TLV3602DGKR [TI]

具有推挽输出的 2.5ns 双通道高速轨至轨比较器 | DGK | 8 | -40 to 125;
TLV3602DGKR
型号: TLV3602DGKR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有推挽输出的 2.5ns 双通道高速轨至轨比较器 | DGK | 8 | -40 to 125

比较器
文件: 总43页 (文件大小:2550K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
TLV360x 2.5ns 传播延迟325MHz 高速比较器  
1 特性  
3 说明  
• 快速传播延迟2.5 ns  
• 低过驱动分散600 ps  
• 高切换频率325 MHz  
• 窄脉宽检测功能1.25ns  
• 推挽式输出  
• 宽电源电压范围2.4 V 5.5 V  
• 输入共模范围超出两个电源200 mV  
• 低输入失调电压±5mV  
• 输出端已知启动条件  
TLV360x 是一款 325MHz 高速比较器具有轨到轨输  
2.5ns 的传播延迟。这两款比较器可快速响应并  
具有宽工作电压范围非常适合激光雷达、测距仪和线  
路接收器中的窄信号脉冲检测和数据与时钟恢复应用。  
与替代高速差分输出比较器相比TLV360x 系列的推  
单端输出可以简化 I/O 接口的板对板布线并节省  
相关成本同时能够降低功耗。它们可以直接连接下游  
电路中的大多数现行数字控制器IO 扩展器。  
TLV3603(E) 具体特性:  
TLV3601 采用 5 引脚 SC70 SOT23 封装因此非  
常适合空间受限的设备这些设备可从比较器的快速响  
应时间中受益。TLV3603(E) 采用 6 引脚 SC70 封装,  
速度和尺寸与 TLV3601 相同同时提供可调迟滞控制  
和锁存功能等附加特性。TLV3602 TLV3601 的双通  
道版本8 VSSOP WSON 封装。  
– 可调迟滞控制引脚  
– 锁存功能  
TLV3603E 工作温度范围更宽  
-55°C 125°C  
• 封装TLV3601 (SC70-5)(SOT23-5),  
TLV3603(E) (SC70-6),  
器件信息  
(1)  
封装尺寸标称值)  
1.25mm x 2.00mm  
2.90mm x 1.60mm  
器件型号  
TLV3601  
TLV3602 (VSSOP-8)(WSON-8)  
功能安全型  
SC70 (5)  
可提供用于功能安全系统设计的文档  
[TLV3601/2]  
可提供用于功能安全系统设计的文[TLV3603]  
SOT-23 (5)  
SC70 (6)  
TLV3603(E)  
TLV3602  
1.25mm x 2.00mm  
3.00mm x 3.00mm  
VSSOP (8)  
2 应用  
2.00mm x 2.00mm  
WSON (8)预发  
)  
激光测距仪  
时钟和数据恢复  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
示波器和逻辑分析仪中的高速触发器功能  
激光雷达中的距离感测  
无人机视觉  
高速差分线路接收器  
TLV3601  
(TLV3602 per Channel)  
VCC  
TLV3603  
V+  
+
+
OPA858  
TLV3603  
+
OUT  
OUT  
LE/HYST  
+
TDC  
LE/HYST  
VEE  
VEE  
功能方框图  
VBIAS  
VREF  
TLV3603 应用电路  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNOSDB1  
 
 
 
 
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................19  
8 Application and Implementation..................................21  
8.1 Application Information............................................. 21  
8.2 Typical Application.................................................... 22  
9 Power Supply Recommendations................................26  
10 Layout...........................................................................27  
10.1 Layout Guidelines................................................... 27  
10.2 Layout Example...................................................... 27  
11 Device and Documentation Support..........................28  
11.1 Device Support........................................................28  
11.2 接收文档更新通知................................................... 28  
11.3 支持资源..................................................................28  
11.4 Trademarks............................................................. 28  
11.5 静电放电警告...........................................................28  
11.6 术语表..................................................................... 28  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................7  
6.6 Timing Diagrams ........................................................9  
6.7 Typical Characteristics.............................................. 11  
7 Detailed Description......................................................19  
7.1 Overview...................................................................19  
7.2 Functional Block Diagram.........................................19  
7.3 Feature Description...................................................19  
Information.................................................................... 28  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision D (November 2022) to Revision E (March 2023)  
Page  
• 通篇添加了 TLV3603E........................................................................................................................................1  
Changes from Revision C (July 2022) to Revision D (November 2022)  
Page  
• 删除了 TLV3602 VSSOP 封装的“预发布”状态...............................................................................................1  
Changes from Revision B (November 2021) to Revision C (July 2022)  
Page  
TLV3602 添加VSSOP WSON 封装选项处于“预发布”状态........................................................1  
• 删除了 TLV3601 SOT-23 封装的“预发布”状态...............................................................................................1  
Changes from Revision A (August 2021) to Revision B (November 2021)  
Page  
• 从 TLV3603 中删除了“预发布”....................................................................................................................... 1  
• 添加了 TLV3601 DBV 封装预发布选项..........................................................................................................1  
Added typical performance curves....................................................................................................................11  
Changes from Revision * (June 2021) to Revision A (August 2021)  
Page  
• 量产数据发布......................................................................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
 
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
OUT  
VEE  
1
2
3
5
4
VCC  
IN+  
IN-  
5-1. DCK, DBV Package  
5-Pin SC70, SOT-23  
Top View  
VCC  
LE/HYS  
6
5
1
2
3
OUT  
VEE  
4
IN+  
IN-  
5-2. DCK Package  
6-Pin SC70  
Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
IN+  
TLV3601  
TLV3603(E)  
3
4
3
4
I
I
Non-inverting input  
Inverting input  
IN–  
Output  
(Push-pull)  
OUT  
1
1
O
VEE  
2
5
-
2
6
5
I
I
I
Negative power supply  
Positive power supply  
VCC  
LE/HYS  
Adjustable hysteresis control and latch  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
 
