri-stated,  
this can be achieved on the bus by disconnecting the output pin.)  
Book 0 / Page 4 / Register 10: ASI1, WCLK and BCLK Control Register - 0x00 / 0x04 / 0x0A (B0_P4_R10)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D5  
R/W  
000  
ASI1 Word Clock Direction Control  
000: WCLK1 pin is Word Clock input to ASI1  
001: WCLK1 pin is Word Clock output from ASI1  
010-111: Reserved. Do not use.  
198  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 4 / Register 10: ASI1, WCLK and BCLK Control Register - 0x00 / 0x04 / 0x0A  
(B0_P4_R10) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D4-D2  
R/W  
0 00  
ASI1 Bit Clock Direction Control  
000: BCLK1 pin is Bit Clock input to ASI1  
001: BCLK1 pin is Bit Clock output from ASI1  
010-111: Reserved. Do not use.  
D1  
D0  
R/W  
R/W  
0
0
Primary Audio Bit Clock Polarity Control  
0: Default Bit Clock polarity  
1: Bit Clock is inverted w.r.t. default polarity  
ASI1 Bit Clock and ASI1 Word Clock Power control  
0: ASI1 Bit Clock and ASI1 Word Clock buffers are powered down when the codec is powered  
down or ASI 1 is inactive  
1: ASI1 Bit Clock and ASI1 Word Clock buffers are powered up when they are used in clock  
generation even when the codec is powered down  
Book 0 / Page 4 / Register 11: ASI1, Bit Clock N Divider Input Control - 0x00 / 0x04 / 0x0B (B0_P4_R11)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
0
ASI1_ADC_BCLK_OUT configuration used for 6-wire mode with ADC Bit Clock as output:  
0: ASI1_ADC_BCLK_OUT = ASI1_BCLK_OUT configured in B0_P4_R14_D[7:4].  
1: ASI1_ADC_BCLK_OUT can be different from ASI1_BCLK_OUT and is configured in  
B0_P4_R115_D[7:4].  
D6  
R/W  
0
ASI1_ADC_WCLK_OUT configuration used for 6-wire mode with ADC Word Clock as output:  
0: ASI1_ADC_WCLK_OUT = ASI1_WCLK_OUT configured in B0_P4_R14_D[3:0].  
1: ASI1_WCLK_OUT can be different from ASI1_WCLK_OUT and is configured in  
B0_P4_R115_D[3:0].  
D5-D4  
D3-D0  
R
00  
Reserved. Write only default values.  
R/W  
0000  
ASI1 BDIV_CLKIN Multiplexer Control  
0000: ASI1_BDIV_CLKIN = DAC_CLK  
0001: ASI1_BDIV_CLKIN = DAC_MOD_CLK  
0010: ASI1_BDIV_CLKIN = ADC_CLK  
0011: ASI1_BDIV_CLKIN = ADC_MOD_CLK  
0100: ASI1_BDIV_CLKIN = ASI1 Bit Clock Input Pin  
0101: ASI1_BDIV_CLKIN = ASI2 Bit Clock Input Pin  
0110: ASI1_BDIV_CLKIN = ASI3 Bit Clock Input Pin  
0111: ASI1_BDIV_CLKIN = ASI1 ADC Bit Clock Input Pin (6-wire interface)  
1000: ASI1_BDIV_CLKIN = ASI2 ADC Bit Clock Input Pin (6-wire interface)  
1001-1111: Reserved. Do not use.  
Book 0 / Page 4 / Register 12: ASI1, Bit Clock N Divider - 0x00 / 0x04 / 0x0C (B0_P4_R12)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
0
ASI1 BCLK N Divider Power Control  
0: BCLK N divider powered down  
1: BCLK N divider powered up  
D6-D0  
000 0001 ASI1 BCLK N Divider value  
0000 0000: BCLK N divider = 128  
0000 0001: BCLK N divider = 1  
...  
1111 1110: BCLK N divider = 126  
1111 1111: BCLK N divider = 127  
Book 0 / Page 4 / Register 13: ASI 1, Word Clock N Divider - 0x00 / 0x04 / 0x0D (B0_P4_R13)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
0
ASI1 WCLK Divider Power Control  
0: Primary WCLK N divider is powered down  
1: Primary WCLK N divider is powered up  
Copyright © 2014, Texas Instruments Incorporated  
199  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 4 / Register 13: ASI 1, Word Clock N Divider - 0x00 / 0x04 / 0x0D (B0_P4_R13) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D6-D0  
R/W  
010 0000 ASI1 WCLK N Divider value  
000 0000: Primary WCLK divider N = 128  
010 0000: Primary WCLK divider N = 32  
010 0001: Primary WCLK divider N = 33  
111 1110: Primary WCLK divider N = 126  
111 1111: Primary WCLK divider N = 127  
Book 0 / Page 4 / Register 14: ASI1, BCLK and WCLK Output - 0x00 / 0x04 / 0x0E (B0_P4_R14)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D4  
R/W  
0000  
ASI1 Bit Clock Output Mux  
0000: Bit Clock Output = ASI1 Bit Clock Divider Output  
0001: Reserved. Do not use.  
0010: Bit Clock Output = ASI2 Bit Clock Divider Output  
0011: Bit Clock Output = ASI2 Bit Clock Input  
0100: Bit Clock Output = ASI3 Bit Clock Divider Output  
0101: Bit Clock Output = ASI3 Bit Clock Input  
0110: Bit Clock Output = ASI1 ADC Bit Clock  
0111: Bit Clock Output = ASI2 ADC Bit Clock  
1000-1111: Reserved. Do not use.  
D3-D0  
R/W  
0000  
ASI1 Word Clock Output Mux  
0000: Word Clock Output = Generated DAC_FS  
0001: Word Clock Output = Generated ADC_FS  
0010: Word Clock Output = ASI1 Word Clock Divider Output  
0011: Reserved. Do not use.  
0100: Word Clock Output = ASI2 Word Clock Divider Output  
0101: Word Clock Output = ASI2 Word Clock Input  
0110: Word Clock Output = ASI3 Word Clock Divider Output  
0111: Word Clock Output = ASI3 Word Clock Input  
1000: Word Clock Output = ASI1 ADC Word Clock  
1001: Word Clock Output = ASI2 ADC Word Clock  
1010-1111: Reserved. Do not use.  
Book 0 / Page 4 / Register 15: ASI1, Data Output - 0x00 / 0x04 / 0x0F (B0_P4_R15)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D2  
D1-D0  
R
0000 00  
00  
Reserved. Write only default values.  
R/W  
ASI1 Data Output Control  
00: DOUT1 from Codec ASI1 Output  
01: DOUT1 from ASI1 Data Input (Pin-to-Pin Loopback)  
10: DOUT1 from ASI2 Data Input (Pin-to-Pin Loopback)  
11: DOUT1 from ASI3 Data Input (Pin-to-Pin Loopback)  
Book 0 / Page 4 / Register 16: ASI1, ADC Word Clock and Bit Clock Control - 0x00 / 0x04 / 0x10  
(B0_P4_R16)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
Reserved. Write only default values.  
D6-D4  
R/W  
000  
ASI1 ADC Word Clock Control for Six-Wire Interface  
000: ADC Word Clock is same as DAC Word Clock (Default 4-wire Interface)  
001: ADC Word Clock is input or output on GPIO1  
010: ADC Word Clock is input or output on GPIO2  
011: ADC Word Clock is input on GPIO3  
100: ADC Word Clock is input on GPIO4  
101-111: Reserved. Do not use.  
D3  
R
0
Reserved. Write only default values.  
200  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 4 / Register 16: ASI1, ADC Word Clock and Bit Clock Control - 0x00 / 0x04 / 0x10  
(B0_P4_R16) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D2-D0  
R/W  
000  
ASI1 ADC Bit Clock Control for Six-Wire Interface  
000: ADC Bit Clock is same as DAC Bit Clock (Default 4-wire Interface)  
001: ADC Bit Clock is inputor output on GPIO1  
010: ADC Bit Clock is input or output on GPIO2  
011: ADC Bit Clock is input on GPIO3  
100: ADC Bit Clock is input on GPIO4  
101-111: Reserved. Do not use.  
Book 0 / Page 4 / Register 17: ASI2, Audio Bus Format Control Register - 0x00 / 0x04 / 0x11 (B0_P4_R17)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D5  
R/W  
000  
ASI2, format selection  
000: ASI2 Audio Interface = I2S  
001: ASI2 Audio Interface = DSP  
010: ASI2 Audio Interface = RJF  
011: ASI2 Audio Interface = LJF  
100: ASI2 Audio Interface = Mono PCM  
101: Reserved. Do not use.  
D4-D3  
R/W  
0 0  
ASI2 Data Word Length Selection  
00: ASI2 Data Word length = 16 bits  
01: ASI2 Data Word length = 20 bits  
10: ASI2 Data Word length = 24 bits  
11: ASI2 Data Word length = 32 bits  
D2-D1  
D0  
R
00  
0
Reserved. Write only default values.  
R/W  
ASI2 Data Output High Impendance Output Control  
0: DOUT2 will not be high impedance while ASI2 is active  
1: DOUT2 will be high impedance after data has been transferred  
Book 0 / Page 4 / Register 18: ASI2, Data Offset Control Register - 0x00 / 0x04 / 0x12 (B0_P4_R18)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 ASI2 Data Offset Value (Ch_Offset_1) relative to rising edge of Word Clock (Offset measured from  
Rising Edge of Word Clock in DSP mode)  
0000 0000: Data Offset 1 = 0 BCLK's  
0000 0001: Data Offset 1= 1 BCLK's  
...  
1111 1110: Data Offset 1 = 254 BCLK's  
1111 1111: Data Offset 1 = 255 BCLK's  
Book 0 / Page 4 / Register 19-20: Reserved Registers - 0x00 / 0x04 / 0x13-0x14 (B0_P4_R19-20)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only default values.  
Book 0 / Page 4 / Register 21: ASI2, ADC Audio Bus Format Control Register - 0x00 / 0x04 / 0x15  
(B0_P4_R21)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D5  
R/W  
000  
Secondary Audio Serial ADC Interface Format Selection (This control is only valid if D2 bit = '1'.)  
000: ASI2 ADC Audio Interface = I2S  
001: ASI2 ADC Audio Interface = DSP  
010: ASI2 ADC Audio Interface = RJF  
011: ASI2 ADC Audio Interface = LJF  
100: ASI2 ADC Audio Interface = Mono PCM  
101-111: Reserved. Do not use.  
Copyright © 2014, Texas Instruments Incorporated  
201  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 4 / Register 21: ASI2, ADC Audio Bus Format Control Register - 0x00 / 0x04 / 0x15  
(B0_P4_R21) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D4-D3  
R/W  
0 0  
Secondary Audio Serial ADC Interface Data Word Length Selection (This control is only valid if D2  
bit = '1'.)  
00: ASI2 ADC Data Word length = 16 bits  
01: ASI2 ADC Data Word length = 20 bits  
10: ASI2 ADC Data Word length = 24 bits  
11: ASI2 ADC Data Word length = 32 bits  
D2  
R/W  
R
0
Secondary Audio Serial ADC Six-Wire Format and Wordlength Enable  
0: ASI2 ADC pathway uses same interface format and wordlength as in B0_P4_R17.  
1: ASI2 ADC pathway use interface format defined in D[7:5] and wordlength defined in D[4:2] of  
this register.  
D1-D0  
00  
Reserved. Write only default values.  
Book 0 / Page 4 / Register 22: Reserved Register - 0x00 / 0x04 / 0x16 (B0_P4_R22)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only default values.  
Book 0 / Page 4 / Register 23: ASI2, ADC Input Control - 0x00 / 0x04 / 0x17 (B0_P4_R23)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D3  
D2-D0  
R
0000 0  
000  
Reserved. Write only default values.  
ASI2 ADC Input Control  
R/W  
000: ASI2 digital audio output data source disabled (No serial data output on external ASI2 bus.  
ASI2 digital output is tri-stated.)  
001: ASI2_DigitalOutput[1:2] is sourced from miniDSP_A_DataOutput[1:2]  
010: ASI2_DigitalOutput[1:2] is is sourced from ASI1 DataInput (ASI1-to-ASI2 loopback)  
011: ASI2_DigitalOutput[1:2] is is sourced from ASI2 DataInput (ASI2-to-ASI1 loopback)  
100: ASI2_DigitalOutput[1:2] is is sourced from ASI3 DataInput (ASI3-to-ASI1 digital loopback)  
101: ASI2_DigitalOutput[1:2] is sourced from miniDSP_A_DataOutput[3:4]  
110-111: Reserved. Do not use.  
Book 0 / Page 4 / Register 24: ASI 2, DAC Output Control - 0x00 / 0x04 / 0x18 (B0_P4_R24)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
R/W  
R/W  
R
00  
ASI2 Left DAC Datapath  
00: ASI2 Left DAC Datapath = Off  
01: ASI2 Left DAC Datapath = Left Data  
10: ASI2 Left DAC Datapath = Right Data  
11: ASI2 Left DAC Datapath = Mono Mix of Left and Right  
D5-D4  
D3-D0  
00  
ASI2 Right DAC Datapath  
00: ASI2 Right DAC Datapath = Off  
01: ASI2 Right DAC Datapath = Right Data  
10: ASI2 Right DAC Datapath = Left Data  
11: ASI2 Right DAC Datapath = Mono Mix of Left and Right  
0000  
Reserved. Write only default values.  
Book 0 / Page 4 / Register 25: Reserved Register - 0x00 / 0x04 / 0x19 (B0_P4_R25)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only default values.  
Book 0 / Page 4 / Register 26: ASI2, Word Clock and Bit Clock Control Register - 0x00 / 0x04 / 0x1A  
(B0_P4_R26)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
R
00  
Reserved. Write only default values.  
202  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 4 / Register 26: ASI2, Word Clock and Bit Clock Control Register - 0x00 / 0x04 / 0x1A  
(B0_P4_R26) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D5  
R/W  
0
ASI2 Word Clock Direction Control  
0: WCLK2 pin is input to ASI2  
1: WCLK2 pin is output from ASI2  
D4-D3  
D2  
R
0 0  
0
Reserved. Write only default values.  
R/W  
ASI2 Bit Clock Direction Control  
0: BCLK2 pin is input to ASI2 Bit Clock  
1: BCLK2 pin is output from ASI2 Bit Clock  
D1  
D0  
R/W  
R/W  
0
0
ASI2 Bit Clock Polarity Control  
0: Default Bit Clock polarity  
1: Bit Clock is inverted w.r.t. default polarity  
ASI2 Bit Clock and Word Clock Power control  
0: ASI2 Bit Clock and Word Clock buffers are powered down when the codec is powered down or  
ASI2 is inactive  
1: ASI2 Bit Clock and Word Clock buffers are powered up when they are used in clock generation  
even when the codec is powered down  
Book 0 / Page 4 / Register 27: ASI2, Bit Clock N Divider Input Control - 0x00 / 0x04 / 0x1B (B0_P4_R27)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
0
ASI2_ADC_BCLK_OUT configuration used for 6-wire mode with ADC Bit Clock as output:  
0: ASI2_ADC_BCLK_OUT = ASI2_BCLK_OUT configured in B0_P4_R30_D[7:4].  
1: ASI2_ADC_BCLK_OUT can be different from ASI2_BCLK_OUT and is configured in  
B0_P4_R116_D[7:4].  
D6  
R/W  
0
ASI2_ADC_WCLK_OUT configuration used for 6-wire mode with ADC Bit Clock as output:  
0: ASI2_ADC_WCLK_OUT = ASI2_WCLK_OUT configured in B0_P4_R30_D[3:0].  
1: ASI2_ADC_WCLK_OUT can be different from ASI2_WCLK_OUT and is configured in  
B0_P4_R116_D[3:0].  
D5-D4  
D1-D0  
R
00  
00  
Reserved. Write only default values.  
R/W  
ASI2_BDIV_CLKIN Multiplexer Control  
0000: ASI2_BDIV_CLKIN = DAC_CLK (Generated On-Chip)  
0001: ASI2_BDIV_CLKIN = DAC_MOD_CLK (Generated On-Chip)  
0010: ASI2_BDIV_CLKIN = ADC_CLK (Generated On-Chip)  
0011: ASI2_BDIV_CLKIN = ADC_MOD_CLK (Generated On-Chip)  
0100: ASI2_BDIV_CLKIN = ASI1 Bit Clock Input Pin  
0101: ASI2_BDIV_CLKIN = ASI2 Bit Clock Input Pin  
0110: ASI2_BDIV_CLKIN = ASI3 Bit Clock Input Pin  
0111: ASI2_BDIV_CLKIN = ASI1 ADC Bit Clock Input Pin (6-wire interface)  
1000: ASI2_BDIV_CLKIN = ASI2 ADC Bit Clock Input Pin (6-wire interface)  
1001-1111: Reserved. Do not use.  
Book 0 / Page 4 / Register 28: ASI2, Bit Clock N Divider - 0x00 / 0x04 / 0x1C (B0_P4_R28)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
0
ASI2 BCLK Divider Power Control  
0: Secondary BCLK N divider is powered down  
1: Secondary BCLK N divider is powered up  
D6-D0  
000 0001 ASI2 BCLK N Divider value  
000 0000: Secondary BCLK divider N = 128  
000 0001: Secondary BCLK divider N = 1  
000 0010: Secondary BCLK divider N = 2  
111 1110: Secondary BCLK divider N = 126  
111 1111: Secondary BCLK divider N = 127  
Copyright © 2014, Texas Instruments Incorporated  
203  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 4 / Register 29: ASI2, Word Clock N Divider - 0x00 / 0x04 / 0x1D (B0_P4_R29)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
0
ASI2 WCLK Divider Power Control  
0: Secondary WCLK N divider is powered down  
1: Secondary WCLK N divider is powered up  
D6-D0  
010 0000 ASI2 WCLK N Divider value  
000 0000: Secondary WCLK divider N = 128  
010 0000: Secondary WCLK divider N = 32  
010 0001: Secondary WCLK divider N = 33  
111 1110: Secondary WCLK divider N = 126  
111 1111: Secondary WCLK divider N = 127  
Book 0 / Page 4 / Register 30: ASI2, Bit Clock and Word Clock Output - 0x00 / 0x04 / 0x1E (B0_P4_R30)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D4  
R/W  
0010  
ASI2 Bit Clock Output Mux  
0000: ASI2_BCLK_OUT = ASI1 Bit Clock Divider Output (ASI1_BDIV_OUT)  
0001: ASI2_BCLK_OUT = ASI1 Bit Clock Input (ASI1_BCLK)  
0010: ASI2_BCLK_OUT = ASI2 Bit Clock Divider Output (ASI2_BDIV_OUT)  
0011: Reserved. Do not use.  
0100: ASI2_BCLK_OUT = ASI3 Bit Clock Divider Output (ASI3_BDIV_OUT)  
0101: ASI2_BCLK_OUT = ASI3 Bit Clock Input (ASI3_BCLK)  
0110: ASI2_BCLK_OUT = ASI1 ADC Bit Clock  
0111: ASI2_BCLK_OUT = ASI2 ADC Bit Clock  
1000-1111: Reserved. Do not use.  
D2-D0  
R/W  
000  
ASI2 Word Clock Output Mux  
0000: ASI2_WCLK_OUT = Generated DAC_FS  
0001: ASI2_WCLK_OUT = Generated ADC_FS  
0010: ASI2_WCLK_OUT = ASI1 Word Clock Divider Output (ASI1_WDIV_OUT)  
0011: ASI2_WCLK_OUT = ASI1 Word Clock Input (ASI1_WCLK)  
0100: ASI2_WCLK_OUT = ASI2 Word Clock Divider Output (ASI2_WDIV_OUT)  
0101: Reserved. Do not use.  
0110: ASI2_WCLK_OUT = ASI3 Word Clock Divider Output (ASI3_WDIV_OUT)  
0111: ASI2_WCLK_OUT = ASI3 Word Clock Input (ASI3_WCLK)  
1000: ASI2_WCLK_OUT = ASI1 ADC Word Clock  
1001: ASI2_WCLK_OUT = ASI2 ADC Word Clock  
1010-1111: Reserved. Do not use.  
Book 0 / Page 4 / Register 31: ASI2, Data Output - 0x00 / 0x04 / 0x1F (B0_P4_R31)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D2  
D1-D0  
R
0000 00  
00  
Reserved. Write only default values.  
R/W  
ASI2 Data Output Control  
00: DOUT2 from Codec ASI2 Output  
01: DOUT2 from ASI1 Data Input (Pin-to-Pin Loopback)  
10: DOUT2 from ASI2 Data Input (Pin-to-Pin Loopback)  
11: DOUT2 from ASI3 Data Input (Pin-to-Pin Loopback)  
Book 0 / Page 4 / Register 32: ASI2, ADC Word Clock and Bit Clock Control - 0x00 / 0x04 / 0x20  
(B0_P4_R32)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
Reserved. Write only default values.  
D6-D4  
R/W  
000  
ASI2 ADC Word Clock Control for Six-Wire Interface  
000: ADC Word Clock is same as DAC Word Clock (Default 4-wire Interface)  
001: ADC Word Clock is input or output on GPIO1  
010: ADC Word Clock is input or output on GPIO2  
011: ADC Word Clock is input on GPIO3  
100: ADC Word Clock is input on GPIO4  
101-111: Reserved. Do not use.  
204  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 4 / Register 32: ASI2, ADC Word Clock and Bit Clock Control - 0x00 / 0x04 / 0x20  
(B0_P4_R32) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D3  
R
0
Reserved. Write only default values.  
D2-D0  
R/W  
000  
ASI2 ADC Bit Clock Control for Six-Wire Interface  
000: ADC Bit Clock is same as DAC Bit Clock (Default 4-wire Interface)  
001: ADC Bit Clock is input or output on GPIO1  
010: ADC Bit Clock is input or output on GPIO2  
011: ADC Bit Clock is input on GPIO3  
100: ADC Bit Clock is input on GPIO4  
101-111: Reserved. Do not use.  
Book 0 / Page 4 / Register 33: ASI3, Audio Bus Format Control Register - 0x00 / 0x04 / 0x21 (B0_P4_R33)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D5  
R/W  
000  
ASI3, format selection  
000: ASI3 Audio Interface = I2S  
001: ASI3 Audio Interface = DSP  
010: ASI3 Audio Interface = RJF  
011: ASI3 Audio Interface = LJF  
100: ASI3 Audio Interface = Mono PCM  
101-111: Reserved. Do not use.  
D4-D3  
R/W  
0 0  
ASI3, Data Word Length Selection  
00: ASI3 Data Word length = 16 bits  
01: ASI3 Data Word length = 20 bits  
10: ASI3 Data Word length = 24 bits  
11: ASI3 Data Word length = 32 bits  
D2-D1  
D0  
R
00  
0
Reserved. Write only default values.  
R/W  
DOUT3 High Impendance Output Control  
0: DOUT3 will not be high impedance while ASI1 is active  
1: DOUT3 will be high impedance after data has been transferred  
Book 0 / Page 4 / Register 34: ASI3, Data Offset Control Register - 0x00 / 0x04 / 0x22 (B0_P4_R34)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 ASI3 Data Offset Value (Ch_Offset_1) relative to rising edge of Word Clock (Offset measured from  
Rising Edge of Word Clock in DSP mode)  
0000 0000: Data Offset 1 = 0 BCLK's  
0000 0001: Data Offset 1= 1 BCLK's  
...  
1111 1110: Data Offset 1 = 254 BCLK's  
1111 1111: Data Offset 1 = 255 BCLK's  
Book 0 / Page 4 / Register 35-36: Reserved Registers - 0x00 / 0x04 / 0x23-0x24 (B0_P4_R35-36)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only default values.  
Book 0 / Page 4 / Register 37: Reserved Register - 0x00 / 0x04 / 0x25 (B0_P4_R37)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D5  
D4-D3  
D2  
R/W  
R/W  
R/W  
R
000  
0 0  
0
Reserved. Write only default values.  
Reserved. Write only default values.  
Reserved. Write only default values.  
D1-D0  
00  
Copyright © 2014, Texas Instruments Incorporated  
205  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 4 / Register 38: Reserved Register - 0x00 / 0x04 / 0x26 (B0_P4_R38)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only default values.  
Book 0 / Page 4 / Register 39: ASI3, ADC Input Control - 0x00 / 0x04 / 0x27 (B0_P4_R39)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D3  
D2-D0  
R
0000 0  
000  
Reserved. Write only default values.  
ASI3 ADC Input Control  
R/W  
000: ASI3 digital audio output data source disabled (No serial data output on external ASI3 bus.  
ASI3 digital output is tri-stated.)  
001: ASI3_DataOutput[1:2] data is sourced from miniDSP_ADataOutput[1:2]  
010: ASI3_DataOutput[1:2] is sourced from ASI1_DataInput[1:2] (ASI1-to-ASI3 loopback)  
011: ASI3_DataOutput[1:2] is sourced from ASI2_DataInput[1:2] (ASI2-to-ASI3 loopback)  
100: ASI3_DataOutput[1:2] is sourced from ASI3_DataInput[1:2] (ASI3-to-ASI3 loopback)  
101: Reserved. Do not use.  
110: ASI3_DataOutput[1:2] is sourced from miniDSP_A_DataOutput[5:6]  
111: Reserved. Do not use.  
Book 0 / Page 4 / Register 40: ASI3, DAC Output Control - 0x00 / 0x04 / 0x28 (B0_P4_R40)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
R/W  
R/W  
R
00  
ASI3 Left DAC Datapath  
00: ASI3 Left DAC Datapath = Off  
01: ASI3 Left DAC Datapath = Left Data  
10: ASI3 Left DAC Datapath = Right Data  
11: ASI3 Left DAC Datapath = Mono Mix of Left and Right  
D5-D4  
D3-D0  
00  
ASI3 Right DAC Datapath  
00: ASI3 Right DAC Datapath = Off  
01: ASI3 Right DAC Datapath = Right Data  
10: ASI3 Right DAC Datapath = Left Data  
11: ASI3 Right DAC Datapath = Mono Mix of Left and Right  
0000  
Reserved. Write only default values.  
Book 0 / Page 4 / Register 41: Reserved Register - 0x00 / 0x04 / 0x29 (B0_P4_R41)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only default values.  
Book 0 / Page 4 / Register 42: ASI3, Word Clock and Bit Clock Control Register - 0x00 / 0x04 / 0x2A  
(B0_P4_R42)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D2  
D1  
R
000000  
0
Reserved. Write only default values.  
R/W  
ASI3 Audio Bit Clock Polarity Control  
0: Default Bit Clock polarity  
1: Bit Clock is inverted w.r.t. default polarity  
D0  
R/W  
0
ASI3 Bit Clock and Word Clock Power control  
0: ASI3 Bit Clock and ASI3 Word Clock buffers are powered down when the codec is powered  
down or ASI3 is inactive  
1: ASI3 Bit Clock and Word Clock buffers are powered up when they are used in clock generation  
even when the codec is powered down  
Book 0 / Page 4 / Register 43: ASI3, Bit Clock N Divider Input Control - 0x00 / 0x04 / 0x2B (B0_P4_R43)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
D6  
R/W  
R/W  
0
0
Reserved. Write only default values.  
Reserved. Write only default values.  
206  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 4 / Register 43: ASI3, Bit Clock N Divider Input Control - 0x00 / 0x04 / 0x2B  
(B0_P4_R43) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D5-D4  
D3-D0  
R
00  
Reserved. Write only default values.  
ASI3_BDIV_CLKIN Multiplexer Control  
R/W  
0000  
0000: ASI3_BDIV_CLKIN = DAC_CLK (Generated On-Chip)  
0001: ASI3_BDIV_CLKIN = DAC_MOD_CLK (Generated On-Chip)  
0010: ASI3_BDIV_CLKIN = ADC_CLK (Generated On-Chip)  
0011: ASI3_BDIV_CLKIN = ADC_MOD_CLK (Generated On-Chip)  
0100: ASI3_BDIV_CLKIN = ASI1 Bit Clock Input Pin  
0101: ASI3_BDIV_CLKIN = ASI2 Bit Clock Input Pin  
0110: ASI3_BDIV_CLKIN = ASI3 Bit Clock Input Pin  
0111: ASI3_BDIV_CLKIN = ASI1 ADC Bit Clock Input Pin (6-wire interface)  
1000: ASI3_BDIV_CLKIN = ASI2 ADC Bit Clock Input Pin (6-wire interface)  
1001-1111: Reserved. Do not use.  
Book 0 / Page 4 / Register 44: ASI3, Bit Clock N Divider - 0x00 / 0x04 / 0x2C (B0_P4_R44)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
0
ASI3 Bit Clock Divider Power Control  
0: ASI3 Bit Clock N divider is powered down  
1: ASI3 Bit Clock N divider is powered up  
D6-D0  
000 0001 ASI3 Bit Clock N Divider value  
000 0000: ASI3 Bit Clock divider N = 128  
000 0001: ASI3 Bit Clock divider N = 1  
000 0010: ASI3 Bit Clock divider N = 2  
111 1110: ASI3 Bit Clock divider N = 126  
111 1111: ASI3 Bit Clock divider N = 127  
Book 0 / Page 4 / Register 45: ASI3, Word Clock N Divider - 0x00 / 0x04 / 0x2D (B0_P4_R45)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
0
ASI3 Word Clock Divider Power Control  
0: ASI3 Word Clock N divider is powered down  
1: ASI3 Word Clock N divider is powered up  
D6-D0  
010 0000 ASI3 Word Clock N Divider value  
000 0000: ASI3 Word Clock divider N = 128  
010 0000: ASI3 Word Clock divider N = 32  
010 0001: ASI3 Word Clock divider N = 33  
111 1110: ASI3 Word Clock divider N = 126  
111 1111: ASI3 Word Clock divider N = 127  
Book 0 / Page 4 / Register 46: ASI3, Bit Clock and Word Clock Output - 0x00 / 0x04 / 0x2E (B0_P4_R46)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D4  
R/W  
0100  
ASI3 Bit Clock Output Mux  
0000: ASI3_BCLK_OUT = ASI1 Bit Clock Divider Output (ASI1_BDIV_OUT)  
0001: ASI3_BCLK_OUT = ASI1 Bit Clock Input (ASI1_BCLK)  
0010: ASI3_BCLK_OUT = ASI2 Bit Clock Divider Output (ASI2_BDIV_OUT)  
0011: ASI3_BCLK_OUT = ASI2 Bit Clock Input (ASI2_BCLK)  
0100: ASI3_BCLK_OUT = ASI3 Bit Clock Divider Output (ASI3_BDIV_OUT)  
0101: Reserved. Do not use.  
0110: ASI3_BCLK_OUT = ASI1 ADC Bit Clock  
0111: ASI3_BCLK_OUT = ASI2 ADC Bit Clock  
1000-1111: Reserved. Do not use.  
Copyright © 2014, Texas Instruments Incorporated  
207  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 4 / Register 46: ASI3, Bit Clock and Word Clock Output - 0x00 / 0x04 / 0x2E  
(B0_P4_R46) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D3-D0  
R/W  
0000  
ASI3 Word Clock Output Mux  
0000: ASI3_WCLK_OUT = Generated DAC_FS  
0001: ASI3_WCLK_OUT = Generated ADC_FS  
0010: ASI3_WCLK_OUT = ASI1 Word Clock Divider Output (ASI1_WDIV_OUT)  
0011: ASI3_WCLK_OUT = ASI1 Word Clock Input (ASI1_WCLK)  
0100: ASI3_WCLK_OUT = ASI2 Word Clock Divider Output (ASI2_WDIV_OUT)  
0101: ASI3_WCLK_OUT = ASI2 Word Clock Input (ASI2_WCLK)  
0110: ASI3_WCLK_OUT = ASI3 Word Clock Divider Output (ASI3_WDIV_OUT)  
0111: Reserved. Do not use.  
1000: ASI3_WCLK_OUT = ASI1 ADC Word Clock  
1001: ASI3_WCLK_OUT = ASI2 ADC Word Clock  
1010-1111: Reserved. Do not use.  
Book 0 / Page 4 / Register 47: ASI3, Data Output - 0x00 / 0x04 / 0x2F (B0_P4_R47)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D2  
D1-D0  
R
0000 00  
00  
Reserved. Write only default values.  
R/W  
ASI3 Data Output Control  
00: DOUT3 from Codec ASI 3 Output  
01: DOUT3 from ASI1 Data Input (Pin-to-Pin Loopback)  
10: DOUT3 from ASI2 Data Input (Pin-to-Pin Loopback)  
11: DOUT3 from ASI3 Data Input (Pin-to-Pin Loopback)  
Book 0 / Page 4 / Register 48: Reserved Register. - 0x00 / 0x04 / 0x30 (B0_P4_R48)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only default values.  
Book 0 / Page 4 / Register 49: ASI1 L1, R1 Input Control - 0x00 / 0x04 / 0x31 (B0_P4_R49)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D5  
D4-D0  
R
000  
Reserved. Write only default values.  
R/W  
0 0001  
Stereo Pair 1 Input Control (Valid for both Stereo mode and Multi-pin mode)  
00000: No input selected. Data will be all zeroes.  
00001: Left and Right Channels will be from DIN1 for Stereo Mode (L1, R1 for Multipin Mode)  
00010-11111: Reserved. Do not use.  
Book 0 / Page 4 / Register 50: ASI1 L2, R2 Input Control - 0x00 / 0x04 / 0x32 (B0_P4_R50)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D5  
D4-D0  
R
000  
Reserved. Write only default values.  
R/W  
0 0000  
Stereo Pair 2 Input Control (Valid for only Multi-pin mode. Do not use this register for single-pin or  
stereo mode.)  
00000: No input selected. Data will be all zeroes.  
00001: Reserved. Do not use.  
00010-00100: Reserved. Do not use.  
00101: L2, R2 Channels will be input from GPIO2  
00110: L2, R2 Channels will be input from GPIO3  
00111-11111: Reserved. Do not use.  
Book 0 / Page 4 / Register 51: ASI1 L3, R3 Input Control - 0x00 / 0x04 / 0x33 (B0_P4_R51)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D5  
R
000  
Reserved. Write only default values.  
208  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 4 / Register 51: ASI1 L3, R3 Input Control - 0x00 / 0x04 / 0x33 (B0_P4_R51) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D4-D0  
R/W  
0 0000  
Stereo Pair 3 Input Control (Valid for only Multi-pin mode. Do not use this register for single-pin or  
stereo mode.)  
00000: No input selected. Data will be all zeroes.  
00001-00011: Reserved. Do not use.  
00100: L3, R3 Channels will be input from GPIO1  
00101: L3, R3 Channels will be input from GPIO2  
00110: L3, R3 Channels will be input from GPIO3  
00111: Reserved. Do not use.  
01000: L3, R3 Channels will be input from GPIO5  
01001-11111: Reserved. Do not use.  
Book 0 / Page 4 / Register 52: ASI1 L4, R4 Input Control - 0x00 / 0x04 / 0x34 (B0_P4_R52)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D5  
D4-D0  
R
000  
Reserved. Write only default values.  
R/W  
0 0000  
Stereo Pair 4 Input Control (Valid for only Multi-pin mode. Do not use this register for single-pin or  
stereo mode.)  
