TLV3811CYBGR [TI]

具有低压差分信号 (LVDS) 输出的 225ps 高速比较器 | YBG | 6 | -40 to 125;
TLV3811CYBGR
型号: TLV3811CYBGR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有低压差分信号 (LVDS) 输出的 225ps 高速比较器 | YBG | 6 | -40 to 125

比较器
文件: 总35页 (文件大小:2809K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV3801, TLV3811  
ZHCSNF6B DECEMBER 2021 REVISED MARCH 2023  
TLV3801TLV3811(C) LVDS 输出225ps 高速比较器  
2.7V 5.25V 的单电源工作电压范围2.7V 5.25V  
的双电源工作电压范围采用业界通用的小型封装承载  
所有特性是激光雷达、差分线路接收器应用以及测试  
和测量系统的理想选择。  
1 特性  
• 低传播延迟225 ps  
• 低过驱动分散5 ps  
• 静态电流20mA  
TLV3801/TLV3811(C) 5ps 的强大输入过驱性能,  
并且能够检测仅 240ps 的窄脉冲宽度。这些器件具有  
输入过驱可实现较小传播延迟变化并且能够检测窄脉  
是飞行时间 (ToF) 应用例如工厂自动化和无人机  
视觉的理想选择。  
• 高切换频率3GHz/6Gbps  
• 窄脉宽检测功能240ps  
LVDS 输出  
• 分离输入和输出接地基准  
• 单电源电压2.7V 5.25V  
• 低输入失调电压±0.5mV  
• 内2mV 迟滞TLV3801  
• 内1.1mV 迟滞TLV3811  
• 内0mV 迟滞TLV3811C  
• 封装TLV38018 WSONTLV3811(C)  
6 WCSPTLV380212 WF-  
DFN)  
TLV3801/TLV3811(C) 的低压差分信号 (LVDS) 输出有  
助于提高数据吞吐量并优化功耗。同样互补输出有助  
于通过抑制每个输出上的共模噪声来降低 EMILVDS  
输出旨在驱动和直接连接可接受标准 LVDS 输入例  
如大多FPGA CPU的其他应用下游器件。  
TLV3801 采用 8 引脚 WSON 封装TLV3811(C) 采用  
微型 6 引脚 WCSP 封装均非常适合空间敏感型应  
例如光学传感器模块。  
2 应用  
激光雷达中的距离感测  
飞行时间传感器  
示波器和逻辑分析仪中的高速触发器功能  
高速差分线路接收器  
无人机视觉  
器件信息  
(1)  
封装尺寸标称值)  
2.00mm × 2.00mm  
1.218 mm × 0.818 mm  
3.00mm × 2.00mm  
器件型号  
TLV3801  
WSON (8)  
TLV3811(C)  
WCSP (6)  
WF-DFN (12)  
TLV3802预发布)  
3 说明  
1.如需了解所有可订购封装请参阅数据表末尾的可订  
购产品附录。  
TLV3801/TLV3811(C) 是具有宽电源电压范围和 3GHz  
超高切换频率的 225ps 高速比较器。这些器件具有  
VCC  
VCC  
VCC  
OUT+  
OUT-  
OUT+  
OUT-  
IN+  
IN-  
+
IN+  
IN-  
+
LVDS  
LVDS  
OPA858  
TLV3801  
+
TLV3801  
VEE  
TLV3811  
+
GND  
GND  
功能方框图  
VBIAS  
VREF  
TLV3801 光学接收器电路  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNOSDD7  
 
 
 
 
 
TLV3801, TLV3811  
ZHCSNF6B DECEMBER 2021 REVISED MARCH 2023  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................14  
7.4 Device Functional Modes..........................................14  
8 Application and Implementation..................................16  
8.1 Application Information............................................. 16  
8.2 Typical Application.................................................... 16  
8.3 Power Supply Recommendations.............................21  
8.4 Layout....................................................................... 21  
9 Device and Documentation Support............................23  
9.1 Device Support......................................................... 23  
9.2 接收文档更新通知..................................................... 23  
9.3 支持资源....................................................................23  
9.4 Trademarks...............................................................23  
9.5 静电放电警告............................................................ 23  
9.6 术语表....................................................................... 23  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Thermal Information....................................................5  
6.4 Recommended Operating Conditions.........................5  
6.5 Electrical Characteristics.............................................7  
6.6 Timing Diagrams ........................................................9  
6.7 Typical Characteristics..............................................10  
7 Detailed Description......................................................14  
7.1 Overview...................................................................14  
7.2 Functional Block Diagram.........................................14  
Information.................................................................... 23  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (October 2022) to Revision B (March 2023)  
Page  
• 在整个数据表中添加TLV3811(C) TLV3802初始..............................................................................1  
Changes from Revision * (December 2021) to Revision A (October 2022)  
Page  
TLV3811 的预发布状态更改RTM...............................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDD7  
2
Submit Document Feedback  
Product Folder Links: TLV3801 TLV3811  
 