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
IN1+  
1
2
3
4
8
7
6
5
V+  
OUT1  
OUT2  
V-  
IN1–  
IN2–  
IN2+  
5-3. TLV3602 DGK, DSG Packages  
8-Pin VSSOP, WSON  
5-2. Pin Functions: TLV3602 (Dual)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
IN1+  
1
I
I
Noninverting input, channel 1  
Inverting input, channel 1  
Inverting input, channel 2  
Noninverting input, channel 2  
Output, channel 1  
2
3
4
7
6
5
8
IN1–  
IN2–  
IN2+  
OUT1  
OUT2  
V-  
I
I
O
O
P
Output, channel 2  
Negative (lowest) supply or ground  
V+  
P
-
Positive (highest) supply  
Connect directly to V- pin  
Thermal PAD  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
MAX  
6
UNIT  
V
Input Supply Voltage: VCC VEE  
Input Voltage (IN+, IN)(2)  
VCC + 0.3  
V
V
EE 0.3  
V
Differential Input Voltage (VDI = IN+ IN)  
Output Voltage (OUT)(3)  
(VCC VEE + 0.3) + (VCC VEE + 0.3)  
VCC + 0.3  
V
V
V
EE 0.3  
EE 0.3  
Latch and Hysteresis Control (LE/HYS)  
VCC + 0.3  
±10  
V
Current into Input pins (IN+, IN, LE/HYS)(2)  
Current into Output pins (OUT)(3)  
Junction temperature, TJ  
mA  
mA  
°C  
°C  
±50  
150  
Storage temperature, Tstg  
150  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the supply rails must  
be current-limited to 10 mA or less.  
(3) Output terminals are diode-clamped to the power-supply rails. Output signals that can swing more than 0.3 V beyond the supply rails  
must be current-limited to 50 mA or less.  
6.2 ESD Ratings  
VALUE  
UNIT  
TLV3601(DCK), TLV3603  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
±2000  
±1000  
Electrostatic  
V(ESD)  
V
discharge  
TLV3601(DBV)  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001((1))  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002((2))  
±2000  
±750  
Electrostatic  
V(ESD)  
V
V
discharge  
TLV3602  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001((1))  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002((2))  
±2000  
±1000  
Electrostatic  
V(ESD)  
discharge  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.4  
MAX  
UNIT  
5.5  
VCC + 0.3  
VCC + 0.3  
125  
V
V
Input Supply Voltage: VCC VEE  
Input Voltage Range (IN+, IN)  
Latch and Hysteresis Control (LE/HYS)  
Ambient temperature, TA  
VEE 0.3  
VEE 0.3  
40  
V
°C  
°C  
Ambient temperature, TA (TLV3603E)  
125  
55  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
 
 
 
 
 
 
 
 
 
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
6.4 Thermal Information  
TLV3601  
DBV (SOT-23)  
5 PINS  
TLV3601  
DCK (SC70)  
5 PINS  
TLV3602  
DGK (VSSOP)  
8 PINS  
TLV3602  
DSG (WSON)  
8 PINS  
TLV3603 (E)  
THERMAL METRIC  
DCK (SC70)  
6 PINS  
UNIT  
RθJA Junction-to-ambient thermal resistance  
Rθ  
176.5  
187.5  
170.5  
64.9  
165.1  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
74.7  
N/A  
139.2  
N/A  
61.7  
N/A  
83.9  
5.5  
129.1  
N/A  
JC(top  
)
Rθ  
Junction-to-case (bottom) thermal  
resistance  
°C/W  
JC(bot  
tom)  
RθJB Junction-to-board thermal resistance  
43.4  
16.7  
65.8  
43.0  
92.4  
8.9  
32.0  
2.1  
58.9  
39.4  
°C/W  
°C/W  
Junction-to-top characterization  
ψJT  
parameter  
Junction-to-board characterization  
parameter  
43.1  
65.5  
90.8  
32.0  
58.7  
°C/W  
ψJB  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
 
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
6.5 Electrical Characteristics  
VCC = 2.5, 3.3 and 5 V, VEE = 0 V, VCM = VEE + 300 mV, CL = 5 pF probe capacitance, typical at TA = 25°C (unless otherwise  
noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC Input Characteristics  
VIO  
Input offset voltage  
Input offset voltage  
Input offset voltage drift  
±0.5  
±0.5  
±3.0  
5
mV  
mV  
TA = 40°C to +125℃  
5  
VIO (TLV3603E)  
dVIO/dT  
10  
TA = 55°C to +125℃  
10  
μV/°C  
Input common mode voltage  
range  
VCM  
VCC + 0.2  
V
V
TA = 40to +125℃  
V
V
EE 0.2  
Input common mode voltage  
range  
VCM (TLV3603E)  
VCC + 0.2  
5(1)  
TA = 55to +125℃  
TA = 40to +125℃  
EE 0.2  
VHYST (TLV3601/2) Input hysteresis voltage  
1.5  
3
1
mV  
pF  
CIN  
Input capacitance  
RDM  
Input differential mode resistance  
Input common mode resistance  
Input bias current  
67  
5
k  
MΩ  
uA  
uA  
uA  
dB  
dB  
RCM  
IB  
1
5
5
TA = 40to +125℃  
TA = 55to +125℃  
IB (TLV3603E)  
IOS  
Input bias current  
1
Input offset current  
±0.03  
80  
80  
CMRR  
Common-mode rejection ratio  
Power-supply rejection ratio  
VCM = VEE 0.2V to VCC + 0.2V  
PSRR  
VCC = 2.4 to 5.5V  
DC Output Characteristics  
ISOURCE = 1 mA  
TA = 40to +125℃  
VOH  
Output high voltage from VCC  
60  
60  
80  
80  
80  
80  
mV  
mV  
mV  
mV  
mA  
mA  
mA  
mA  
ISOURCE = 1 mA  
TA = 55to +125℃  
VOH (TLV3603E)  
VOL  
Output high voltage from VCC  
Output low voltage from VEE  
Output low voltage from VEE  
ISINK = 1 mA  
TA = 40to +125℃  
60  
60  
30  
30  
30  
30  
ISINK = 1 mA  
TA = 55to +125℃  
VOL (TLV3603E)  
ISC_SOURCE  
Output Short-Circuit Current -  
Source  
10  
10  
10  
10  
TA = 40to +125℃  
TA = 55to +125℃  
TA = 40to +125℃  
TA = 55to +125℃  
ISC_SOURCE (TLV360 Output Short-Circuit Current -  
3E)  
Source  
Output Short-Circuit Current -  
Sink  
ISC_SINK  
ISC_SINK (TLV3603E Output Short-Circuit Current -  
)
Sink  
Power Supply  
Output being high  
TA = 40to +125℃  
ICC (TLV3601)  
ICC (TLV3602)  
ICC (TLV3603)  
ICC (TLV3603E)  
quiescent current  
4.9  
4.9  
5.7  
7
7
mA  
mA  
mA  
Output being high  
TA = 40to +125℃  
quiescent current per channel  
quiescent current  
Output being high  
TA = 40to +125℃  
7.8  
7.8  
Output being high  
TA = 55to +125℃  
quiescent current  
5.7  
2.1  
mA  
V
VPOR (postive)  
AC Characteristics  
tPD  
Power-On Reset Voltage  
Propagation delay  
Propagation delay  
VOVERDRIVE = VUNDERDRIVE = 50mV  
2.5  
3.5(1)  
4.5(1)  
ns  
ns  
VOVERDRIVE = VUNDERDRIVE = 50mV  
TA = 40to +125℃  
tPD  
VOVERDRIVE = VUNDERDRIVE = 50mV  
TA = 55to +125℃  
tPD (TLV3603E)  
Propagation delay  
4.5((1))  
ns  
ps  
Channel-to-channel propagation VCM = VCC/2, VOVERDRIVE = VUNDERDRIVE  
delay skew((2))  
50mV, 50 MHz Squarewave  
=
ΔtPD (TLV3602  
only)  
24  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
 
