TLV5606IDR [TI]

2.7 V TO 5.5 V LOW POWER 10-BIT DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN; 2.7 V至WITH POWER DOWN 5.5 V低功耗10位数字 - 模拟转换器
TLV5606IDR
型号: TLV5606IDR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2.7 V TO 5.5 V LOW POWER 10-BIT DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN
2.7 V至WITH POWER DOWN 5.5 V低功耗10位数字 - 模拟转换器

转换器 数模转换器 光电二极管
文件: 总23页 (文件大小:443K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁꢂ ꢃꢄ ꢅꢄ  
ꢆ ꢇꢈ ꢉꢂ ꢀ ꢊ ꢃ ꢇꢃ ꢉꢂ ꢁ ꢊ ꢋ ꢌꢊ ꢋ ꢍꢎ ꢏ ꢅ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔ ꢕ ꢔꢁ ꢊꢓ  
ꢖꢊ ꢕꢂꢍ ꢎꢀ ꢍꢎꢗ ꢋ ꢑꢀ ꢘ ꢌꢊ ꢋ ꢍ ꢎ ꢒ ꢊꢋ ꢕ  
SLAS259B − DECEMBER 1999 − REVISED APRIL 2004  
D
Buffered High-Impedance Reference Input  
features  
D
Voltage Output Range . . . 2 Times the  
Reference Input Voltage  
D
D
10-Bit Voltage Output DAC  
Programmable Settling Time vs Power  
Consumption  
D
Monotonic Over Temperature  
Available in MSOP Package  
3 µs in Fast Mode  
D
9 µs in Slow Mode  
applications  
D
Ultra Low Power Consumption:  
900 µW Typ in Slow Mode at 3 V  
2.1 mW Typ in Fast Mode at 3 V  
D
D
D
D
D
Digital Servo Control Loops  
Digital Offset and Gain Adjustment  
Industrial Process Control  
D
D
D
Differential Nonlinearity . . . <0.2 LSB Typ  
Compatible With TMS320 and SPI Serial  
Ports  
Machine and Motion Control Devices  
Mass Storage Devices  
Power-Down Mode (10 nA)  
D OR DGK PACKAGE  
(TOP VIEW)  
description  
The TLV5606 is a 10-bit voltage output digital-to-  
analog converter (DAC) with a flexible 4-wire  
serial interface. The 4-wire serial interface allows  
glueless interface to TMS320, SPI, QSPI, and  
Microwire serial ports. The TLV5606 is pro-  
grammed with a 16-bit serial string containing 4  
control and 10 data bits. Developed for a wide  
range of supply voltages, the TLV5606 can  
operate from 2.7 V to 5.5 V.  
DIN  
SCLK  
CS  
V
DD  
OUT  
1
2
3
4
8
7
6
5
REFIN  
AGND  
FS  
The resistor string output voltage is buffered by a x2 gain rail-to-rail output buffer. The buffer features a Class AB  
output stage to improve stability and reduce settling time. The settling time of the DAC is programmable to allow  
the designer to optimize speed versus power dissipation. The settling time is chosen by the control bits within  
the 16-bit serial input string. A high-impedance buffer is integrated on the REFIN terminal to reduce the need  
for a low source impedance drive to the terminal.  
Implemented with a CMOS process, the TLV5606 is designed for single supply operation from 2.7 V to 5.5 V.  
The device is available in an 8-terminal SOIC package. The TLV5606C is characterized for operation from 0°C  
to 70°C. The TLV5606I is characterized for operation from 40°C to 85°C.  
AVAILABLE OPTIONS  
PACKAGE  
MSOP  
(DGK)  
T
A
SMALL OUTLINE  
(D)  
0°C to 70°C  
TLV5606CD  
TLV5606ID  
TLV5606CDGK  
TLV5606IDGK  
40°C to 85°C  
Available in tape and reel as the TLV5606CDR, TLV5606IDR,  
TLV5606CDGKR, and the TLV5606IDGKR  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2002−2004, Texas Instruments Incorporated  
ꢌꢞ ꢝ ꢩꢤꢣ ꢡ ꢢ ꢣ ꢝꢛ ꢜꢝ ꢞ ꢟ ꢡ ꢝ ꢢ ꢦꢥ ꢣ ꢚꢜ ꢚꢣꢠ ꢡꢚ ꢝꢛꢢ ꢦꢥ ꢞ ꢡꢪ ꢥ ꢡꢥ ꢞ ꢟꢢ ꢝꢜ ꢀꢥꢫ ꢠꢢ ꢑꢛꢢ ꢡꢞ ꢤꢟ ꢥꢛꢡ ꢢ  
ꢢ ꢡ ꢠ ꢛꢩ ꢠ ꢞꢩ ꢬ ꢠ ꢞꢞ ꢠ ꢛ ꢡꢭꢇ ꢌꢞ ꢝ ꢩꢤꢣ ꢡꢚꢝꢛ ꢦꢞ ꢝꢣ ꢥꢢ ꢢꢚ ꢛꢮ ꢩꢝꢥ ꢢ ꢛꢝꢡ ꢛꢥ ꢣꢥ ꢢꢢ ꢠꢞ ꢚꢨ ꢭ ꢚꢛꢣ ꢨꢤꢩ ꢥ  
ꢡ ꢥ ꢢ ꢡꢚ ꢛꢮ ꢝꢜ ꢠ ꢨꢨ ꢦꢠ ꢞ ꢠ ꢟ ꢥ ꢡ ꢥ ꢞ ꢢ ꢇ  
1
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
ꢆꢇ ꢈꢉꢂ ꢀꢊ ꢃ ꢇ ꢃꢉꢂ ꢁ ꢊ ꢋ ꢌ ꢊꢋ ꢍ ꢎ ꢏ ꢅ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔꢕꢔꢁ ꢊ ꢓ  
ꢖ ꢊꢕ ꢂꢍꢎ ꢀ ꢍꢎ ꢗ ꢋ ꢑ ꢀꢘ ꢌ ꢊꢋ ꢍꢎ ꢒꢊ ꢋ ꢕ  
SLAS259B − DECEMBER 1999 − REVISED APRIL 2004  
functional block diagram  
_
6
+
REFIN  
DIN  
12  
10  
Serial Input  
Register  
1
10-Bit  
Data  
Latch  
10  
7
x2  
OUT  
2
3
4
SCLK  
CS  
Update  
16 Cycle  
Timer  
FS  
2
Power-On  
Reset  
Speed/Power-Down  
Logic  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
AGND  
CS  
5
3
1
4
7
6
2
8
Analog ground  
I
I
Chip select. Digital input used to enable and disable inputs, active low.  
Serial digital data input  
DIN  
FS  
I
Frame sync. Digital input used for 4-wire serial interfaces such as the TMS320 DSP interface.  
OUT  
REFIN  
SCLK  
O
I
DAC analog output  
Reference analog input voltage  
Serial digital clock input  
Positive power supply  
I
V
DD  
2
WWW.TI.COM  
ꢀꢁꢂ ꢃꢄ ꢅꢄ  
ꢆ ꢇꢈ ꢉꢂ ꢀ ꢊ ꢃ ꢇꢃ ꢉꢂ ꢁ ꢊ ꢋ ꢌꢊ ꢋ ꢍꢎ ꢏ ꢅ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔ ꢕ ꢔꢁ ꢊꢓ  
ꢖꢊ ꢕꢂꢍ ꢎꢀ ꢍꢎꢗ ꢋ ꢑꢀ ꢘ ꢌꢊ ꢋ ꢍ ꢎ ꢒ ꢊꢋ ꢕ  
SLAS259B − DECEMBER 1999 − REVISED APRIL 2004  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage (V  
to AGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
DD  
Reference input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.3 V to V  
Digital input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.3 V to V  
+ 0.3 V  
+ 0.3 V  
DD  
DD  
Operating free-air temperature range, T : TLV5606C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
TLV5606I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
recommended operating conditions  
MIN NOM  
MAX  
5.5  
UNIT  
V
V
V
= 5 V  
= 3 V  
4.5  
2.7  
2
5
3
DD  
Supply voltage, V  
DD  
3.3  
V
DD  
DV  
DV  
DV  
DV  
= 2.7 V  
V
DD  
DD  
DD  
DD  
High-level digital input voltage, V  