TLV3801, TLV3811  
ZHCSNF6B DECEMBER 2021 REVISED MARCH 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
1
8
7
OUT-  
Out+  
2
3
4
VCC  
VCC  
IN+  
GND  
VEE  
IN-  
Thermal  
Pad  
6
5
5-1. WSON Package  
8-Pin DSG  
Top View  
Top View  
+
A
B
OUT+  
IN+  
VCC  
IN-  
GND  
OUT-  
1
2
3
5-2. WCSP Package  
6-Pin BGA  
Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
IN+  
TLV3801  
TLV3811(C)  
5
4
A1  
B1  
I
I
Non-inverting input  
Inverting input  
IN–  
OUT+  
8
1
A3  
B3  
O
Non-inverting output  
O
I
Inverting output  
OUT–  
Negative power supply  
VEE  
3
-
(If using single supply, connect to GND)  
Positive power supply  
Ground  
VCC  
6, 7  
2
A2  
B2  
I
I
GND  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLV3801 TLV3811  
English Data Sheet: SNOSDD7  
 
TLV3801, TLV3811  
ZHCSNF6B DECEMBER 2021 REVISED MARCH 2023  
www.ti.com.cn  
1
2
3
4
5
6
12  
11  
GND  
OUT1+  
OUT1-  
VCC  
IN1+  
IN1-  
VEE  
10  
9
TLV3802  
OUT2+  
OUT2-  
VCC  
8
7
IN2+  
IN2-  
5-3. WF-DFN Package  
12-Pin DSS  
Top View  
5-2. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
GND  
TLV3802  
1
2
3
I
I
I
Ground  
IN1+  
Channel 1 Non-inverting input  
Channel 1 Inverting input  
Negative power supply  
IN1–  
VEE  
4
I
(If using single supply, connect to GND)  
IN2+  
5
6
I
I
Channel 2 Non-inverting input  
Channel 2 Inverting input  
Positive power supply  
IN2–  
VCC  
7
I
8
O
O
I
Channel 2 Inverting output  
Channel 2 Non-inverting output  
Positive power supply  
OUT2–  
OUT2+  
VCC  
9
10  
11  
12  
O
O
Channel 1 Inverting output  
Channel 1 Non-inverting output  
OUT1–  
OUT1+  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDD7  
4
Submit Document Feedback  
Product Folder Links: TLV3801 TLV3811  
TLV3801, TLV3811  
ZHCSNF6B DECEMBER 2021 REVISED MARCH 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
MAX  
5.5  
UNIT  
V
Supply voltage: (VCC VEE) and (VCC GND) ((2))  
Input pins (IN+, IN) from VEE (WSON) (3)  
Input pins (IN+, IN) from GND (WCSP) (4)  
Current into input pins (IN+, IN)  
Output (OUT+, OUT)  
VCC + 0.3  
VCC + 0.3  
10  
V
V
V
EE 0.3  
EE 0.3  
10  
V
mA  
V
GND  
VCC  
10  
mA  
°C  
°C  
Current into output pins (OUT+, OUT)  
Junction temperature, TJ  
150  
Storage temperature, Tstg  
150  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) VEE less than or equal to GND  
(3) Input terminals are diode-clamped to VEE and VCC  
(4) Input terminals are diode-clamped to GND and VCC  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Thermal Information  
TLV3801  
TLV3811(C)  
THERMAL METRIC (1)  
DSG (WSON) WCSP (BGA)  
UNIT  
8-pin  
6-pin  
132.1  
RqJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
69.4  
95.7  
36.2  
3.5  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RqJC(top)  
RqJB  
1.4  
41  
yJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
41  
yJB  
36.0  
9.4  
RqJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics report.  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
MAX  
5.25  
UNIT  
V
Single supply operation: VCC VEE with VEE = GND  
Split supply operation: VCC VEE with VEE < GND (WSON)  
Split supply operation: VCC GND with VEE < GND (WSON)  
Input voltage range (WSON)  
2.7  
5.25  
V
2.4  
5.25  
V
VEE + 1.5  
GND + 1.5  
1.5  
VCC + 0.1  
VCC + 0.1  
+1.5  
V
Input voltage range (WCSP)  
V
Differential Input voltage range  
V
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLV3801 TLV3811  
English Data Sheet: SNOSDD7  
 
 
 
 
 
 
 
 
 
 
 
