TLV3801-Q1 [TI]

具有 LVDS 输出的汽车类 225ps 高速比较器;
TLV3801-Q1
型号: TLV3801-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 LVDS 输出的汽车类 225ps 高速比较器

比较器
文件: 总27页 (文件大小:2642K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV3801-Q1  
ZHCSQK0 OCTOBER 2022  
TLV3801-Q1 LVDS 输出225ps 高速比较器  
5.25V 的单电源工作电压范围和 2.7V 5.25V 的双电  
源工作电压范围采用业界通用的小型封装承载所有特  
是激光雷达、差分线路接收器应用以及测试和测量  
系统的理想选择。  
1 特性  
• 低传播延迟225 ps  
• 低过驱动分散5 ps  
• 静态电流20mA  
TLV3801-Q1 具有 5ps 的强大输入过驱性能并且能  
够检测仅 240ps 的窄脉冲宽度。这些器件具有输入过  
驱可实现较小传播延迟变化并且能够检测窄脉冲是  
飞行时间 (ToF) 应用例如工厂自动化和无人机视觉)  
的理想选择。  
• 高切换频率3GHz/6Gbps  
• 窄脉宽检测功能240ps  
LVDS 输出  
• 分离输入和输出接地基准  
• 单电源电压2.7V 5.25V  
• 低输入失调电压±0.5mV  
• 内部迟滞2mV  
TLV3801-Q1 的低压差分信号 (LVDS) 输出有助于提高  
数据吞吐量并优化功耗。同样互补输出有助于通过抑  
制每个输出上的共模噪声来降EMILVDS 输出旨在  
驱动和直接连接可接受标准 LVDS 输入例如大多数  
FPGA CPU的其他应用下游器件。  
• 封装TLV38018 WSON)  
2 应用  
激光雷达中的距离感测  
飞行时间传感器  
示波器和逻辑分析仪中的高速触发器功能  
高速差分线路接收器  
无人机视觉  
TLV3801-Q1 采用 8 引脚 WSON 封装因此非常适合  
空间敏感型应用例如光学传感器模块。  
器件信息  
(1)  
封装尺寸标称值)  
器件型号  
TLV3801-Q1  
WSON (8)  
2.00mm × 2.00mm  
3 说明  
TLV3801-Q1 是具有宽电源电压范围和 3GHz 超高切  
换频率的 225ps 高速比较器。这些器件具有 2.7V 至  
1.如需了解所有可订购封装请参阅数据表末尾的可订  
购产品附录。  
VCC  
VCC  
OUT+  
OUT-  
OPA858  
IN+  
IN-  
+
TLV3801  
LVDS  
+
+
TLV3801  
VEE  
VBIAS  
VREF  
GND  
TLV3801 光学接收器电路  
功能方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNOSDF4  
 
 
 
 
TLV3801-Q1  
ZHCSQK0 OCTOBER 2022  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................12  
7.4 Device Functional Modes..........................................12  
8 Application and Implementation..................................14  
8.1 Application Information............................................. 14  
8.2 Typical Application.................................................... 14  
8.3 Power Supply Recommendations.............................18  
8.4 Layout....................................................................... 19  
9 Device and Documentation Support............................20  
9.1 Device Support......................................................... 20  
9.2 接收文档更新通知..................................................... 20  
9.3 支持资源....................................................................20  
9.4 Trademarks...............................................................20  
9.5 Electrostatic Discharge Caution................................20  
9.6 术语表....................................................................... 20  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Thermal Information....................................................4  
6.4 Recommended Operating Conditions.........................4  
6.5 Electrical Characteristics.............................................5  
6.6 Timing Diagrams ........................................................7  
6.7 Typical Characteristics................................................8  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................12  
Information.................................................................... 20  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
October 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLV3801-Q1  
 
TLV3801-Q1  
ZHCSQK0 OCTOBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
1
8
7
OUT-  
Out+  
VCC  
VCC  
IN+  
2
3
4
GND  
VEE  
IN-  
Thermal  
Pad  
6
5
5-1. WSON Package  
8-Pin DSG  
Top View  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
IN+  
TLV3801  
5
4
8
1
I
Non-inverting input  
I
Inverting input  
IN–  
OUT+  
OUT–  
O
O
Non-inverting output  
Inverting output  
Negative power supply  
VEE  
3
I
(If using single supply, connect to GND)  
Positive power supply  
Ground  
VCC  
6, 7  
2
I
I
GND  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLV3801-Q1  
 