IH  
= 5.5 V  
= 2.7 V  
= 5.5 V  
2.4  
V
0.6  
1
V
Low-level digital input voltage, V  
IL  
V
Reference voltage, V to REFIN terminal  
ref  
V
V
= 5 V (see Note 1)  
= 3 V (see Note 1)  
AGND 2.048  
AGND 1.024  
V
V
−1.5  
V
DD  
DD  
Reference voltage, V to REFIN terminal  
ref  
1.5  
V
DD  
DD  
Load resistance, R  
2
10  
kΩ  
pF  
MHz  
°C  
°C  
L
Load capacitance, C  
100  
L
Clock frequency, f  
20  
70  
85  
CLK  
TLV5606C  
TLV5606I  
0
40  
Operating free-air temperature, T  
A
NOTE 1: Due to the x2 output buffer, a reference input voltage V  
DD/2  
causes clipping of the transfer function.  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
power supply  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
= 5 V, VREF = 2.048 V,  
DD  
Fast  
0.9  
1.35  
mA  
No load,  
All inputs = AGND or V  
DAC latch = 0x800  
,
,
DD  
Slow  
Fast  
0.4  
0.7  
0.6  
1.1  
mA  
mA  
I
Power supply current  
DD  
V
= 3 V, VREF = 1.024 V  
DD  
No load,  
All inputs = AGND or V  
DAC latch = 0x800  
DD  
Slow  
0.3  
10  
0.45  
mA  
nA  
Power down supply current (see Figure 12)  
Zero scale See Note 2  
−80  
−80  
2
PSRR  
Power supply rejection ratio  
dB  
V
Full scale  
See Note 3  
Power on threshold voltage, POR  
NOTES: 2. Power supply rejection ratio at zero scale is measured by varying V  
and is given by:  
and is given by:  
DD  
PSRR = 20 log [(E (V max) − E (V min))/V max]  
ZS DD ZS DD DD  
3. Power supply rejection ratio at full scale is measured by varying V  
DD  
PSRR = 20 log [(E (V max) − E (V min))/V max]  
G
DD  
G
DD  
DD  
3
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
ꢆꢇ ꢈꢉꢂ ꢀꢊ ꢃ ꢇ ꢃꢉꢂ ꢁ ꢊ ꢋ ꢌ ꢊꢋ ꢍ ꢎ ꢏ ꢅ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔꢕꢔꢁ ꢊ ꢓ  
ꢖ ꢊꢕ ꢂꢍꢎ ꢀ ꢍꢎ ꢗ ꢋ ꢑ ꢀꢘ ꢌ ꢊꢋ ꢍꢎ ꢒꢊ ꢋ ꢕ  
SLAS259B − DECEMBER 1999 − REVISED APRIL 2004  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (continued)  
static DAC specifications R = 10 k, C = 100 pF  
L
L
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
10  
MAX  
10  
UNIT  
bits  
Resolution  
INL  
Integral nonlinearity  
See Note 4  
0.5  
0.2  
1.5  
1
LSB  
DNL  
Differential nonlinearity  
See Note 5  
See Note 6  
See Note 7  
LSB  
E
ZS  
Zero-scale error (offset error at zero scale)  
Zero-scale-error temperature coefficient  
10  
mV  
10  
ppm/°C  
% of  
FS  
voltage  
E
G
Gain error  
See Note 8  
0.6  
Gain-error temperature coefficient  
See Note 9  
10  
ppm/°C  
NOTES: 4. The relative accuracy or integral nonlinearity (INL) sometimes referred to as linearity error, is the maximum deviation of the output  
from the line between zero and full scale excluding the effects of zero code and full-scale errors. Tested from code 10 to code 1023.  
5. The differential nonlinearity (DNL) sometimes referred to as differential error, is the difference between the measured and ideal 1  
LSB amplitude change of any two adjacent codes. Monotonic means the output voltage changes in the same direction (or remains  
constant) as a change in the digital input code. Tested from code 10 to code 1023.  
6. Zero-scale error is the deviation from zero voltage output when the digital input code is zero.  
6
7. Zero-scale-error temperature coefficient is given by: E  
TC = [E  
(T  
) − E  
(T  
)]/V × 10 /(T  
ref max  
− T ).  
min  
ZS  
ZS max  
ZS min  
8. Gain error is the deviation from the ideal output (2V − 1 LSB) with an output load of 10 kexcluding the effects of the zero-error.  
ref  
G
6
9. Gain temperature coefficient is given by: E TC = [E (T  
) − E (T  
)]/V × 10 /(T  
− T ).  
G
max  
G
min  
ref  
max  
min  
output specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
O
Voltage output range  
R
R
= 10 kΩ  
0
AV −0.1  
DD  
V
L
L
% of FS  
voltage  
Output load regulation accuracy  
= 2 k, vs 10 kΩ  
0.1  
0.25  
reference input (REF)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
I
Input voltage range  
Input resistance  
0
V
−1.5  
DD  
R
C
10  
5
MΩ  
pF  
I
I
Input capacitance  
Slow  
Fast  
525  
1.3  
−75  
kHz  
MHz  
dB  
Reference input bandwidth  
Reference feed through  
REFIN = 0.2 V + 1.024 V dc  
pp  
REFIN = 1 V at 1 kHz + 1.024 V dc (see Note 10)  
pp  
NOTE 10: Reference feedthrough is measured at the DAC output with an input code = 0x000.  
digital inputs  
PARAMETER  
High-level digital input current  
Low-level digital input current  
Input capacitance  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
µA  
I
I
V = V  
DD  
1
1
IH  
I
V = 0 V  
I
µA  
IL  
C
3
pF  
I
4
WWW.TI.COM  
ꢀꢁꢂ ꢃꢄ ꢅꢄ  
ꢆ ꢇꢈ ꢉꢂ ꢀ ꢊ ꢃ ꢇꢃ ꢉꢂ ꢁ ꢊ ꢋ ꢌꢊ ꢋ ꢍꢎ ꢏ ꢅ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔ ꢕ ꢔꢁ ꢊꢓ  
ꢖꢊ ꢕꢂꢍ ꢎꢀ ꢍꢎꢗ ꢋ ꢑꢀ ꢘ ꢌꢊ ꢋ ꢍ ꢎ ꢒ ꢊꢋ ꢕ  
SLAS259B − DECEMBER 1999 − REVISED APRIL 2004  
operating characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
analog output dynamic performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
3
MAX  
5.5  
UNIT  
C
= 100 pF,  
Fast  
Slow  
Fast  
Slow  
Fast  
Slow  
R
= 10 k,  
L
L
t
t
Output settling time, full scale  
µs  
s(FS)  
See Note 11  
9
20  
C
= 100 pF,  
1
µs  
µs  
R
= 10 k,  
L
L
Output settling time, code to code  
Slew rate  
s(CC)  