00000: No input selected. Data will be all zeroes.  
00001-00011: Reserved. Do not use.  
00100: L4, R4 Channels will be input from GPIO1  
00101: L4, R4 Channels will be input from GPIO2  
00110: L4, R4 Channels will be input from GPIO3  
00111: Reserved. Do not use.  
01000: L4, R4 Channels will be input from GPIO5  
01001-01101: Reserved. Do not use.  
01110: L4, R4 Channels will be input from WCLK2  
01111-11111: Reserved. Do not use.  
Book 0 / Page 4 / Register 53: Reserved Register - 0x00 / 0x04 / 0x35 (B0_P4_R53)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only default values.  
Book 0 / Page 4 / Register 54: ASI2, DIN Input Multiplexer Control - 0x00 / 0x04 / 0x36 (B0_P4_R54)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D3  
D2-D0  
R
0000 0  
000  
Reserved. Write only default values.  
Reserved. Write only default values.  
R/W  
Book 0 / Page 4 / Register 55: ASI3, Word Clock and Bit Clock Input Multiplexer Control - 0x00 / 0x04 /  
0x37 (B0_P4_R55)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
Reserved. Write only default values.  
D6-D4  
R/W  
000  
ASI3 Word Clock Control  
000-001: Reserved. Do not use.  
010: ASI3_WCLK is input or output on GPIO2  
011-111: Reserved. Do not use.  
D3  
R
0
Reserved. Write only default values.  
D2-D0  
R/W  
000  
ASI3 Bit Clock Control  
000: Reserved. Do not use.  
001: ASI3_BCLK is input or output on GPIO1  
010-111: Reserved. Do not use.  
Copyright © 2014, Texas Instruments Incorporated  
209  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 4 / Register 56: ASI3, DIN Input Multiplexer Control - 0x00 / 0x04 / 0x38 (B0_P4_R56)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D3  
D2-D0  
R
0000 0  
000  
Reserved. Write only default values.  
R/W  
ASI3 Data Input Multiplexer Control  
000-010: Reserved. Do not use.  
011: ASI3_DIN is input on GPIO3.  
110-111: Reserved. Do not use.  
Book 0 / Page 4 / Register 57-64: Reserved Registers - 0x00 / 0x04 / 0x39-0x40 (B0_P4_R57-64)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only default values.  
Book 0 / Page 4 / Register 65: WCLK1 (Input or Output) Pin Control - 0x00 / 0x04 / 0x41 (B0_P4_R65)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
D5-D2  
R
00  
Reserved. Write only default values.  
R/W  
00 01  
WCLK1 Pin Control  
0000: Reserved. Do not use.  
0001: WCLK1 is ASI1 Word Clock Input or Output. (Note: B0_P4_R10 defines ASI1 Word Clock  
routing.)  
0010-0011: Reserved. Do not use.  
0100: WCLK1 pin is CLKOUT output.  
D1-D0  
R
00  
Reserved. Write only default values.  
Book 0 / Page 4 / Register 66: Reserved Register - 0x00 / 0x04 / 0x42 (B0_P4_R66)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only default values.  
Book 0 / Page 4 / Register 67: DOUT1 (Output) Pin Control - 0x00 / 0x04 / 0x43 (B0_P4_R67)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
D5  
R
00  
1
Reserved. Write only reset values.  
R/W  
DOUT1 Bus Keeper Control  
0: DOUT1 Bus Keeper Enabled  
1: DOUT1 Bus Keeper Disabled  
D4-D1  
R/W  
0 001  
DOUT1 Pin Control  
0000: DOUT1 disabled  
0001: DOUT1 is ASI1 Data Output  
0010: DOUT1 is General Purpose Output  
0011: DOUT1 is CLKOUT  
0100: DOUT1 is INT1  
0101: DOUT1 is INT2  
0110: DOUT1 is SAR ADC interrupt as defined in B0_P3  
0111-1111: Reserved. Do not use.  
D0  
R/W  
0
DOUT1 as General Purpose Output  
0: DOUT1 General Purpose Output is '0'  
1: DOUT1 General Purpose Output is '1'  
Book 0 / Page 4 / Register 68: DIN1 (Input) Pin Control - 0x00 / 0x04 / 0x44 (B0_P4_R68)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
Reserved. Write only reset values.  
210  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 4 / Register 68: DIN1 (Input) Pin Control - 0x00 / 0x04 / 0x44 (B0_P4_R68) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D6-D5  
R/W  
01  
DIN1 Pin Control  
00: DIN1 Disabled with input buffer powered down.  
01: DIN1 Enabled with auto-power-down of input buffer if not actively used by the device.  
Applicable for DIN1 used as Data Input for ASI1, Digital Microphone Input, PLL_CLKIN and  
CDIV_CLKIN.  
10: DIN1 Enabled with input buffer powered on. Required for DIN1 used as a General Purpose  
Input and applicable for DIN1 used as Data Input for ASI1, Digital Microphone Input, PLL_CLKIN  
and CDIV_CLKIN.  
11: Reserved. Do not use  
D4  
R
R
X
DIN1 Input Pin State, used along with DIN1 as general purpose input  
Reserved. Write only reset values.  
D3-D0  
0000  
Book 0 / Page 4 / Register 69: WCLK2 (Input or Output) Pin Control - 0x00 / 0x04 / 0x45 (B0_P4_R69)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
D5-D2  
R
00  
Reserved. Write only reset values.  
WCLK2 Pin Control  
R/W  
00 01  
0000: WCLK2 pin Disabled (Input and Output buffers powered down)  
0001: WCLK2 pin acts as ASI Secondary WCLK as defined in B0_P4_R26_D5  
0010: WCLK2 pin is used as General Purpose Input (GPI) or chip input for any other purpose.  
0011: WCLK2 pin Output = General Purpose Output  
0100: WCLK2 pin Output = CLKOUT Output  
0101: WCLK2 pin Output = INT1 Interrupt Output  
0110: WCLK2 pin Output = INT2 Interrupt Output  
0111-1000: Reserved. Do not use.  
1001: WCLK2 pin Output = SAR ADC interrupt as defined in B0_P3  
1010: WCLK2 pin Output = ADC_MOD_CLK Output for digital microphone  
1011-1110: Reserved. Do not use.  
1111: WCLK2 pin Output = L4, R4 Data Ouput for ASI1 (Multi-pin mode only)  
D1  
D0  
R
X
0
WCLK2 Input Pin State, used along with WCLK2 as general purpose input  
R/W  
WCLK2 as General Purpose Output  
0: WCLK2 General Purpose Output is '0'  
1: WCLK2 General Purpose Output is '1'  
Book 0 / Page 4 / Register 70: BCLK2 (Input or Output) Pin Control - 0x00 / 0x04 / 0x46 (B0_P4_R70)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
D5-D2  
R
00  
Reserved. Write only reset values  
BCLK2 Pin Control  
R/W  
00 01  
0000: BCLK2 pin Disabled (Input and Output buffers powered down)  
0001: BCLK2 pin acts as ASI Secondary BCLK as defined in B0_P4_R26_D2  
0010: BCLK2 pin is used as General Purpose Input (GPI) or chip input for any other purpose.  
0011: BCLK2 pin Output = General Purpose Output  
0100: BCLK2 pin Output = CLKOUT Output  
0101: BCLK2 pin Output = INT1 Interrupt Output  
0110: BCLK2 pin Output = INT2 Interrupt Output  
0111-1000: Reserved. Do not use.  
1001: BCLK2 pin Output = SAR ADC interrupt as defined in B0_P3  
1010: BCLK2 pin Output = ADC_MOD_CLK Output for digital microphone  
1011-1101: Reserved. Do not use.  
1110: BCLK2 pin Output = L3, R3 Data Output for ASI1 (Multi-pin mode only)  
1111: Reserved. Do not use.  
D1  
D0  
R
X
0
BCLK2 Input Pin State, used along with BCLK2 as general purpose input  
R/W  
BCLK2 as General Purpose Output  
0: BCLK2 General Purpose Output is '0'  
1: BCLK2 General Purpose Output is '1'  
Copyright © 2014, Texas Instruments Incorporated  
211  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 4 / Register 71: DOUT2 (Output) Pin Control - 0x00 / 0x04 / 0x47 (B0_P4_R71)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
D5  
R
00  
1
Reserved. Write only reset values.  
R/W  
DOUT2 Bus Keeper Control  
0: DOUT2 Bus Keeper Enabled  
1: DOUT2 Bus Keeper Disabled  
D4-D1  
R/W  
0 001  
DOUT2 Pin Control  
0000: DOUT2 pin disabled  
0001: DOUT2 pin Output = ASI2 Data Output  
0010: DOUT2 pin Output = General Purpose Output  
0011: Reserved. Do not use.  
0100: DOUT2 pin Output = INT1 Interrupt  
0101: DOUT2 pin Output = INT2 Interrupt  
0110: DOUT2 pin is SAR ADC interrupt as defined in B0_P3  
0111-1001: Reserved. Do not use.  
1010: DOUT2 pin Output = ADC_MOD_CLK Output for digital microphone  
1011-1100: Reserved. Do not use.  
1101: DOUT2 pin Output = L2, R2 Data Output for ASI1 (Multi-pin mode only)  
1110-1111: Reserved. Do not use  
D0  
R/W  
0
DOUT2 as General Purpose Output  
0: DOUT2 General Purpose Output is '0'  
1: DOUT2 General Purpose Output is '1'  
Book 0 / Page 4 / Register 72: DIN2 (Input) Pin Control - 0x00 / 0x04 / 0x48 (B0_P4_R72)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
Reserved. Write only reset values  
DIN2 Pin Control  
D6-D5  
R/W  
01  
00: DIN2 Disabled with input buffer powered down.  
01: DIN2 Enabled with auto-power-down of input buffer if not actively used by the device.  
Applicable for DIN2 used as Data Input of ASI1 and ASI2, Dig_Mic_In, Low-Frequency Clock Input  
(LFR_CLKIN) or ISR interrupt for miniDSP.  
10: DIN2 Enabled with input buffer powered on. Required for DIN2 used as a General Purpose  
Input and applicable for DIN2 used as Data Input of ASI1 and ASI2, Dig_Mic_In, Low-Frequency  
Clock Input (LFR_CLKIN) or ISR interrupt for miniDSP.  
11: Reserved. Do not use.  
D4  
R
R
X
DIN2 Input Pin State, used along with DIN2 as general purpose input  
Reserved. Write only reset values.  
D3-D0  
0000  
Book 0 / Page 4 / Register 73-74: Reserved Register - 0x00 / 0x04 / 0x49-0x4A (B0_P4_R73-74)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000  
0100  
Reserved. Write only reset values  
Book 0 / Page 4 / Register 75: Reserved Register - 0x00 / 0x04 / 0x4B (B0_P4_R75)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0010  
0010  
Reserved. Write only reset values.  
Book 0 / Page 4 / Register 76: Reserved Register - 0x00 / 0x04 / 0x4C (B0_P4_R76)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0010  
0000  
Reserved. Write only reset values  
212  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 4 / Register 77-85: Reserved Registers - 0x00 / 0x04 / 0x4D-0x55 (B0_P4_R77-85)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values  
Book 0 / Page 4 / Register 86: GPIO1 (Input or Output) Pin Control - 0x00 / 0x04 / 0x56 (B0_P4_R86)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
Reserved. Write only reset values  
GPIO1 Pin Control  
D6-D2  
R/W  
000 00  
00000: GPIO1 pin input or output disabled.  
00001: GPIO1 pin = Input Mode, which can be used for Data Input for ASI1, digital microphone  
input, clock input, general purpose input or ISR interrupt to miniDSP  
00010: Reserved. Do not use.  
00011: GPIO1 pin = General Purpose Output  
00100: GPIO1 pin = CLKOUT Output  
00101: GPIO1 pin = INT1 Interrupt Output  
00110: GPIO1 pin = INT2 Interrupt Output  
00111-01000: Reserved. Do not use.  
01001: GPIO1 pin = SAR ADC interrupt as defined in B0_P3  
01010: GPIO1 pin = ADC_MOD_CLK Output for digital microphone  
01011: GPIO1 pin = Bit-Banged General Purpose Output (Value set in B0_P4_R104_D0)  
01100-01101: Reserved. Do not use.  
01110: GPIO1 pin = L3, R3 Data Output for ASI1 (Multi-pin mode only)  
01111: GPIO1 pin = L4, R4 Data Output for ASI1 (Multi-pin mode only)  
10000-10100: Reserved. Do not use.  
10101: GPIO1 pin = ASI3 Bit Clock Output  
10101: Reserved. Do not use.  
10110: GPIO1 pin = ASI1 ADC Word Clock Output  
10111: GPIO1 pin = ASI1 ADC Bit Clock Output  
11000: GPIO1 pin = ASI2 ADC Word Clock Output  
11001: GPIO1 pin = ASI2 ADC Bit Clock Output  
11010-11111: Reserved. Do not use.  
D1  
D0  
R
X
0
GPIO1 Input Pin state, used along with GPIO1 as general purpose input  
R/W  
GPIO1 as General Purpose Output  
0: GPIO1 pin is driven to '0' in general purpose output mode  
1: GPIO1 pin is driven to '1' in general purpose output mode  
Book 0 / Page 4 / Register 87: GPIO2 (Input or Output) Pin Control - 0x00 / 0x04 / 0x57 (B0_P4_R87)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
Reserved. Write only reset values  
Copyright © 2014, Texas Instruments Incorporated  
213  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 4 / Register 87: GPIO2 (Input or Output) Pin Control - 0x00 / 0x04 / 0x57  
(B0_P4_R87) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D6-D2  
R/W  
000 00  
GPIO2 Pin Control  
00000: GPIO2 pin input or output disabled.  
00001: GPIO2 pin = Input Mode, which can be used for Data Input for ASI1, digital microphone  
input, general purpose input or ISR interrupt to miniDSP.  
00010: Reserved. Do not use.  
00011: GPIO2 pin = General Purpose Output  
00100: GPIO2 pin = CLKOUT Output  
00101: GPIO2 pin = INT1 Interrupt Output  
00110: GPIO2 pin = INT2 Interrupt Output  
00111-01000: Reserved. Do not use.  
01001: GPIO2 pin = SAR ADC interrupt as defined in B0_P3  
01010: GPIO2 pin = ADC_MOD_CLK Output for digital microphone  
01011: GPIO2 pin = Bit-Banged General Purpose Output (Value set in B0_P4_R104_D1)  
01100: Reserved. Do not use.  
01101: GPIO2 pin = L2, R2 Data Output for ASI1 (Multi-pin mode only)  
01110: GPIO2 pin = L3, R3 Data Output for ASI1 (Multi-pin mode only)  
01111: GPIO2 pin = L4, R4 Data Output for ASI1 (Multi-pin mode only)  
10000-10011: Reserved. Do not use.  
10100: GPIO2 pin = ASI3 Word Clock Output  
10101: Reserved. Do not use.  
10110: GPIO2 pin = ASI1 ADC Word Clock Output  
10111: GPIO2 pin = ASI1 ADC Bit Clock Output  
11000: GPIO2 pin = ASI2 ADC Word Clock Output  
11001: GPIO2 pin = ASI2 ADC Bit Clock Output  
11010-11111: Reserved. Do not use.  
D1  
D0  
R
X
0
GPIO2 Input Pin state, used along with GPIO2 as general purpose input  
R/W  
GPIO2 as General Purpose Output  
0: GPIO2 pin is driven to '0' in general purpose output mode  
1: GPIO2 pin is driven to '1' in general purpose output mode  
Book 0 / Page 4 / Register 88: GPIO3 (Input or Output) Pin Control - 0x00 / 0x04 / 0x58 (B0_P4_R88)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
Reserved. Write only reset values  
GPIO3 Pin Control  
D6-D2  
R/W  
000 00  
00000: GPIO3 pin input or output disabled.  
00001: GPIO3 pin = Input Mode, which can be used for Data Input for ASI1, General Purpose  
Input, ADC Clock Inputs for any ASI, digital microphone input, or ISR interrupt to miniDSP.  
00010-00100: Reserved. Do not use.  
00101: GPIO3 pin = INT1 interrupt  
00110: GPIO3 pin = INT2 interrupt  
00111-01001: Reserved. Do not use.  
01010: GPIO3 pin = ADC_MOD_CLK Output for digital microphone  
01011: GPIO3 pin = Bit-Banged General Purpose Output (Value set in B0_P4_R104_D2)  
01100-10101: Reserved. Do no use.  
10110: GPIO3 pin = ASI1 ADC Word Clock Output  
10111: GPIO3 pin = ASI1 ADC Bit Clock Output  
11000: GPIO3 pin = ASI1 ADC Word Clock Output  
11001: GPIO3 pin = ASI2 ADC Bit Clock Output  
11010-11111: Reserved. Do not use.  
D1  
D0  
R
R
X
0
GPIO3 Input Pin state, used along with GPIO3 as general purpose input  
Reserved. Write only reset values  
Book 0 / Page 4 / Register 89: GPIO4 (Input or Output) Pin Control - 0x00 / 0x04 / 0x59 (B0_P4_R89)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
Reserved. Write only reset values  
214  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 4 / Register 89: GPIO4 (Input or Output) Pin Control - 0x00 / 0x04 / 0x59  
(B0_P4_R89) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D6-D2  
R/W  
000 00  
GPIO4 Pin Control  
00000: GPIO4 pin input or output disabled.  
00001: GPIO4 pin = Input Mode, which can be used for ADC Clock Inputs for any ASI, digital  
microphone input, or general purpose input.  
00010-00100: Reserved. Do not use.  
00101: GPIO4 pin = INT1 interrupt  
00110: GPIO4 pin = INT2 interrupt  
00111-01001: Reserved. Do not use.  
01010: GPIO4 pin = ADC_MOD_CLK Output for digital microphone  
01011: GPIO4 pin = Bit-Banged General Purpose Output (Value set in B0_P4_R104_D3)  
01100-10101: Reserved. Do not use.  
10110: GPIO4 pin = ASI1 ADC Word Clock Output  
10111: GPIO4 pin = ASI1 ADC Bit Clock Output  
11000: GPIO4 pin = ASI1 ADC Word Clock Output  
11001: GPIO4 pin = ASI2 ADC Bit Clock Output  
11010-11100: Reserved. Do not use.  
11101: GPIO4 pin = ASI3 Data Output  
11110-11111: Reserved. Do not use.  
D1  
D0  
R
R
X
0
GPIO4 Input Pin state, used along with GPIO4 as general purpose input  
Reserved. Write only reset values.  
Book 0 / Page 4 / Register 90: GPIO5 (Input or Output) Pin Control - 0x00 / 0x04 / 0x5A (B0_P4_R90)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
Reserved. Write only reset values  
GPIO5 Pin Control  
D6-D2  
R/W  
000 00  
00000: GPIO5 pin input or output disabled.  
00001: GPIO5 pin = Input Mode, which can be used for Data Input for ASI1, or digital microphone  
input.  
00010-01001: Reserved. Do not use.  
01010: GPIO5 pin = ADC_MOD_CLK Output for digital microphone  
01011-11100: Reserved. Do not use.  
11101: GPIO5 pin = ASI3 Data Output  
11110-11111: Reserved. Do not use.  
D1  
D0  
R
X
0
GPIO5 Input Pin state, used along with GPIO5 as general purpose input  
R/W  
GPIO5 as General Purpose Output  
0: GPIO5 pin is driven to '0' in general purpose output mode  
1: GPIO5 pin is driven to '1' in general purpose output mode  
Book 0 / Page 4 / Register 91: Reserved Register - 0x00 / 0x04 / 0x5B (B0_P4_R91)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000  
0000  
Reserved. Write only reset values  
Book 0 / Page 4 / Register 92-95: Reserved Registers - 0x00 / 0x04 / 0x5C-0x5F (B0_P4_R92-95)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values  
Book 0 / Page 4 / Register 96: MISO_GPO1 (Output) Pin Control - 0x00 / 0x04 / 0x60 (B0_P4_R96)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D5  
R
000  
Reserved. Write only reset values  
Copyright © 2014, Texas Instruments Incorporated  
215  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 4 / Register 96: MISO_GPO1 (Output) Pin Control - 0x00 / 0x04 / 0x60  
(B0_P4_R96) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D4-D1  
R/W  
0 001  
MISO_GPO1 Pin Control  
0000: MISO_GPO1 pin output disabled  
0001: MISO_GPO1 pin is used for data output in SPI interface (MISO), is disabled for I2C interface  
0010: MISO_GPO1 pin is General Purpose Output  
0011: MISO_GPO1 pin is CLKOUT Output  
0100: MISO_GPO1 pin is INT1 Interrupt Output  
0101: MISO_GPO1 pin is INT2 Interrupt Output  
0110: MISO_GPO1 pin is SAR ADC interrupt as defined in B0_P3  
0111: MISO_GPO1 pin is ADC_MOD_CLK Output for Digital Microphone  
1000-1100: Reserved. Do not use.  
1101: MISO_GPO1 pin is L2, R2 Data Ouput for ASI1 (Multi-pin mode only)  
1110: MISO_GPO1 pin is L3, R3 Data Ouput for ASI1 (Multi-pin mode only)  
1111: Reserved. Do not use.  
D0  
R/W  
0
MISO_GPO1 as General Purpose Output  
0: MISO_GPO1 General Purpose Output Value = 0  
1: MISO_GPO1 General Purpose Output Value = 1  
Book 0 / Page 4 / Register 97-99: Reserved Registers - 0x00 / 0x04 / 0x61-0x63 (B0_P4_R97-99)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 0 / Page 4 / Register 100: Digital Microphone Clock Control - 0x00 / 0x04 / 0x64 (B0_P4_R100)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
0
1
Digital Microphone 1 Left Channel Clock Edge  
0: Digital Microphone 1 Left Channel is latched on Rising Edge of ADC_MOD_CLK  
1: Digital Microphone 1 Left Channel is latched on Falling Edge of ADC_MOD_CLK  
D6  
Digital Microphone 1 Right Channel Clock Edge  
0: Digital Microphone 1 Right Channel is latched on Rising Edge of ADC_MOD_CLK  
1: Digital Microphone 1 Right Channel is latched on Falling Edge of ADC_MOD_CLK  
D5-D4  
D3  
R
00  
0
Reserved. Write only reset values.  
R/W  
Digital Microphone 2 Left Channel Clock Edge  
0: Digital Microphone 2 Left Channel is latched on Rising Edge of ADC_MOD_CLK  
1: Digital Microphone 2 Left Channel is latched on Falling Edge of ADC_MOD_CLK  
D2  
R/W  
R
1
Digital Microphone 2 Right Channel Clock Edge  
0: Digital Microphone 2 Right Channel is latched on Rising Edge of ADC_MOD_CLK  
1: Digital Microphone 2 Right Channel is latched on Falling Edge of ADC_MOD_CLK  
D1-D0  
00  
Reserved. Write only reset values.  
Book 0 / Page 4 / Register 101: Digital Microphone 1 Input Pin Control - 0x00 / 0x04 / 0x65 (B0_P4_R101)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D4  
R/W  
0011  
Digital Microphone 1 Left Data Input Control  
0000: Left Channel Input is on GPIO1 pin  
0001: Left Channel Input is on GPIO2 pin  
0010: Left Channel Input is on GPIO3 pin  
0011: Left Channel Input is on GPIO4 pin  
0100: Left Channel Input is on GPIO5 pin  
0101-0111: Reserved. Do not use.  
1000: Left Channel Input is on DIN1 pin  
1001: Left Channel Input is on DIN2 pin  
1010-1111: Reserved. Do not use.  
216  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 4 / Register 101: Digital Microphone 1 Input Pin Control - 0x00 / 0x04 / 0x65  
(B0_P4_R101) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D3-D0  
R/W  
0011  
Digital Microphone 1 Right Data Input Control  
0000: Right Channel Input is on GPIO1 pin  
0001: Right Channel Input is on GPIO2 pin  
0010: Right Channel Input is on GPIO3 pin  
0011: Right Channel Input is on GPIO4 pin  
0100: Right Channel Input is on GPIO5 pin  
0101-0111: Reserved. Do not use.  
1000: Right Channel Input is on DIN1 pin  
1001: Right Channel Input is on DIN2 pin  
1010-1111: Reserved. Do not use.  
Book 0 / Page 4 / Register 102: Digital Microphone 2 Input Pin Control - 0x00 / 0x04 / 0x66 (B0_P4_R102)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D4  
R/W  
0100  
Digital Microphone 2 Left Data Input Control  
0000: Left Channel Input is on GPIO1 pin  
0001: Left Channel Input is on GPIO2 pin  
0010: Left Channel Input is on GPIO3 pin  
0011: Left Channel Input is on GPIO4 pin  
0100: Left Channel Input is on GPIO5 pin  
0101-0111: Reserved. Do not use.  
1000: Left Channel Input is on DIN1 pin  
1001: Left Channel Input is on DIN2 pin  
1010-1111: Reserved. Do not use.  
D3-D0  
R/W  
0100  
Digital Microphone 2 Right Data Input Control  
0000: Right Channel Input is on GPIO1 pin  
0001: Right Channel Input is on GPIO2 pin  
0010: Right Channel Input is on GPIO3 pin  
0011: Right Channel Input is on GPIO4 pin  
0100: Right Channel Input is on GPIO5 pin  
0101-0111: Reserved. Do not use.  
1000: Right Channel Input is on DIN1 pin  
1001: Right Channel Input is on DIN2 pin  
1011-1111: Reserved. Do not use.  
Book 0 / Page 4 / Register 103: Reserved Register - 0x00 / 0x04 / 0x67 (B0_P4_R103)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 0 / Page 4 / Register 104: Bit-Bang Output - 0x00 / 0x04 / 0x68 (B0_P4_R104)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D4  
D3  
R
0000  
0
Reserved. Write only reset values.  
R/W  
GPIO4 Bit Bang Data Output  
0: GPIO4 Bit Bang Data Output = 0  
1: GPIO4 Bit Bang Data Output = 1  
D2  
D1  
D0  
R/W  
R/W  
R/W  
0
0
0
GPIO3 Bit Bang Data Output  
0: GPIO3 Bit Bang Data Output = 0  
1: GPIO3 Bit Bang Data Output = 1  
GPIO2 Bit Bang Data Output  
0: GPIO2 Bit Bang Data Output = 0  
1: GPIO2 Bit Bang Data Output = 1  
GPIO1 Bit Bang Data Output  
0: GPIO1 Bit Bang Data Output = 0  
1: GPIO1 Bit Bang Data Output = 1  
Copyright © 2014, Texas Instruments Incorporated  
217  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 4 / Register 105-106: Reserved Registers - 0x00 / 0x04 / 0x69-0x6A (B0_P4_R105-106)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 0 / Page 4 / Register 107: Bit-Bang Input - 0x00 / 0x04 / 0x6B (B0_P4_R107)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D4  
D3  
R
R
XXXX  
X
Reserved. Write only reset values.  
GPIO4 Bit Bang Data Input (Input Buffer value also shown in B0_P4_R89_D1)  
0: GPIO4 Bit Bang Data Input = 0  
1: GPIO4 Bit Bang Data Input = 1  
D2  
D1  
D0  
R
R
R
X
X
X
GPIO3 Bit Bang Data Input (Input Buffer value also shown in B0_P4_R88_D1)  
0: GPIO3 Bit Bang Data Input = 0  
1: GPIO3 Bit Bang Data Input = 1  
GPIO2 Bit Bang Data Input (Input Buffer value also shown in B0_P4_R87_D1)  
0: GPIO2 Bit Bang Data Input = 0  
1: GPIO2 Bit Bang Data Input = 1  
GPIO1 Bit Bang Data Input (Input Buffer value also shown in B0_P4_R86_D1)  
0: GPIO1 Bit Bang Data Input = 0  
1: GPIO1 Bit Bang Data Input = 1  
Book 0 / Page 4 / Register 108-112: Reserved Registers - 0x00 / 0x04 / 0x6C-0x70 (B0_P4_R108-112)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 0 / Page 4 / Register 113: Bit-Bang miniDSP Output Control - 0x00 / 0x04 / 0x71 (B0_P4_R113)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
D6  
R
0
0
Reserved. Write only reset values.  
R/W  
0: Use B0_P4_R104 for bit-bang of outputs GPIO1, GPIO2, GPIO3, GPIO4 or GPIO6  
1: Use miniDSP_D port for bit-bang of outputs GPIO1, GPIO2, GPIO3, GPIO4 or GPIO6  
D5-D0  
R
00 0000  
Reserved. Write only reset values.  
Book 0 / Page 4 / Register 114: Reserved Register - 0x00 / 0x04 / 0x72 (B0_P4_R114)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 0 / Page 4 / Register 115: ASI1, ADC Bit Clock and ADC Word Clock Output - 0x00 / 0x04 / 0x73  
(B0_P4_R115)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D4  
R/W  
0000  
ASI1_ADC_BCLK_OUT mux control used for 6-wire ASI1 mode with ADC Bit Clock as output:  
0000: ASI1_ADC_BCLK_OUT = ASI1 Bit Clock Divider Output (ASI1_BDIV_OUT)  
0001: Reserved. Do not use.  
0010: ASI1_ADC_BCLK_OUT = ASI2 Bit Clock Divider Output (ASI2_BDIV_OUT)  
0011: ASI1_ADC_BCLK_OUT = ASI2 Bit Clock Input (ASI2_BCLK)  
0100: ASI1_ADC_BCLK_OUT = ASI3 Bit Clock Divider Output (ASI3_BDIV_OUT)  
0101: ASI1_ADC_BCLK_OUT = ASI3 Bit Clock Input (ASI3_BCLK)  
0110: Reserved. Do not use.  
0111: ASI1_ADC_BCLK_OUT = ASI2 ADC Bit Clock Output (ASI2_ADC_BCLK)  
1000-1111: Reserved. Do not use.  
218  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 4 / Register 115: ASI1, ADC Bit Clock and ADC Word Clock Output - 0x00 / 0x04 / 0x73  
(B0_P4_R115) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D3-D0  
R/W  
0000  
ASI1_ADC_WCLK_OUT mux control used for 6-wire ASI1 mode with ADC Word Clock as output:  
0000: ASI1_ADC_WCLK_OUT = Generated DAC_FS  
0001: ASI1_ADC_WCLK_OUT = Generated ADC_FS  
0010: ASI1_ADC_WCLK_OUT = ASI1 Word Clock Divider Output (ASI1_WDIV_OUT)  
0011: Reserved. Do not use.  
0100: ASI1_ADC_WCLK_OUT = ASI2 Word Clock Divider Output (ASI2_WDIV_OUT)  
0101: ASI1_ADC_WCLK_OUT = ASI2 Word Clock Input (ASI2_WCLK)  
0110: ASI1_ADC_WCLK_OUT = ASI3 Word Clock Divider Output (ASI3_WDIV_OUT)  
0111: ASI1_ADC_WCLK_OUT = ASI3 Word Clock Input (ASI3_WCLK)  
1000: Reserved. Do not use.  
1001: ASI1_ADC_WCLK_OUT = ASI2 ADC Word Clock  
1010-1111: Reserved. Do not use.  
Book 0 / Page 4 / Register 116: ASI2, ADC Bit Clock and ADC Word Clock Output - 0x00 / 0x04 / 0x74  
(B0_P4_R116)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D4  
R/W  
0000  
ASI2_ADC_BCLK_OUT mux control used for 6-wire ASI1 mode with ADC Bit Clock as output:  
0000: ASI2_ADC_BCLK_OUT = ASI1 Bit Clock Divider Output (ASI1_BDIV_OUT)  
0001: ASI2_ADC_BCLK_OUT = ASI1 Bit Clock Input (ASI1_BCLK)  
0010: ASI2_ADC_BCLK_OUT = ASI2 Bit Clock Divider Output (ASI2_BDIV_OUT)  
0011: Reserved. Do not use.  
0100: ASI2_ADC_BCLK_OUT = ASI3 Bit Clock Divider Output (ASI3_BDIV_OUT)  
0101: ASI2_ADC_BCLK_OUT = ASI3 Bit Clock Input (ASI3_BCLK)  
0110: ASI2_ADC_BCLK_OUT = ASI1 ADC Bit Clock Output (ASI1_ADC_BCLK)  
0111-1111: Reserved. Do not use.  
D3-D0  
R/W  
0000  
ASI2_ADC_WCLK_OUT mux control used for 6-wire ASI1 mode with ADC Word Clock as output:  
0000: ASI2_ADC_WCLK_OUT = Generated DAC_FS  
0001: ASI2_ADC_WCLK_OUT = Generated ADC_FS  
0010: ASI2_ADC_WCLK_OUT = ASI1 Word Clock Divider Output (ASI1_WDIV_OUT)  
0011: ASI2_ADC_WCLK_OUT = ASI1 Word Clock Input (ASI1_WCLK)  
0100: ASI2_ADC_WCLK_OUT = ASI2 Word Clock Divider Output (ASI2_WDIV_OUT)  
0101: Reserved. Do not use.  
0110: ASI2_ADC_WCLK_OUT = ASI3 Word Clock Divider Output (ASI3_WDIV_OUT)  
0111: ASI2_ADC_WCLK_OUT = ASI3 Word Clock Input (ASI3_WCLK)  
1000: ASI2_ADC_WCLK_OUT = ASI1 ADC Word Clock  
1001-1111: Reserved. Do not use.  
Book 0 / Page 4 / Register 117: ASI3, ADC Bit Clock and ADC Word Clock Output - 0x00 / 0x04 / 0x75  
(B0_P4_R117)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D4  
D3-D0  
R/W  
R/W  
0000  
0000  
Reserved. Write only default values.  
Reserved. Write only default values  
Book 0 / Page 4 / Register 118: miniDSP Data Port Control - 0x00 / 0x04 / 0x76 (B0_P4_R118)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
D6  
R
0
0
Reserved. Write only reset values.  
R/W  
ADC miniDSP Data Output Configuration  
0: Independent Left and Right Channels for ADC miniDSP output  
1: Left Channel of ADC miniDSP output copied to Right Channel miniDSP output that is  
miniDSP_A_DataOutput[2] = miniDSP_A_DataOutput[1]  
D5-D4  
R/W  
00  
miniDSP_D_DataInput_1 Configuration  
00: miniDSP_D_DataInput_1[1:8] receives data from ASI1_DataInput[1:8]  
01: miniDSP_D_DataInput_1[1:2] receives data from ASI2_DataInput[1:2]  
10: miniDSP_D_DataInput_1[1:2] receives data from ASI3_DataInput[1:2]  
11: miniDSP_D_DataInput_1[1:8] receives data from miniDSP_A_DataOutput[1:8] (ADC-to-DAC  
Loopback)  
Copyright © 2014, Texas Instruments Incorporated  
219  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 0 / Page 4 / Register 118: miniDSP Data Port Control - 0x00 / 0x04 / 0x76 (B0_P4_R118) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D3-D2  
R/W  
01  
miniDSP_D_DataInput_2 Configuration  