 
TLV3801, TLV3811  
ZHCSNF6B DECEMBER 2021 REVISED MARCH 2023  
www.ti.com.cn  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
Ambient temperature, TA  
125  
°C  
40  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDD7  
6
Submit Document Feedback  
Product Folder Links: TLV3801 TLV3811  
TLV3801, TLV3811  
ZHCSNF6B DECEMBER 2021 REVISED MARCH 2023  
www.ti.com.cn  
6.5 Electrical Characteristics  
For VCC = 3.3 V, VEE = GND = 0, VCM = 2.5 V at TA = 25°C (Unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC Input Characteristics  
Input offset  
voltage  
+5(1)  
mV  
mV  
mV  
mV  
TA = 40°C to +125°C  
5(1)  
VOS  
±0.5  
2
Input hysteresis  
voltage  
VHYS (WSON)  
VHYS (WCSP)  
TLV3801  
TLV3811  
TLV3811C  
Input hysteresis  
voltage  
1.1  
0
Input hysteresis  
voltage  
Single Supply: VEE = GND  
VCC VEE = 2.7 V to 5.25 V  
TA = 40 °C to +125°C  
Common-mode  
voltage range  
VCM-Range  
VEE + 1.5  
VEE + 1.5  
VCC  
V
V
Split Supply: VEE < GND  
VCC VEE = 2.7 V to 5.25 V and VCC GND  
= 2.4 V to 5.25 V  
VCM-Range  
(WSON)  
Common-mode  
voltage range  
VCC  
TA = 40 °C to +125°C  
CMRR  
(WSON)  
Common mode  
rejection ratio  
VCM = VEE + 1.5V to VCC  
VCM = GND + 1.5V to VCC  
80  
80  
80  
dB  
dB  
dB  
CMRR  
(WCSP)  
Common mode  
rejection ratio  
Single Supply: VEE = GND  
VCC VEE = 2.7 V to 5.25 V  
Power supply  
rejection ratio  
PSRR  
Split Supply: VEE < GND  
VCC VEE = 2.7 V to 5.25 V and VCC GND  
= 2.4 V to 5.25 V  
Power supply  
rejection ratio  
PSRR (WSON)  
80  
dB  
IB  
Input bias current  
±1  
10  
4
µA  
µA  
TA = 40 °C to +125 °C  
TA = 40 °C to +125 °C  
10  
4  
Input offset  
current  
IOS  
±0.1  
Input capacitance,  
common mode  
CIC  
1
pF  
DC Output Characteristics  
Output common  
mode voltage  
VCC - GND 2.6 V  
TA = 40to +125℃  
1.125  
0.92  
1.25  
1.2  
1.375  
1.29  
V
V
VOCM  
VCC - GND < 2.6 V  
TA = 40to +125℃  
Output common  
mode voltage  
Output common  
mode voltage  
mismatch  
30  
mV  
ΔVOCM  
TA = 40to +125℃  
30  
Peak-to-Peak  
output common  
mode voltage  
VOCM_PP  
50  
mVpp  
Differential output  
voltage (WSON)  
VOD  
VOD  
250  
240  
350  
350  
450  
450  
30  
mV  
mV  
mV  
TA = 40to +125℃  
TA = 40to +125℃  
TA = 40to +125℃  
Differential output  
voltage (WCSP)  
Differential output  
voltage mismatch  
ΔVOD  
Power Supply  
IQ (WSON)  
Quiescent current  
per comparator  
20  
26.6  
mA  
TA = 40°C to +125°C  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLV3801 TLV3811  
English Data Sheet: SNOSDD7  
 
TLV3801, TLV3811  
ZHCSNF6B DECEMBER 2021 REVISED MARCH 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
For VCC = 3.3 V, VEE = GND = 0, VCM = 2.5 V at TA = 25°C (Unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Quiescent current  
IQ (WCSP)  
17  
23  
mA  
TA = 40°C to +125°C  
per comparator  
AC Characteristics  
VOVERDRIVE = 50 mV, VUNDERDRIVE = 50 mV, 50  
MHz Squarewave  
tPD  
Propagation delay  
225  
ps  
Temperature  
Tempco of tPD Coefficient of  
propagation delay  
±0.2  
ps/℃  
Propagation delay VOVERDRIVE = 50mV, VUNDERDRIVE = 50 mV, 50  
tPD_SKEW  
±2.5  
2
ps  
ps  
ps  
ps  
ps  
ps  
skew  
MHz Squarewave  
Common mode  
dispersion  
tCM_DISPERSION  
tOD_DISPERSION  
tOD_DISPERSION  
tUD_DISPERSION  
tUD_DISPERSION  
VCM varied from VCM (min) to VCM (max)  
Overdrive  
dispersion  
Overdrive varied from 20 mV to 100 mV  
Overdrive varied from 10 mV to 1 V  
Overdrive varied from 20 mV to 100 mV  
Overdrive varied from 10 mV to 1 V  
5
Overdrive  
dispersion  
15  
7
Underdrive  
dispersion  
Underdrive  
dispersion  
10  
tR  
tF  
Rise time  
Fall time  
20% to 80%  
80% to 20%  
135  
135  
ps  
ps  
Input toggle  
frequency  
fTOGGLE  
fTOGGLE  
VIN = 200 mVPP Sine Wave, VOD = 550 mV  
VIN = 200 mVPP Sine Wave, 50% Output swing  
2.3  
3
GHz  
GHz  
Input toggle  
frequency  
TR  
TR  
Toggle Rate  
Toggle Rate  
VIN = 200 mVPP Sine Wave, VOD = 550 mV  
VIN = 200 mVPP Sine Wave, 50% Output swing  
4.6  
6
Gbps  
Gbps  
Minimum allowed VOVERDRIVE = VUNDERDRIVE = 50mV  
input pulse width PWOUT = 90% of PWIN  
PulseWidth  
240  
ps  
(1) Ensured by charaterization  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDD7  
8
Submit Document Feedback  
Product Folder Links: TLV3801 TLV3811  
 