 
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
VCC = 2.5, 3.3 and 5 V, VEE = 0 V, VCM = VEE + 300 mV, CL = 5 pF probe capacitance, typical at TA = 25°C (unless otherwise  
noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tCM_DISPERSION  
Common dispersion  
Overdrive dispersion  
Underdrive dispersion  
Rise time  
VCM varied from VEE to VCC  
80  
ps  
tOD_DISPERSION  
Overdrive varied from 10 mV to 125 mV  
Underdrive varied from 10mV to 125 mV  
10% to 90%  
600  
330  
0.75  
0.75  
ps  
tUD_DISPERSION  
ps  
tR  
tF  
ns  
Fall time  
90% to 10%  
ns  
VIN = 100mVP-P  
fIN = 100MHz, Jitter BW = 10Hz 50MHz  
,
tJITTER  
RMS Jitter  
4
325  
ps  
MHz  
ns  
VIN = 200 mVPP Sine Wave,  
When output high reaches 90% of VCC - VEE  
or output low reaches 10% of VCC - VEE  
fTOGGLE  
Input toggle frequency  
Minimum allowed input pulse  
width  
VOVERDRIVE = VUNDERDRIVE = 50mV  
PWOUT = 90% of PWIN  
PulseWidth  
1.25  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
VCC = 2.5, 3.3 and 5 V, VEE = 0 V, VCM = VEE + 300 mV, CL = 5 pF probe capacitance, typical at TA = 25°C (unless otherwise  
noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Latching/Adjustable Hysteresis  
VHYST  
VHYST  
VHYST  
VHYST  
VIH_LE  
Input hysteresis voltage  
VHYST = Logic High  
0
3
mV  
mV  
mV  
mV  
V
Input hysteresis voltage  
Input hysteresis voltage  
Input hysteresis voltage  
LE pin input high level  
RHYST = Floating  
30  
60  
RHYST = 150 kΩ  
RHYST = 56 kΩ  
VEE + 1.5  
VEE + 1.5  
TA = 40to +125℃  
TA = 55to +125℃  
TA = 40to +125℃  
TA = 55to +125℃  
VIH_LE (TLV3603E) LE pin input high level  
VIL_LE LE pin input low level  
VIL_LE (TLV3603E) LE pin input low level  
V
VEE + 0.35  
VEE + 0.35  
V
V
VLE = VCC  
TA = 40to +125℃  
IIH_LE  
LE pin input leakage current  
LE pin input leakage current  
LE pin input leakage current  
LE pin input leakage current  
15  
15  
40  
40  
uA  
uA  
uA  
uA  
VLE = VCC  
TA = 55to +125℃  
IIH_LE (TLV3603E)  
VLE = VEE  
,
IIL_LE  
TA = 40to +125℃  
VLE = VEE  
,
IIL_LE (TLV3603E)  
TA = 55to +125℃  
tSETUP  
tHOLD  
tPL  
Latch setup time  
Latch hold time  
ns  
ns  
ns  
1.4  
7.2  
7
Latch to OUT delay  
(1) Ensured by characterization  
(2) Differential propagation delay is defined as the larger of the two:  
ΔtPDLH = tPDLH(MAX) tPDLH(MIN)  
ΔtPDHL = tPDHL(MAX) tPDHL(MIN)  
where (MAX) and (MIN) denote the maximum and minimum values  
of a given measurement across the different comparator channels.  
6.6 Timing Diagrams  
VOVERDRIVE  
VUNDERDRIVE  
IN-  
VUNDERDRIVE  
VOVERDRIVE  
IN+  
tPLH  
tPHL  
tR  
tF  
90%  
50%  
10%  
VOUT  
6-1. General Timing Diagram  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
 
 
 