00: miniDSP_D_DataInput_2[1:2] receives data from ASI1_DataInput[1:2]  
01: miniDSP_D_DataInput_2[1:2] receives data from ASI2_DataInput[1:2]  
10: miniDSP_D_DataInput_2[1:2] receives data from ASI3_DataInput[1:2]  
11: Reserved. Do not use.  
D1-D0  
R/W  
10  
miniDSP_D_Data Input 3 Configuration  
00: miniDSP_D_DataInput_3[1:2] receives data from ASI1_DataInput[1:2]  
01: miniDSP_D_DataInput_3[1:2] receives data from ASI2_DataInput[1:2]  
10: miniDSP_D_DataInput_3[1:2] receives data from ASI3_DataInput[1:2]  
11: Reserved. Do not use.  
Book 0 / Page 4 / Register 119: Digital Audio Engine Synchronization Control - 0x00 / 0x04 / 0x77  
(B0_P4_R119)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D6  
R/W  
00  
DAC Engine Synchronization:  
00: Enable DAC engine syncing using ASI1  
01: Enable DAC engine syncing using ASI2  
10: Enable DAC engine syncing using ASI3  
11: Disable DAC engine syncing with miniDSP_D_in data frame from ASI mux at power up.  
Recommended to disable sync when not using programmble mode for miniDSP_D (when  
B0_P0_R60_D[4:0] /= "0 0000")  
D5-D4  
D3-D0  
R/W  
R
00  
ADC Engine Synchronization:  
00: Enable ADC engine syncing using ASI1  
01: Enable ADC engine syncing using ASI2  
10: Enable ADC engine syncing using ASI3  
11: Disable ADC engine syncing with miniDSP_A_in data frame from ASI mux at power up  
0000  
Reserved. Write only reset values.  
Book 0 / Page 4 / Register 120-127: Reserved Registers - 0x00 / 0x04 / 0x78-0x7F (B0_P4_R120-127)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
xxxx xxxx Reserved. Write only reset values.  
8.6.6 Book 0 Page 252  
Book 0 / Page 252 / Register 0: Page Select Register - 0x00 / 0xFC / 0x00 (B0_P252_R0)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Page Select Register  
0-255: Selects the Register Page for next read or write command.  
Book 0 / Page 252 / Register 1: SAR Buffer Mode Data (MSB) and Buffer Flags - 0x00 / 0xFC / 0x01  
(B0_P252_R1)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
R
R
0
1
Buffer-Full Flag  
0: 64-sample Buffer is not filled  
1: 64-sample Buffer has been filled  
D6  
D5  
Buffer-Empty Flag  
0: Buffer still contains un-read data  
1: Buffer is empty (contains no un-read data)  
X
Reserved. Write only reset values.  
220  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 0 / Page 252 / Register 1: SAR Buffer Mode Data (MSB) and Buffer Flags - 0x00 / 0xFC / 0x01  
(B0_P252_R1) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D4  
R
X
Data Identification:  
0: VBAT or IN1R/AUX2 data found in SAR Buffer Data (that is B0_P252_R1_D[3:0] and  
B0_P252_R2_D[7:0].  
1: IN1L/AUX1 or TEMP data found in SAR Buffer Data (that is B0_P252_R1_D[3:0] and  
B0_P252_R2_D[7:0].  
D3-D0  
R
XXXX  
SAR ADC Buffer Mode Data (11:8) - Reading this register will return MSB 4 bits of SAR Buffer  
Mode data (based on Read Pointer).  
Book 0 / Page 252 / Register 2: SAR Buffer Mode Data (LSB) - 0x00 / 0xFC / 0x02 (B0_P252_R2)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
xxxx xxxx SAR ADC Buffer Mode Data (7:0) - Reading this register will return LSB 8 bits of SAR Buffer Mode  
data (based on Read Pointer).  
Book 0 / Page 252 / Register 3-127: Reserved Registers - 0x00 / 0xFC / 0x03-0x7F (B0_P252_R3-127)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
8.6.7 Book 20 Page 0  
Book 20 / Page 0 / Register 0: Page Select Register - 0x14 / 0x00 / 0x00 (B20_P0_R0)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Page Select Register  
0-255: Selects the Register Page for next read or write command.  
Refer Table "Summary of Memory Map" for details.  
Book 20 / Page 0 / Register 1-126: Reserved Registers - 0x14 / 0x00 / 0x01-0x7E (B20_P0_R1-126)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 20 / Page 0 / Register 127: Book Selection Register - 0x14 / 0x00 / 0x7F (B20_P0_R127)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 0000 0000: Book 0 selected  
0000 0001: Book 1 selected  
...  
1111 1110: Book 254 selected  
1111 1111: Book 255 selected  
8.6.8 Book 20 Page 1-26  
Book 20 / Page 1-26 / Register 0: Page Select Register - 0x14 / 0x01-0x1A / 0x00 (B20_P1-26_R0)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Page Select Register  
0-255: Selects the Register Page for next read or write command.  
Refer Table "Summary of Memory Map" for details.  
Copyright © 2014, Texas Instruments Incorporated  
221  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 20 / Page 1-26 / Register 1-7: Reserved Registers - 0x14 / 0x01-0x1A / 0x01-0x07 (B20_P1-26_R1-7)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 20 / Page 1-26 / Register 8-127: ADC Fixed Coefficients C(0:767) - 0x14 / 0x01-0x1A / 0x08-0x7F  
(B20_P1-26_R8-127)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
xxxx xxxx 24-bit coefficients of ADC Fixed Coefficient. Refer to Table "ADC Fixed Coefficient Map" for details.  
8.6.9 Book 40 Page 0  
Book 40 / Page 0 / Register 0: Page Select Register - 0x28 / 0x00 / 0x00 (B40_P0_R0)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Page Select Register  
0-255: Selects the Register Page for next read or write command.  
Refer Table "Summary of Memory Map" for details.  
Book 40 / Page 0 / Register 1: ADC Adaptive CRAM Configuration Register - 0x28 / 0x00 / 0x01  
(B40_P0_R1)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D4  
D3  
R
R
0000  
Reserved. Write only reset values.  
0
0
miniDSP_A Generated Flag for toggling MSB Bit of Coefficient Address  
D2  
R/W  
ADC Adaptive Filtering Control  
0: Adaptive Filtering disabled for ADC  
1: Adaptive Filtering enabled for ADC  
D1  
D0  
R
0
0
ADC Adaptive Filter Buffer Control Flag  
0: In adaptive filter mode, ADC miniDSP accesses ADC Coefficient Buffer-A, and control interface  
accesses ADC Coefficient Buffer-B  
1: In adaptive filter mode, ADC miniDSP accesses ADC Coefficient Buffer-B, and control interface  
accesses ADC Coefficient Buffer-A  
R/W  
ADC Adaptive Filter Buffer Switch control  
0: ADC Coefficient Buffers will not be switched at next frame boundary  
1: ADC Coefficient Buffers will be switched at next frame boundary, if in adaptive filtering mode.  
This will self clear on switching.  
Book 40 / Page 0 / Register 2-126: Reserved Registers - 0x28 / 0x00 / 0x02-0x7E (B40_P0_R2-126)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 40 / Page 0 / Register 127: Book Selection Register - 0x28 / 0x00 / 0x7F (B40_P0_R127)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 0000 0000: Book 0 selected  
0000 0001: Book 1 selected  
...  
1111 1110: Book 254 selected  
1111 1111: Book 255 selected  
222  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
8.6.10 Book 40 Page 1-17  
Book 40 / Page 1-17 / Register 0: Page Select Register - 0x28 / 0x01-0x11 / 0x00 (B40_P1-17_R0)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Page Select Register  
0-255: Selects the Register Page for next read or write command.  
Refer Table "Summary of Memory Map" for details.  
Book 40 / Page 1-17 / Register 1-7: Reserved Registers - 0x28 / 0x01-0x11 / 0x01-0x07 (B40_P1-17_R1-7)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 40 / Page 1-17 / Register 8-127: ADC Adaptive Coefficients C(0:509) - 0x28 / 0x01-0x11 / 0x08-0x7F  
(B40_P1-17_R8-127)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
xxxx xxxx 24-bit coefficients of ADC Coefficients. Refer to Tables "ADC Adaptive Coefficient Buffer-A Map"  
and "ADC Adaptive Coefficient Buffer-B Map" for details in adaptive mode. If these coefficients are  
set to fixed mode, ADC Coefficients are one contiguous block.  
8.6.11 Book 40 Page 18  
Book 40 / Page 18 / Register 0: Page Select Register - 0x28 / 0x12 / 0x00 (B40_P18_R0)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Page Select Register  
0-255: Selects the Register Page for next read or write command.  
Refer Table "Summary of Memory Map" for details.  
Book 40 / Page 18 / Register 1-7: Reserved Registers - 0x28 / 0x12 / 0x01-0x07 (B40_P18_R1-7)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 40 / Page 18 / Register 8-15: ADC Adaptive Coefficients C(510:511) - 0x28 / 0x12 / 0x08-0x0F  
(B40_P18_R8-15)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
xxxx xxxx 24-bit coefficients of ADC Coefficients. Refer to Tables "ADC Adaptive Coefficient Buffer-A Map"  
and "ADC Adaptive Coefficient Buffer-B Map" for details in adaptive mode. If these coefficients are  
set to fixed mode, ADC Coefficients are one contiguous block.  
Book 40 / Page 18 / Register 16-127: Reserved Registers - 0x28 / 0x12 / 0x10-0x7F (B40_P18_R16-127)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
xxxx xxxx Reserved. Write only reset values.  
Copyright © 2014, Texas Instruments Incorporated  
223  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
8.6.12 Book 60 Page 0  
Book 60 / Page 0 / Register 0: Page Select Register - 0x3C / 0x00 / 0x00 (B60_P0_R0)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Page Select Register  
0-255: Selects the Register Page for next read or write command.  
Refer Table "Summary of Memory Map" for details.  
Book 60 / Page 0 / Register 1-126: Reserved Registers - 0x3C / 0x00 / 0x01-0x7E (B60_P0_R1-126)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 60 / Page 0 / Register 127: Book Selection Register - 0x3C / 0x00 / 0x7F (B60_P0_R127)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 0000 0000: Book 0 selected  
0000 0001: Book 1 selected  
...  
1111 1110: Book 254 selected  
1111 1111: Book 255 selected  
8.6.13 Book 60 Page 1-35  
Book 60 / Page 1-35 / Register 0: Page Select Register - 0x3C / 0x01-0x23 / 0x00 (B60_P1-35_R0)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Page Select Register  
0-255: Selects the Register Page for next read or write command.  
Refer Table "Summary of Memory Map" for details.  
Book 60 / Page 1-35 / Register 1-7: Reserved Registers - 0x3C / 0x01-0x23 / 0x01-0x07 (B60_P1-35_R1-7)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
xxxx xxxx Reserved. Write only reset values.  
Book 60 / Page 1-35 / Register 8-127: DAC Fixed Coefficients C(0:1023) - 0x3C / 0x01-0x23 / 0x08-0x7F  
(B60_P1-35_R8-127)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
xxxx xxxx 24-bit coefficients of DAC Fixed Coefficient. Refer to Table "DAC Fixed Coefficient Map" for details.  
8.6.14 Book 80 Page 0  
Book 80 / Page 0 / Register 0: Page Select Register - 0x50 / 0x00 / 0x00 (B80_P0_R0)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Page Select Register  
0-255: Selects the Register Page for next read or write command.  
Refer Table "Summary of Memory Map" for details.  
224  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 80 / Page 0 / Register 1: DAC Adaptive Coefficient Bank 1 Configuration Register - 0x50 / 0x00 /  
0x01 (B80_P0_R1)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D4  
D3  
R
R
0000  
Reserved. Write only reset values.  
0
0
miniDSP_D Generated Flag for toggling MSB Bit of Coefficient Address  
D2  
R/W  
DAC Bank 1 Adaptive Filtering Control  
0: Adaptive Filtering disabled for DAC Adaptive Coefficient Bank 1  
1: Adaptive Filtering enabled for DAC Adaptive Coefficient Bank 1  
D1  
D0  
R
0
0
DAC Bank 1 Adaptive Filter Buffer Control Flag  
0: In adaptive filter mode, DAC miniDSP accesses DAC Coefficient Bank 1 Buffer-A, and control  
interface accesses DAC Coefficient Bank 1 Buffer-B  
1: In adaptive filter mode, DAC miniDSP accesses DAC Coefficient Bank 1 Buffer-B, and control  
interface accesses DAC Coefficient Bank 1 Buffer-A  
R/W  
DAC Bank 1 Adaptive Filter Buffer Switch control  
0: DAC Coefficient Bank 1 Buffers will not be switched at next frame boundary  
1: DAC Coefficient Bank 1 Buffers will be switched at next frame boundary, if in adaptive filtering  
mode. This will self clear on switching.  
Book 80 / Page 0 / Register 2-126: Reserved Registers - 0x50 / 0x00 / 0x02-0x7E (B80_P0_R2-126)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 80 / Page 0 / Register 127: Book Selection Register - 0x50 / 0x00 / 0x7F (B80_P0_R127)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 0000 0000: Book 0 selected  
0000 0001: Book 1 selected  
...  
1111 1110: Book 254 selected  
1111 1111: Book 255 selected  
8.6.15 Book 80 Page 1-17  
Book 80 / Page 1-17 / Register 0: Page Select Register - 0x50 / 0x01-0x11 / 0x00 (B80_P1-17_R0)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Page Select Register  
0-255: Selects the Register Page for next read or write command.  
Refer Table "Summary of Memory Map" for details.  
Book 80 / Page 1-17 / Register 1-7: Reserved Registers - 0x50 / 0x01-0x11 / 0x01-0x07 (B80_P1-17_R1-7)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
xxxx xxxx Reserved. Write only reset values.  
Book 80 / Page 1-17 / Register 8-127: DAC Adaptive Coefficient Bank 1 C(0:509) - 0x50 / 0x01-0x11 / 0x08-  
0x7F (B80_P1-17_R8-127)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
xxxx xxxx 24-bit coefficients of DAC Adaptive Coefficient Bank 1. Refer to Tables "DAC Adaptive Coefficient  
Bank 1 Buffer-A Map" and "DAC Adaptive Coefficient Bank 1 Buffer-B Map" for details in adaptive  
mode. If these coefficients are set to fixed mode, these DAC Coefficients are one contiguous block.  
Copyright © 2014, Texas Instruments Incorporated  
225  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
8.6.16 Book 80 Page 18  
Book 80 / Page 18 / Register 0: Page Select Register - 0x50 / 0x12 / 0x00 (B80_P18_R0)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Page Select Register  
0-255: Selects the Register Page for next read or write command.  
Refer Table "Summary of Memory Map" for details.  
Book 80 / Page 18 / Register 1-7: Reserved Registers - 0x50 / 0x12 / 0x01-0x07 (B80_P18_R1-7)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 80 / Page 18 / Register 8-15: DAC Adaptive Coefficient Bank 1 C(510:511) - 0x50 / 0x12 / 0x08-0x0F  
(B80_P18_R8-15)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
xxxx xxxx 24-bit coefficients of DAC Adaptive Coefficient Bank 1. Refer to Tables "DAC Adaptive Coefficient  
Bank 1 Buffer-A Map" and "DAC Adaptive Coefficient Bank 1 Buffer-B Map" for details in adaptive  
mode. If these coefficients are set to fixed mode, these DAC Coefficients are one contiguous block.  
Book 80 / Page 18 / Register 16-127: Reserved Registers - 0x50 / 0x12 / 0x10-0x7F (B80_P18_R16-127)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
xxxx xxxx Reserved. Write only reset values.  
8.6.17 Book 82 Page 0  
Book 82 / Page 0 / Register 0: Page Select Register - 0x52 / 0x00 / 0x00 (B82_P0_R0)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Page Select Register  
0-255: Selects the Register Page for next read or write command.  
Refer Table "Summary of Memory Map" for details.  
Book 82 / Page 0 / Register 1: DAC Adaptive Coefficient Bank 2 Configuration Register - 0x52 / 0x00 /  
0x01 (B82_P0_R1)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D4  
D3  
R
R
0000  
Reserved. Write only reset values.  
0
0
miniDSP_D Generated Flag for toggling MSB Bit of Coefficient Address  
D2  
R/W  
DAC Coefficient Bank 2 Adaptive Filtering Control  
0: Adaptive Filtering disabled for DAC Adaptive Coefficient Bank 2  
1: Adaptive Filtering enabled for DAC Adaptive Coefficient Bank 2  
D1  
D0  
R
0
0
DAC Coefficient Bank 2 Adaptive Filter Buffer Control Flag  
0: In adaptive filter mode, DAC miniDSP accesses DAC Coefficient Bank 2 Buffer-A, and control  
interface accesses DAC Coefficient Bank 2 Buffer-B  
1: In adaptive filter mode, DAC miniDSP accesses DAC Coefficient Bank 2 Buffer-B, and control  
interface accesses DAC Coefficient Bank 2 Buffer-A  
R/W  
DAC Coefficient Bank 2 Adaptive Filter Buffer Switch control  
0: DAC Coefficient Bank 2 Buffers will not be switched at next frame boundary  
1: DAC Coefficient Bank 2 Buffers will be switched at next frame boundary, if in adaptive filtering  
mode. This will self clear on switching.  
226  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 82 / Page 0 / Register 2-126: Reserved Registers - 0x52 / 0x00 / 0x02-0x7E (B82_P0_R2-126)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only reset values.  
Book 82 / Page 0 / Register 127: Book Selection Register - 0x52 / 0x00 / 0x7F (B82_P0_R127)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 0000 0000: Book 0 selected  
0000 0001: Book 1 selected  
...  
1111 1110: Book 254 selected  
1111 1111: Book 255 selected  
8.6.18 Book 82 Page 1-17  
Book 82 / Page 1-17 / Register 0: Page Select Register - 0x52 / 0x01-0x11 / 0x00 (B82_P1-17_R0)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Page Select Register  
0-255: Selects the Register Page for next read or write command.  
Refer Table "Summary of Memory Map" for details.  
Book 82 / Page 1-17 / Register 1-7: Reserved Registers - 0x52 / 0x01-0x11 / 0x01-0x07 (B82_P1-17_R1-7)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
xxxx xxxx Reserved. Write only reset values.  
Book 82 / Page 1-17 / Register 8-127: DAC Adaptive Coefficient Bank 2 C(0:509) - 0x52 / 0x01-0x11 / 0x08-  
0x7F (B82_P1-17_R8-127)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
xxxx xxxx 24-bit coefficients of DAC Adaptive Coefficient Bank 2. Refer to Tables "DAC Adaptive Coefficient  
Bank 2 Buffer-A Map" and "DAC Adaptive Coefficient Bank 2 Buffer-B Map" for details in adaptive  
mode. If these coefficients are set to fixed mode, these DAC Coefficients are one contiguous block.  
8.6.19 Book 82 Page 18  
Book 82 / Page 18 / Register 0: Page Select Register - 0x52 / 0x12 / 0x00 (B82_P18_R0)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Page Select Register  
0-255: Selects the Register Page for next read or write command.  
Refer Table "Summary of Memory Map" for details.  
Book 82 / Page 18 / Register 1-7: Reserved Registers - 0x52 / 0x12 / 0x01-0x07 (B82_P18_R1-7)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
xxxx xxxx Reserved. Write only reset values.  
Book 82 / Page 18 / Register 8-15: DAC Adaptive Coefficient Bank 2 C(510:511) - 0x52 / 0x12 / 0x08-0x0F  
(B82_P18_R8-15)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
xxxx xxxx 24-bit coefficients of DAC Adaptive Coefficient Bank 2. Refer to Tables "DAC Adaptive Coefficient  
Bank 2 Buffer-A Map" and "DAC Adaptive Coefficient Bank 2 Buffer-B Map" for details in adaptive  
mode. If these coefficients are set to fixed mode, these DAC Coefficients are one contiguous block.  
Copyright © 2014, Texas Instruments Incorporated  
227  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 82 / Page 18 / Register 16-127: Reserved Registers - 0x52 / 0x12 / 0x10-0x7F (B82_P18_R16-127)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
xxxx xxxx Reserved. Write only reset values.  
8.6.20 Book 100 Page 0  
Book 100 / Page 0 / Register 0: Page Select Register - 0x64 / 0x00 / 0x00 (B100_P0_R0)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Page Select Register  
0-255: Selects the Register Page for next read or write command.  
Refer Table "Summary of Memory Map" for details.  
Book 100 / Page 0 / Register 1-46: Reserved Registers - 0x64 / 0x00 / 0x01-0x2E (B100_P0_R1-46)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
xxxx xxxx Reserved. Write only reset values.  
Book 100 / Page 0 / Register 47: Non-Programmable Override Options - 0x64 / 0x00 / 0x2F (B100_P0_R47)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D2  
D1  
R
0000 00  
0
Reserved. Write only reset values.  
W
0: Use the hardwired IADC and DECIM value for the specific non-programmable mode  
1: Use IADC value and DECIM value from register B100_P0_R48-50 for the non-programmable  
mode  
D0  
R
0
Reserved. Write only reset values.  
Book 100 / Page 0 / Register 48: ADC miniDSP_A Instruction Control Register 1 - 0x64 / 0x00 / 0x30  
(B100_P0_R48)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
Reserved. Write only reset values.  
D6-D0  
R/W  
000 0001 ADC miniDSP IADC (14:8) Control. (Use only when ADC miniDSP_A is in use for signal  
processing, that is B0_P0_R61_D[4:0]=00000.)  
ADC miniDSP IADC(14:0)  
000 0000 0000 0000: ADC miniDSP IADC=32768  
000 0000 0000 0001: ADC miniDSP IADC = 1  
000 0000 0000 0010: ADC miniDSP IADC = 2  
...  
111 1111 1111 1110: ADC miniDSP IADC = 32766  
111 1111 1111 1111: ADC miniDSP IADC = 32767  
Note: IADC should be a integral multiple of DECIM (B100_P0_R50_D[3:0])  
Note: B100_P0_R48 takes effect after programming B100_P0_R49 in the immediate next  
control command.  
228  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 100 / Page 0 / Register 49: ADC miniDSP_A Instruction Control Register 2 - 0x64 / 0x00 / 0x31  
(B100_P0_R49)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 ADC miniDSP IADC (14:8) Control. (Use only when ADC miniDSP_A is in use for signal  
processing, that is B0_P0_R61_D[4:0]=00000.)  
ADC miniDSP IADC(14:0)  
000 0000 0000 0000: ADC miniDSP IADC=32768  
000 0000 0000 0001: ADC miniDSP IADC = 1  
000 0000 0000 0010: ADC miniDSP IADC = 2  
...  
111 1111 1111 1110: ADC miniDSP IADC = 32766  
111 1111 1111 1111: ADC miniDSP IADC = 32767  
Note: IADC should be a integral multiple of DECIM (B100_P0_R50_D[3:0])  
Note: B100_P0_R48 takes effect after programming B100_P0_R49 in the immediate next  
control command.  
Book 100 / Page 0 / Register 50: ADC miniDSP_A CIC Input and Decimation Ratio Control Register - 0x64  
/ 0x00 / 0x32 (B100_P0_R50)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
0
0: FIFO at CIC output is bypassed.  
1: FIFO at CIC output is not bypassed. THIS BIT SHOULD ALWAYS BE WRITTEN TO 1 AT  
INITIALIZATION  
D6-D4  
D3-D0  
R/W  
R/W  
0
Reserved. Write only default values  
0100  
ADC miniDSP Decimation factor Control. (Use only when ADC miniDSP_A is in use for signal  
processing, that is B0_P0_R61_D[4:0]=00000.)  
(B0_P0_R61)  
0000: Decimation factor in ADC miniDSP = 16  
0001: Decimation factor in ADC miniDSP = 1  
0010: Decimation factor in ADC miniDSP = 2  
...  
1110: Decimation factor in ADC miniDSP = 14  
1111: Decimation factor in ADC miniDSP = 15  
Book 100 / Page 0 / Register 51-59: Reserved Registers - 0x64 / 0x00 / 0x33-0x3B (B100_P0_R51-59)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
xxxx xxxx Reserved. Write only reset values.  
Book 100 / Page 0 / Register 60: ADC miniDSP_A Secondary CIC Input Control - 0x64 / 0x00 / 0x3C  
(B100_P0_R60)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
0
0: FIFO at CIC2 output is bypassed.  
1: FIFO at CIC2 output is not bypassed.  
D6-D0  
R/W  
000 0000 Reserved. Write only reset values.  
Book 100 / Page 0 / Register 61: miniDSP_A to Audio Serial Interface Handoff Control - 0x64 / 0x00 / 0x3D  
(B100_P0_R61)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
0
0
0: miniDSP_A to ASI1 handoff synchronizer logic is initiated based on instruction counter-3  
1: miniDSP_A to ASI1 handoff synchronizer logic is initiated based on interrupt port. Use only if  
B0_P0_R61_D[4:0] = "0 0000".  
D6  
0: miniDSP_A to ASI2 handoff synchronizer logic is initiated based on instruction counter-3  
1: miniDSP_A to ASI2 handoff synchronizer logic is initiated based on interrupt port. Use only if  
B0_P0_R61_D[4:0] = "0 0000".  
Copyright © 2014, Texas Instruments Incorporated  
229  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 100 / Page 0 / Register 61: miniDSP_A to Audio Serial Interface Handoff Control - 0x64 / 0x00 / 0x3D  
(B100_P0_R61) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D5  
R/W  
0
0: miniDSP_A to ASI3 handoff synchronizer logic is initiated based on instruction counter-3  
1: miniDSP_A to ASI3 handoff synchronizer logic is initiated based on interrupt port. Use only if  
B0_P0_R61_D[4:0] = "0 0000".  
D4-D0  
R/W  
0 0000  
Reserved. Write only reset values.  
Book 100 / Page 0 / Register 62-126: Reserved Registers - 0x64 / 0x00 / 0x3E-0x7E (B100_P0_R62-126)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
xxxx xxxx Reserved. Write only reset values.  
Book 100 / Page 0 / Register 127: Book Selection Register - 0x64 / 0x00 / 0x7F (B100_P0_R127)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 0000 0000: Book 0 selected  
0000 0001: Book 1 selected  
...  
1111 1110: Book 254 selected  
1111 1111: Book 255 selected  
8.6.21 Book 100 Page 1-52  
Book 100 / Page 1-52 / Register 0: Page Select Register - 0x64 / 0x01-0x34 / 0x00 (B100_P1-52_R0)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Page Select Register  
0-255: Selects the Register Page for next read or write command.  
Refer Table "Summary of Memory Map" for details.  
Book 100 / Page 1-52 / Register 1-7: Reserved Registers - 0x64 / 0x01-0x34 / 0x01-0x07 (B100_P1-52_R1-  
7)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only default values  
Book 100 / Page 1-52 / Register 8-127: miniDSP_A Instructions - 0x64 / 0x01-0x34 / 0x08-0x7F (B100_P1-  
52_R8-127)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
xxxx xxxx 32 bit instructions for ADC miniDSP engine. For details refer to Table "ADC miniDSP Instruction  
Map". These instructions control the operation of ADC miniDSP mode. When the fully  
programmable miniDSP mode is enabled and ADC channel is powered up, the read and write  
access to these registers is disabled.  
8.6.22 Book 120 Page 0  
Book 120 / Page 0 / Register 0: Page Select Register - 0x78 / 0x00 / 0x00 (B120_P0_R0)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Page Select Register  
0-255: Selects the Register Page for next read or write command.  
Refer Table "Summary of Memory Map" for details.  
230  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Book 120 / Page 0 / Register 1-46: Reserved Registers - 0x78 / 0x00 / 0x01-0x2E (B120_P0_R1-46)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
xxxx xxxx Reserved. Write only reset values.  
Book 120 / Page 0 / Register 47: Non-Programmable Override Options - 0x78 / 0x00 / 0x2F (B120_P0_R47)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D2  
D1  
R
0000 00  
0
Reserved. Write only reset values.  
W
0: Use the hardwired IDAC and INTERP value for the specific non-programmable mode  
1: Use IDAC value and INTERP value from register B120_P0_R48-50 for the non-programmable  
mode  
D0  
R
0
Reserved. Write only reset values.  
Book 120 / Page 0 / Register 48: DAC miniDSP_D Instruction Control Register 1 - 0x78 / 0x00 / 0x30  
(B120_P0_R48)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R
0
Reserved. Write only reset values.  
D6-D0  
R/W  
000 0010 DAC miniDSP IDAC (14:8) Control. (Use only when DAC miniDSP_D is in use for signal  
processing, that is B0_P0_R60_D[4:0]=00000.)  
DAC miniDSP IDAC(14:0)  
000 0000 0000 0000: DAC miniDSP IDAC = 32768  
000 0000 0000 0001: DAC miniDSP IDAC = 1  
000 0000 0000 0010: DAC miniDSP IDAC = 2  
...  
111 1111 1111 1110: DAC miniDSP IDAC = 32766  
111 1111 1111 1111: DAC miniDSP IDAC = 32767  
Note: IDAC should be a integral multiple of INTERP (B120_P0_R50_D[3:0])  
Note: B120_P0_R48 takes effect after programming B120_P0_R49 in the immediate next  
control command.  
Book 120 / Page 0 / Register 49: DAC miniDSP_D Instruction Control Register 2 - 0x78 / 0x00 / 0x31  
(B120_P0_R49)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 DAC miniDSP IDAC (7:0) Control. (Use only when DAC miniDSP_D is in use for signal processing,  
that is B0_P0_R60_D[4:0]=00000.)  
DAC miniDSP IDAC(14:0)  
000 0000 0000 0000: DAC miniDSP IDAC = 32768  
000 0000 0000 0001: DAC miniDSP IDAC = 1  
000 0000 0000 0010: DAC miniDSP IDAC = 2  
...  
111 1111 1111 1110: DAC miniDSP IDAC = 32766  
111 1111 1111 1111: DAC miniDSP IDAC = 32767  
Note: IDAC should be a integral multiple of INTERP (B120_P0_R50_D[3:0])  
Note: B120_P0_R49 should be programmed immediately after B120_P0_R48.  
Book 120 / Page 0 / Register 50: DAC miniDSP_D Interpolation Factor Control Register - 0x78 / 0x00 /  
0x32 (B120_P0_R50)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7  
R/W  
R/W  
0
0: FIFO at modulator input is bypassed  
1: FIFO at modulator input is not bypassed. THIS BIT SHOULD ALWAYS BE WRITTEN TO 1 AT  
INITIALIZATION  
D6-D4  
000  
Reserved. Write only default values.  
Copyright © 2014, Texas Instruments Incorporated  
231  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Book 120 / Page 0 / Register 50: DAC miniDSP_D Interpolation Factor Control Register - 0x78 / 0x00 /  
0x32 (B120_P0_R50) (continued)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D3-D0  
R/W  
1000  
miniDSP_D interpolation factor control. (Use only when DAC miniDSP is in use for signal  
processing, that is B0_P0_R60_D[4:0]=00000.)  
0000: Interpolation Ratio in DAC MAC Engine = 16  
0001: Interpolation Ratio in DAC MAC Engine = 1  
0010: Interpolation Ratio in DAC MAC Engine = 2  