TLV3801, TLV3811  
ZHCSNF6B DECEMBER 2021 REVISED MARCH 2023  
www.ti.com.cn  
6.6 Timing Diagrams  
VOVERDRIVE  
VUNDERDRIVE  
IN-  
VUNDERDRIVE  
VOVERDRIVE  
IN+  
tPLH  
tPHL  
tR  
tF  
80%  
20%  
1.25V  
VOUT+  
VOUT-  
1.25V  
tPHL  
tPLH  
0V  
tPLHD  
tPHLD  
VOD  
6-1. General Timing Diagram  
V
OD = 100mV  
V
OD = 20mV  
IN-  
IN+  
DISPERSION  
0V  
VOD  
6-2. Overdrive Dispersion  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLV3801 TLV3811  
English Data Sheet: SNOSDD7  
 
TLV3801, TLV3811  
ZHCSNF6B DECEMBER 2021 REVISED MARCH 2023  
www.ti.com.cn  
6.7 Typical Characteristics  
At TA = 25°C, VCC - VEE = 3.3 V to 5 V while VEE = GND = 0, VCM = 2.5 V, and input overdrive/underdrive = 50 mV, unless  
otherwise noted.  
1.5  
1
2.4  
2.3  
2.2  
2.1  
2
0.5  
0
1.9  
1.8  
1.7  
1.6  
-0.5  
-1  
For 33 units  
For 33 units  
-1.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
Temperature (C)  
6-3. Offset vs. Temperature  
6-4. TLV3801 Hysteresis vs. Temperature  
1.8  
1.4  
1
2.4  
2.3  
2.2  
2.1  
2
0.6  
0.2  
-0.2  
-0.6  
-1  
1.9  
1.8  
1.7  
1.6  
-40C  
25C  
85C  
125C  
-1.4  
-1.8  
For 33 units  
3 3.3  
1.5  
1.8  
2.1  
2.4  
2.7  
3
3.3  
1.5  
1.8  
2.1  
2.4  
2.7  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
6-6. TLV3801 Hysteresis vs. Common-Mode, 3.3 V  
6-5. Offset vs. Common-Mode, 3.3 V  
1.8  
1.4  
1
2.4  
2.3  
2.2  
2.1  
2
0.6  
0.2  
-0.2  
-0.6  
-1  
1.9  
1.8  
-40C  
25C  
85C  
125C  
1.7  
1.6  
-1.4  
-1.8  
For 33 units  
4.5 5  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
1.5  
2
2.5  
3
3.5  
4
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
6-8. TLV3801 Hysteresis vs. Common-Mode, 5 V  
6-7. Offset vs. Common-Mode, 5 V  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDD7  
10  
Submit Document Feedback  
Product Folder Links: TLV3801 TLV3811  
 