See Note 12  
2
3.6  
0.9  
10  
62  
60  
−61  
68  
R
= 10 k,  
See Note 13  
C
= 100 pF,  
L
L
SR  
V/µs  
Glitch energy  
Code transition from 0x7FF to 0x800  
nV−s  
dB  
S/N  
Signal to noise  
fs = 400 KSPS fout = 1.1 kHz,  
S/(N+D) Signal to noise + distortion  
dB  
R
= 10 kΩ,  
BW = 20 kHz  
C = 100 pF,  
L
L
THD  
Total harmonic distortion  
dB  
Spurious free dynamic range  
dB  
NOTES: 11. Settling time is the time for the output signal to remain within 0.5 LSB of the final measured value for a digital input code change  
of 0x080 to 0x3FF or 0x3FF to 0x080. Not tested, ensured by design.  
12. Settling time is the time for the output signal to remain within 0.5 LSB of the final measured value for a digital input code change  
of one count. Code change from 0x1FF to 0x200. Not tested, ensured by design.  
13. Slew rate determines the time it takes for a change of the DAC output from 10% to 90% full-scale voltage.  
digital input timing requirements  
MIN NOM  
MAX  
UNIT  
ns  
t
t
Setup time, CS low before FS↓  
10  
8
su(CS−FS)  
Setup time, FS low before first negative SCLK edge  
ns  
su(FS−CK)  
Setup time, sixteenth negative edge after FS low on which bit D0 is sampled before rising  
edge of FS  
t
10  
ns  
su(C16−FS)  
su(C16−CS)  
Setup time, sixteenth positive SCLK edge (first positive after D0 is sampled) before CS rising  
edge. If FS is used instead of the sixteenth positive edge to update the DAC, then the setup  
time is between the FS rising edge and CS rising edge.  
t
10  
ns  
t
t
t
Pulse duration, SCLK high  
25  
25  
8
ns  
ns  
ns  
wH  
Pulse duration, SCLK low  
wL  
Setup time, data ready before SCLK falling edge  
su(D)  
t
Hold time, data held valid after SCLK falling edge  
Pulse duration, FS high  
5
ns  
ns  
h(D)  
t
20  
wH(FS)  
5
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
ꢆꢇ ꢈꢉꢂ ꢀꢊ ꢃ ꢇ ꢃꢉꢂ ꢁ ꢊ ꢋ ꢌ ꢊꢋ ꢍ ꢎ ꢏ ꢅ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔꢕꢔꢁ ꢊ ꢓ  
ꢖ ꢊꢕ ꢂꢍꢎ ꢀ ꢍꢎ ꢗ ꢋ ꢑ ꢀꢘ ꢌ ꢊꢋ ꢍꢎ ꢒꢊ ꢋ ꢕ  
SLAS259B − DECEMBER 1999 − REVISED APRIL 2004  
PARAMETER MEASUREMENT INFORMATION  
t
t
wH  
wL  
SCLK  
DIN  
1
2
3
4
5
15  
16  
t
t
su(D)  
h(D)  
D14  
D15  
D13  
D12  
D1  
D0  
t
su(FS-CK)  
t
su(C16-CS)  
t
su(CS-FS)  
CS  
FS  
t
wH(FS)  
t
su(C16-FS)  
Figure 1. Timing Diagram  
6
WWW.TI.COM  
ꢀꢁꢂ ꢃꢄ ꢅꢄ  
ꢆ ꢇꢈ ꢉꢂ ꢀ ꢊ ꢃ ꢇꢃ ꢉꢂ ꢁ ꢊ ꢋ ꢌꢊ ꢋ ꢍꢎ ꢏ ꢅ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔ ꢕ ꢔꢁ ꢊꢓ  
ꢖꢊ ꢕꢂꢍ ꢎꢀ ꢍꢎꢗ ꢋ ꢑꢀ ꢘ ꢌꢊ ꢋ ꢍ ꢎ ꢒ ꢊꢋ ꢕ  
SLAS259B − DECEMBER 1999 − REVISED APRIL 2004  
TYPICAL CHARACTERISTICS  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
vs  
vs  
LOAD CURRENT  
LOAD CURRENT  
2.004  
2.002  
2
4.01  
3 V Slow Mode, SOURCE  
3 V Fast Mode, SOURCE  
V
= 3 V,  
= 1 V,  
V
V
ref  
Full Scale  
= 5 V,  
= 2 V,  
DD  
DD  
V
ref  
5 V Slow Mode, SOURCE  
5 V Fast Mode, SOURCE  
4.005  
Full Scale  
4
3.995  
3.99  
1.998  
1.996  
1.994  
1.992  
1.990  
3.985  
3.98  
3.975  
0
0.01 0.02 0.05 0.1 0.2 0.5  
Load Current − mA  
1
2
0
0.02 0.04 0.1 0.2 0.4  
1
2
4
Load Current − mA  
Figure 2  
Figure 3  
OUTPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
vs  
LOAD CURRENT  
LOAD CURRENT  
0.2  
0.35  
0.3  
V
= 3 V,  
= 1 V,  
DD  
V
= 5 V,  
= 2 V,  
DD  
0.18  
V
ref  
V
ref  
Zero Code  
Zero Code  
0.16  
0.14  
0.12  
0.1  
0.25  
0.2  
3 V Slow Mode, SINK  
5 V Slow Mode, SINK  
0.15  
0.08  
0.06  
5 V Fast Mode, SINK  
3 V Fast Mode, SINK  
0.1  
0.05  
0
0.04  
0.02  
0
0
0.01 0.02 0.05 0.1 0.2 0.5  
Load Current − mA  
1
2
0
0.02 0.04 0.1 0.2 0.4  
1
2
4
Load Current − mA  
Figure 4  
Figure 5  
7
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
ꢆꢇ ꢈꢉꢂ ꢀꢊ ꢃ ꢇ ꢃꢉꢂ ꢁ ꢊ ꢋ ꢌ ꢊꢋ ꢍ ꢎ ꢏ ꢅ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔꢕꢔꢁ ꢊ ꢓ  
ꢖ ꢊꢕ ꢂꢍꢎ ꢀ ꢍꢎ ꢗ ꢋ ꢑ ꢀꢘ ꢌ ꢊꢋ ꢍꢎ ꢒꢊ ꢋ ꢕ  
SLAS259B − DECEMBER 1999 − REVISED APRIL 2004  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
1
1
V
V
= 3 V,  
= 1 V,  
V
V
= 5 V,  
= 2 V,  
DD  
ref  
DD  
ref  
Full Scale  
Full Scale  
Fast Mode  
0.8  
0.8  
Fast Mode  
0.6  
0.4  
0.2  
0.6  
0.4  
0.2  
Slow Mode  
Slow Mode  
25 40  
−55 −40 −25  
0
70  
85 125  
−55 −40 −25  
0
25  
40  
70  
85 125  
T
A
− Free-Air Temperature − C°  
T
A
− Free-Air Temperature − C°  
Figure 6  
Figure 7  
TOTAL HARMONIC DISTORTION  
TOTAL HARMONIC DISTORTION  
vs  
vs  
FREQUENCY  
FREQUENCY  
0
0
V
= 1 V dc + 1 V p/p Sinewave,  
ref  
V
= 1 V dc + 1 V p/p Sinewave,  
ref  
−10  
Output Full Scale  
−10  
Output Full Scale  
−20  
−30  
−20  
−30  
−−40  
−−40  
−50  
−60  
−50  
−60  
Fast Mode  
Slow Mode  
−70  
−80  
−70  
−80  
0
5
10  
20  
30  
50  
100  
0
5
10  
20  
30  
50  
100  
f − Frequency − kHz  
f − Frequency − kHz  
Figure 8  
Figure 9  
8
WWW.TI.COM  
ꢀꢁꢂ ꢃꢄ ꢅꢄ  
ꢆ ꢇꢈ ꢉꢂ ꢀ ꢊ ꢃ ꢇꢃ ꢉꢂ ꢁ ꢊ ꢋ ꢌꢊ ꢋ ꢍꢎ ꢏ ꢅ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔ ꢕ ꢔꢁ ꢊꢓ  
ꢖꢊ ꢕꢂꢍ ꢎꢀ ꢍꢎꢗ ꢋ ꢑꢀ ꢘ ꢌꢊ ꢋ ꢍ ꢎ ꢒ ꢊꢋ ꢕ  
SLAS259B − DECEMBER 1999 − REVISED APRIL 2004  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION AND NOISE  
TOTAL HARMONIC DISTORTION AND NOISE  
vs  
vs  
FREQUENCY  
FREQUENCY  
0
0
V
= 1 V dc + 1 V p/p Sinewave,  
V
= 1 V dc + 1 V p/p Sinewave,  
ref  
Output Full Scale  
ref  
Output Full Scale  
−10  
−10  
−20  
−30  
−20  
−30  
−−40  
−−40  
−50  
−60  
−50  
−60  
Fast Mode  
Slow Mode  
−70  
−80  
−70  
−80  
0
5
10  
20  
30  
50  
100  
0
5
10  
20  
30  
50  
100  
f − Frequency − kHz  
f − Frequency − kHz  
Figure 10  
Figure 11  
SUPPLY CURRENT  
vs  
TIME (WHEN ENTERING POWER-DOWN MODE)  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
100 200 300 400 500 600 700 800 900 1000  
T − Time − ns  
Figure 12  
9
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
ꢆꢇ ꢈꢉꢂ ꢀꢊ ꢃ ꢇ ꢃꢉꢂ ꢁ ꢊ ꢋ ꢌ ꢊꢋ ꢍ ꢎ ꢏ ꢅ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔꢕꢔꢁ ꢊ ꢓ  
ꢖ ꢊꢕ ꢂꢍꢎ ꢀ ꢍꢎ ꢗ ꢋ ꢑ ꢀꢘ ꢌ ꢊꢋ ꢍꢎ ꢒꢊ ꢋ ꢕ  
SLAS259B − DECEMBER 1999 − REVISED APRIL 2004  
TYPICAL CHARACTERISTICS  
INTEGRAL NONLINEARITY ERROR  
1.0  
0.5  
0.0  
−0.5  
−1.0  
0
512  
1024  
Digital Code  
Figure 13  
DIFFERENTIAL NONLINEARITY ERROR  
0.20  
0.16  
0.12  
0.08  
0.04  
0.00  
−0.04  
−0.08  
−0.12  
−0.16  
−0.20  
0
512  
1024  
Digital Code  
Figure 14  
10  
WWW.TI.COM  
ꢀꢁꢂ ꢃꢄ ꢅꢄ  
ꢆ ꢇꢈ ꢉꢂ ꢀ ꢊ ꢃ ꢇꢃ ꢉꢂ ꢁ ꢊ ꢋ ꢌꢊ ꢋ ꢍꢎ ꢏ ꢅ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔ ꢕ ꢔꢁ ꢊꢓ  
ꢖꢊ ꢕꢂꢍ ꢎꢀ ꢍꢎꢗ ꢋ ꢑꢀ ꢘ ꢌꢊ ꢋ ꢍ ꢎ ꢒ ꢊꢋ ꢕ  
SLAS259B − DECEMBER 1999 − REVISED APRIL 2004  
APPLICATION INFORMATION  
general function  
The TLV5606 is a 10-bit single supply DAC based on a resistor string architecture. The device consists of a serial  
interface, speed and power-down control logic, a reference input buffer, a resistor string, and a rail-to-rail output  
buffer.  
The output voltage (full scale determined by external reference) is given by:  
CODE  
2 REF  
[V]  
n
2
n−1  
where REF is the reference voltage and CODE is the digital input value within the range of 0 to 2 , where  
10  
n = 10 (bits). The 16-bit data word, consisting of control bits and the new DAC value, is illustrated in the data  
format section. A power-on reset initially resets the internal latches to a defined state (all bits zero).  
serial interface  
Explanation of data transfer: First, the device has to be enabled with CS set to low. Then, a falling edge of FS  
starts shifting the data bit-per-bit (starting with the MSB) to the internal register on the falling edges of SCLK.  
After 16 bits have been transferred or FS rises, the content of the shift register is moved to the DAC latch which  
updates the voltage output to the new level.  
The serial interface of the TLV5606 can be used in two basic modes:  
D
D
Four wire (with chip select)  
Three wire (without chip select)  
Using chip select (four wire mode), it is possible to have more than one device connected to the serial port of  
the data source (DSP or microcontroller). The interface is compatible with the TMS320 family. Figure 15 shows  
an example with two TLV5606s connected directly to a TMS320 DSP.  
TLV5606  
TLV5606  
CS FS DIN SCLK  
CS FS DIN SCLK  
TMS320  
DSP  
XF0  
XF1  
FSX  
DX  
CLKX  
Figure 15. TMS320 Interface  
11  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
ꢆꢇ ꢈꢉꢂ ꢀꢊ ꢃ ꢇ ꢃꢉꢂ ꢁ ꢊ ꢋ ꢌ ꢊꢋ ꢍ ꢎ ꢏ ꢅ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔꢕꢔꢁ ꢊ ꢓ  
ꢖ ꢊꢕ ꢂꢍꢎ ꢀ ꢍꢎ ꢗ ꢋ ꢑ ꢀꢘ ꢌ ꢊꢋ ꢍꢎ ꢒꢊ ꢋ ꢕ  
SLAS259B − DECEMBER 1999 − REVISED APRIL 2004  
APPLICATION INFORMATION  
serial interface (continued)  
If there is no need to have more than one device on the serial bus, then CS can be tied low. Figure 16 shows  
an example of how to connect the TLV5606 to a TMS320, SPI, or Microwire port using only three pins.  
TMS320  
DSP  
TLV5606  
SPI  
TLV5606  
Microwire  
TLV5606  
FSX  
FS  
SS  
FS  
I/O  
FS  
DIN  
DIN  
DIN  
DX  
MOSI  
SCLK  
SO  
SK  
CLKX  
SCLK  
CS  
SCLK  
CS  
SCLK  
CS  
Figure 16. Three-Wire Interface  
Notes on SPI and Microwire: Before the controller starts the data transfer, the software has to generate a falling  
edge on the I/O pin connected to FS. If the word width is 8 bits (SPI and Microwire), two write operations must  
be performed to program the TLV5606. After the write operation(s), the DAC output is updated automatically  
on the next positive clock edge following the sixteenth falling clock edge.  
serial clock frequency and update rate  
The maximum serial clock frequency is given by:  
1
f
+
+ 20 MHz  
SCLKmax  
t
) t  
wH(min)  
wL(min)  
The maximum update rate is:  
1
f
+
+ 1.25 MHz  
UPDATEmax  
16 ǒt  
Ǔ
) t  
wH(min)  
wL(min)  
The maximum update rate is a theoretical value for the serial interface, since the settling time of the TLV5606  
has to be considered also.  
data format  
The 16-bit data word for the TLV5606 consists of two parts:  
D
D
Control bits  
(D15 . . . D12)  
(D11 . . . D2)  
New DAC value  
D15  
X
D14  
D13  
D12  
X
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
0
D0  
0
SPD  
PWR  
New DAC value (10 bits)  
X: don’t care  
SPD: Speed control bit.  
1 fast mode  
0 slow mode  
PWR: Power control bit. 1 power down  
0 normal operation  
In power-down mode, all amplifiers within the TLV5606 are disabled.  
12  
WWW.TI.COM  
ꢀꢁꢂ ꢃꢄ ꢅꢄ  
ꢆ ꢇꢈ ꢉꢂ ꢀ ꢊ ꢃ ꢇꢃ ꢉꢂ ꢁ ꢊ ꢋ ꢌꢊ ꢋ ꢍꢎ ꢏ ꢅ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔ ꢕ ꢔꢁ ꢊꢓ  
ꢖꢊ ꢕꢂꢍ ꢎꢀ ꢍꢎꢗ ꢋ ꢑꢀ ꢘ ꢌꢊ ꢋ ꢍ ꢎ ꢒ ꢊꢋ ꢕ  
SLAS259B − DECEMBER 1999 − REVISED APRIL 2004  
APPLICATION INFORMATION  
TLV5606 interfaced to TMS320C203 DSP  
hardware interfacing  
Figure 17 shows an example how to connect the TLV5606 to a TMS320C203 DSP. The serial interface of the  
TLV5606 is ideally suited to this configuration, using a maximum of four wires to make the necessary  
connections. In applications where only one synchronous serial peripheral is used, the interface can be  
simplified even further by pulling CS low all the time as shown in the figure.  
TMS320C203  
TLV5606  
V
DD  
FS  
DX  
FS  
DIN  
SCLK  
OUT  
REFIN  
CLKX  
REF  
R
LOAD  
CS AGND  
Figure 17. TLV5606 to DSP Interface  
software  
No setup procedure is needed to access the TLV5606. The output voltage can be set using just a single  
command.  
out  
data_addr, SDTR  
where data_addr points to an address location holding the control bits and the 12 data bits providing the output  
voltage data. SDTR is the address of the transmit FIFO of the synchronous serial port.  
The following code shows how to use the timer of the TMS320C203 as a time base to generate a voltage ramp  
with the TLV5606.  
A timer interrupt is generated every 205 µs. The corresponding interrupt service routine increments the output  
code (stored at 0x0064) for the DAC, adds the DAC control bits to the four most significant bits, and writes the  
new code to the TLV5606. The resulting period of the saw waveform is:  
π = 4096 × 205 E-6 s = 0.84 s  
;***************************************************************************************  
;* Title : Ramp generation with TLV5606  
;* Version : 1.0  
*
*
*
;* DSP  
: TI TMS320C203  
;* (1998) Texas Instruments Incorporated  
*
;***************************************************************************************  
;−−−−−−−−−−− I/O and memory mapped regs −−−−−−−−−−−−  
.include ”regs.asm”  
;−−−−−−−−−−− vectors −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  
.ps  
b
b
0h  
start  
INT1  
b
b
INT23  
TIM_ISR  
13  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
ꢆꢇ ꢈꢉꢂ ꢀꢊ ꢃ ꢇ ꢃꢉꢂ ꢁ ꢊ ꢋ ꢌ ꢊꢋ ꢍ ꢎ ꢏ ꢅ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔꢕꢔꢁ ꢊ ꢓ  
ꢖ ꢊꢕ ꢂꢍꢎ ꢀ ꢍꢎ ꢗ ꢋ ꢑ ꢀꢘ ꢌ ꢊꢋ ꢍꢎ ꢒꢊ ꢋ ꢕ  
SLAS259B − DECEMBER 1999 − REVISED APRIL 2004  
APPLICATION INFORMATION  
;***************************************************************************************  
;* Main Program  
;***************************************************************************************  
.ps  
1000h  
.entry  
start:  
; disable interrupts  
setc  
splk  
splk  
INTM  
#0ffffh, IFR  
#0004h, IMR  
; disable maskable interrupts  
; set up the timer to interrupt ever 205uS  
splk  
splk  
out  
#0000h, 60h  
#00FFh, 61h  
61h, PRD  
out  
60h, TIM  
splk  
out  
#0c2fh, 62h  
62h, TCR  
; Configure SSP to use internal clock, internal frame sync and burst mode  
splk  
out  
splk  
out  
#0CC0Eh, 63h  
63h, SSPCR  
#0CC3Eh, 63h  
63h, SSPCR  
splk  
#0000h, 64h ; set initial DAC value  
; enable interrupts  
clrc  
INTM  
; enable maskable interrupts  
;wait for interrupt  
; loop forever!  
next:  
idle  
b
next  
; all else fails stop here  
done: done  
b
;hang there  
;***************************************************************************************  
;* Interrupt Service Routines  
;***************************************************************************************  
INT1:  
ret  
;do nothing and return  
INT23:  
TIM_ISR:  
ret  
;do nothing and return  
lacl 64h  
; restore counter value to ACC  
; increment DAC value  
; mask 4 MSBs  
add  
and  
#4h  
#0FFCh  
sacl 64h  
; store 12 bit counter value  
; set DAC control bits  
; store DAC value  
or  
#4000h  
sacl 65h  
out  
65h, SDTR  
; send data  
clrc intm  
ret  
; re-enable interrupts  
.END  
14  
WWW.TI.COM  
ꢀꢁꢂ ꢃꢄ ꢅꢄ  
ꢆ ꢇꢈ ꢉꢂ ꢀ ꢊ ꢃ ꢇꢃ ꢉꢂ ꢁ ꢊ ꢋ ꢌꢊ ꢋ ꢍꢎ ꢏ ꢅ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔ ꢕ ꢔꢁ ꢊꢓ  
ꢖꢊ ꢕꢂꢍ ꢎꢀ ꢍꢎꢗ ꢋ ꢑꢀ ꢘ ꢌꢊ ꢋ ꢍ ꢎ ꢒ ꢊꢋ ꢕ  
SLAS259B − DECEMBER 1999 − REVISED APRIL 2004  
APPLICATION INFORMATION  
TLV5606 interfaced to MCS51 microcontroller  
hardware interfacing  
Figure 18 shows an example of how to connect the TLV5606 to an MCS51 compatible microcontroller. The  
serial DAC input data and external control signals are sent via I/O port 3 of the controller. The serial data is sent  
on the RxD line, with the serial clock output on the TxD line. P3.4 and P3.5 are configured as outputs to provide  
the chip select and frame sync signals for the TLV5606.  
MCS51 Controller  
TLV5606  
V
DD  
RxD  
TxD  
SDIN  
SCLK  
CS  
P3.4  
P3.5  
FS  
OUT  
REFIN  
REF  
R
LOAD  
AGND  
Figure 18. TLV5606 to MCS51 Controller Interface  
software  
The example program puts out a sine wave on the OUT pin.  
The on-chip timer is used to generate interrupts at a fixed frequency. The related interrupt service routine fetches  
and writes the next sample to the DAC. The samples are stored in a lookup table, which describes one full period  
of a sine wave.  
The serial port of the controller is used in mode 0, which transmits 8 bits of data on RxD, accompanied by a  
synchronous clock on TxD. Two writes concatenated together are required to write a complete word to the  