...  
1110: Interpolation Ratio in DAC MAC Engine = 14  
1111: Interpolation Ratio in DAC MAC Engine = 15  
Book 120 / Page 0 / Register 51-126: Reserved Registers - 0x78 / 0x00 / 0x33-0x7E (B120_P0_R51-126)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
xxxx xxxx Reserved. Write only default values.  
Book 120 / Page 0 / Register 127: Book Selection Register - 0x78 / 0x00 / 0x7F (B120_P0_R127)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 0000 0000: Book 0 selected  
0000 0001: Book 1 selected  
...  
1111 1110: Book 254 selected  
1111 1111: Book 255 selected  
8.6.23 Book 120 Page 1-103  
Book 120 / Page 1-103 / Register 0: Page Select Register - 0x78 / 0x01-0x67 / 0x00 (B120_P1-103_R0)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
0000 0000 Page Select Register  
0-255: Selects the Register Page for next read or write command.  
Refer Table "Summary of Memory Map" for details.  
Book 120 / Page 1-103 / Register 1-7: Reserved Registers - 0x78 / 0x01-0x67 / 0x01-0x07 (B120_P1-  
103_R1-7)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R
0000 0000 Reserved. Write only default values  
Book 120 / Page 1-103 / Register 8-127: miniDSP_D Instructions - 0x78 / 0x01-0x67 / 0x08-0x7F (B120_P1-  
103_R8-127)  
READ/  
WRITE  
RESET  
VALUE  
BIT  
DESCRIPTION  
D7-D0  
R/W  
XXXX  
XXXX  
32 bit instructions for DAC miniDSP engine. For details refer to Table "DAC miniDSP Instruction  
Map". These instructions control the operation of DAC miniDSP mode. When the fully  
programmable miniDSP mode is enabled and DAC channel is powered up, the read and write  
access to these registers is disabled.  
8.6.24 ADC Coefficients  
Table 53. ADC Fixed Coefficient Map  
Coef No Book No  
Page No  
Base  
Register  
Base Register + Base Register + 1 Base Register + 2 Base Register + 3  
0
C0  
C1  
20  
20  
1
1
8
Coef(23:16)  
Coef(23:16)  
Coef(15:8)  
Coef(15:8)  
Coef(7:0)  
Coef(7:0)  
Reserved.  
Reserved.  
12  
232  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Table 53. ADC Fixed Coefficient Map (continued)  
Coef No Book No  
Page No  
Base  
Register  
Base Register + Base Register + 1 Base Register + 2 Base Register + 3  
0
..  
..  
..  
..  
..  
..  
C29  
C30  
20  
20  
1
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
2
..  
..  
C59  
C60  
20  
20  
2
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
3
..  
..  
C89  
C90  
20  
20  
3
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
4
..  
..  
C119  
C120  
20  
20  
4
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
5
..  
..  
C149  
C150  
20  
20  
5
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
6
..  
..  
C179  
C180  
20  
20  
6
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
7
..  
..  
C209  
C210  
20  
20  
7
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
8
..  
..  
C239  
C240  
20  
20  
8
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
9
..  
..  
C269  
C270  
20  
20  
9
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
10  
..  
..  
C299  
C300  
20  
20  
10  
11  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C329  
C330  
20  
20  
11  
12  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C359  
C360  
20  
20  
12  
13  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C389  
C390  
20  
20  
13  
14  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C419  
C420  
20  
20  
14  
15  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C449  
C450  
20  
20  
15  
16  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C479  
20  
16  
124  
Coef(23:16)  
Coef(15:8)  
Coef(7:0)  
Reserved.  
Copyright © 2014, Texas Instruments Incorporated  
233  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Table 53. ADC Fixed Coefficient Map (continued)  
Coef No Book No  
Page No  
Base  
Register  
Base Register + Base Register + 1 Base Register + 2 Base Register + 3  
0
C480  
20  
17  
..  
8
Coef(23:16)  
..  
Coef(15:8)  
..  
Coef(7:0)  
..  
Reserved.  
..  
..  
C509  
C510  
20  
20  
17  
18  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C539  
C540  
20  
20  
18  
19  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C569  
C570  
20  
20  
19  
20  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C599  
C600  
20  
20  
20  
21  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C629  
C630  
20  
20  
21  
22  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C659  
C660  
20  
20  
22  
23  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C689  
C690  
20  
20  
23  
24  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C719  
C720  
20  
20  
24  
25  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C749  
C750  
20  
20  
25  
26  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C767  
20  
26  
76  
Coef(23:16)  
Coef(15:8)  
Coef(7:0)  
Reserved.  
Table 54. ADC Adaptive Coefficient Buffer-A Map  
Coef No Book No  
Page No  
Base  
Register  
Base Register + Base Register + 1 Base Register + 2 Base Register + 3  
0
C0  
C1  
40  
40  
1
1
..  
1
2
..  
2
3
..  
3
4
..  
4
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
12  
..  
C29  
C30  
40  
40  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C59  
C60  
40  
40  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C89  
C90  
40  
40  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C119  
234  
40  
124  
Coef(23:16)  
Coef(15:8)  
Coef(7:0)  
Reserved.  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Table 54. ADC Adaptive Coefficient Buffer-A Map (continued)  
Coef No Book No  
Page No  
Base  
Register  
Base Register + Base Register + 1 Base Register + 2 Base Register + 3  
0
C120  
40  
5
..  
5
6
..  
6
7
..  
7
8
..  
8
9
..  
9
8
Coef(23:16)  
..  
Coef(15:8)  
..  
Coef(7:0)  
..  
Reserved.  
..  
..  
C149  
C150  
40  
40  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C179  
C180  
40  
40  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C209  
C210  
40  
40  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C239  
C240  
40  
40  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C255  
40  
68  
Coef(23:16)  
Coef(15:8)  
Coef(7:0)  
Reserved.  
Table 55. ADC Adaptive Coefficient Buffer-B Map  
Coef No Book No  
Page No  
Base  
Register  
Base Register + Base Register + 1 Base Register + 2 Base Register + 3  
0
C0  
C1  
40  
40  
9
72  
76  
..  
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
9
..  
C13  
C14  
40  
40  
9
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
10  
..  
..  
C43  
C44  
40  
40  
10  
11  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C73  
C74  
40  
40  
11  
12  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C103  
C104  
40  
40  
12  
13  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C133  
C134  
40  
40  
13  
14  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C163  
C164  
40  
40  
14  
15  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C193  
C194  
40  
40  
15  
16  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C223  
C224  
40  
40  
16  
17  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C253  
40  
17  
124  
Coef(23:16)  
Coef(15:8)  
Coef(7:0)  
Reserved.  
Copyright © 2014, Texas Instruments Incorporated  
235  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Table 55. ADC Adaptive Coefficient Buffer-B Map (continued)  
Coef No Book No  
Page No  
Base  
Register  
Base Register + Base Register + 1 Base Register + 2 Base Register + 3  
0
C254  
C255  
40  
40  
18  
18  
8
Coef(23:16)  
Coef(23:16)  
Coef(15:8)  
Coef(15:8)  
Coef(7:0)  
Coef(7:0)  
Reserved.  
Reserved.  
12  
8.6.25 ADC Defaults  
Table 56. Default values of ADC Coefficients in Buffers  
A and B  
ADC Buffer-  
A,B  
Default Value at reset  
Coefficients  
C0  
00000000H  
01170000H  
01170000H  
7DD30000H  
7FFFFF00H  
00000000H  
7FFFFF00H  
00000000H  
7FFFFF00H  
00000000H  
7FFFFF00H  
00000000H  
7FFFFF00H  
00000000H  
7FFFFF00H  
00000000H  
7FFFFF00H  
00000000H  
7FFFFF00H  
00000000H  
7FFFFF00H  
00000000H  
7FFFFF00H  
00000000H  
7FFFFF00H  
00000000H  
7FFFFF00H  
00000000H  
04280000H  
01000000H  
C1  
C2  
C3  
C4  
C5,C6  
C7  
C8,..,C11  
C12  
C13,..,C16  
C17  
C18,..,C21  
C22  
C23,..,C26  
C27  
C28,..,C35  
C36  
C37,C38  
C39  
C40,..,C43  
C44  
C45,..,C48  
C49  
C50,..,C53  
C54  
C55,..,C58  
C59  
C60,..,C253  
C254  
C255  
8.6.26 DAC Coefficients  
Table 57. DAC Fixed Coefficient Map  
Coef No Book No  
Page No  
Base  
Register  
Base Register + Base Register + 1 Base Register + 2 Base Register + 3  
0
C0  
C1  
60  
60  
1
1
8
Coef(23:16)  
Coef(23:16)  
Coef(15:8)  
Coef(15:8)  
Coef(7:0)  
Coef(7:0)  
Reserved.  
Reserved.  
12  
236  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Table 57. DAC Fixed Coefficient Map (continued)  
Coef No Book No  
Page No  
Base  
Register  
Base Register + Base Register + 1 Base Register + 2 Base Register + 3  
0
..  
..  
..  
..  
..  
..  
C29  
C30  
60  
60  
1
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
2
..  
..  
C59  
C60  
60  
60  
2
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
3
..  
..  
C89  
C90  
60  
60  
3
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
4
..  
..  
C119  
C120  
60  
60  
4
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
5
..  
..  
C149  
C150  
60  
60  
5
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
6
..  
..  
C179  
C180  
60  
60  
6
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
7
..  
..  
C209  
C210  
60  
60  
7
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
8
..  
..  
C239  
C240  
60  
60  
8
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
9
..  
..  
C269  
C270  
60  
60  
9
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
10  
..  
..  
C299  
C300  
60  
60  
10  
11  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C329  
C330  
60  
60  
11  
12  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C359  
C360  
60  
60  
12  
13  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C389  
C390  
60  
60  
13  
14  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C419  
C420  
60  
60  
14  
15  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C449  
C450  
60  
60  
15  
16  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C479  
60  
16  
124  
Coef(23:16)  
Coef(15:8)  
Coef(7:0)  
Reserved.  
Copyright © 2014, Texas Instruments Incorporated  
237  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Table 57. DAC Fixed Coefficient Map (continued)  
Coef No Book No  
Page No  
Base  
Register  
Base Register + Base Register + 1 Base Register + 2 Base Register + 3  
0
C480  
60  
17  
..  
8
Coef(23:16)  
..  
Coef(15:8)  
..  
Coef(7:0)  
..  
Reserved.  
..  
..  
C509  
C510  
60  
60  
17  
18  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C539  
C540  
60  
60  
18  
19  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C569  
C570  
60  
60  
19  
20  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C599  
C600  
60  
60  
20  
21  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C629  
C630  
60  
60  
21  
22  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C659  
C660  
60  
60  
22  
23  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C689  
C690  
60  
60  
23  
24  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C719  
C720  
60  
60  
24  
25  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C749  
C750  
60  
60  
25  
26  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C779  
C780  
60  
60  
26  
27  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C809  
C810  
60  
60  
27  
28  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C839  
C840  
60  
60  
28  
29  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C869  
C870  
60  
60  
29  
30  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C899  
C900  
60  
60  
30  
31  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C929  
C930  
60  
60  
31  
32  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
238  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Table 57. DAC Fixed Coefficient Map (continued)  
Coef No Book No  
Page No  
Base  
Register  
Base Register + Base Register + 1 Base Register + 2 Base Register + 3  
0
C959  
C960  
60  
60  
32  
33  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C989  
C990  
60  
60  
33  
34  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C1019  
C1020  
60  
60  
34  
35  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C1023  
60  
35  
20  
Coef(23:16)  
Coef(15:8)  
Coef(7:0)  
Reserved.  
Table 58. DAC Adaptive Coefficient Bank 1 Buffer-A Map  
Coef No Book No  
Page No  
Base  
Register  
Base Register + Base Register + 1 Base Register + 2 Base Register + 3  
0
C0  
C1  
80  
80  
1
1
..  
1
2
..  
2
3
..  
3
4
..  
4
5
..  
5
6
..  
6
7
..  
7
8
..  
8
9
..  
9
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
12  
..  
C29  
C30  
80  
80  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C59  
C60  
80  
80  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C89  
C90  
80  
80  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C119  
C120  
80  
80  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C149  
C150  
80  
80  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C179  
C180  
80  
80  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C209  
C210  
80  
80  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C239  
C240  
80  
80  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C255  
80  
68  
Coef(23:16)  
Coef(15:8)  
Coef(7:0)  
Reserved.  
Table 59. DAC Adaptive Coefficient Bank 1 Buffer-B Map  
Coef No Book No  
C0 80  
Page No  
Base  
Register  
Base Register + Base Register + 1 Base Register + 2 Base Register + 3  
0
9
72  
Coef(23:16)  
Coef(15:8)  
Coef(7:0)  
Reserved.  
Copyright © 2014, Texas Instruments Incorporated  
239  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Table 59. DAC Adaptive Coefficient Bank 1 Buffer-B Map (continued)  
Coef No Book No  
Page No  
Base  
Register  
Base Register + Base Register + 1 Base Register + 2 Base Register + 3  
0
C1  
80  
9
76  
..  
Coef(23:16)  
..  
Coef(15:8)  
..  
Coef(7:0)  
..  
Reserved.  
..  
..  
C13  
C14  
80  
80  
9
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
10  
..  
..  
C43  
C44  
80  
80  
10  
11  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C73  
C74  
80  
80  
11  
12  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C103  
C104  
80  
80  
12  
13  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C133  
C134  
80  
80  
13  
14  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C163  
C164  
80  
80  
14  
15  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C193  
C194  
80  
80  
15  
16  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C223  
C224  
80  
80  
16  
17  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C253  
C254  
C255  
80  
80  
80  
17  
18  
18  
124  
8
Coef(23:16)  
Coef(23:16)  
Coef(23:16)  
Coef(15:8)  
Coef(15:8)  
Coef(15:8)  
Coef(7:0)  
Coef(7:0)  
Coef(7:0)  
Reserved.  
Reserved.  
Reserved.  
12  
Table 60. DAC Adaptive Coefficient Bank 2 Buffer-A Map  
Coef No Book No  
Page No  
Base  
Register  
Base Register + Base Register + 1 Base Register + 2 Base Register + 3  
0
C0  
C1  
82  
82  
1
1
..  
1
2
..  
2
3
..  
3
4
..  
4
5
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
12  
..  
C29  
C30  
82  
82  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C59  
C60  
82  
82  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C89  
C90  
82  
82  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C119  
C120  
82  
82  
124  
8
Coef(23:16)  
Coef(23:16)  
Coef(15:8)  
Coef(15:8)  
Coef(7:0)  
Coef(7:0)  
Reserved.  
Reserved.  
240  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Table 60. DAC Adaptive Coefficient Bank 2 Buffer-A Map (continued)  
Coef No Book No  
Page No  
Base  
Register  
Base Register + Base Register + 1 Base Register + 2 Base Register + 3  
0
..  
5
6
..  
6
7
..  
7
8
..  
8
9
..  
9
..  
..  
..  
..  
..  
C149  
C150  
82  
82  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C179  
C180  
82  
82  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C209  
C210  
82  
82  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C239  
C240  
82  
82  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C255  
82  
68  
Coef(23:16)  
Coef(15:8)  
Coef(7:0)  
Reserved.  
Table 61. DAC Adaptive Coefficient Bank 2 Buffer-B Map  
Coef No Book No  
Page No  
Base  
Register  
Base Register + Base Register + 1 Base Register + 2 Base Register + 3  
0
C0  
C1  
82  
82  
9
72  
76  
..  
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
9
..  
C13  
C14  
82  
82  
9
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
10  
..  
..  
C43  
C44  
82  
82  
10  
11  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C73  
C74  
82  
82  
11  
12  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C103  
C104  
82  
82  
12  
13  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C133  
C134  
82  
82  
13  
14  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C163  
C164  
82  
82  
14  
15  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C193  
C194  
82  
82  
15  
16  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C223  
C224  
82  
82  
16  
17  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C253  
C254  
82  
82  
17  
18  
124  
8
Coef(23:16)  
Coef(23:16)  
Coef(15:8)  
Coef(15:8)  
Coef(7:0)  
Coef(7:0)  
Reserved.  
Reserved.  
Copyright © 2014, Texas Instruments Incorporated  
241  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Table 61. DAC Adaptive Coefficient Bank 2 Buffer-B Map (continued)  
Coef No Book No  
C255 82  
Page No  
Base  
Register  
Base Register + Base Register + 1 Base Register + 2 Base Register + 3  
0
18  
12  
Coef(23:16)  
Coef(15:8)  
Coef(7:0)  
Reserved.  
8.6.27 DAC Defaults  
Table 62. Default values of DAC Coefficients Bank 1 and Bank 2 in Buffers A  
and B  
DAC Buffer-A,B Coefficients  
Default Value at reset  
00000000H  
7FFFFF00H  
00000000H  
7FFFFF00H  
00000000H  
7FFFFF00H  
00000000H  
7FFFFF00H  
00000000H  
7FFFFF00H  
00000000H  
7FFFFF00H  
00000000H  
7FFFFF00H  
00000000H  
7FFFFF00H  
00000000H  
7FFFFF00H  
00000000H  
7FFFFF00H  
00000000H  
7FFFFF00H  
00000000H  
7FFFFF00H  
00000000H  
7FFFFF00H  
00000000H  
7FFFFF00H  
00000000H  
7FF70000H  
80090000H  
7FEF0000H  
00110000H  
7FDE0000H  
00000000H  
01180000H  
04400000H  
C0  
C1  
C2,C3  
C4  
C5,..,C8  
C9  
C10,..,C13  
C14  
C15,..,C18  
C19  
C20,..,C23  
C24  
C25,..,C28  
C29  
C30,..,C35  
C36  
C37,C38  
C39  
C40,..,C43  
C44  
C45,..,C48  
C49  
C50,..,C53  
C54  
C55,..,C58  
C59  
C60,..,C63  
C64  
C65,..,C70  
C71  
C72  
C73  
C74,C75  
C76  
C77,..,C253  
C254  
C255  
242  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
9 Applications and Implementation  
9.1 Application Information  
The TLV320AIC3268 is a highly integrated stereo audio codec with integrated miniDSP, mono Speaker amplifier  
and mutiple digital audio interfaces. It enables many different types of audio platforms having a need for stereo  
audio record and playback and needing to interface with several other devices in the system over multiple digital  
audio interfaces.  
9.2 Typical Applications  
Figure 109 shows a typical circuit configuration for a system utilizing the TLV320AIC3268.  
Note: VBAT is used for  
voltage measurement .  
System  
Battery  
PERIPHERAL  
DEVICE 1  
PERIPHERAL  
DEVICE 2  
HOST PROCESSOR  
Control  
Interface  
BATT_VDD  
1mF  
10kW  
+1.8VD1  
Audio  
Interface  
Audio  
Interface  
Audio Interface  
LOL  
LOR  
Stereo  
Differential  
Lineout  
VREF_SAR  
1mF  
VREF_AUDIO  
ASI1  
ASI2  
ASI3  
1mF  
RECP  
RECM  
1mF  
1mF  
MICDET  
Analog_In1  
IN1R/AUX2  
IN2L  
2.2kW  
0.1mF  
MICBIAS_EXT  
Analog_In2  
Analog_In3  
Analog_In4  
Analog_In5  
Analog_In6  
Analog_In7  
IN1L/AUX1  
HPL  
1mF  
1mF  
1mF  
1mF  
1mF  
IN2R  
HPR  
Headset  
IN3L  
HPVSS_SENSE  
AGND at Connector  
IN3R  
+1.8VA  
CPVDD_18  
CPFCP  
10mF  
0.1mF  
IN4R  
IN4L  
2.2mF  
X7R Type  
To Internal  
Mic  
MICBIAS  
CPFCM  
VNEG  
MICBIAS_VDD  
BATT _VDD  
1mF  
2.2mF  
X7R Type  
0.1mF  
8W  
(Opt.)  
SPKP  
SPKM  
10mF  
DVDD _18  
DVDD _18  
DVDD _18  
0.1mF  
0.1mF  
SPK_V  
SVDD  
+1.8VD1  
2W  
0.1mF  
10mF  
0.1mF  
0.1mF  
1mF  
0.1mF  
0.1mF  
1mF +1.8VD2  
0.1mF  
1mF  
10mF  
0.1mF 0.1mF 0.1mF 0.1mF  
BATT _VDD  
+1.8VA  
Figure 109. Typical Circuit Configuration  
9.2.1 Design Requirements  
9.2.1.1 Charge Pump Flying and Holding Capacitor  
The TLV320AIC3268 features a built in charge-pump to generate a negative supply rail, VNEG from CPVDD_18.  
This negative voltage is used by the headphone amplifier to enable driving the output signal biased around  
ground potential. For proper operation of the charge pump and headphone amplifier, it is recommended that the  
flying capacitor connected between CPFCP and CPFCM terminals and the holding capacitor connected between  
VNEG and ground be of X7R type. It is recommended to use 2.2µF as capacitor values. Failure to use X7R type  
capacitor can result in degraded performance of charge pump and headphone amplifier.  
9.2.1.2 Reference Fitlering Capacitor  
The TLV320AIC3268 has a built-in bandgap used to generate reference voltages and currents for the device. To  
acheive high SNR, the reference voltage on VREF_AUDIO should be filtered using a 1µF capacitor from  
VREF_AUDIO terminal to ground.  
Copyright © 2014, Texas Instruments Incorporated  
243  
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Typical Applications (continued)  
The built-in SAR ADC in TLV320AIC3268 can operate with either internally generated reference voltage or  
externally provided reference voltage. When used with internal reference, the reference voltage on VREF_SAR  
should be filtered with a 1µF capacitor for filtering noise as well as reference stability.  
9.2.1.3 Micbias  
The TLV320AIC3268 has a built-in bias voltage output for biasing of microphones. No intentional capacitors  
should be connected directly to either MICBIAS or MICBIAS_EXT outputs for filtering.  
9.2.1.4 Power Supply  
The TLV320AIC3268 needs several power supplies for it's operation.  
The SVDD input is used to power the speaker amplifier. This includes the power required for internal circuits as  
well as the power delivered to the speaker load. It is recommended that this supply is directly connected to  
battery, for systems where battery rail is in the range of 2.7V to 5.5V.The peak switching current on this power  
can exceed 1A. MICBIAS_VDD can be tapped from same source that is used for SVDD.  
The AVDDx_18, HVDD_18 and CPVDD_18 power inputs are used to power the analog circuits including analog  
to digital converters, digital to analog converters, programmable gain amplifiers, headphone amplifiers, charge  
pump etc. The analog blocks in TLV320AIC3268 have high power supply rejection ratio, however it is  
recommended that these supplies be powered by well regulated power supplies like low dropout regulators  
(LDO) for optimal performance. When these power terminals are driven from a common power source, the  
current drawn from the source will depend upon blocks enabled inside the device. However as an example when  
all the internal blocks powered are enabled the source should be able to deliver 150mA of current.  
The RECVDD_33 powers the receiver amplifier of TLV320AIC3268. When the receiver amplifier is used in  
differential lineout mode, then the RECVDD_33 could be connected to the same supply as AVDDx_18 terminals.  
When the receiver amplifier is used to drive mono receiver speakers in BTL mode, the RECVDD_33 supply could  
consume approximately 150mA of peak current.  
The DVDD_18 powers the digital core of TLV320AIC3268, including the minIDSP, audio serial interfaces (ASI),  
control interfaces (SPI or I2C), clock generation and PLL. The DVDD_18 power can be driven by high efficiency  
switching regulators or low drop out regulators. When the miniDSP_a and miniDSP_D are enabled in  
programmable mode and operated at peak frequencies, the supply source should be able to able to deliver  
approx 100mA of current. When the PRB modes are used instead of programmable miniDSP mode, then the  
peak current load on DVDD_18 supply source could be approximately 20mA.  
The IOVDD1_33 and IOVDD2_33 power the digital input and digital output buffers of TLV320AIC3268. The  
current consumption of this power depends on configuration of digital terminals as inputs or outputs. When the  
digital terminals are configured as outputs, the current consumption would depend on switching frequency of the  
signal and the load on the output terminal, which depends on board design and input capacitance of other  
devices connected to the signal .  
Refer to Figure 109 for recommendations on decoupling capacitors.  
9.2.2 Detailed Design Procedure  
9.2.2.1 Analog Input Connection  
The analog inputs to TLV320AIC3268 should be ac-coupled to the device terminals to allow decoupling of signal  
source's common mode voltage with that of TLV320AIC3268's common mode voltage. The input coupling  
capacitor in combination with the selected input impedance of TLV320AIC3268 forms a high-pass filter.  
Fc = 1/(2*π*ReqCc)  
Cc = 1/(2*π*ReqFc)  
(22)  
(23)  
For high fidelity audio recording application it is desirable to keep the cutoff frequency of the high pass filter as  
low as possible. For single-ended input mode, the equivalent input resistance Req can be calculated as  
Req = Rin* (1 + 2g)/(1+g)  
(24)  
where g is the analog PGA gain calculated in linear terms.  
g = 10000 * 2floor(G/6)/Rin  
(25)  
244  
Copyright © 2014, Texas Instruments Incorporated  
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Typical Applications (continued)  
where G is the analog PGA gain programmed in B0_P1_R59-60 (in dB) and Rin is the value of the resistor  
programmed in B0_P1_R52-53 and B0_P1_R55-56 and assumes Rin = Rcm (as defined in B0_P1_R54 and  
B0_P1_R57). For differential input mode, Req can be calculated as:  
Req = Rin  
(26)  
where Rin is the value of the resistor programmed in B0_P1_R52-54 and B0_P1_R55-57, assuming symmetrical  
inputs.  
Signal Connector  
Device Analog Input  
C
c
Req  
Rpd  
Figure 110. Analog Input Connection With Pull-down Resistor  
When the analog signal is connected to the system through a connector such as audio jack, it is recommended  
to put a pull-down resistor on the signal as shown in Figure 111. The pulldown resistor helps keep the signal  
grounded and helps improve noise immunity when no source is connected to the connector. The pulldown  
resistor value should be chosen large enough to avoid loading of signal source.  
Each analog input of the TLV320AIC3268 is capable of handling signal amplitude of 0.5Vrms. If the input signal  
source can drive signals higher than the maximum value, an external resistor divider network as shown in  
Figure 111 should be used to attenuate the signal to less than 0.5Vrms before connecting the signal to the  
device. The resistor values of the network should be chosen to provide desired attenuation as well as  
Equation 27.  
R1|| R2<< Req  
(27)  
Device Analog Input  
Signal Connector  
R1  
Cc  
Req  
R2  
Figure 111. Analog Input Connection With Resistor Divider Network  
Certain non audio applications require supporting of high impedance sources. The TLV320AIC3268 supports a  
high-input impedance mode on IN1L/AUX1 and IN1R/AUX2 terminals, for such use cases. See High Impedance  
Input Mode for more details. For such cases the input coupling capacitor can be eliminated from design.  
Whenever any of the analog input terminals IN1L_AUX1, IN2L, IN3L, IN4L, IN1R_AUX2, IN2R, IN3R or IN4R are  
not used in an application, it is recommended to short the unused input terminals together and connect them to  
ground using a small capacitor (example 0.1µF). If VBAT is not used in an application, then it can be shorted to  
ground.  
9.2.2.2 Analog Output Connection  
The line outputs of the TLV320AIC3268 drive a signal biased around the device common mode voltage. To avoid  
loading the common mode with the load, it is recommended to connect the single-ended load through an ac-  
coupling capacitor. The ac-coupling capacitor in combination with the load impedance forms a high pass filter.  
Fc = 1/(2*π*RLCc)  
Cc = 1/(2*π*RLFc)  
(28)  
(29)  
Copyright © 2014, Texas Instruments Incorporated  
245  
 