TLV3801, TLV3811  
ZHCSNF6B DECEMBER 2021 REVISED MARCH 2023  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
At TA = 25°C, VCC - VEE = 3.3 V to 5 V while VEE = GND = 0, VCM = 2.5 V, and input overdrive/underdrive = 50 mV, unless  
otherwise noted.  
22  
21.6  
21.2  
20.8  
20.4  
20  
18  
17.6  
17.2  
16.8  
16.4  
16  
19.6  
19.2  
18.8  
18.4  
18  
15.6  
15.2  
14.8  
14.4  
14  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
Temperature (C)  
6-9. TLV3801 Supply Current vs. Temperature  
6-10. TLV3811(C) Supply Current vs. Temperature  
5
4
5
4
3
2
1
0
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
-40C  
-40C  
25C  
85C  
125C  
25C  
85C  
125C  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
2.7  
2.9  
3.1  
3.3  
1.5 1.8 2.1 2.4 2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
6-11. Bias Current vs. Common-Mode, 3.3 V  
6-12. Bias Current vs. Common-Mode, 5 V  
250  
245  
240  
235  
230  
225  
220  
215  
210  
205  
200  
260  
255  
250  
245  
240  
235  
230  
225  
220  
215  
210  
-40C  
-40C  
25C  
85C  
125C  
25C  
85C  
125C  
1.5  
1.8  
2.1  
2.4  
2.7  
3
3.3  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
6-13. Propagation Delay vs. Common-Mode, 3.3 V  
6-14. Propagation Delay vs. Common-Mode, 5 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLV3801 TLV3811  
English Data Sheet: SNOSDD7  
TLV3801, TLV3811  
ZHCSNF6B DECEMBER 2021 REVISED MARCH 2023  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
At TA = 25°C, VCC - VEE = 3.3 V to 5 V while VEE = GND = 0, VCM = 2.5 V, and input overdrive/underdrive = 50 mV, unless  
otherwise noted.  
250  
245  
240  
235  
230  
225  
220  
215  
210  
205  
200  
250  
245  
240  
235  
230  
225  
220  
215  
210  
205  
200  
-40C  
25C  
85C  
125C  
-40C  
25C  
85C  
125C  
10  
20 30 40 50 70 100  
200 300 500 7001,000  
10  
20 30 40 50 70 100  
200 300 500 7001,000  
Input Overdrive (mV)  
Input Underdrive (mV)  
6-16. Propagation Delay vs. Underdrive, 3.3 V  
265  
6-15. Propagation Delay vs. Overdrive, 3.3 V  
265  
260  
255  
250  
245  
240  
235  
230  
225  
220  
215  
210  
-40C  
-40C  
25C  
85C  
125C  
260  
255  
250  
245  
240  
235  
230  
225  
220  
215  
210  
25C  
85C  
125C  
10  
20 30 40 50 70 100  
200 300 500 7001,000  
10  
20 30 40 50 70 100  
200 300 500 7001,000  
Input Overdrive (mV)  
Input Underdrive (mV)  
6-17. Propagation Delay vs. Overdrive, 5 V  
6-18. Propagation Delay vs. Underdrive, 5 V  
0
-5  
0
-5  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
-40C  
-40C  
25C  
25C  
85C  
85C  
125C Referred to 10mV VOD  
125C Referred to 10mV VOD  
10  
20 30 40 50 70 100  
200 300 500 7001,000  
10  
20 30 40 50 70 100  
200 300 500 7001,000  
Overdrive Voltage (mV)  
Overdrive Voltage (mV)  
6-19. Dispersion vs. Overdrive, 3.3 V  
6-20. Dispersion vs. Overdrive, 5 V  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDD7  
12  
Submit Document Feedback  
Product Folder Links: TLV3801 TLV3811  
TLV3801, TLV3811  
ZHCSNF6B DECEMBER 2021 REVISED MARCH 2023  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
At TA = 25°C, VCC - VEE = 3.3 V to 5 V while VEE = GND = 0, VCM = 2.5 V, and input overdrive/underdrive = 50 mV, unless  
otherwise noted.  
400  
375  
350  
325  
300  
275  
250  
225  
200  
175  
150  
400  
375  
350  
325  
300  
275  
250  
225  
200  
175  
150  
-40C  
25C  
85C  
125C  
-40C  
25C  
85C  
125C  
1.5  
1.8  
2.1  
2.4  
2.7  
3
3.3  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
6-21. Minimum Pulse Width vs. Common-Mode, 3.3 V  
6-22. Minimum Pulse Width vs. Common-Mode, 5 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLV3801 TLV3811  
English Data Sheet: SNOSDD7  
TLV3801, TLV3811  
ZHCSNF6B DECEMBER 2021 REVISED MARCH 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TLV3801/TLV3811(C) are high-speed comparators with LVDS output. The fast response time of these  
comparators make them well suited for applications that require narrow pulse width detection or high toggle  
frequencies. The TLV3801 is available in the 8-pin DSG package while the TLV3811(C) is available in the 6-pin  
BGA package.  
7.2 Functional Block Diagram  
VCC  
VCC  
VCC  
OUT+  
OUT-  
OUT+  
OUT-  
IN+  
IN-  
IN+  
IN-  
+
+
LVDS  
LVDS  
TLV3811  
TLV3801  
GND  
GND  
VEE  
7.3 Feature Description  
The TLV3801/TLV3811(C) are single channel, high-speed comparators with a typical propagation delay of 225  
ps and LVDS output. The minimum pulse width detection capability is 240 ps and the typical toggle frequency is  
3 GHz (6 Gbps). These comparators are well suited for distance sensing for LIDAR and time-of-flight  
applications as well as for high-speed test and measurement systems. The TLV3801 has two separate power  
rails for the input and the output; this allows the input to be referenced from either single or split supply (VCC  
and VEE) while the output is referenced from ground (VCC and GND). On the other hand, the TLV3811(C) has  
one power rail for both inputs and outputs and can only be operated at a single supply.  
7.4 Device Functional Modes  
The TLV3801 has a single functional mode and is operational on the condition that both the input supply voltage  
(VCC - VEE) is greater than or equal to 2.7 V and the output supply voltage (VCC - GND) is greater than or  
equal to 2.4 V.  
The TLV3811(C) has a single functional mode and is operational when the power supply voltage (VCC - GND) is  
greater than or equal to 2.7 V.  
7.4.1 Inputs  
The TLV3801/TLV3811(C) feature an input stage, capable of operating between 1.5 V above VEE (GND for  
TLV3811(C)) and 0.1 V above VCC, with an internal ESD protection circuit that includes two pairs of front-to-  
back diodes between IN+ and IN- as well as two 50 Ω resistors, as shown in 7-1. This prevents damage to  
the input stage by limiting the differential input voltage to be no more than twice the diode's forward-voltage drop  
2 × VF (2 × 0.7 V).  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDD7  
14  
Submit Document Feedback  
Product Folder Links: TLV3801 TLV3811  
 
 
 
 
 
TLV3801, TLV3811  
ZHCSNF6B DECEMBER 2021 REVISED MARCH 2023  
www.ti.com.cn  
50 Ω  
50 Ω  
IN+  
IN-  
TO  
INTERNAL  
CIRCUITRY  
7-1. Input Stage Circuitry  
When the differential input voltage exceeds 2 × VF, the input bias current increases at the input pins IN+ and IN-,  
as shown in 方程1.  
Input Current = [(VIN+ - VIN-) - 2 × VF] / (2 × 50)  
(1)  
To avoid damaging the inputs when exceeding the recommended input voltage range, an external resistor  
should be used to limit the current. The current should be limited to less than 10 mA.  
7.4.2 LVDS Output  
The TLV3801/TLV3811(C) outputs are LVDS compliant. When the input of the downstream device is terminated  
with a 100 Ωresistor, the comparators provide a ±350 mV differential swing at an output common-mode voltage  
of 1.25 V above GND. Fully differential outputs enable fast digital toggling and reduce EMI compared to single-  
ended output standards.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLV3801 TLV3811  
English Data Sheet: SNOSDD7  
 