TLV5606. The CS and FS signals are provided in the required fashion through control of I/O port 3, which has  
bit addressable outputs.  
;***************************************************************************************  
;* Title : Ramp generation with TLV5606  
;* Version : 1.0  
*
*
*
*
;* MCU  
: INTEL MCS51  
;* (1998) Texas Instruments Incorporated  
;***************************************************************************************  
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  
; Program function declaration  
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  
NAME GENSINE  
MAIN SEGMENT  
ISR SEGMENT  
SINTBL SEGMENT  
VAR1 SEGMENT  
STACK SEGMENT  
CODE  
CODE  
CODE  
DATA  
IDATA  
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  
; Code start at address 0, jump to start  
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  
CSEG AT 0  
MCS is a registered trademark of Intel Corporation  
15  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
ꢆꢇ ꢈꢉꢂ ꢀꢊ ꢃ ꢇ ꢃꢉꢂ ꢁ ꢊ ꢋ ꢌ ꢊꢋ ꢍ ꢎ ꢏ ꢅ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔꢕꢔꢁ ꢊ ꢓ  
ꢖ ꢊꢕ ꢂꢍꢎ ꢀ ꢍꢎ ꢗ ꢋ ꢑ ꢀꢘ ꢌ ꢊꢋ ꢍꢎ ꢒꢊ ꢋ ꢕ  
SLAS259B − DECEMBER 1999 − REVISED APRIL 2004  
APPLICATION INFORMATION  
LJMP  
start  
; Execution starts at address 0 on power−up.  
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  
; Code in the timer0 interrupt vector  
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  
CSEG AT 0BH  
LJMP  
timer0isr ; Jump vector for timer 0 interrupt is 000Bh  
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  
; Define program variables  
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  
RSEG  
VAR1  
rolling_ptr: DS 1  
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  
; Interrupt service routine for timer 0 interrupts  
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  
RSEG  
ISR  
timer0isr:  
PUSH  
PUSH  
PSW  
ACC  
CLR  
CLR  
T0  
; set CSB low  
; set FS low  
T1  
; The signal to be output on the dac is a sine function. One cycle of a sine wave is  
; held in a table @ sinevals as 32 samples of msb, lsb pairs (64 bytes). The pointer,  
; rolling_ptr, rolls round the table of samples incrementing by 2 bytes (1 sample) on  
; each interrupt (at the end of this routine).  
MOV  
MOV  
DPTR,#sinevals ; set DPTR to the start of the table of sine signal values  
A,rolling_ptr ; ACC loaded with the pointer into the sine table  
MOVC  
ORL  
MOV  
A,@A+DPTR  
A, #00H  
SBUF,A  
; get msb from the table  
; set control bits  
; send out msb of data word  
MOVA,rolling_ptr; move rolling pointer in to ACC  
INC  
MOVC  
A
; increment ACC holding the rolling pointer  
; which is the lsb of this sample, now in ACC  
A,@A+DPTR  
MSB_TX:  
JNB  
TI, MSB_TX  
TI  
SBUF,A  
; wait for transmit to complete  
; clear for new transmit  
; and send out the lsb  
CLR  
MOV  
LSB_TX:  
JNB  
TI, LSB_TX  
T1  
TI  
; wait for lsb transmit to complete  
; set FS = 1  
; clear for new transmit  
SETB  
CLR  
MOV  
INC  
INC  
ANL  
MOV  
A,rolling_ptr  
; load ACC with rolling pointer  
A
; increment the ACC twice, to get next sample  
A
A,#03FH  
; wrap back round to 0 if >64  
; move value held in ACC back to the rolling pointer  
rolling_ptr,A  
SETB T0  
; CSB high  
POP  
POP  
ACC  
PSW  
RETI  
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  
; Set up stack  
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  
16  
WWW.TI.COM  
ꢀꢁꢂ ꢃꢄ ꢅꢄ  
ꢆ ꢇꢈ ꢉꢂ ꢀ ꢊ ꢃ ꢇꢃ ꢉꢂ ꢁ ꢊ ꢋ ꢌꢊ ꢋ ꢍꢎ ꢏ ꢅ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔ ꢕ ꢔꢁ ꢊꢓ  
ꢖꢊ ꢕꢂꢍ ꢎꢀ ꢍꢎꢗ ꢋ ꢑꢀ ꢘ ꢌꢊ ꢋ ꢍ ꢎ ꢒ ꢊꢋ ꢕ  
SLAS259B − DECEMBER 1999 − REVISED APRIL 2004  
APPLICATION INFORMATION  
RSEG STACK  
DS 10h  
; 16 Byte Stack!  
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  
; Main Program  
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  
RSEG MAIN  
start:  
MOV  
SP,#STACK−1 ; first set Stack Pointer  
A
CLR  
MOV  
MOV  
MOV  
SCON,A  
; set serial port 0 to mode 0  
TMOD,#02H  
TH0,#0C8H  
; set timer 0 to mode 2 − auto−reload  
; set TH0 for 16.67 kHs interrupts  
SETB T1  
SETB T0  
; set FS = 1  
; set CSB = 1  
SETB ET0  
SETB EA  
; enable timer 0 interrupts  
; enable all interrupts  
MOV  
rolling_ptr,A  
; set rolling pointer to 0  
; start timer 0  
SETB TR0  
always:  
SJMP always  
RET  
; while(1) !  
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  
; Table of 32 sine wave samples used as DAC data  
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  
RSEG SINTBL  
sinevals:  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
01000H  
0903CH  
05094H  
0305CH  
0B084H  
070C8H  
0F0E0H  
0F066H  
0F038H  
0F06CH  
0F0E0H  
070C8H  
0B084H  
0305CH  
05094H  
0903CH  
01000H  
06020H  
0A0E8H  
0C060H  
040F8H  
080B4H  
0009CH  
00050H  
00024H  
00050H  
0009CH  
080B4H  
040F8H  
0C060H  
0A0E8H  
06020H  
END  
17  
WWW.TI.COM  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
ꢆꢇ ꢈꢉꢂ ꢀꢊ ꢃ ꢇ ꢃꢉꢂ ꢁ ꢊ ꢋ ꢌ ꢊꢋ ꢍ ꢎ ꢏ ꢅ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔꢕꢔꢁ ꢊ ꢓ  
ꢖ ꢊꢕ ꢂꢍꢎ ꢀ ꢍꢎ ꢗ ꢋ ꢑ ꢀꢘ ꢌ ꢊꢋ ꢍꢎ ꢒꢊ ꢋ ꢕ  
