TLV5625CD [TI]

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN ;
TLV5625CD
型号: TLV5625CD
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN 

光电二极管 转换器
文件: 总15页 (文件大小:218K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁꢂ ꢃꢄ ꢅꢃ  
ꢅ ꢆ ꢇ ꢈꢂ ꢀ ꢉ ꢃ ꢆꢃ ꢈꢂ ꢁ ꢉꢊꢈꢋꢉ ꢊ ꢌꢍ ꢎꢏꢐ ꢁ ꢑ ꢈꢒꢓ ꢀ ꢎꢓ ꢔꢓ ꢀꢐꢁ ꢈꢀꢉ ꢈꢐ ꢕ ꢐꢁ ꢉꢔ  
ꢖꢉ ꢕꢂꢌ ꢍꢀ ꢌꢍ ꢊ ꢓꢀ ꢗ ꢋꢉ ꢊ ꢌ ꢍ ꢎ ꢉꢊ ꢕ  
SLAS233D − JULY 1999 − REVISED JULY 2002  
features  
applications  
D
D
D
Dual 8-Bit Voltage Output DAC  
D
D
D
D
D
Digital Servo Control Loops  
Digital Offset and Gain Adjustment  
Industrial Process Control  
Programmable Internal Reference  
Programmable Settling Time  
− 3 µs in Fast Mode  
− 10 µs in Slow Mode  
Compatible With TMS320 and SPISerial  
Ports  
Machine and Motion Control Devices  
Mass Storage Devices  
D
D
Differential Nonlinearity <0.2 LSB Max  
Monotonic Over Temperature  
D PACKAGE  
(TOP VIEW)  
D
DIN  
SCLK  
CS  
V
DD  
OUTB  
REF  
1
2
3
4
8
7
6
5
description  
The TLV5625 is a dual 8-bit voltage output DAC  
with a flexible 3-wire serial interface. The serial  
interface is compatible with TMS320, SPI,  
QSPI, and Microwireserial ports. It is pro-  
grammed with a 16-bit serial string containing 4  
control and 8 data bits.  
OUTA  
AGND  
The resistor string output voltage is buffered by an x2 gain rail-to-rail output buffer. The buffer features a  
Class-AB output stage to improve stability and reduce settling time. The programmable settling time of the DAC  
allows the designer to optimize speed versus power dissipation.  
Implemented with a CMOS process, the device is designed for single supply operation from 2.7 V to 5.5 V. It  
is available in an 8-pin SOIC package in standard commercial and industrial temperature ranges.  
AVAILABLE OPTIONS  
PACKAGE  
T
A
SOIC  
(D)  
0°C to 70°C  
TLV5625CD  
TLV5625ID  
40°C to 85°C  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
SPI and QSPI are trademarks of Motorola, Inc.  
Microwire is a trademark of National Semiconductor Corporation.  
ꢀꢣ  
Copyright 2002, Texas Instruments Incorporated  
ꢟ ꢣ ꢠ ꢟꢘ ꢙꢬ ꢛꢚ ꢞ ꢦꢦ ꢤꢞ ꢜ ꢞ ꢝ ꢣ ꢟ ꢣ ꢜ ꢠ ꢆ  
ꢡꢣ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢃ  
ꢖ ꢉꢕ ꢂꢌꢍ ꢀ ꢌꢍ ꢊ ꢓ ꢀꢗ ꢋ ꢉꢊ ꢌꢍ ꢎꢉ ꢊ ꢕ  
ꢔꢓ  
SLAS233D − JULY 1999 − REVISED JULY 2002  
functional block diagram  
REF  
AGND  
V
DD  
Power and  
Speed Control  
Power-On  
Reset  
2
x2  
OUTA  
DIN  
8-Bit  
8
8
DAC A  
Latch  
SCLK  
CS  
Serial  
Interface  
and  
8
Buffer  
Control  
8
8
8-Bit  
DAC B  
Latch  
x2  
OUTB  
Terminal Functions  
TERMINAL  
I/O/P  
DESCRIPTION  
NAME  
NO.  
5
AGND  
CS  
P
I
Ground  
3
Chip select. Digital input active low, used to enable/disable inputs.  
Digital serial data input  
DIN  
1
I
OUTA  
OUTB  
REF  
4
O
O
I
DAC A analog voltage output  
DAC B analog voltage output  
Analog reference voltage input  
Digital serial clock input  
7
6
SCLK  
2
I
V
DD  
8
P
Positive power supply  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃꢄ ꢅꢃ  