 
TLV3801, TLV3811  
ZHCSNF6B DECEMBER 2021 REVISED MARCH 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Capacitive Loads  
Under reasonable capacitive loads, the device maintains specified propagation delay. However, excessive  
capacitive loading under high switching frequencies may increase supply current, propagation delay, or induce  
decreased slew rate.  
8.1.2 Hysteresis  
A comparator's high, open-loop gain creates a small band of input differential voltage where the comparator may  
produce "chatter" which causes the output to toggle back and forth between a logic highand a logic  
low. This can cause design challenges for inputs with slow rise and fall times or systems with excessive noise.  
These challenges can be prevented by adding hysteresis to the comparator. However, hysteresis must be added  
strategically when input signals are small since it can cuase signals to go undetected. As a result, TLV3811C is  
optimized for detecting small, fast-switching inputs and has 0 mV of internal hysteresis. On the other hand, for  
detecting larger input signals in the presense of noise, the TLV3811 has 1.1 mV of internal hysteresis and  
TLV3801 has 2 mV.  
Since the TLV3801/TLV3811(C) only have a minimal amount of internal hysteresis, external hysteresis can be  
applied in the form of a positive feedback loop that adjusts the trip point of the comparator depending on its  
current output state. See the Non-Inverting Comparator With Hysteresis section for more details.  
8.2 Typical Application  
8.2.1 Optical Receiver  
The TLV3801/TLV3811(C) can be used in conjunction with a high performance amplifier such as the OPA858 to  
create an optical receiver as shown in the 8-1. The photodiode operates in photoconductive mode: exposure  
to light will cause a reverse current through the photodiode. A bias voltage is applied to the op amp's non-  
inverting input to prevent saturation at the negative power supply. The OPA858 takes the current conducting  
through the diode and translates it into a voltage for a high speed comparator to detect. The TLV3801/  
TLV3811(C) will then output the proper LVDS signal according to the threshold set (VREF).  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDD7  
16  
Submit Document Feedback  
Product Folder Links: TLV3801 TLV3811  
 
 
 
TLV3801, TLV3811  
ZHCSNF6B DECEMBER 2021 REVISED MARCH 2023  
www.ti.com.cn  
CF  
RF  
VCC  
VCC  
-
VOUT  
OPA858  
+
OUT+  
TLV3801  
+
OUT-  
-
100  
VBIAS  
VREF  
8-1. Optical Receiver  
8.2.1.1 Design Requirements  
8-1. Design Parameters  
PARAMETER  
VALUE  
VCC  
+5 V  
0 V  
VEE  
VOUT, SWING  
100 mV  
100 µA  
159 MHz  
IDIODE  
fp  
8.2.1.2 Detailed Design Procedure  
Set VBIAS to be in the recommended common-mode voltage range of the OPA858. This is also the minimum  
output voltage of the op amp VOUT, MIN as the op amp will attempt to settle at the voltage applied to the non-  
inverting input.  
The maximum output voltage of the op amp VOUT, MAX can be calculated from the desired output voltage swing  
VOUT, SWING and VOUT, MIN, as shown in 方程2.  
VOUT, MAX = VOUT, SWING + VOUT, MIN  
(2)  
The gain resistor RF is determined by the desired VOUT, MAX and VOUT, MIN and the maximum current IDIODE  
through the diode, as shown in 方程2.  
RF = (VOUT, MAX - VOUT, MIN) / IDIODE  
(3)  
The feedback capacitor, in combinaton with the gain resistor, forms a pole in the frequency response of the  
amplifier. The feedback capacitor can be determined by the gain resistor and the desired pole frequency fp, as  
shown in 方程2.  
CF = 1 / (2 × π× RF x fp)  
(4)  
Set VREF to be the switching threshold voltage between VOUT, MAX and VOUT, MIN  
.
Select values for VBIAS and VREF. Plug in given values for VOUT, MAX, IDIODE, and fp. For the given example, VBIAS  
= 1.5 V, VREF = 1.55 V, and RF, CF is solved as 1 kΩand 1 pF, respectively.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLV3801 TLV3811  
English Data Sheet: SNOSDD7  
 
 
TLV3801, TLV3811  
ZHCSNF6B DECEMBER 2021 REVISED MARCH 2023  
www.ti.com.cn  
For more information, please refer to the op amp tutorials for stability analysis on the transimpedance amplifier  
Spice Stability Analysis and Op Amp Stability. See application note SBOA268A Transimpedance Amplifier  
Circuit for more detailed procedures.  
8.2.1.3 Application Performance Plots  
8-2.  
8.2.2 Non-Inverting Comparator With Hysteresis  
A way to implement external hysteresis to the TLV3801/TLV3811(C) is to add two resistors to the circuit: one in  
series between the reference voltage and the inverting pin, and another from the inverting pin to one of the  
differential output pins.  
VCC  
VIN  
Q
Q
+
R1  
+
VREF  
R2  
8-3. Non-Inverting Comparator with Hysteresis Circuit  
8.2.2.1 Design Requirements  
8-2. Design Parameters  
PARAMETER  
VALUE  
VHYS  
VREF  
VT1  
50 mV  
2.5 V  
2.34 V  
2.29 V  
VT2  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDD7  
18  
Submit Document Feedback  
Product Folder Links: TLV3801 TLV3811  
 