TLV3801-Q1  
ZHCSQK0 OCTOBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
MAX  
5.5  
UNIT  
V
Supply voltage: (VCC VEE) and (VCC GND) (2)  
(3)  
VCC + 0.3  
10  
V
Input pins (IN+, IN) from VEE  
V
EE 0.3  
10  
mA  
V
Current into input pins (IN+, IN)  
Output (OUT+, OUT)  
GND  
VCC  
+0.5  
10  
V
OUT+ to OUT–  
0.5  
mA  
°C  
°C  
Current into output pins (OUT+, OUT)  
Junction temperature, TJ  
150  
Storage temperature, Tstg  
150  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) VEE less than or equal to GND  
(3) Input terminals are diode-clamped to VEE and VCC  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
V
Human-body model (HBM), , per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-0111  
Electrostatic  
discharge  
V(ESD)  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Thermal Information  
TLV3801-Q1  
THERMAL METRIC(1)  
DSG (WSON)  
8-pin  
UNIT  
RqJA  
Junction-to-ambient thermal resistance  
69.4  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RqJC(top)  
RqJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
95.7  
36.2  
3.5  
yJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
yJB  
36.0  
9.4  
RqJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
MAX  
5.25  
UNIT  
V
Single supply operation: VCC VEE with VEE = GND  
Split supply operation: VCC VEE with VEE < GND  
Split supply operation: VCC GND with VEE < GND  
Input voltage range  
2.7  
5.25  
V
2.4  
5.25  
V
VEE + 1.5  
1.5  
40  
VCC + 0.1  
+1.5  
V
Differential Input voltage range  
V
Ambient temperature, TA  
125  
°C  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLV3801-Q1  
 
 
 
 
 
 
 
 
 
 
TLV3801-Q1  
ZHCSQK0 OCTOBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
For VCC = 3.3 V, VEE = GND = 0, VCM = 2.5 V at TA = 25°C (Unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC Input Characteristics  
Input offset  
voltage  
5(1)  
VOS  
±0.5  
2
+5(1)  
mV  
mV  
TA = 40°C to +125°C  
Input hysteresis  
voltage  
VHYS  
Single Supply: VEE = GND  
VCC VEE = 2.7 V to 5.25 V  
TA = 40 °C to +125°C  
Common-mode  
voltage range  
VCM-Range  
VEE + 1.5  
VEE + 1.5  
VCC  
V
V
Split Supply: VEE < GND  
VCC VEE = 2.7 V to 5.25 V and VCC GND  
= 2.4 V to 5.25 V  
Common-mode  
voltage range  
VCM-Range  
VCC  
TA = 40 °C to +125°C  
Common mode  
rejection ratio  
CMRR  
PSRR  
VCM = VEE + 1.5V to VCC  
80  
80  
dB  
dB  
Single Supply: VEE = GND  
VCC VEE = 2.7 V to 5.25 V  
Power supply  
rejection ratio  
Split Supply: VEE < GND  
VCC VEE = 2.7 V to 5.25 V and VCC GND  
= 2.4 V to 5.25 V  
Power supply  
rejection ratio  
PSRR  
80  
dB  
IB  
Input bias current  
±1  
10  
4
µA  
µA  
TA = 40 °C to +125 °C  
TA = 40 °C to +125 °C  
10  
4  
Input offset  
current  
IOS  
±0.1  
Input capacitance,  
common mode  
CIC  
1
pF  
DC Output Characteristics  
Output common  
mode voltage  
VCC - GND 2.6 V  
TA = 40to +125℃  
1.125  
0.92  
1.25  
1.2  
1.375  
1.29  
V
V
VOCM  
VCC - GND < 2.6 V  
TA = 40to +125℃  
Output common  
mode voltage  
Output common  
mode voltage  
mismatch  
30  
mV  
ΔVOCM  
TA = 40to +125℃  
30  
Peak-to-Peak  
output common  
mode voltage  
VOCM_PP  
50  
mVpp  
Differential output  
voltage  
VOD  
250  
350  
450  
30  
mV  
mV  
TA = 40to +125℃  
TA = 40to +125℃  
Differential output  
voltage mismatch  
ΔVOD  
Power Supply  
Quiescent current  
per comparator  
IQ  
20  
26.6  
mA  
TA = 40°C to +125°C  
AC Characteristics  
tPD Propagation delay  
VOVERDRIVE = 50 mV, VUNDERDRIVE = 50 mV, 50  
MHz Squarewave  
225  
ps  
Temperature  
Tempco of tPD Coefficient of  
propagation delay  
±0.2  
ps/℃  
Propagation delay VOVERDRIVE = 50mV, VUNDERDRIVE = 50 mV, 50  
tPD_SKEW  
±2.5  
2
ps  
ps  
skew  
MHz Squarewave  
Common mode  
dispersion  
tCM_DISPERSION  
VCM varied from VCM (min) to VCM (max)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLV3801-Q1  
 