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
V
OD = 125mV  
V
OD = 10mV  
IN-  
IN+  
DISPERSION  
VOUT  
6-2. Overdrive Dispersion  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
6.7 Typical Characteristics  
At TA = 25°C, VCC - VEE = 2.5 V to 5 V, VCM = 300 mV, RHYST = 150 k(TLV3603(E) only), and input overdrive = 50 mV,  
unless otherwise noted.  
2
1.5  
1
3.2  
3.1  
3
0.5  
0
-0.5  
-1  
2.9  
VCC = 2.5V  
VCC = 3.3V  
VCC = 5V  
For 33 units  
2.8  
-1.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
Temperature (C)  
6-4. TLV3601 Hysteresis vs. Temperature  
6-3. TLV3601 Offset vs. Temperature  
1.8  
1.4  
1
0.6  
0.2  
-0.2  
-0.6  
-1  
For 33 units  
-0.2 0.1 0.4 0.7  
1
1.3 1.6 1.9 2.2 2.5 2.7  
Input Common-Mode Voltage (V)  
6-6. TLV3601 Hysteresis vs. Common-Mode, 2.5 V  
6-5. TLV3601 Offset vs. Common-Mode, 2.5 V  
1.8  
5
4.5  
4
1.4  
1
3.5  
3
0.6  
0.2  
-0.2  
-0.6  
-1  
2.5  
2
1.5  
-40C  
1
0.5  
0
25C  
85C  
125C  
For 33 units  
2.8 3.3  
-0.2  
0.3  
0.8  
1.3  
1.8  
2.3  
2.8  
3.3  
-0.2  
0.3  
0.8  
1.3  
1.8  
2.3  
Input Common Mode Voltage (V)  
Input Common-Mode Voltage (V)  
6-8. TLV3601 Hysteresis vs. Common-Mode, 3.3 V  
6-7. TLV3601 Offset vs. Common-Mode, 3.3 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
 