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Typical Applications (continued)  
For high fidelity playback, the cutoff frequency of the resultant high-pass filter should be kept low. For example  
with RL of 10kΩ, using 1µF coupling capacitor results in a cut-off frequency of 8Hz.  
For differential lineout configurations, the load should be directly connected between the differential outputs, with  
no coupling capacitor.  
The TLV320AIC3268 supports headphone in single-ended configuration and drives the signal biased around  
ground. The headphone load can be directly connected between device terminals and ground.  
The TLV320AIC3268 supports BTL load for receiver and speaker amplifier. The load can be directly connected  
between the differential output terminals of receiver and speaker amplifier.  
Whenver any of the analog output terminals LOL, LOR, RECP, RECM, HPL, HPR, SPKP or SPKM are not used  
in an application, they should be left open or not connected.  
9.2.2.3 EMI Passive Devices  
The TLV320AIC3268 does not need filters for the functioning of it's speaker amplifier.  
However depending on the board layout and system level EMI requirements, an optional EMI filter consisting of  
ferrite beads and capacitors may be used as shown in and and labelled as optional. The ferrite beads if used  
should be capable of handing peak currents for desired power delivery into speakers. If EMI passives are not  
used, ferrite bead should be replaced with a short and the capacitor not installed.  
9.2.3 Application Performance Plots  
Figure 112 shows the excellent low-distortion performance of the TLV320AIC3268 in a system over the 20Hz to  
20kHz audio spectrum.  
±10  
±30  
±50  
±70  
±90  
±110  
20  
200  
2000  
Frequency (Hz)  
Conditions: Differential Lineout, Rload=10kΩ, CM=0.9V, Input Amplitude=-3dBFS  
20000  
C014  
Figure 112. Total Harmonic Distortion + Noise versus Input Frequency  
Figure 113 shows the distortion performance of the TLV320AIC3268 in a system over the input amplitude range.  
246  
Copyright © 2014, Texas Instruments Incorporated  
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Typical Applications (continued)  
0
±20  
±40  
±60  
±80  
±100  
±70  
±60  
±50  
Input Amplitude (dBFS)  
Conditions: Differential Lineout, Rload=10kΩ, CM=0.9V  
±40  
±30  
±20  
±10  
0
C013  
Figure 113. Total Harmonic Distortion + Noise versus Input Amplitude  
9.3 Initialization Setup  
The TLV320AIC3268 has multiple power supply domains to support various functions. Before the device is fully  
functional, all the power supplies must be enabled. The section Power On Sequence describes the supported  
power supply sequencing for TLV320AIC3268.  
9.3.1 Power On Sequence  
There are two recommended power sequence possible for TLV320AIC3268:  
1) Speaker/Microphone Supplies, then Digital Supplies, then Analog Supplies  
2) Speaker/Microphone Supplies, then Digital and Analog Supplies  
The first power on sequence is useful if the end system uses separate analog and digital supplies. This is useful  
to improve the efficiency of the digital rails by using a DC/DC converter, while keeping the analog supplies clean  
by using a low-dropout regulator (LDO). While it is recommended to separate analog and digital supplies, if all  
the 1.8V supplies (analog and digital) must be tied together, the second power sequence can be utilized.  
9.3.1.1 Power On Sequence 1 - Separate Digital and Analog Supplies  
Figure 114 shows a timing diagram for the case where all supplies are provided separately. In such case, the  
depicted sequence should be used. The dashed lines marked in blue color refer to an internally supplied voltage.  
Copyright © 2014, Texas Instruments Incorporated  
247  
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Initialization Setup (continued)  
SVDD, SPK_V,  
tS-I  
MICBIAS_VDD  
IOVDD1_33  
tI-D  
tI1-I2  
IOVDD2_33  
DVDD_18  
tD-A  
AVDD1_18, AVDD2_18,  
AVDD4_18, AVDD_18,  
HVDD_18  
tA-C  
CPVDD_18  
RECVDD_33  
RESET  
tD-R  
tR-P  
tD-P  
Write to  
Registers  
Disable AVDD weak connection to DVDD  
(Write ‘0’ to B0_P1_R1_D3)  
Enable External Analog Power Supplies  
(Write ‘0’ to B0_P1_R1_D2)  
Figure 114. Analog Supplies provided after Digital Supplies  
SVDD, SPK_V, and MICBIAS_VDD should be provided first. Next, IOVDD1_33 and IOVDD2_33 should be  
provided, and DVDD_18 can be provided at the same time as these IOVDDx_33 supplies. Since, by default,  
DVDD_18 is weakly connected to AVDD1_18 by a 10kΩ resistor, AVDDx_18 and HVDD_18 (it is recommended  
to connect these five supplies together) will ramp up to the DVDD_18 voltage once DVDD_18 is provided at  
approximately 5*10k*CAVDD seconds, where CAVDD are the sum of the decoupling capacitors on the AVDDx_18  
and HVDD_18 terminals. For CAVDD = 1uF, the charging time is approximately 50ms. Parameter tD-A allows  
analog supplies to be stable before analog supplies are provided. To prevent high currents from DVDD_18 to the  
1.8V and 3.3V analog supplies (that is AVDDx_18, HVDD_18, RECVDD_33), these analog supplies cannot be  
externally driven low by the external power source. This means that the external power source should be either  
high impedance or have a weak pull-down before being enabled.  
Ensure that CPVDD_18 supply is provided either at same time as analog supplies or later. After RESET is  
released (or a software reset is performed), no register writes should be performed within 1ms.  
Table 63. Power Supply Timing Parameters  
Parameter  
Minimum  
Typical  
Maximum  
Comments  
tS-I  
0
0
Time between SVDD/SPK_V/MICBIAS_VDD is provided and IOVDD1_33  
is provided.  
tI-D  
0
0
0
0
Time between IOVDD1_33 is provided and DVDD_18 is provided.  
Time between IOVDD1_33 is provided and IOVDD2_33 is provided.  
tI1-I2  
Before  
DVDD_18  
provided  
tD-A  
5*10k*CAVDD 5*10k*CAVDD  
Time between DVDD_18 is provided and the 1.8V and 3.3V analog  
supplies (AVDDx_18, HVDD_18, AVDD3_33, RECVDD_33) are provided.  
AVDDx_18 must be internally present before changing to external 1.8V  
analog supplies to prevent pop at headphone outputs.  
tA-C  
0
0
Time between AVDDx_18 supplies are provided and CPVDD_18 is  
provided.  
248  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
Initialization Setup (continued)  
Table 63. Power Supply Timing Parameters (continued)  
Parameter  
Minimum  
Typical  
Maximum  
Comments  
tD-R  
10ns  
10ns  
Time between DVDD_18 (and IOVDD1_33) is provided and reset can be  
released.  
tD-P  
tR-P  
10ms  
1ms  
10ms  
1ms  
Time between DVDD_18 (and IOVDD1_33) is provided and when  
registers can be written to enable the external 1.8V analog supplies.  
Time between release of the reset and when registers can be written (that  
is to enable the external 1.8V analog supplies).  
9.3.1.2 Power On Sequence 2 - Shared 1.8V Analog Supplies  
If desired, the analog supplies (AVDD1_18, AVDD2_18, AVDD4_18, AVDD_18 and HVDD_18) could also be  
externally supplied at the same time as DVDD_18. In this case, the weak pullup is not utilized. This is shown in  
Figure 115.  
SVDD, SPK_V,  
tS-I  
MICBIAS_VDD  
IOVDD1_33  
tI-D  
tI1-I2  
IOVDD2_33  
DVDD_18  
tD-A  
AVDD1_18, AVDD2_18,  
AVDD4_18, AVDD_18,  
HVDD_18  
tA-C  
CPVDD_18  
RECVDD_33  
/RESET  
tD-R  
tR-P  
tD-P  
Write to  
Registers  
Disable AVDDx_18 weak connection to  
DVDD_18 (Write ‘0’ to B0_P1_R1_D3)  
Enable External Analog Power Supplies  
(Write ‘0’ to B0_P1_R1_D2)  
Figure 115. Simultaneous Powerup of Digital and Analog 1.8V Supplies  
After RESET is released (or a software reset is performed), no register writes should be performed within 1ms.  
Table 64. Power Supply Timing Parameters  
Parameter  
Minimum  
Typical  
Maximum  
Comments  
tS-I  
0
0
Time between SVDD/SPK_V/MICBIAS_VDD is provided and IOVDD1_33  
is provided.  
tI-D  
0
0
0
0
Time between IOVDD1_33 is provided and DVDD_18 is provided.  
Time between IOVDD1_33 is provided and IOVDD2_33 is provided.  
tI1-I2  
Before  
DVDD_18  
provided  
tA-C  
0
0
Time between AVDDx_18 supplies are provided and CPVDD_18 is  
provided.  
Copyright © 2014, Texas Instruments Incorporated  
249  
 
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
Table 64. Power Supply Timing Parameters (continued)  
Parameter  
Minimum  
Typical  
Maximum  
Comments  
tD-R  
10ns  
10ns  
Time between DVDD_18 (and IOVDD1_33) is provided and reset can be  
released.  
tD-P  
tR-P  
10ms  
1ms  
10ms  
1ms  
Time between DVDD_18 (and IOVDD1_33) is provided and when  
registers can be written to enable the external 1.8V analog supplies.  
Time between release of the reset and when registers can be written (that  
is to enable the external 1.8V analog supplies).  
When the TLV320AIC3268 is controlled over a shared I2C bus, it is recommended that any I2C communication  
be attempted only after the IOVDDx_33 and DVDD_18 rails have been powered up and the hardware reset  
signal applied. If I2C communication is attempted before this requirement, even with other devices on the same  
I2C bus, error conditions may occur.  
9.3.2 Reset  
The TLV320AIC3268 internal logic must be initialized to a known condition for proper device function. To initialize  
the device in its default operating condition, the hardware reset terminal (RESET) must be pulled low for at least  
10ns. For this initialization to work, both the IOVDDx_33 and DVDD_18 supplies must be powered up. It is  
recommended that while the DVDD_18 supply is being powered up, the RESET terminal be pulled low.  
The device can also be reset via software reset. Writing '1' into B0_P0_R1_D0 resets the device. After a device  
reset, all registers are initialized with default values as listed in the Register Map section.  
After hardware or software reset, the TLV320AIC3268 is in a sleep mode, when all the blocks and functions are  
disabled. In this mode however the control interface, SPI or I2C remains enabled, allowing an external host  
controller to configure the device. The blocks inside the TLV320AIC3268 must be configured for desired function  
by writing into the control registers.  
Given below are some of the typical configurations that are needed to be done before enabling TLV320AIC3268.  
However the list of configurations is not unique or comprehensive and the requirements must be determined per  
the application requirements.  
Wait for Lockout time. See Device Startup Lockout Times for details.  
Configuration of FIFO's. See Setting Device FIFOs for details.  
Configure the device for PRB modes or programmable miniDSP modes for ADC and DAC.  
For PRB modes, program the coefficients of user programmable filters, including setup adaptive  
coefficient updates if necessary.  
For programmable miniDSP mode, configure the instruction and coefficient memory for miniDSP.  
Configure the oversampling rates, AOSR and DOSR, and power tune modes for ADCs and DACs.  
Configure the clock dividers and PLL, if required. See Clock Generation and PLL for details.  
Configure the Audio Serial Interfaces (ASI).  
Configure the device common mode voltages. See Setting Device Common Mode Voltage for details.  
Configure the analog signal routing to ADCs and from DACs, volume controls and power up the relevant  
blocks.  
Some device configurations require wait times after register configuration, to take effect. See Analog and  
Reference Startup and PLL Startup for details. Table 42 describes internal flags which can be used to check  
device status in response to device configurations or input signals.  
The details of control registers for device configurations are described in Register Maps.  
9.3.3 Device Startup Lockout Times  
After the TLV320AIC3268 is initialized through hardware reset at power-up or software reset, the internal  
registers are initialized to default values. This initialization takes place within 1ms after pulling the RESET signal  
high. During this initialization phase, no register-read or register-write operation should be performed on ADC or  
DAC coefficient buffers. Also, no block within the codec should be powered up during the initialization phase.  
250  
Copyright © 2014, Texas Instruments Incorporated  
 
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
9.3.4 Analog and Reference Startup  
The TLV320AIC3268 uses an external VREF_AUDIO terminal for decoupling the reference voltage used for the  
data converters and other analog blocks. VREF_AUDIO terminal requires a minimum 1µF decoupling capacitor  
from VREF_AUDIO to VSS. In order for any analog block to be powered up, the Analog Reference block must be  
powered up. By default, the Analog Reference block will implicitly be powered up whenever any analog block is  
powered up, or it can be powered up independently. Detailed descriptions of Analog Reference including fast  
power-up options are provided in Reference Voltage. During the time that the reference block is not completely  
powered up, subsequent requests for powering up analog blocks (for example PLL) are queued, and executed  
after the reference power up is complete.  
When analog inputs are routed to the ADC PGA, approximately 2ms of wait is required to enable charging up of  
input coupling capacitor before the routing is enabled.  
9.3.5 PLL Startup  
Whenever the PLL is powered up, a startup delay of approx 1ms is involved after the power up command of the  
PLL and before the clocks are available to the codec. This delay is to ensure stable operation of PLL and clock-  
divider logic.  
9.3.6 Setting Device Common Mode Voltage  
The TLV320AIC3268 allows the user to set the common mode voltage for analog inputs to 0.75V or 0.9V by  
programming B0_P1_R8_D2. The input common-mode voltage of 0.9V works best when the analog supply  
voltage is centered around 1.8V or above, and offers the highest possible performance. For analog supply  
voltages below 1.8V, a common mode voltage of 0.75V must be used.  
Table 65. Input Common Mode voltage and Input Signal Swing  
Input Common Mode  
Voltage (V)  
AVdd (V)  
Channel Gain  
(dB)  
Single-Ended Input Swing for  
Differential Input Swing for  
0dBFS output signal (VRMS)  
0dBFS output signal (VRMS  
)
0.75  
0.90  
>1.5  
–2  
0
0.375  
0.5  
0.75  
1.0  
1.8 … 1.95  
NOTE  
The input common mode setting is common for DAC playback and Analog Bypass path  
9.3.7 Setting Device FIFOs  
The TLV320AIC3268 features FIFO between CIC filters and miniDSP_A and miniDSP_D and DAC modulators.  
These FIFO's allow ease of programming of signal processing functions within the miniDSP by allowing easier  
interface with other blocks. However use of these FIFOs adds to group delay in the channel and should be  
bypassed for delay sensitive applications along with appropriate care taken in miniDSP programming. By default  
the FIFO between CIC filter and miniDSP_A is disabled and is recommended to be enabled by writing  
B64_P0_R32_D7 as '1'. Similarly by default the FIFO between miniDSP_D and DAC modulator is disabled and is  
recommended to be enabled by writing B120_P0_R50_D7 as '1'.  
The TLV320AIC3268 has a feature which allows the miniDSP instruction frame to be synchronized with ASI's  
data frame. For miniDSP_D, the synchronization is done with ASI1's data frame by default. However when the  
TLV320AIC3268 is used with PRB modes for playback, it is recommended to disable miniDSP_D's  
synchronization with ASI data frame by programming B0_P4_R119_D[7:6] as "11".  
9.3.8 Miscellaneous  
When enabling headphone amplifiers, it is recommended to program B0_P1_R77_D0 as '1' before powering up  
headphone amplifier.  
10 Power Supply Recommendations  
See Power Supply for details about driving power supplies. See Power On Sequence for details on sequencing  
of power supplies.  
Copyright © 2014, Texas Instruments Incorporated  
251  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Each system design and PCB layout is unique; layout should be carefully reviewed in the context of a specific  
PCB design. However, the following guidelines can optimize TLV320AIC3268 performance:  
The TLV320AIC3268 thermal pad also serves as a device ground connection. Connect the thermal pad to the  
ground plane using multiple VIAS to minimize impedance between device ground and PCB ground. The  
TLV320AIC3268 has only one ground terminal. The digital ground and analog ground planes on the PCB  
should be shorted to each other close the TLV320AIC3268 thermal pad.  
The decoupling capacitors for the power supplies should be placed close to the device terminals. Figure 109  
shows the recommended decoupling capacitors for the TLV320AIC3268. For SVDD, place the 10µF bulk  
decoupling capacitor near where battery supply enters the PCB, and place the smaller 0.1µF and 1µF  
decoupling capacitors closer to the device terminals.  
Place the flying capacitor between CPFCP and CPFCM near the device terminals, with no VIAS between the  
device terminals and the capacitor. Similarly, keep the decoupling capacitor on VNEG near the device  
terminal with minimal VIAS between the device terminals, capacitor and PCB ground.  
The TLV320AIC3268 internal voltage references must be filtered using external capacitors. Place the filter  
capacitors on VREF_AUDIO and VREF_SAR near the device terminals for optimal performance.  
The TLV320AIC3268 reduces crosstalk by a separate ground sense signal for the headphone jack. To  
optimize crosstalk performance, use a separate trace from the HPVSS_SENSE terminal to the headphone-  
jack ground terminal, with no other ground connections along the length.  
The parasitic capacitance to ground plane should be minimized for SPKP and SPKM signals. Keep the signal  
routing for SPKP and SPKM as short as possible for optimal performance of the speaker amplifier.  
For analog differential audio signals, the signals should be routed differentially on the PCB for better noise  
immunity. Avoid crossing of digital and analog signals to avoid undesirable crosstalk.  
252  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
11.2 Layout Example  
Ground Plane  
+1.8V  
+3.3V  
+1.8V  
+1.8V  
VSYS  
AVDD 4_18  
VSYS  
SPK_V  
VREF_SAR  
DVDD_18  
VREF_AUDIO  
AVDD_18  
1
= Via  
+3.3V  
= Ground Plane  
+1.8V  
+3.3V  
+VDD  
= Power Plane/ Inner Layer  
= 0402 Footprint  
= 0603 Footprint  
= Optional Component  
Copyright © 2014, Texas Instruments Incorporated  
253  
TLV320AIC3268  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
www.ti.com.cn  
12 器件和文档支持  
12.1 社区资源  
E2E™ 音频转换器论坛  
TI E2E 社区  
12.2 Trademarks  
E2E is a trademark of Texas Instruments, Inc..  
12.3 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
12.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms and definitions.  
254  
Copyright © 2014, Texas Instruments Incorporated  
TLV320AIC3268  
www.ti.com.cn  
ZHCSC47A JANUARY 2014REVISED FEBRUARY 2014  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
Copyright © 2014, Texas Instruments Incorporated  
255  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2014, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV320AIC3268IRGCR  
TLV320AIC3268IRGCT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGC  
RGC  
64  
64  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
AIC3268  
AIC3268  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Sep-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV320AIC3268IRGCR  
TLV320AIC3268IRGCT  
VQFN  
VQFN  
RGC  
RGC  
64  
64  
2000  
250  
330.0  
180.0  
16.4  
16.4  
9.3  
9.3  
9.3  
9.3  
1.1  
1.1  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Sep-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV320AIC3268IRGCR  
TLV320AIC3268IRGCT  
VQFN  
VQFN  
RGC  
RGC  
64  
64  
2000  
250  
367.0  
210.0  
367.0  
185.0  
38.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGC 64  
9 x 9, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224597/A  
www.ti.com  
PACKAGE OUTLINE  
RGC0064H  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
9.15  
8.85  
A
B
PIN 1 INDEX AREA  
9.15  
8.85  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 7.5  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
17  
32  
16  
33  
65  
SYMM  
2X 7.5  
7.4 0.1  
60X  
0.5  
1
48  
0.30  
0.18  
64X  
49  
64  
PIN 1 ID  
0.1  
C A B  
0.5  
0.3  
64X  
0.05  
4219011/A 05/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGC0064H  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
7.4)  
SEE SOLDER MASK  
DETAIL  
SYMM  
64X (0.6)  
49  
64  
64X (0.24)  
1
48  
60X (0.5)  
(3.45) TYP  
(R0.05) TYP  
(1.16) TYP  
65  
SYMM  
(8.8)  
(
0.2) TYP  
VIA  
33  
16  
32  
17  
(1.16) TYP  
(3.45) TYP  
(8.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219011/A 05/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGC0064H  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
64X (0.6)  
64  
49  
64X (0.24)  
1
48  
60X (0.5)  
(R0.05) TYP  
(1.16) TYP  
65  
SYMM  
(8.8)  
(0.58)  
36X ( 0.96)  
33  
16  
17  
32  
(0.58)  
(1.16)  
TYP  
(8.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 10X  
EXPOSED PAD 65  
61% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4219011/A 05/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TLV320AIC3268IRGCT