TLV3801-Q1  
ZHCSQK0 OCTOBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
For VCC = 3.3 V, VEE = GND = 0, VCM = 2.5 V at TA = 25°C (Unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Overdrive  
dispersion  
tOD_DISPERSION  
Overdrive varied from 20 mV to 100 mV  
5
ps  
Overdrive  
dispersion  
tOD_DISPERSION  
tUD_DISPERSION  
tUD_DISPERSION  
Overdrive varied from 10 mV to 1 V  
Overdrive varied from 20 mV to 100 mV  
Overdrive varied from 10 mV to 1 V  
15  
7
ps  
ps  
ps  
Underdrive  
dispersion  
Underdrive  
dispersion  
10  
tR  
tF  
Rise time  
Fall time  
20% to 80%  
80% to 20%  
135  
135  
ps  
ps  
Input toggle  
frequency  
fTOGGLE  
fTOGGLE  
VIN = 200 mVPP Sine Wave, VOD = 550 mV  
VIN = 200 mVPP Sine Wave, 50% Output swing  
2.3  
3
GHz  
GHz  
Input toggle  
frequency  
TR  
TR  
Toggle Rate  
Toggle Rate  
VIN = 200 mVPP Sine Wave, VOD = 550 mV  
VIN = 200 mVPP Sine Wave, 50% Output swing  
4.6  
6
Gbps  
Gbps  
Minimum allowed VOVERDRIVE = VUNDERDRIVE = 50mV  
input pulse width PWOUT = 90% of PWIN  
PulseWidth  
240  
ps  
(1) Ensured by charaterization  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLV3801-Q1  
 
TLV3801-Q1  
ZHCSQK0 OCTOBER 2022  
www.ti.com.cn  
6.6 Timing Diagrams  
VOVERDRIVE  
VUNDERDRIVE  
IN-  
VUNDERDRIVE  
VOVERDRIVE  
IN+  
tPLH  
tPHL  
tR  
tF  
80%  
20%  
1.25V  
VOUT+  
VOUT-  
1.25V  
tPHL  
tPLH  
0V  
tPLHD  
tPHLD  
VOD  
6-1. General Timing Diagram  
V
OD = 100mV  
V
OD = 20mV  
IN-  
IN+  
DISPERSION  
0V  
VOD  
6-2. Overdrive Dispersion  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLV3801-Q1  
 