 
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
At TA = 25°C, VCC - VEE = 2.5 V to 5 V, VCM = 300 mV, RHYST = 150 k(TLV3603(E) only), and input overdrive = 50 mV,  
unless otherwise noted.  
5
4.5  
4
1.8  
1.4  
1
3.5  
3
0.6  
0.2  
-0.2  
-0.6  
-1  
2.5  
2
1.5  
1
-40C  
25C  
85C  
0.5  
0
125C  
For 33 units  
-0.2 0.3 0.8 1.3 1.8 2.3 2.8 3.3 3.8 4.3 4.8 5.2  
Input Common Mode Voltage (V)  
-0.2 0.3 0.8 1.3 1.8 2.3 2.8 3.3 3.8 4.3 4.8 5.2  
Input Common-Mode Voltage (V)  
6-10. TLV3601 Hysteresis vs. Common-Mode, 5 V  
6-9. TLV3601 Offset vs. Common-Mode, 5 V  
40  
2
38  
36  
34  
32  
30  
28  
26  
24  
1.5  
1
0.5  
0
-0.5  
-1  
VCC = 2.5V  
VCC = 3.3V  
VCC = 5V  
For 33 units  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-1.5  
Temperature (C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
6-12. TLV3603 Hysteresis vs. Temperature  
6-11. TLV3603 Offset vs. Temperature  
1.8  
1.4  
1
40  
38  
36  
34  
32  
30  
28  
26  
24  
-40C  
25C  
85C  
125C  
0.6  
0.2  
-0.2  
-0.6  
-1  
For 33 units  
-0.2 0.1 0.4 0.7  
1
1.3 1.6 1.9 2.2 2.5 2.7  
Input Common-Mode Voltage (V)  
-0.2 0.1 0.4 0.7  
1
1.3 1.6 1.9 2.2 2.5 2.7  
Input Common-Mode Voltage (V)  
6-13. TLV3603 Offset vs. Common-Mode, 2.5 V  
6-14. TLV3603 Hysteresis vs. Common-Mode, 2.5 V  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
At TA = 25°C, VCC - VEE = 2.5 V to 5 V, VCM = 300 mV, RHYST = 150 k(TLV3603(E) only), and input overdrive = 50 mV,  
unless otherwise noted.  
1.8  
1.4  
1
40  
38  
36  
34  
32  
30  
28  
26  
24  
-40C  
25C  
85C  
125C  
0.6  
0.2  
-0.2  
-0.6  
-1  
For 33 units  
2.8 3.3  
-0.2  
0.3  
0.8  
1.3  
1.8  
2.3  
-0.2  
0.3  
0.8  
1.3  
1.8  
2.3  
2.8  
3.3  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
6-15. TLV3603 Offset vs. Common-Mode, 3.3 V  
1.8  
6-16. TLV3603 Hysteresis vs. Common-Mode, 3.3 V  
40  
-40C  
25C  
85C  
125C  
38  
36  
34  
32  
30  
28  
26  
24  
1.4  
1
0.6  
0.2  
-0.2  
-0.6  
-1  
For 33 units  
-0.2 0.3 0.8 1.3 1.8 2.3 2.8 3.3 3.8 4.3 4.8 5.2  
Input Common-Mode Voltage (V)  
-0.2 0.3 0.8 1.3 1.8 2.3 2.8 3.3 3.8 4.3 4.8 5.2  
Input Common-Mode Voltage (V)  
6-17. TLV3603 Offset vs. Common-Mode, 5 V  
6-18. TLV3603 Hysteresis vs. Common-Mode, 5 V  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
-40C  
25C  
85C  
125C  
-40C  
25C  
85C  
125C  
70  
60  
50  
40  
30  
20  
10  
0
0
200  
400  
600  
800  
1,000  
0
200  
400  
600  
800  
1,000  
RHYST (k)  
RHYST (k)  
6-19. TLV3603 Hysteresis vs. Resistance, 2.5 V  
6-20. TLV3603 Hysteresis vs. Resistance, 3.3 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
At TA = 25°C, VCC - VEE = 2.5 V to 5 V, VCM = 300 mV, RHYST = 150 k(TLV3603(E) only), and input overdrive = 50 mV,  
unless otherwise noted.  
80  
-40C  
25C  
85C  
125C  
70  
60  
50  
40  
30  
20  
10  
0
0
200  
400  
600  
800  
1,000  
RHYST (k)  
6-21. TLV3603 Hysteresis vs. Resistance, 5 V  
6-22. Bias Current vs. Input Voltage, 2.5 V  
8
6
4
2
0
-2  
-4  
-6  
-8  
-40C  
25C  
85C  
125C  
-0.2  
0.3  
0.8  
1.3  
1.8  
2.3  
2.8  
3.3  
Input Voltage (V)  
6-24. Bias Current vs. Input Voltage, 5 V  
6-23. Bias Current vs. Input Voltage, 3.3 V  
10  
1
100m  
10m  
1m  
-40C  
25C  
85C  
125C  
100  
1m  
10m  
100m  
Output Sourcing Current (A)  
6-26. Output Voltage vs. Output Sinking Current, 2.5 V  
6-25. Output Voltage vs. Output Sourcing Current, 2.5 V  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
At TA = 25°C, VCC - VEE = 2.5 V to 5 V, VCM = 300 mV, RHYST = 150 k(TLV3603(E) only), and input overdrive = 50 mV,  
unless otherwise noted.  
6-28. Output Voltage vs. Output Sinking Current, 3.3 V  
6-27. Output Voltage vs. Output Sourcing Current, 3.3 V  
6-30. Output Voltage vs. Output Sinking Current, 5 V  
6-29. Output Voltage vs. Output Sourcing Current, 5 V  
5.5  
5.5  
5.3  
5.1  
5.3  
5.1  
4.9  
4.9  
-40C  
-40C  
4.7  
4.7  
25C  
25C  
85C  
125C  
85C  
125C  
4.5  
4.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Supply Voltage (V)  
Supply Voltage (V)  
6-31. TLV3601 Supply Current vs. Voltage (Output Low)  
6-32. TLV3601 Supply Current vs. Voltage (Output High)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
At TA = 25°C, VCC - VEE = 2.5 V to 5 V, VCM = 300 mV, RHYST = 150 k(TLV3603(E) only), and input overdrive = 50 mV,  
unless otherwise noted.  
6-33. TLV3601 Supply Current vs. Temp (Output Low)  
6-34. TLV3601 Supply Current vs. Temp (Output High)  
6.2  
6.2  
6
6
5.8  
5.8  
5.6  
5.6  
-40C  
-40C  
5.4  
5.4  
25C  
25C  
85C  
125C  
85C  
125C  
5.2  
5.2  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Supply Voltage (V)  
Supply Voltage (V)  
6-35. TLV3603 Supply Current vs. Voltage (Output Low)  
6-36. TLV3603 Supply Current vs. Voltage (Output High)  
6.2  
6.2  
6
5.8  
5.6  
6
5.8  
5.6  
5.4  
5.4  
VCC = 2.5V  
VCC = 2.5V  
VCC = 3.3V  
VCC = 3.3V  
VCC = 5V  
VCC = 5V  
5.2  
-40 -25 -10  
5.2  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
Temperature (C)  
6-37. TLV3603 Supply Current vs. Temp (Output Low)  
6-38. TLV3603 Supply Current vs. Temp (Output High)  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
At TA = 25°C, VCC - VEE = 2.5 V to 5 V, VCM = 300 mV, RHYST = 150 k(TLV3603(E) only), and input overdrive = 50 mV,  
unless otherwise noted.  
4.5  
4
4.5  
4
-40C  
25C  
85C  
125C  
-40C  
25C  
85C  
125C  
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1.5  
10  
20 30 40 50 70 100  
200 300 500 7001000  
10  
20 30 40 50 70 100  
200 300 500 7001000  
Input Overdrive (mV)  
Input Overdrive (mV)  
6-39. Propagation Delay, Low to High, 2.5 V  
6-41. Propagation Delay, Low to High, 3.3 V  
6-43. Propagation Delay, Low to High, 5 V  
6-40. Propagation Delay, High to Low, 2.5 V  
4.5  
4
-40C  
25C  
85C  
125C  
3.5  
3
2.5  
2
1.5  
10  
20 30 40 50 70 100  
200 300 500 7001000  
Input Overdrive (mV)  
6-42. Propagation Delay, High to Low, 3.3 V  
6-44. Propagation Delay, High to Low, 5 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
At TA = 25°C, VCC - VEE = 2.5 V to 5 V, VCM = 300 mV, RHYST = 150 k(TLV3603(E) only), and input overdrive = 50 mV,  
unless otherwise noted.  
10  
8
10  
8
6
6
4
4
2
2
tPHL  
tPLH  
tPHL  
tPLH  
0
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Output Capacitive Load (pF)  
Output Capacitive Load (pF)  
6-45. Propagation Delay vs. Load Capacitance, 3.3 V  
6-46. Propagation Delay vs. Load Capacitance, 5 V  
6-47. Minimum Pulse Width vs. Temperature  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
 
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
TheTLV360x family are high-speed comparators with single-ended (push-pull) output stages. The fast response  
time of these comparators make them well suited for applications that require narrow pulse width detection or  
high toggle frequencies. The TLV3601 is available in a 5-pin SC70 and SOT23 package, while the TLV3603(E) is  
packaged in a 6-pin SC70. The TLV3602 is a dual channel version of the TLV3601 and is packaged in an 8-pin  
VSSOP and WSON package.  
7.2 Functional Block Diagram  
TLV3601  
TLV3603  
VCC  
VCC  
+
+
LE/HYST  
VEE  
VEE  
7.3 Feature Description  
The TLV3601,TLV3603(E), and TLV3602 are single and dual channel, high speed comparators with a typical  
propagation delay of 2.5 ns and push-pull outputs. The minimum pulse width detection capability is 1.25 ns and  
the typical toggle rate is 325 MHz. These comparators are well-suited for distance measurement applications  
that utilize a time-of-flight arechitecture as well as systems that suffer from capacitive loading and require data  
and clock recovery. In addition to their high speed, the TLV360x family offers rail-to-rail input stages capable of  
operating up to 200 mV beyond each power supply rail combined with a maximum 5 mV input offset. The  
TLV3603(E) also provides adjustable hysteresis via an external resistor for noise suppression or a latching mode  
to hold the output of the comparators.  
7.4 Device Functional Modes  
The TLV3601 has a single functional mode and is active when the power supply voltage is greater than 2.4V.  
The TLV3603(E) has two modes of operation. The first is an active mode where the output reflects the condition  
at the inputs when an external resistor is connected to ground on the LE/HYS pin. The second is a latch mode  
where the output is held at its last active state when the LE/HYS pin is pulled low. The TLV3603(E) returns to  
active mode after a short delay when the pin is pulled high.  
7.4.1 Inputs  
The TLV360x family features input stages capable of operating 200 mV below negative power supply (ground)  
and 200 mV beyond the positive supply voltage, allowing for zero cross detection and maximizing input dynamic  
range given a certain power supply. The input stages are protected from conditions where the voltage on either  
pin exceeds this level by internal ESD protection diodes to VCC and VEE. To avoid damaging the inputs when  
exceeding the recommended input voltage range, an external resistor should be used to limit the current.  
7.4.2 Push-Pull (Single-Ended) Output  
The TLV360x outputs have excellent drive capability and are designed to connect directly to CMOS logic input  
devices. Likewise, the comparator output stages can drive capacitive loads. Transient performance parameters  
in the Electrical Characteristics Tables and Typical Characteristics section are for a load of 5pF, corresponding to  
a standard CMOS load. Device performance for larger capacitive loads can be found in the typical performance  
curves titled Propagation Delay vs Capacitive Load. For optimal speed and performance, output load  
capacitance should be reduced as much as possible.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
 