SLAS259B − DECEMBER 1999 − REVISED APRIL 2004  
APPLICATION INFORMATION  
linearity, offset, and gain error using single ended supplies  
When an amplifier is operated from a single supply, the voltage offset can still be either positive or negative. With  
a positive offset, the output voltage changes on the first code change. With a negative offset, the output voltage  
may not change with the first code, depending on the magnitude of the offset voltage.  
The output amplifier attempts to drive the output to a negative voltage. However, because the most negative  
supply rail is ground, the output cannot drive below ground and clamps the output at 0 V.  
The output voltage then remains at zero until the input code value produces a sufficient positive output voltage  
to overcome the negative offset voltage, resulting in the transfer function shown in Figure 19.  
Output  
Voltage  
0 V  
DAC Code  
Negative  
Offset  
Figure 19. Effect of Negative Offset (Single Supply)  
This offset error, not the linearity error, produces this breakpoint. The transfer function would have followed the  
dotted line if the output buffer could drive below the ground rail.  
For a DAC, linearity is measured between zero-input code (all inputs 0) and full-scale code (all inputs 1) after  
offset and full scale are adjusted out or accounted for in some way. However, single supply operation does not  
allow for adjustment when the offset is negative due to the breakpoint in the transfer function. So the linearity  
is measured between full-scale code and the lowest code that produces a positive output voltage.  
power-supply bypassing and ground management  
Printed-circuit boards that use separate analog and digital ground planes offer the best system performance.  
Wire-wrap boards do not perform well and should not be used. The two ground planes should be connected  
together at the low-impedance power-supply source. The best ground connection may be achieved by  
connecting the DAC AGND terminal to the system analog ground plane, making sure that analog ground  
currents are well managed and there are negligible voltage drops across the ground plane.  
A 0.1-µF ceramic-capacitor bypass should be connected between V and AGND and mounted with short leads  
DD  
as close as possible to the device. Use of ferrite beads may further isolate the system analog supply from the  
digital power supply.  
Figure 20 shows the ground plane layout and bypassing technique.  
Analog Ground Plane  
1
2
3
4
8
7
6
5
0.1 µF  
Figure 20. Power-Supply Bypassing  
18  
WWW.TI.COM  
ꢀꢁꢂ ꢃꢄ ꢅꢄ  
ꢆ ꢇꢈ ꢉꢂ ꢀ ꢊ ꢃ ꢇꢃ ꢉꢂ ꢁ ꢊ ꢋ ꢌꢊ ꢋ ꢍꢎ ꢏ ꢅ ꢉꢐꢑ ꢀ ꢒꢑ ꢓꢑ ꢀꢔꢁ ꢉꢀꢊ ꢉꢔ ꢕ ꢔꢁ ꢊꢓ  
ꢖꢊ ꢕꢂꢍ ꢎꢀ ꢍꢎꢗ ꢋ ꢑꢀ ꢘ ꢌꢊ ꢋ ꢍ ꢎ ꢒ ꢊꢋ ꢕ  
SLAS259B − DECEMBER 1999 − REVISED APRIL 2004  
APPLICATION INFORMATION  
definitions of specifications and terminology  
integral nonlinearity (INL)  
The relative accuracy or integral nonlinearity (INL), sometimes referred to as linearity error, is the maximum  
deviation of the output from the line between zero and full scale excluding the effects of zero code and full-scale  
errors.  
differential nonlinearity (DNL)  
The differential nonlinearity (DNL), sometimes referred to as differential error, is the difference between the  
measured and ideal 1 LSB amplitude change of any two adjacent codes. Monotonic means the output voltage  
changes in the same direction (or remains constant) as a change in the digital input code.  
zero-scale error (E  
)
ZS  
Zero-scale error is defined as the deviation of the output from 0 V at a digital input value of 0.  
gain error (E )  
G
Gain error is the error in slope of the DAC transfer function.  
signal-to-noise ratio + distortion (S/N+D)  
S/N+D is the ratio of the rms value of the output signal to the rms sum of all other spectral components below  
the Nyquist frequency, including harmonics but excluding dc. The value for S/N+D is expressed in decibels.  
spurious free dynamic range (SFDR)  
SFDR is the difference between the rms value of the output signal and the rms value of the largest spurious  
signal within a specified bandwidth. The value for SFDR is expressed in decibels.  
total harmonic distortion (THD)  
THD is the ratio of the rms sum of the first six harmonic components to the rms value of the fundamental signal  
and is expressed in decibels.  
19  
WWW.TI.COM  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Feb-2005  
PACKAGING INFORMATION  
Orderable Device  
TLV5606CD  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
8
8
8
8
8
8
8
8
75  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV5606CDGK  
TLV5606CDGKR  
TLV5606CDR  
TLV5606ID  
MSOP  
MSOP  
SOIC  
DGK  
DGK  
D
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
SOIC  
D
75  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
TLV5606IDGK  
TLV5606IDGKR  
TLV5606IDGKRG4  
TLV5606IDR  
MSOP  
MSOP  
MSOP  
SOIC  
DGK  
DGK  
DGK  
D
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional  
product content details.  
None: Not yet available Lead (Pb-Free).  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,  
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