ꢅ ꢆ ꢇ ꢈꢂ ꢀ ꢉ ꢃ ꢆꢃ ꢈꢂ ꢁ ꢉ ꢊꢈꢋꢉ ꢊ ꢌꢍ ꢎꢏꢐ ꢁ ꢑ ꢈꢒꢓ ꢀ ꢎꢓ ꢔꢓ ꢀꢐꢁ ꢈꢀꢉꢈ ꢐ ꢕꢐ ꢁꢉ ꢔ  
ꢖꢉ ꢕꢂꢌ ꢍꢀ ꢌꢍ ꢊ ꢓꢀ ꢗ ꢋꢉ ꢊꢌ ꢍ ꢎ ꢉꢊ ꢕ  
SLAS233D − JULY 1999 − REVISED JULY 2002  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage (V  
to AGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
DD  
Reference input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.3 V to V  
Digital input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.3 V to V  
+ 0.3 V  
+ 0.3 V  
DD  
DD  
Operating free-air temperature range, T : TLV5625C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
TLV5625I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
recommended operating conditions  
MIN  
4.5  
2.7  
0.55  
2
NOM  
MAX  
5.5  
3.3  
2
UNIT  
V
V
= 5 V  
= 3 V  
5
3
DD  
Supply voltage, V  
DD  
V
V
DD  
Power on reset, POR  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
= 2.7 V  
High-level digital input voltage, V  
V
V
IH  
= 5.5 V  
2.4  
= 2.7 V  
0.6  
1
Low-level digital input voltage, V  
IL  
= 5.5 V  
= 5 V (see Note 1)  
= 3 V (see Note 1)  
AGND  
AGND  
2
2.048  
1.024  
V
V
−1.5  
1.5  
V
V
DD  
Reference voltage, V to REF terminal  
ref  
DD  
Load resistance, R  
kΩ  
pF  
L
Load capacitance, C  
100  
20  
L
Clock frequency, f  
MHz  
CLK  
TLV5625C  
TLV5625I  
0
70  
Operating free-air temperature, T  
°C  
A
−40  
85  
NOTE 1: Due to the x2 output buffer, a reference input voltage (V −0.4 V)/2 causes clipping of the transfer function.  
DD  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢃ  
ꢅꢆ ꢇꢈꢂ ꢀꢉ ꢃ ꢆꢃ ꢈꢂ ꢁ ꢉꢊꢈꢋ ꢉꢊ ꢌ ꢍ ꢎꢏ ꢐꢁ ꢑ ꢈꢒꢓ ꢀ ꢎꢓ ꢔꢓ ꢀꢐꢁ ꢈꢀꢉ ꢈꢐꢕꢐꢁ ꢉ ꢔ  
ꢖ ꢉꢕ ꢂꢌꢍ ꢀ ꢌꢍ ꢊ ꢓ ꢀꢗ ꢋ ꢉꢊ ꢌꢍ ꢎꢉ ꢊ ꢕ  
SLAS233D − JULY 1999 − REVISED JULY 2002  
electrical characteristics over recommended operating conditions (unless otherwise noted)  
power supply  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Fast  
1.8  
2.3  
No load, All inputs = AGND or  
I
Power supply current  
mA  
µA  
dB  
DD  
V
DD  
, DAC latch = 0x800  
Slow  
0.8  
1
1
3
Power-down supply current  
Power supply rejection ratio  
Zero scale, See Note 2  
Full scale, See Note 3  
−65  
−65  
PSRR  
NOTES: 2. Power supply rejection ratio at zero scale is measured by varying V  
and is given by:  
DD  
PSRR = 20 log [(E (V max) − E (V min)/V max]  
ZS DD ZS DD DD  
3. Power supply rejection ratio at full scale is measured by varying V  
and is given by:  
DD  
PSRR = 20 log [(E (V max) − E (V min)/V max]  
DD DD DD  
G
G
static DAC specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
bits  
Resolution  
8
INL  
Integral nonlinearity  
See Note 4  
See Note 5  
See Note 6  
See Note 7  
0.3  
0.5  
0.2  
12  
LSB  
DNL  
Differential nonlinearity  
0.07  
LSB  
E
Zero-scale error (offset error at zero scale)  
TC Zero-scale-error temperature coefficient  
mV  
ZS  
ZS  
E
10  
ppm/°C  
% full  
scale V  
E
Gain error  
See Note 8  
See Note 9  
0.5  
G
E
G
T
C