TLV3801-Q1  
ZHCSQK0 OCTOBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics  
At TA = 25°C, VCC - VEE = 3.3 V to 5 V while VEE = GND = 0, VCM = 2.5 V, and input overdrive/underdrive = 50 mV, unless  
otherwise noted.  
1.5  
1
2.4  
2.3  
2.2  
2.1  
2
0.5  
0
1.9  
1.8  
1.7  
1.6  
-0.5  
-1  
For 33 units  
For 33 units  
-1.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
Temperature (C)  
6-3. Offset vs. Temperature  
6-4. Hysteresis vs. Temperature  
1.8  
1.4  
1
2.4  
2.3  
2.2  
2.1  
2
0.6  
0.2  
-0.2  
-0.6  
-1  
1.9  
1.8  
1.7  
1.6  
-40C  
25C  
85C  
125C  
-1.4  
-1.8  
For 33 units  
3 3.3  
1.5  
1.8  
2.1  
2.4  
2.7  
3
3.3  
1.5  
1.8  
2.1  
2.4  
2.7  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
6-6. Hysteresis vs. Common-Mode, 3.3 V  
6-5. Offset vs. Common-Mode, 3.3 V  
1.8  
1.4  
1
2.4  
2.3  
2.2  
2.1  
2
0.6  
0.2  
-0.2  
-0.6  
-1  
1.9  
1.8  
1.7  
1.6  
-40C  
25C  
85C  
125C  
-1.4  
-1.8  
For 33 units  
4.5 5  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
1.5  
2
2.5  
3
3.5  
4
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
6-8. Hysteresis vs. Common-Mode, 5 V  
6-7. Offset vs. Common-Mode, 5 V  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLV3801-Q1  
 