 
 
 
 
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
7.4.3 Known Startup Condition  
The TLV360x have a Power-on-Reset (POR) circuit which provides system designers a known start-up condition  
for the output of the comparators. When the power supply (VCC) is ramping up or ramping down, the POR circuit  
will be active when VCC is below VPOR. When active, the POR circuit holds the output low at VEE. When VCC is  
greater than or equal to VPOR as stated in 6.5 , the comparator output reflects the state of the input pins.  
7-1 shows how the TLV360x outputs respond for VCC rising. The input is configured with a logic high input to  
highlight the transition from the POR circuit control (logic low output) to a standard comparator operation where  
the output reflects the input condition. Note how the output goes high when VCC reaches 2.1V.  
7-1. TLV3601/TLV3603 Output for VCC Rising  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
 
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Adjustable Hysteresis  
As a result of a comparators high open loop gain, there is a small band of input differential voltage where the  
output can toggle back and forth between logic highand logic lowstates. This can cause design  
challenges for inputs with slow rise and fall times or systems with excessive noise. These challenges can be  
overcome by adding hysteresis to the comparator.  
Since the TLV3601 and TLV3602 only has a minimal amount of internal hysteresis, external hysteresis can be  
applied in the form of a positive feedback loop that adjusts the trip point of the comparator depending on its  
current output state. See the Implementing Hysteresis section for more details.  
The TLV3603(E) on the other hand has a LE/HYS pin that can be used to increase or eliminate the internal  
hysteresis of the comparator. In order to increase the internal hysteresis of the TLV3603(E), connect a single  
resistor as shown in the adjusting hysteresis figure between the LE/HYS pin and VEE. A curve of hysteresis  
versus resistance is provided below to provide guidance in setting the desired amount of hysteresis. Likewise,  
for applications where no hysteresis is desired, the LE/HYS pin can be connected to VCC.  
VCC  
TLV3603  
IN+  
+
OUT  
IN-  
LE/HYS  
VEE  
8-1. Adjustable Hysteresis with an External Resistor  
80  
-40C  
25C  
85C  
125C  
70  
60  
50  
40  
30  
20  
10  
0
0
200  
400  
600  
800  
1,000  
RHYST (k)  
8-2. VHYST (mV) vs RHYST (kΩ), VCC = 5 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
 
 
 
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
8.1.2 Capacitive Loads  
For capacitive loads under 100 pF, the propagation delay has minimum change (see Propagation Delay vs.  
Capacitive Load). However, excessive capacitive loading under high switching frequencies may increase supply  
current, propagation delay, or induce decreased slew rate.  
8.1.3 Latch Functionality  
The latch pin for the TLV3603(E) holds the output state of the device when the voltage at the LE/HYS pin is a  
logic low. This is particularly useful when the output state is intended to remain unchanged. An important  
consideration of the latch functionality is the latch hold and setup times. Latch hold time is the minimum time  
required (after the latch pin is asserted) for properly latching the comparator output. Likewise, latch setup time is  
defined as the time that the input must be stable before the latch pin is asserted low. The figure below illustrates  
when the input can transition for a valid latch. Note that the typical setup time in the EC table is negative; this is  
due to the internal trace delays of the LE/HYS pin relative to the input pin trace delays. A small delay (tPL) in the  
output response is shown below when the TLV3603(E) exits a latched output stage.  
tSETUP  
tHOLD  
LE/HYS  
Valid Input Transition  
Region  
Valid Input  
Transition Region  
Invalid Input  
Transition Region  
IN  
8-3. Input Change Properly Latched  
LE/HYS  
IN  
tPL  
OUT  
8-4. Latch Disable with Input Change  
8.2 Typical Application  
8.2.1 Implementing Hysteresis  
A comparator may produce chatter(multiple transitions) at the output when there are noise or signal  
variations around the reference threshold; this causes the output to change states in rapid random successions  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
 