Gain-error temperature coefficient  
10  
ppm/°C  
NOTES: 4. The relative accuracy of integral nonlinearity (INL), sometimes referred to as linearity error, is the maximum deviation of the output  
from the line between zero and full scale, excluding the effects of zero-code and full-scale errors.  
5. The differential nonlinearity (DNL), sometimes referred to as differential error, is the difference between the measured and ideal  
1-LSB amplitude change of any two adjacent codes.  
6. Zero-scale error is the deviation from zero voltage output when the digital input code is zero.  
6
7. Zero-scale error temperature coefficient is given by: E  
TC = [E  
(T  
) − E  
(T  
)]/2V × 10 /(T  
max  
− T ).  
min  
ZS  
ZS max  
ZS min  
ref  
8. Gain error is the deviation from the ideal output (2V − 1 LSB) with an output load of 10 kΩ.  
ref  
G
6
9. Gain temperature coefficient is given by: E  
T
C
= [E (T  
) − E (T  
)]/2V × 10 /(T  
− T ).  
min  
G
max  
g
min  
ref  
max  
output specifications  
PARAMETER  
TEST CONDITIONS  
= 10 kΩ  
MIN  
TYP  
TYP  
MAX  
−0.4  
UNIT  
V
Output voltage range  
R
0
V
V
V
O
L
DD  
Output load regulation accuracy  
V
4.096 V, 2.048 V R = 2 kΩ  
0.29 % FS  
O =  
L
reference input  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
DD−1.5  
UNIT  
V
V
I
Input voltage range  
Input resistance  
0
R
C
10  
5
MΩ  
pF  
I
I
Input capacitance  
Fast  
1.3  
MHz  
Reference input bandwidth  
Reference feedthrough  
REF = 0.2 V + 1.024 V dc  
pp  
Slow  
525  
80  
kHz  
dB  
REF = 1 V at 1 kHz + 1.024 V dc (see Note 10)  
pp  
NOTE 10: Reference feedthrough is measured at the DAC output with an input code = 0x000.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃꢄ ꢅꢃ  
ꢅ ꢆ ꢇ ꢈꢂ ꢀ ꢉ ꢃ ꢆꢃ ꢈꢂ ꢁ ꢉ ꢊꢈꢋꢉ ꢊ ꢌꢍ ꢎꢏꢐ ꢁ ꢑ ꢈꢒꢓ ꢀ ꢎꢓ ꢔꢓ ꢀꢐꢁ ꢈꢀꢉꢈ ꢐ ꢕꢐ ꢁꢉ ꢔ  
ꢖꢉ ꢕꢂꢌ ꢍꢀ ꢌꢍ ꢊ ꢓꢀ ꢗ ꢋꢉ ꢊꢌ ꢍ ꢎ ꢉꢊ ꢕ  
SLAS233D − JULY 1999 − REVISED JULY 2002  
electrical characteristics over recommended operating conditions (unless otherwise noted)  
(Continued)  
digital inputs  
PARAMETER  
High-level digital input current  
TEST CONDITIONS  
V = V  
MIN  
TYP  
MAX  
UNIT  
µA  
I
I
1
IH  
I
DD  
Low-level digital input current  
Input capacitance  
V = 0 V  
I
−1  
µA  
IL  
C
8
pF  
i
analog output dynamic performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1
MAX  
3
UNIT  
Fast  
Slow  
Fast  
Slow  
Fast  
Slow  
R
= 10 k,  
C
C
C
= 100 pF,  
= 100 pF,  
= 100 pF,  
L
L
L
L
t
t
Output settling time, full scale  
µs  
s(FS)  
See Note 11  
3
10  
1
R
= 10 k,  
L
Output settling time, code to code  
µs  
s(CC)  
See Note 12  
2
3
R
= 10 k,  
L
SR  
Slew rate  
V/µs  
See Note 13  
0.5  
DIN = 0 to 1,  
CS = V  
DD  
FCLK = 100 kHz,  
Glitch energy  
5
nV−s  
SNR  
Signal-to-noise ratio  
52  
48  
54  
49  
SINAD  
THD  
Signal-to-noise + distortion  
Total harmonic distortion  
Spurious free dynamic range  
f
R
= 102 kSPS,  
f
= 1 kHz,  
C = 100 pF  
L
s
out  
dB  
= 10 k,  
−50  