TLV3801-Q1  
ZHCSQK0 OCTOBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
At TA = 25°C, VCC - VEE = 3.3 V to 5 V while VEE = GND = 0, VCM = 2.5 V, and input overdrive/underdrive = 50 mV, unless  
otherwise noted.  
22  
21.6  
21.2  
20.8  
20.4  
20  
22  
21.6  
21.2  
20.8  
20.4  
20  
19.6  
19.2  
18.8  
18.4  
18  
19.6  
19.2  
18.8  
18.4  
18  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
Temperature (C)  
6-9. Supply Current vs. Temperature, Output Low  
6-10. Supply Current vs. Temperature, Output High  
5
4
3
2
1
0
5
4
3
2
1
0
-1  
-1  
-2  
-2  
-3  
-4  
-5  
-40C  
25C  
85C  
125C  
-40C  
-3  
-4  
-5  
25C  
85C  
125C  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
2.7  
2.9  
3.1  
3.3  
1.5 1.8 2.1 2.4 2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
6-11. Bias Current vs. Common-Mode, 3.3 V  
6-12. Bias Current vs. Common-Mode, 5 V  
250  
245  
240  
235  
230  
225  
220  
215  
210  
205  
200  
260  
255  
250  
245  
240  
235  
230  
225  
220  
215  
210  
-40C  
-40C  
25C  
85C  
125C  
25C  
85C  
125C  
1.5  
1.8  
2.1  
2.4  
2.7  
3
3.3  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
6-13. Propagation Delay vs. Common-Mode, 3.3 V  
6-14. Propagation Delay vs. Common-Mode, 5 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLV3801-Q1  
TLV3801-Q1  
ZHCSQK0 OCTOBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
At TA = 25°C, VCC - VEE = 3.3 V to 5 V while VEE = GND = 0, VCM = 2.5 V, and input overdrive/underdrive = 50 mV, unless  
otherwise noted.  
250  
245  
240  
235  
230  
225  
220  
215  
210  
205  
200  
250  
245  
240  
235  
230  
225  
220  
215  
210  
205  
200  
-40C  
25C  
85C  
125C  
-40C  
25C  
85C  
125C  
10  
20 30 40 50 70 100  
200 300 500 7001,000  
10  
20 30 40 50 70 100  
200 300 500 7001,000  
Input Overdrive (mV)  
Input Underdrive (mV)  
6-16. Propagation Delay vs. Underdrive, 3.3 V  
265  
6-15. Propagation Delay vs. Overdrive, 3.3 V  
265  
260  
255  
250  
245  
240  
235  
230  
225  
220  
215  
210  
-40C  
-40C  
25C  
85C  
125C  
260  
255  
250  
245  
240  
235  
230  
225  
220  
215  
210  
25C  
85C  
125C  
10  
20 30 40 50 70 100  
200 300 500 7001,000  
10  
20 30 40 50 70 100  
200 300 500 7001,000  
Input Overdrive (mV)  
Input Underdrive (mV)  
6-17. Propagation Delay vs. Overdrive, 5 V  
6-18. Propagation Delay vs. Underdrive, 5 V  
0
-5  
0
-5  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
-40C  
-40C  
25C  
25C  
85C  
85C  
125C Referred to 10mV VOD  
125C Referred to 10mV VOD  
10  
20 30 40 50 70 100  
200 300 500 7001,000  
10  
20 30 40 50 70 100  
200 300 500 7001,000  
Overdrive Voltage (mV)  
Overdrive Voltage (mV)  
6-19. Dispersion vs. Overdrive, 3.3 V  
6-20. Dispersion vs. Overdrive, 5 V  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLV3801-Q1  
TLV3801-Q1  
ZHCSQK0 OCTOBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
At TA = 25°C, VCC - VEE = 3.3 V to 5 V while VEE = GND = 0, VCM = 2.5 V, and input overdrive/underdrive = 50 mV, unless  
otherwise noted.  
400  
375  
350  
325  
300  
275  
250  
225  
200  
175  
150  
400  
375  
350  
325  
300  
275  
250  
225  
200  
175  
150  
-40C  
25C  
85C  
125C  
-40C  
25C  
85C  
125C  
1.5  
1.8  
2.1  
2.4  
2.7  
3
3.3  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
6-21. Minimum Pulse Width vs. Common-Mode, 3.3 V  
6-22. Minimum Pulse Width vs. Common-Mode, 5 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLV3801-Q1  
TLV3801-Q1  
ZHCSQK0 OCTOBER 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TLV3801-Q1 is a high-speed comparator with LVDS output. The fast response time of these comparators  
make them well suited for applications that require narrow pulse width detection or high toggle frequencies. The  
TLV3801-Q1 is available in the 8-pin DSG package.  
7.2 Functional Block Diagram  
VCC  
VCC  
OUT+  
OUT-  
IN+  
IN-  
+
LVDS  
TLV3801  
VEE  
GND  
7.3 Feature Description  
The TLV3801-Q1 is a single channel, high-speed comparator with a typical propagation delay of 225 ps and  
LVDS output. The minimum pulse width detection capability is 240 ps and the typical toggle frequency is 3 GHz  
(6 Gbps). These comparators are well suited for distance sensing for LIDAR and time-of-flight applications as  
well as for high-speed test and measurement systems. The TLV3801-Q1 has two separate power rails for the  
input and the output; this allows the input to be referenced from either single or split supply (VCC and VEE) while  
the output is referenced from ground (VCC and GND).  
7.4 Device Functional Modes  
The TLV3801-Q1 has a single functional mode and is operational on the condition that both the input supply  
voltage (VCC - VEE) is greater than or equal to 2.7 V and the output supply voltage (VCC - GND) is greater than  
or equal to 2.4 V.  
7.4.1 Inputs  
The TLV3801-Q1 features an input stage, capable of operating between 1.5 V above VEE and 0.1 V above  
VCC, with an internal ESD protection circuit that includes two pairs of front-to-back diodes between IN+ and IN-  
as well as two 50 Ω resistors, as shown in 7-1. This prevents damage to the input stage by limiting the  
differential input voltage to be no more than twice the diode's forward-voltage drop 2 × VF (2 × 0.7 V).  
50 Ω  
IN+  
TO  
INTERNAL  
CIRCUITRY  
50 Ω  
IN-  
7-1. Input Stage Circuitry  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLV3801-Q1  
 
 
 
 
 
 
TLV3801-Q1  
ZHCSQK0 OCTOBER 2022  
www.ti.com.cn  
When the differential input voltage exceeds 2 × VF, the input bias current increases at the input pins IN+ and IN-,  
as shown in 方程1.  
Input Current = [(VIN+ - VIN-) - 2 × VF] / (2 × 50)  
(1)  
To avoid damaging the inputs when exceeding the recommended input voltage range, an external resistor  
should be used to limit the current. The current should be limited to less than 10 mA.  
7.4.2 LVDS Output  
The TLV3801-Q1 outputs are LVDS compliant. When the input of the downstream device is terminated with a  
100 Ω resistor, the comparators provide a ±350 mV differential swing at an output common-mode voltage of  
1.25 V above GND. Fully differential outputs enable fast digital toggling and reduce EMI compared to single-  
ended output standards.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLV3801-Q1  
 