TLV320AIC3268 超低功耗立体声音频编解码器 | RGC | 64 | -40 to 85
TI

TLV320AIC32IRHB

LOW POWER STEREO AUDIO CODEC FOR PORTABLE AUDIO/TELEPHONY
BB

TLV320AIC32IRHBG4

SPECIALTY CONSUMER CIRCUIT, PQCC32, 5 X 5 MM, GREEN, PLASTIC, QFN-32
TI

TLV320AIC32IRHBR

LOW POWER STEREO AUDIO CODEC FOR PORTABLE AUDIO/TELEPHONY
BB

TLV320AIC32IRHBR

具有 6 输入、6 输出、耳机/扬声器放大器和 3D 效果的低功耗立体声编解码器 | RHB | 32 | -40 to 85
TI

TLV320AIC32IRHBRG4

LOW POWER STEREO AUDIO CODEC FOR PORTABLE AUDIO/TELEPHONY
BB

TLV320AIC32IRHBT

LOW POWER STEREO AUDIO CODEC FOR PORTABLE AUDIO/TELEPHONY
BB

TLV320AIC32IRHBT

LOW POWER STEREO AUDIO CODEC FOR PORTABLE AUDIO/TELEPHONY
TI

TLV320AIC32IRHBTG4

LOW POWER STEREO AUDIO CODEC FOR PORTABLE AUDIO/TELEPHONY
BB

TLV320AIC32_07

LOW POWER STEREO AUDIO CODEC FOR PORTABLE AUDIO/TELEPHONY
BB

TLV320AIC33

Low Power Stereo Audio Codec for Portable Audio/Telephony
TI

TLV320AIC33

LOW POWER STEREO AUDIO CODEC FOR PORTABLE AUDIO/TELEPHONY
BB