50  
−48  
L
SFDR  
48  
NOTES: 11. Settling time is the time for the output signal to remain within 0.5 LSB of the final measured value for a digital input code change  
of 0x020 to 0xFDF and 0xFDF to 0x020 respectively. Not tested, assured by design.  
12. Settling time is the time for the output signal to remain within 0.5 LSB of the final measured value for a digital input code change  
of one count. Not tested, assured by design.  
13. Slew rate determines the time it takes for a change of the DAC output from 10% to 90% of full-scale voltage.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢃ  
ꢖ ꢉꢕ ꢂꢌꢍ ꢀ ꢌꢍ ꢊ ꢓ ꢀꢗ ꢋ ꢉꢊ ꢌꢍ ꢎꢉ ꢊ ꢕ  
ꢔꢓ  
ꢀꢐ  
ꢀꢉ  
SLAS233D − JULY 1999 − REVISED JULY 2002  
digital input timing requirements  
MIN NOM  
MAX  
UNIT  
ns  
t
t
t
t
t
t
Setup time, CS low before first negative SCLK edge  
10  
10  
25  
25  
10  
10  
su(CS−CK)  
su(C16-CS)  
wH  
th  
Setup time, 16 negative SCLK edge before CS rising edge  
ns  
SCLK pulse width high  
ns  
SCLK pulse width low  
ns  
wL  
Setup time, data ready before SCLK falling edge  
Hold time, data held valid after SCLK falling edge  
ns  
su(D)  
ns  
h(D)  
timing requirements  
t
t
wL  
wH  
SCLK  
DIN  
X
X
X
1
2
3
4
5
15  
16  
t
t
su(D) h(D)  
D15  
D14  
D13  
D12  
D1  
D0  
X
t
su(C16-CS)  
t
su(CS-CK)  
CS  
Figure 1. Timing Diagram  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃꢄ ꢅꢃ  
ꢅ ꢆ ꢇ ꢈꢂ ꢀ ꢉ ꢃ ꢆꢃ ꢈꢂ ꢁ ꢉ ꢊꢈꢋꢉ ꢊ ꢌꢍ ꢎꢏꢐ ꢁ ꢑ ꢈꢒꢓ ꢀ ꢎꢓ ꢔꢓ ꢀꢐꢁ ꢈꢀꢉꢈ ꢐ ꢕꢐ ꢁꢉ ꢔ  
ꢖꢉ ꢕꢂꢌ ꢍꢀ ꢌꢍ ꢊ ꢓꢀ ꢗ ꢋꢉ ꢊꢌ ꢍ ꢎ ꢉꢊ ꢕ  
SLAS233D − JULY 1999 − REVISED JULY 2002  
TYPICAL CHARACTERISTICS  
OUTPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
vs  
LOAD CURRENT  
LOAD CURRENT  
2.050  
2.048  
2.046  
2.044  
2.042  
2.040  
2.038  
2.036  
4.105  
3 V Slow Mode, SOURCE  
V
V
=3 V  
REF  
V
=5 V  
DD  
DD  
=1 V  
V
=2 V  
REF  
5 V Slow Mode, SOURCE  
5 V Fast Mode, SOURCE  
4.100  
4.095  
4.090  
4.085  
4.080  
4.075  
4.070  
Full scale  
Full scale  
3 V Fast Mode, SOURCE  
0
−0.01 −0.02 −0.5 −0.1 −0.2 −0.5 −0.8 −1 −2  
Load Current - mA  
0
−0.02 −0.04 −0.1 −0.2 −0.4 −0.8 −1  
Load Current - mA  
−2  
−4  
Figure 2  
Figure 3  
OUTPUT VOLTAGE  
vs  
LOAD CURRENT  
OUTPUT VOLTAGE  
vs  
LOAD CURRENT  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
V
REF  
Zero scale  
=3 V  
V
REF  
Zero scale  
=5 V  
DD  
DD  
V
=1 V  
V
=2 V  
3 V Slow Mode, SINK  
5 V Slow Mode, SINK  
5 V Fast Mode, SINK  
3 V Fast Mode, SINK  
0
0.01 0.02 0.05 0.1 0.2 0.5 0.8  
Load Current - mA  
1
2
0
0.02 0.04 0.1 0.2 0.4 0.8  
Load Current - mA  
1
2
4
Figure 4  
Figure 5  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢃ  
ꢅꢆ ꢇꢈꢂ ꢀꢉ ꢃ ꢆꢃ ꢈꢂ ꢁ ꢉꢊꢈꢋ ꢉꢊ ꢌ ꢍ ꢎꢏ ꢐꢁ ꢑ ꢈꢒꢓ ꢀ ꢎꢓ ꢔꢓ ꢀꢐꢁ ꢈꢀꢉ ꢈꢐꢕꢐꢁ ꢉ ꢔ  
ꢖ ꢉꢕ ꢂꢌꢍ ꢀ ꢌꢍ ꢊ ꢓ ꢀꢗ ꢋ ꢉꢊ ꢌꢍ ꢎꢉ ꢊ ꢕ  
SLAS233D − JULY 1999 − REVISED JULY 2002  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
V
V
=3 V  
REF  
DD  
=1 V  
Full scale  
Fast Mode  
Fast Mode  
V
V
=5 V  
REF  
DD  