 
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
as the comparator input goes above and below the threshold of the reference. This usually occurs when the  
input signal is moving very slowly across the switching threshold of the comparator. This problem can be  
prevented by using the internal hysteresis feature of the comparator or by the addition of external hysteresis.  
The TLV3603(E) has a LE/HYS pin that allows for variable internal hysteresis depending on the resistor value  
connected between the pin and VEE, where increasing the resistance decreases the hysteresis to a minimum  
level.  
V
CC  
5 V  
TLV3603  
V
IN  
+
V
O
V
O
V
V
L
V
REF 2.5 V  
H
0 V  
2.485 V  
2.515 V  
LE/HYS  
V
R
IN  
1
150 k  
V
EE  
8-5. Adjustable Hysteresis with a 150kResistor using TLV3603  
Since the TLV3601 and TLV3602 only have a minimal amount of internal hysteresis, external hysteresis can be  
added in the form of a positive feedback loop. A non-inverting comparator with hysteresis requires a two-resistor  
network and a voltage reference (VREF) at the inverting input, as shown in Figure 8-6.  
5 V  
V
+
REF 2.5 V  
V
V
O
A
V
O
V
IN  
V
V
L
H
R
60  
1
0 V  
2.485 V  
2.515 V  
R
V
IN  
2
10 k  
8-6. Non-Inverting Configuration for Hysteresis using TLV3601  
8.2.1.1 Design Requirements  
For this design, follow these design requirements.  
8-1. Design Parameters  
PARAMETER  
VALUE  
Supply Voltage (VCC  
)
5 V  
VREF  
VHYS  
2.5 V  
30 mV  
2.485 V  
2.515 V  
Lower Threshold (VL)  
Upper Threshold (VH)  
8.2.1.2 Detailed Design Procedure  
For the TLV3603(E), the hysteresis vs. resistance curve (Figure 8-2) can be used as a guidance to set the  
desired amount of hysteresis. Figure 8-2 shows that for a 30-mV hysteresis, a 150 kresistor must be placed  
from the LE/HYS pin to VEE.  
For the TLV3601 and TLV3602, the following procedure can be used to add external hysteresis for a non-  
inverting configuration. Note that VHYST << VREF, so VHYST can be ignored and is not included in the following  
equations for simpler calculation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
 
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
The equivalent resistor networks when the output is high and low are shown in Figure 8-7.  
V
Low  
V
High  
CC  
O
O
V
V
H
R
R
2
1
2
V
= V  
V = V  
A REF  
A
REF  
R
R
1
V
L
8-7. Equivalent Resistor Networks for Non-Inverting Configuration with Hysteresis  
When VIN is less than VREF, the output is low. For the output to switch from low to high, VIN must rise above the  
VH threshold. Use Equation 1 to calculate VH.  
VH = (R1 x VREF/R2) + VREF  
(1)  
When VIN is greater than VREF, the output is high. For the comparator to switch back to a low state, VIN must  
drop below the VL threshold. Use Equation 2 to calculate VL.  
VL = [VREF (R1 + R2) - VCC x R1] / R2  
(2)  
The hysteresis of this circuit is the difference between VH and VL, as shown in Equation 3.  
ΔVIN = VHYS = (VCC x R1/R2)  
(3)  
Select a value for R2. Plug in given values for VCC, VREF, VH, and VL . For the given example, R2 = 10 k, and  
R1 is solved as 60 .  
For more information, please see Application Notes SNOA997 "Inverting Comparator with Hysteresis Circuit",  
SBOA313 "Non-Inverting Comparator With Hysteresis Circuit", SBOA219 "Comparator with and without  
hysteresis circuit".  
8.2.1.3 Application Curve  
V
(V)  
IN  
8-8. Hysteresis Transfer Curve using TLV3601/TLV3603  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
 
 
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
8.2.2 Optical Receiver  
The TLV360x can be used in conjunction with a high speed amplifier such as the OPA858 to create an optical  
receiver as shown in the figure below. The photodiode is connected to a bias voltage and is being driven with a  
pulsed laser. The OPA858 takes the current conducting through the diode and translates it into a voltage for a  
high speed comparator to detect. The comparators will then output the proper output signal according to the  
threshold set (VREF).  
OPA858  
TLV3603  
+
+
TDC  
LE/HYST  
VBIAS  
VREF  
8-9. Optical Receiver  
8.2.3 Over-Current Latch Condition  
When it is important for a system to detect a brief over-current condition, it is advisable to utilize the latching  
feature of the TLV3603(E). By latching the comparator output, the MCU is reassured not to miss the over-current  
occurrence. The circuit below shows one way to implement the latching function.  
When an over-current condition is detected by the TLV3603(E), the output will go high. The occurrence of the  
output going high coupled with a logic high from the RESET signal from the MCU will create a logic low signal at  
the output of the 2-channel NAND gate. This will cause the output of the TLV3603(E) to be held in a logic high  
state (latched), thus allowing the MCU to detect the fault condition regardless of how narrow the over-current  
condition persists. The addition of the NAND gate also provides a means of clearing the latch state of the  
comparator once the MCU is done processing the event. This is accomplished by the MCU passing a logic low  
state to the NAND input causing the LE/HYS pin of the comparator to be returned to a logic high state. The  
TLV3603(E) latched status is cleared and the TLV3603(E) output can continue to track the status of the input  
pins.  
System  
IS  
TLV3603  
+
ALERT  
+
MCU  
VREF  
LE/HYS  
RS  
RESET  
8-10. Over-Current Latched Output Circuit  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
8.2.4 External Trigger Function for Oscilloscopes  
Below is a typical configuration for creating an external trigger on oscilliscopes. The user adjusts the trigger level  
by programming a DAC that the TLV360x can use as a reference. The input from an oscilloscope channel is then  
compared to the trigger reference voltage, and the comparator sends a signal to a downstream FPGA to begin a  
capture.  
VCC = 5V  
+
Trigger Input  
+
FPGA  
TLV3601  
-
VIN  
DAC  
8-11. External Trigger Function  
9 Power Supply Recommendations  
The TLV360x are specified for operation from 2.4 V to 5.5 V. While most applications will require single supply  
operation where VEE is connected to the ground plane and VCC is connected to the intended power supply  
level, the comparators can also be operated with split supplies. One caution when using split supplies is that the  
output logic levels are determined by the VCC and VEE levels. For example, if split supplies of +/- 2.5V are  
used, the output levels will be 2.5V and -2.5V accordingly. In addition, the logic level of the LE/HYS pin will also  
be referenced to VEE. This means that the external hysteresis resistor on the TLV3603(E) needs to be  
connected between the LE/HYS pin and VEE (not to ground) for proper operation.  
Regardless of single supply or split supply operation, proper decoupling capacitors are required. It is  
recommended to use a scheme of multiple, low-ESR ceramic capacitors from the supply pins to the ground  
plane for optimum performance. A good combination would be 100 pF, 10 nF, and 1 uF with the lowest value  
capacitor closest to the comparator.  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
 