TLV3801-Q1  
ZHCSQK0 OCTOBER 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Capacitive Loads  
Under reasonable capacitive loads, the device maintains specified propagation delay. However, excessive  
capacitive loading under high switching frequencies may increase supply current, propagation delay, or induce  
decreased slew rate.  
8.1.2 Hysteresis  
As a result of a comparator's high open loop gain, there is a small band of input differential voltage where the  
comparator may produce "chatter" which causes the output to toggle back and forth between a logic high”  
and a logic low. This can cause design challenges for inputs with slow rise and fall times or systems with  
excessive noise. These challenges can be prevented by adding external hysteresis to the comparator.  
Since the TLV3801-Q1 only have a minimal amount of internal hysteresis, external hysteresis can be applied in  
the form of a positive feedback loop that adjusts the trip point of the comparator depending on its current output  
state. See the Non-Inverting Comparator With Hysteresis section for more details.  
8.2 Typical Application  
8.2.1 Optical Receiver  
The TLV3801-Q1 can be used in conjunction with a high performance amplifier such as the OPA858 to create an  
optical receiver as shown in the 8-1. The photodiode operates in photoconductive mode: exposure to light will  
cause a reverse current through the photodiode. A bias voltage is applied to the op amp's non-inverting input to  
prevent saturation at the negative power supply. The OPA858 takes the current conducting through the diode  
and translates it into a voltage for a high speed comparator to detect. The TLV3801-Q1 will then output the  
proper LVDS signal according to the threshold set (VREF).  
CF  
RF  
VCC  
VCC  
-
VOUT  
OPA858  
+
OUT+  
TLV3801  
+
OUT-  
-
100  
VBIAS  
VREF  
8-1. Optical Receiver  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLV3801-Q1  
 
 
 
 
TLV3801-Q1  
ZHCSQK0 OCTOBER 2022  
www.ti.com.cn  
8.2.1.1 Design Requirements  
8-1. Design Parameters  
PARAMETER  
VALUE  
VCC  
VEE  
+5 V  
0 V  
VOUT, SWING  
100 mV  
100 µA  
159 MHz  
IDIODE  
fp  
8.2.1.2 Detailed Design Procedure  
Set VBIAS to be in the recommended common-mode voltage range of the OPA858. This is also the minimum  
output voltage of the op amp VOUT, MIN as the op amp will attempt to settle at the voltage applied to the non-  
inverting input.  
The maximum output voltage of the op amp VOUT, MAX can be calculated from the desired output voltage swing  
VOUT, SWING and VOUT, MIN, as shown in 方程2.  
VOUT, MAX = VOUT, SWING + VOUT, MIN  
(2)  
The gain resistor RF is determined by the desired VOUT, MAX and VOUT, MIN and the maximum current IDIODE  
through the diode, as shown in 方程2.  
RF = (VOUT, MAX - VOUT, MIN) / IDIODE  
(3)  
The feedback capacitor, in combinaton with the gain resistor, forms a pole in the frequency response of the  
amplifier. The feedback capacitor can be determined by the gain resistor and the desired pole frequency fp, as  
shown in 方程2.  
CF = 1 / (2 × π× RF x fp)  
(4)  
Set VREF to be the switching threshold voltage between VOUT, MAX and VOUT, MIN  
.
Select values for VBIAS and VREF. Plug in given values for VOUT, MAX, IDIODE, and fp. For the given example, VBIAS  
= 1.5 V, VREF = 1.55 V, and RF, CF is solved as 1 kΩand 1 pF, respectively.  
For more information, please refer to the op amp tutorials for stability analysis on the transimpedance amplifier  
Spice Stability Analysis and Op Amp Stability. See application note SBOA268A Transimpedance Amplifier  
Circuit for more detailed procedures.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLV3801-Q1  
 