=2 V  
Full scale  
Slow Mode  
Slow Mode  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
T
A
- Free-Air Temperature - C  
T
A
- Free-Air Temperature - C  
Figure 6  
Figure 7  
TOTAL HARMONIC DISTORTION  
TOTAL HARMONIC DISTORTION  
vs  
vs  
FREQUENCY  
FREQUENCY  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
0
V
= 1 V + 1 V  
P/P  
Sinewave,  
V
= 1 V + 1 V Sinewave,  
P/P  
REF  
Output Full Scale  
REF  
Output Full Scale  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
3 V Slow Mode  
3 V Fast Mode  
5 V Slow Mode  
5 V Fast Mode  
1
10  
100  
1
10  
100  
f - Frequency - kHz  
f - Frequency - kHz  
Figure 8  
Figure 9  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃꢄ ꢅꢃ  
ꢅ ꢆ ꢇ ꢈꢂ ꢀ ꢉ ꢃ ꢆꢃ ꢈꢂ ꢁ ꢉ ꢊꢈꢋꢉ ꢊ ꢌꢍ ꢎꢏꢐ ꢁ ꢑ ꢈꢒꢓ ꢀ ꢎꢓ ꢔꢓ ꢀꢐꢁ ꢈꢀꢉꢈ ꢐ ꢕꢐ ꢁꢉ ꢔ  
ꢖꢉ ꢕꢂꢌ ꢍꢀ ꢌꢍ ꢊ ꢓꢀ ꢗ ꢋꢉ ꢊꢌ ꢍ ꢎ ꢉꢊ ꢕ  
SLAS233D − JULY 1999 − REVISED JULY 2002  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL NONLINEARITY  
vs  
DIGITAL OUTPUT CODE  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
−0.02  
−0.04  
−0.06  
−0.08  
−0.10  
0
255  
64  
128  
192  
Digital Output Code  
Figure 10  
INTEGRAL NONLINEARITY  
vs  
DIGITAL OUTPUT CODE  
0.5  
0.4  
0.3  
0.2  
0.1  
−0.0  
−0.1  
−0.2  
−0.3  
−0.4  
−0.5  
0
255  
64  
128  
192  
Digital Output Code  
Figure 11  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢃ  
ꢅꢆ ꢇꢈꢂ ꢀꢉ ꢃ ꢆꢃ ꢈꢂ ꢁ ꢉꢊꢈꢋ ꢉꢊ ꢌ ꢍ ꢎꢏ ꢐꢁ ꢑ ꢈꢒꢓ ꢀ ꢎꢓ ꢔꢓ ꢀꢐꢁ ꢈꢀꢉ ꢈꢐꢕꢐꢁ ꢉ ꢔ  
ꢖ ꢉꢕ ꢂꢌꢍ ꢀ ꢌꢍ ꢊ ꢓ ꢀꢗ ꢋ ꢉꢊ ꢌꢍ ꢎꢉ ꢊ ꢕ  
SLAS233D − JULY 1999 − REVISED JULY 2002  
APPLICATION INFORMATION  
general function  
The TLV5625 is a dual 8-bit, single-supply DAC, based on a resistor-string architecture. It consists of a serial  
interface, a speed and power-down control logic, a resistor string, and a rail-to-rail output buffer.  
The output voltage (full scale determined by the reference) is given by:  
CODE  
2 REF  
[V]  
n
2
n
Where REF is the reference voltage and CODE is the digital input value within the range of 0 to 2 −1, where  
10  
n=8 (bits). The 16-bit data word, consisting of control bits and the new DAC value, is illustrated in the data format  
section. A power-on reset initially resets the internal latches to a defined state (all bits zero).  
serial interface  
A falling edge of CS starts shifting the data bit-per-bit (starting with the MSB) to the internal register on the falling  
edges of SCLK. After 16 bits have been transferred or CS rises, the content of the shift register is moved to the  
target latches (DAC A, DAC B, BUFFER, CONTROL), depending on the control bits within the data word.  
Figure 2 shows examples of how to connect the TLV5625 to TMS320, SPI, and Microwire.  
TMS320  
DSP  
TLV5625  
SPI  
TLV5625  
CS  
DIN  
Microwire  
I/O  
TLV5625  
CS  
DIN  
CS  
FSX  
DX  
I/O  
MOSI  
SCK  
DIN  
SO  
SK  
CLKX  
SCLK  
SCLK  
SCLK  
Figure 12. Three-Wire Interface  
Notes on SPIand Microwire: Before the controller starts the data transfer, the software has to generate a  
falling edge on the pin connected to CS. If the word width is 8 bits (SPIand Microwire) two write operations  
must be performed to program the TLV5625. After the write operation(s), the holding registers or the control  
th  
register are updated automatically on the 16 positive clock edge.  
serial clock frequency and update rate  
The maximum serial clock frequency is given by:  
1
f
+
+ 20 MHz  
sclkmax  
t
) t  
whmin  
wlmin  
The maximum update rate is:  
1
f
+
+ 1.25 MHz  
updatemax  
16 ǒt  
Ǔ
wlmin  
) t  
whmin  
Note that the maximum update rate is just a theoretical value for the serial interface, as the settling time of the  
TLV5625 should also be considered.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃꢄ ꢅꢃ  
ꢅ ꢆ ꢇ ꢈꢂ ꢀ ꢉ ꢃ ꢆꢃ ꢈꢂ ꢁ ꢉ ꢊꢈꢋꢉ ꢊ ꢌꢍ ꢎꢏꢐ ꢁ ꢑ ꢈꢒꢓ ꢀ ꢎꢓ ꢔꢓ ꢀꢐꢁ ꢈꢀꢉꢈ ꢐ ꢕꢐ ꢁꢉ ꢔ  
ꢖꢉ ꢕꢂꢌ ꢍꢀ ꢌꢍ ꢊ ꢓꢀ ꢗ ꢋꢉ ꢊꢌ ꢍ ꢎ ꢉꢊ ꢕ  
SLAS233D − JULY 1999 − REVISED JULY 2002  
APPLICATION INFORMATION  
data format  
The 16-bit data word for the TLV5625 consists of two parts:  
D
D
Program bits  
New data  
(D15..D12)  
(D11..D4)  
D15  
R1  
D14  
D13  
D12  
R0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
SPD  
PWR  
MSB  
8 Data bits  
LSB  
SPD: Speed control bit  
PWR: Power control bit  
On power up, SPD and PWD are reset to 0 (slow mode and normal operation)  
1 fast mode  
0 slow mode  
0 normal operation  
1 power down  
The following table lists all possible combination of register-select bits:  
register-select bits  
R1  
0
R0  
0
REGISTER  
Write data to DAC B and BUFFER  
Write data to BUFFER  
0
1
1
0
Write data to DAC A and update DAC B with BUFFER content  
Reserved  
1
1
The meaning of the 12 data bits depends on the register. If one of the DAC registers or the BUFFER is selected,  
then the 12 data bits determine the new DAC value:  
examples of operation  
D
Set DAC A output, select fast mode:  
Write new DAC A value and update DAC A output:  
D15  
1
D14  
1
D13  
0
D12  
0
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
New DAC A output value  
The DAC A output is updated on the rising clock edge after D0 is sampled.  
D
Set DAC B output, select fast mode:  
Write new DAC B value to BUFFER and update DAC B output:  
D15  
0
D14  
1
D13  
0
D12  
0
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
New BUFFER content and DAC B output value  
The DAC A output is updated on the rising clock edge after D0 is sampled.  
D
Set DAC A value, set DAC B value, update both simultaneously, select slow mode:  
1. Write data for DAC B to BUFFER:  
D15  
0
D14  
0
D13  
0
D12  
1
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
New DAC B value  
2. Write new DAC A value and update DAC A and B simultaneously:  
D15  
1
D14  
0
D13  
0
D12  
0
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
New DAC A value  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢃ  