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Comparators are very sensitive to input noise. For best results, adhere to the following layout guidelines.  
1. Use a printed-circuit-board (PCB) with a good, unbroken, low-inductance ground plane. Proper grounding  
(use of a ground plane) helps maintain specified device performance.  
Likewise, high performance board materials such as Rogers or high speed FR4 is also recommended.  
2. Place a decoupling capacitor (100-pF ceramic, surface-mount capacitor) between VCC and  
VEE as close to the device as possible. Using multiple bypass capacitors in different decade ranges such as  
100-pF, 100-nF, and 1-µF provides the best noise reduction across frequency ranges.  
3. On the inputs and the output, keep lead lengths as short and minimize capacitive coupling to the traces by  
having a keepout area around the traces that is 3x the width of the traces. It is also recommended to keep  
inputs away from the output.  
4. Solder the device directly to the PCB rather than using a socket.  
10.2 Layout Example  
10-1. TLV3603 Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
 
 
 
TLV3601, TLV3602, TLV3603, TLV3603E  
ZHCSKO5E JUNE 2021 REVISED APRIL 2023  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
LIDAR Pulsed Time of Flight Reference Design  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TLV3601 TLV3602 TLV3603 TLV3603E  
English Data Sheet: SNOSDB1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV3601DBVR  
TLV3601DBVT  
TLV3601DCKR  
TLV3601DCKT  
TLV3602DGKR  
TLV3602DGKT  
TLV3603DCKR  
TLV3603DCKR-ET  
TLV3603DCKT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
DCK  
DGK  
DGK  
DCK  
DCK  
DCK  
5
5
5
5
8
8
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-55 to 125  
-40 to 125  
3601  
3601  
1JF  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
SC70  
1JF  
VSSOP  
VSSOP  
SC70  
3602  
3602  
1JI  
3000 RoHS & Green  
3000 RoHS & Green  
SC70  
1P9  
1JI  
SC70  
250  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Apr-2023  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV3601, TLV3602, TLV3603 :  
Automotive : TLV3601-Q1, TLV3602-Q1, TLV3603-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV3601DBVR  
TLV3601DBVT  
TLV3601DCKR  
TLV3601DCKT  
TLV3602DGKR  
TLV3602DGKT  
TLV3603DCKR  
TLV3603DCKR-ET  
TLV3603DCKT  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
DCK  
DGK  
DGK  
DCK  
DCK  
DCK  
5
5
5
5
8
8
6
6
6
3000  
250  
180.0  
180.0  
180.0  
180.0  
330.0  
330.0  
180.0  
180.0  
180.0  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
2.3  
2.3  
3.4  
3.4  
2.3  
2.3  
2.3  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
4.0  
4.0  
4.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q1  
Q1  
Q3  
Q3  
Q3  
3000  
250  
8.4  
2.47  
2.47  
5.3  
1.25  
1.25  
1.4  
8.0  
SC70  
8.4  
8.0  
VSSOP  
VSSOP  
SC70  
2500  
250  
12.4  
12.4  
8.4  
12.0  
12.0  
8.0  
5.3  
1.4  
3000  
3000  
250  
2.47  
2.47  
2.47  
1.25  
1.25  
1.25  
SC70  
8.4  
8.0  
SC70  
8.4  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV3601DBVR  
TLV3601DBVT  
TLV3601DCKR  
TLV3601DCKT  
TLV3602DGKR  
TLV3602DGKT  
TLV3603DCKR  
TLV3603DCKR-ET  
TLV3603DCKT  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
DCK  
DGK  
DGK  
DCK  
DCK  
DCK  
5
5
5
5
8
8
6
6
6
3000  
250  
210.0  
210.0  
183.0  
183.0  
366.0  
366.0  
183.0  
183.0  
183.0  
185.0  
185.0  
183.0  
183.0  
364.0  
364.0  
183.0  
183.0  
183.0  
35.0  
35.0  
20.0  
20.0  
50.0  
50.0  
20.0  
20.0  
20.0  
3000  
250  
SC70  
VSSOP  
VSSOP  
SC70  
2500  
250  
3000  
3000  
250  
SC70  
SC70  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV3602DGKT

具有推挽输出的 2.5ns 双通道高速轨至轨比较器 | DGK | 8 | -40 to 125
TI

TLV3602QDGKRQ1

具有推挽输出的汽车类 2.5ns 双通道高速轨至轨比较器 | DGK | 8 | -40 to 125
TI

TLV3603

TLV3601-Q1, TLV3603-Q1 325 MHz High-Speed Comparator with 2.5 ns Propagation Delay
TI

TLV3603-Q1

TLV3601, TLV3603 325 MHz High-Speed Comparator with 2.5 ns Propagation Delay
TI

TLV3603DCKR

TLV3601, TLV3603 325 MHz High-Speed Comparator with 2.5 ns Propagation Delay
TI

TLV3603DCKR-ET

2.5-ns rail-to-rail extended-temperature comparator with push-pull outputs, hysteresis and latch | DCK | 6 | -55 to 125
TI

TLV3603DCKT

TLV3601, TLV3603 325 MHz High-Speed Comparator with 2.5 ns Propagation Delay
TI

TLV3603E

2.5-ns rail-to-rail extended-temperature comparator with push-pull outputs, hysteresis and latch
TI

TLV3603QDCKRQ1

TLV3601-Q1, TLV3603-Q1 325 MHz High-Speed Comparator with 2.5 ns Propagation Delay
TI

TLV3604

TLV3604, TLV3605 800-ps High-Speed RRI Comparator with LVDS Outputs
TI

TLV3604DCKR

TLV3604, TLV3605 800-ps High-Speed RRI Comparator with LVDS Outputs
TI

TLV3604DCKT

TLV3604, TLV3605 800-ps High-Speed RRI Comparator with LVDS Outputs
TI