TLV3801-Q1  
ZHCSQK0 OCTOBER 2022  
www.ti.com.cn  
8.2.1.3 Application Performance Plots  
8-2.  
8.2.2 Non-Inverting Comparator With Hysteresis  
A way to implement external hysteresis to the TLV3801-Q1 is to add two resistors to the circuit: one in series  
between the reference voltage and the inverting pin, and another from the inverting pin to one of the differential  
output pins.  
VCC  
VIN  
Q
Q
+
R1  
+
VREF  
R2  
8-3. Non-Inverting Comparator with Hysteresis Circuit  
8.2.2.1 Design Requirements  
8-2. Design Parameters  
PARAMETER  
VALUE  
VHYS  
VREF  
VT1  
VT2  
Q
50 mV  
2.5 V  
2.34 V  
2.29 V  
1.425 V  
1.075 V  
Q
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLV3801-Q1  
 
TLV3801-Q1  
ZHCSQK0 OCTOBER 2022  
www.ti.com.cn  
8.2.2.2 Detailed Design Procedure  
First, create an equation for VT that covers both output voltages when the output is high or low.  
VT1 = VREFR2 + QR1  
R1+R2 R1+R2  
(5)  
(6)  
VT2 = VREFR2 + QR1  
R1+R2 R1+R2  
The hysteresis voltage in this network is equal to the difference in the two threshold voltage equations.  
VHYS = VT1-VT2  
(7)  
(8)  
- VREFR2 - QR1  
R1+R2 R1+R2  
VHYS = VREFR2 + QR1  
R1+R2 R1+R2  
VHYS = (Q-Q)R1  
R1+R2  
(9)  
VHYS = VODR1  
R1+R2  
(10)  
Note that these equations do not take into account the effects of the internal hysteresis and offset voltage of the  
comparator. Design parameters will need to be adjusted accordingly.  
Select a value for R2. Plug in given values for VREF, VT1, VT2, Q, and Q, and solve for R1. For the given  
example, R2 = 50 kΩ, and R1 is solved as = 8.33 kΩ.  
8.2.2.3 Application Performance Plots  
8-4. Hysteresis Curve for LVDS Comparator  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLV3801-Q1  
TLV3801-Q1  
ZHCSQK0 OCTOBER 2022  
www.ti.com.cn  
8.2.3 Logic Clock Source to LVDS Transceiver  
The 8-5 shows a logic clock source being terminated and driven with the TLV3801-Q1 across a CAT6 Cable  
to receive an equivalent LVDS clock signal at the receiver end.  
CLOCK SOURCE  
OUT+  
OUT-  
+
TLV3801  
+
RJ45 CAT6 CABLE RJ45  
TLV3801  
-
-
VREF  
8-5. LVDS Clock Transceiver  
8.2.4 External Trigger Function for Oscilloscopes  
8-6 is a typical configuration for creating an external trigger on oscilliscopes. The user adjusts the trigger  
level, and a DAC converts this trigger level to a voltage the TLV3801-Q1 can use as a reference. The input  
voltage from an oscilloscope channel is then compared to the trigger reference voltage, and the TLV3801-Q1  
sends an LVDS signal to a downstream FPGA to begin a capture. It is common to see bipolar inputs in test and  
measurement systems such as oscilloscopes; therefore, the TLV3801-Q1 can be configured in split supply so  
that the inputs are in the allowable input voltage range.  
VCC = +2.5V  
External  
Trigger  
Amplifier/  
Attenuation  
Trigger Input  
+
FPGA  
TLV3801  
GND  
-
VEE = -2.5V  
DAC  
8-6. External Trigger Function  
8.3 Power Supply Recommendations  
The TLV3801-Q1 has two seperate power rails: VCC - VEE for the input stage and VCC - GND for the output  
stage. This allows for both single and split supply capabilities for the input stage with a seperate ground  
reference for the LVDS output stage. Split supply operation allows users to apply both positive and negative  
(bipolar) voltages to the input pins.  
When operating from a single supply, the supply voltage range for both the input and output stage is 2.7 V to  
5.25 V. When operating from split supply rails, the supply voltage range for the input stage (VCC - VEE) is 2.7 V  
to 5.25 V, and the supply voltage range for the output stage (VCC - GND) is 2.4 V to 5.25 V. The output logic  
level is independent of the VCC and VEE levels.  
Regardless of single supply or split supply operation, proper decoupling capacitors are required. It is  
recommended to use a scheme of multiple, low-ESR ceramic capacitors from the supply pins to the ground  
plane for optimum performance. A good combination would be 100 pF, 10 nF, and 1 uF with the lowest value  
capacitor closest to the comparator.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLV3801-Q1  
 
 
 
TLV3801-Q1  
ZHCSQK0 OCTOBER 2022  
www.ti.com.cn  
8.4 Layout  
8.4.1 Layout Guidelines  
Comparators are very sensitive to input noise. For best results, adhere to the following layout guidelines.  
1. Use a printed-circuit-board (PCB) with a good, unbroken, low-inductance ground plane. Proper grounding  
(use of a ground plane) helps maintain specified device performance.  
2. To minimize supply noise for single and split supply, place decoupling capacitor arrays as close as possible  
to VCC  
.
3. On the inputs and the output, keep lead lengths as short as possible to avoid unwanted parasitic feedback  
around the comparator. Keep inputs away from the output.  
4. Solder the device directly to the PCB rather than using a socket.  
5. For slow-moving input signals, take care to prevent parasitic feedback. A small capacitor (1000 pF or less)  
placed between the inputs can help eliminate oscillations in the transition region. This capacitor causes  
some degradation to propagation delay when impedance is low. The topside ground plane runs between the  
output and inputs.  
6. Use a 100 Ωtermination resistor across the device's LVDS output.  
7. Use higher performance substrate materials such as Rogers.  
8.4.2 Layout Example  
VEE GND  
IN-  
OUT-  
OUT+  
IN+  
VCC  
C1  
8-7. TLV3801EVM Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLV3801-Q1  
 
TLV3801-Q1  
ZHCSQK0 OCTOBER 2022  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 Development Support  
LIDAR Pulsed Time of Flight Reference Design  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLV3801-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV3801QDSGRQ1  
ACTIVE  
WSON  
DSG  
8
3000 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
-40 to 125  
380Q  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV3801-Q1 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Oct-2022  
Catalog : TLV3801  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008B  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.1 MIN  
(0.05)  
PIN 1 INDEX AREA  
S
C
A
 L
 E
3
0
.
A
2.1  
1.9  
SECTION A-A  
TYPICAL  
0.3  
0.2  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
0.9 0.1  
5
4
6X 0.5  
A
A
2X  
1.5  
9
1.6 0.1  
8
1
0.3  
8X  
0.2  
0.4  
0.2  
PIN 1 ID  
8X  
0.1  
0.05  
C A B  
C
4222124/E 05/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008B  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222124/E 05/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008B  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4222124/E 05/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TLV3801DSGR

具有 LVDS 输出的 225ps 高速比较器 | DSG | 8 | -40 to 125
TI

TLV3801DSGT

具有 LVDS 输出的 225ps 高速比较器 | DSG | 8 | -40 to 125
TI

TLV3801QDSGRQ1

具有 LVDS 输出的汽车类 225ps 高速比较器 | DSG | 8 | -40 to 125
TI

TLV3811

具有低压差分信号 (LVDS) 输出的 225ps 高速比较器
TI

TLV3811CYBGR

具有低压差分信号 (LVDS) 输出的 225ps 高速比较器 | YBG | 6 | -40 to 125
TI

TLV3811CYBGT

具有低压差分信号 (LVDS) 输出的 225ps 高速比较器 | YBG | 6 | -40 to 125
TI

TLV3811YBGR

具有低压差分信号 (LVDS) 输出的 225ps 高速比较器 | YBG | 6 | -40 to 125
TI

TLV3811YBGT

具有低压差分信号 (LVDS) 输出的 225ps 高速比较器 | YBG | 6 | -40 to 125
TI

TLV387

超高精度、零漂移、低输入偏置电流单路运算放大器
TI

TLV387DBVR

超高精度、零漂移、低输入偏置电流单路运算放大器 | DBV | 5 | -40 to 125
TI

TLV387DBVT

超高精度、零漂移、低输入偏置电流单路运算放大器 | DBV | 5 | -40 to 125
TI

TLV4011

具有集成基准电压的小型比较器
TI