ꢅꢆ ꢇꢈꢂ ꢀꢉ ꢃ ꢆꢃ ꢈꢂ ꢁ ꢉꢊꢈꢋ ꢉꢊ ꢌ ꢍ ꢎꢏ ꢐꢁ ꢑ ꢈꢒꢓ ꢀ ꢎꢓ ꢔꢓ ꢀꢐꢁ ꢈꢀꢉ ꢈꢐꢕꢐꢁ ꢉ ꢔ  
ꢖ ꢉꢕ ꢂꢌꢍ ꢀ ꢌꢍ ꢊ ꢓ ꢀꢗ ꢋ ꢉꢊ ꢌꢍ ꢎꢉ ꢊ ꢕ  
SLAS233D − JULY 1999 − REVISED JULY 2002  
APPLICATION INFORMATION  
examples of operation (continued)  
Both outputs are updated on the rising clock edge after D0 from the DAC A data word is sampled.  
D
Set power-down mode:  
D15  
X
D14  
X
D13  
1
D12  
X
D11  
X
D10  
X
D9  
X
D8  
X
D7  
X
D6  
X
D5  
X
D4  
X
D3  
X
D2  
X
D1  
X
D0  
X
X = Don’t care  
linearity, offset, and gain error using single ended supplies  
When an amplifier is operated from a single supply, the voltage offset can still be either positive or negative. With  
a positive offset, the output voltage changes on the first code change. With a negative offset, the output voltage  
may not change with the first code, depending on the magnitude of the offset voltage.  
The output amplifier attempts to drive the output to a negative voltage. However, because the most negative  
supply rail is ground, the output cannot drive below ground and clamps the output at 0 V.  
The output voltage then remains at zero until the input code value produces a sufficient positive output voltage  
to overcome the negative offset voltage, resulting in the transfer function shown in Figure 13.  
Output  
Voltage  
0 V  
DAC Code  
Negative  
Offset  
Figure 13. Effect of Negative Offset (Single Supply)  
This offset error, not the linearity error, produces this breakpoint. The transfer function would have followed the  
dotted line if the output buffer could drive below the ground rail.  
For a DAC, linearity is measured between zero-input code (all inputs 0) and full-scale code (all inputs 1) after  
offset and full scale are adjusted out or accounted for in some way. However, single supply operation does not  
allow for adjustment when the offset is negative due to the breakpoint in the transfer function. So the linearity  
is measured between full-scale code and the lowest code that produces a positive output voltage.  
power-supply bypassing and ground management  
Printed-circuit boards that use separate analog and digital ground planes offer the best system performance.  
Wire-wrap boards do not perform well and should not be used. The two ground planes should be connected  
together at the low-impedance power-supply source. The best ground connection may be achieved by  
connecting the DAC AGND terminal to the system analog ground plane, making sure that analog ground  
currents are well managed and there are negligible voltage drops across the ground plane.  
A 0.1-µF ceramic-capacitor bypass should be connected between V and AGND and mounted with short leads  
DD  
as close as possible to the device. Use of ferrite beads may further isolate the system analog supply from the  
digital power supply.  
Figure 14 shows the ground plane layout and bypassing technique.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃꢄ ꢅꢃ  