TLV3801, TLV3811  
ZHCSNF6B DECEMBER 2021 REVISED MARCH 2023  
www.ti.com.cn  
PARAMETER  
8-2. Design Parameters (continued)  
VALUE  
Q
Q
1.425 V  
1.075 V  
8.2.2.2 Detailed Design Procedure  
First, create an equation for VT that covers both output voltages when the output is high or low.  
VT1 = VREFR2 + QR1  
R1+R2 R1+R2  
(5)  
(6)  
VT2 = VREFR2 + QR1  
R1+R2 R1+R2  
The hysteresis voltage in this network is equal to the difference in the two threshold voltage equations.  
VHYS = VT1-VT2  
(7)  
(8)  
- VREFR2 - QR1  
R1+R2 R1+R2  
VHYS = VREFR2 + QR1  
R1+R2 R1+R2  
VHYS = (Q-Q)R1  
R1+R2  
(9)  
VHYS = VODR1  
R1+R2  
(10)  
Note that these equations do not take into account the effects of the internal hysteresis and offset voltage of the  
comparator. Design parameters will need to be adjusted accordingly.  
Select a value for R2. Plug in given values for VREF, VT1, VT2, Q, and Q, and solve for R1. For the given  
example, R2 = 50 kΩ, and R1 is solved as = 8.33 kΩ.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLV3801 TLV3811  
English Data Sheet: SNOSDD7  
TLV3801, TLV3811  
ZHCSNF6B DECEMBER 2021 REVISED MARCH 2023  
www.ti.com.cn  
8.2.2.3 Application Performance Plots  
8-4. Hysteresis Curve for LVDS Comparator  
8.2.3 Logic Clock Source to LVDS Transceiver  
The 8-5 shows a logic clock source being terminated and driven with the TLV3801/TLV3811(C) across a  
CAT6 Cable to receive an equivalent LVDS clock signal at the receiver end.  
CLOCK SOURCE  
OUT+  
OUT-  
+
TLV3801  
+
RJ45 CAT6 CABLE RJ45  
TLV3801  
-
-
VREF  
8-5. LVDS Clock Transceiver  
8.2.4 External Trigger Function for Oscilloscopes  
8-6 is a typical configuration for creating an external trigger on oscilliscopes. The user adjusts the trigger  
level, and a DAC converts this trigger level to a voltage the TLV3801/TLV3811(C) can use as a reference. The  
input voltage from an oscilloscope channel is then compared to the trigger reference voltage, and the TLV3801/  
TLV3811(C) sends an LVDS signal to a downstream FPGA to begin a capture. It is common to see bipolar inputs  
in test and measurement systems such as oscilloscopes; therefore, the TLV3801 can be configured in split  
supply so that the inputs are in the allowable input voltage range.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDD7  
20  
Submit Document Feedback  
Product Folder Links: TLV3801 TLV3811  
 
TLV3801, TLV3811  
ZHCSNF6B DECEMBER 2021 REVISED MARCH 2023  
www.ti.com.cn  
VCC = +2.5V  
External  
Trigger  
Amplifier/  
Attenuation  
Trigger Input  
+
FPGA  
TLV3801  
GND  
-
VEE = -2.5V  
DAC  
8-6. External Trigger Function  
8.3 Power Supply Recommendations  
The TLV3801 has two seperate power rails: VCC - VEE for the input stage and VCC - GND for the output stage.  
This allows for both single and split supply capabilities for the input stage with a seperate ground reference for  
the LVDS output stage. Split supply operation allows users to apply both positive and negative (bipolar) voltages  
to the input pins.  
When operating from a single supply, the supply voltage range for both the input and output stage is 2.7 V to  
5.25 V. When operating from split supply rails, the supply voltage range for the input stage (VCC - VEE) is 2.7 V  
to 5.25 V, and the supply voltage range for the output stage (VCC - GND) is 2.4 V to 5.25 V. The output logic  
level is independent of the VCC and VEE levels. The TLV3811(C) is specified for operation from 2.4 V to 5.25 V  
and can only be operated from a single supply with both inputs and outputs referenced to GND.  
Regardless of single supply or split supply operation, proper decoupling capacitors are required. It is  
recommended to use a scheme of multiple, low-ESR ceramic capacitors from the supply pins to the ground  
plane for optimum performance. A good combination would be 100 pF, 10 nF, and 1 uF with the lowest value  
capacitor closest to the comparator.  
8.4 Layout  
8.4.1 Layout Guidelines  
Comparators are very sensitive to input noise. For best results, adhere to the following layout guidelines.  
1. Use a printed-circuit-board (PCB) with a good, unbroken, low-inductance ground plane. Proper grounding  
(use of a ground plane) helps maintain specified device performance.  
2. To minimize supply noise for single and split supply, place decoupling capacitor arrays as close as possible  
to VCC  
.
3. On the inputs and the output, keep lead lengths as short as possible to avoid unwanted parasitic feedback  
around the comparator. Keep inputs away from the output.  
4. Solder the device directly to the PCB rather than using a socket.  
5. For slow-moving input signals, take care to prevent parasitic feedback. A small capacitor (1000 pF or less)  
placed between the inputs can help eliminate oscillations in the transition region. This capacitor causes  
some degradation to propagation delay when impedance is low. The topside ground plane runs between the  
output and inputs.  
6. Use a 100 Ωtermination resistor across the device's LVDS output.  
7. Use higher performance substrate materials such as Rogers.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLV3801 TLV3811  
English Data Sheet: SNOSDD7  
 