TLV5608

8-CHANNEL, 12-/10-/8-BIT, 2.7-V TO 5.5-V LOW POWER DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
TI

TLV5608IDW

8-CHANNEL, 12-/10-/8-BIT, 2.7-V TO 5.5-V LOW POWER DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
TI

TLV5608IDWG4

8-CHANNEL, 12-/10-/8-BIT, 2.7-V TO 5.5-V LOW POWER
TI

TLV5608IDWR

8-CHANNEL, 12-/10-/8-BIT, 2.7-V TO 5.5-V LOW POWER
TI

TLV5608IDWRG4

8-CHANNEL, 12-/10-/8-BIT, 2.7-V TO 5.5-V LOW POWER
TI

TLV5608IPW

8-CHANNEL, 12-/10-/8-BIT, 2.7-V TO 5.5-V LOW POWER DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
TI

TLV5608IPWG4

8-CHANNEL, 12-/10-/8-BIT, 2.7-V TO 5.5-V LOW POWER
TI

TLV5608IPWR

8-CHANNEL, 12-/10-/8-BIT, 2.7-V TO 5.5-V LOW POWER
TI

TLV5608IPWRG4

8-CHANNEL, 12-/10-/8-BIT, 2.7-V TO 5.5-V LOW POWER
TI

TLV5608IYE

2.7 V TO 5.5V. 12-AND 10-BIT OCTAL DAC IN WAFER CHIP SCALE PACKAGE
TI

TLV5610

8-CHANNEL, 12-/10-/8-BIT, 2.7-V TO 5.5-V LOW POWER DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
TI

TLV5610IDW

8-CHANNEL, 12-/10-/8-BIT, 2.7-V TO 5.5-V LOW POWER DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
TI