ꢅ ꢆ ꢇ ꢈꢂ ꢀ ꢉ ꢃ ꢆꢃ ꢈꢂ ꢁ ꢉ ꢊꢈꢋꢉ ꢊ ꢌꢍ ꢎꢏꢐ ꢁ ꢑ ꢈꢒꢓ ꢀ ꢎꢓ ꢔꢓ ꢀꢐꢁ ꢈꢀꢉꢈ ꢐ ꢕꢐ ꢁꢉ ꢔ  
ꢖꢉ ꢕꢂꢌ ꢍꢀ ꢌꢍ ꢊ ꢓꢀ ꢗ ꢋꢉ ꢊꢌ ꢍ ꢎ ꢉꢊ ꢕ  
SLAS233D − JULY 1999 − REVISED JULY 2002  
APPLICATION INFORMATION  
Analog Ground Plane  
1
2
3
4
8
7
6
5
0.1 µF  
Figure 14. Power-Supply Bypassing  
definitions of specifications and terminology  
integral nonlinearity (INL)  
The relative accuracy or integral nonlinearity (INL), sometimes referred to as linearity error, is the maximum  
deviation of the output from the line between zero and full scale excluding the effects of zero code and full-scale  
errors.  
differential nonlinearity (DNL)  
The differential nonlinearity (DNL), sometimes referred to as differential error, is the difference between the  
measured and ideal 1 LSB amplitude change of any two adjacent codes. Monotonic means the output voltage  
changes in the same direction (or remains constant) as a change in the digital input code.  
zero-scale error (E  
)
ZS  
Zero-scale error is defined as the deviation of the output from 0 V at a digital input value of 0.  
gain error (E )  
G
Gain error is the error in slope of the DAC transfer function.  
signal-to-noise ratio + distortion (S/N+D)  
S/N+D is the ratio of the rms value of the output signal to the rms sum of all other spectral components below  
the Nyquist frequency, including harmonics but excluding dc. The value for S/N+D is expressed in decibels.  
spurious free dynamic range (SFDR)  
SFDR is the difference between the rms value of the output signal and the rms value of the largest spurious  
signal within a specified bandwidth. The value for SFDR is expressed in decibels.  
total harmonic distortion (THD)  
THD is the ratio of the rms sum of the first six harmonic components to the rms value of the fundamental signal  
and is expressed in decibels.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢃ  
ꢖ ꢉꢕ ꢂꢌꢍ ꢀ ꢌꢍ ꢊ ꢓ ꢀꢗ ꢋ ꢉꢊ ꢌꢍ ꢎꢉ ꢊ ꢕ  
ꢔꢓ  
ꢀꢐ  
ꢀꢉ  
SLAS233D − JULY 1999 − REVISED JULY 2002  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°ā8°  
0.044 (1,12)  
A
0.016 (0,40)  
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

TLV5625CDG4

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN 
TI

TLV5625CDR

暂无描述
TI

TLV5625CDRG4

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
TI

TLV5625D

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
TI

TLV5625ID

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN 
TI

TLV5625IDG4

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
TI

TLV5625IDR

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
TI

TLV5625IDRG4

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
TI

TLV5626

2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN
TI

TLV5626CD

2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN
TI

TLV5626CDG4

8-Bit, 1 us Dual DAC, Serial Input, Pgrmable Int. Ref., Settling Time 8-SOIC 0 to 70
TI

TLV5626CDR

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN
TI