 
 
TLV3801, TLV3811  
ZHCSNF6B DECEMBER 2021 REVISED MARCH 2023  
www.ti.com.cn  
8.4.2 Layout Example  
VEE GND  
IN-  
OUT-  
OUT+  
IN+  
VCC  
C1  
8-7. TLV3801EVM Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDD7  
22  
Submit Document Feedback  
Product Folder Links: TLV3801 TLV3811  
TLV3801, TLV3811  
ZHCSNF6B DECEMBER 2021 REVISED MARCH 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 Development Support  
LIDAR Pulsed Time of Flight Reference Design  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLV3801 TLV3811  
English Data Sheet: SNOSDD7  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV3801DSGR  
TLV3801DSGT  
TLV3811CYBGR  
TLV3811CYBGT  
TLV3811YBGR  
TLV3811YBGT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSG  
DSG  
YBG  
YBG  
YBG  
YBG  
8
8
6
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
3801  
3801  
02  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
SN  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
O2  
LQ  
LQ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Mar-2023  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV3801 :  
Automotive : TLV3801-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Mar-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV3801DSGR  
TLV3801DSGT  
TLV3811CYBGR  
TLV3811CYBGT  
WSON  
WSON  
DSBGA  
DSBGA  
DSG  
DSG  
YBG  
YBG  
8
8
6
6
3000  
250  
180.0  
179.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
2.2  
2.2  
2.2  
2.2  
1.2  
1.2  
0.6  
0.6  
4.0  
4.0  
2.0  
2.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
0.87  
0.87  
1.27  
1.27  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Mar-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV3801DSGR  
TLV3801DSGT  
TLV3811CYBGR  
TLV3811CYBGT  
WSON  
WSON  
DSBGA  
DSBGA  
DSG  
DSG  
YBG  
YBG  
8
8
6
6
3000  
250  
213.0  
213.0  
182.0  
182.0  
191.0  
191.0  
182.0  
182.0  
35.0  
35.0  
20.0  
20.0  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YBG0006  
DSBGA - 0.5 mm max height  
SCALE 13.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
0.5 MAX  
C
SEATING PLANE  
0.05 C  
0.20  
0.14  
BALL TYP  
0.4  
TYP  
C
0.8  
TYP  
SYMM  
D: Max = 1.248 mm, Min =1.188 mm  
E: Max = 0.848 mm, Min =0.788 mm  
B
0.4 TYP  
A
0.27  
0.23  
C A B  
1
2
6X  
0.015  
SYMM  
4224328/A 05/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YBG0006  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
6X ( 0.23)  
1
2
A
(0.4) TYP  
SYMM  
B
C
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 50X  
0.05 MIN  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
(
0.23)  
METAL  
(
0.23)  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4224328/A 05/2018  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YBG0006  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
6X ( 0.25)  
2
1
A
(0.4) TYP  
SYMM  
B
C
METAL  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 50X  
4224328/A 05/2018  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008B  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.1 MIN  
(0.05)  
PIN 1 INDEX AREA  
S
C
A
 L
 E
3
0
.
A
2.1  
1.9  
SECTION A-A  
TYPICAL  
0.3  
0.2  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
0.9 0.1  
5
4
6X 0.5  
A
A
2X  
1.5  
9
1.6 0.1  
8
1
0.3  
8X  
0.2  
0.4  
0.2  
PIN 1 ID  
8X  
0.1  
0.05  
C A B  
C
4222124/E 05/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008B  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222124/E 05/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008B  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4222124/E 05/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV3811CYBGT

具有低压差分信号 (LVDS) 输出的 225ps 高速比较器 | YBG | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV3811YBGR

具有低压差分信号 (LVDS) 输出的 225ps 高速比较器 | YBG | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV3811YBGT

具有低压差分信号 (LVDS) 输出的 225ps 高速比较器 | YBG | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV387

超高精度、零漂移、低输入偏置电流单路运算放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV387DBVR

超高精度、零漂移、低输入偏置电流单路运算放大器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV387DBVT

超高精度、零漂移、低输入偏置电流单路运算放大器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV4011

具有集成基准电压的小型比较器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV4011-Q1

具有集成基准的汽车类小型比较器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV4011DCKR

具有集成基准电压的小型比较器 | DCK | 5 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV4011QDCKRQ1

具有集成基准的汽车类小型比较器 | DCK | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV4021

具有基准电压的低功耗比较器(同相、漏极开路)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV4021R1YKAR

具有基准电压的低功耗比较器(同相、漏极开路) | YKA | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI