TLV6001-Q1 [TI]

汽车级、单路、5.5V、1MHz、RRIO 运算放大器;
TLV6001-Q1
型号: TLV6001-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车级、单路、5.5V、1MHz、RRIO 运算放大器

放大器 运算放大器
文件: 总34页 (文件大小:2524K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV6001-Q1, TLV6002-Q1  
ZHCSIO7A AUGUST 2018REVISED DECEMBER 2018  
适用于成本敏感型系统的 TLV600x-Q1 低功耗、轨至轨输入/输出、1MHz  
运算放大器  
1 特性  
TLV600x-Q1 采用稳健耐用的设计,方便电路设计人员  
使用:该器件在容性负载高达 150pF 的条件下具有单  
位增益稳定性,集成了射频/EMI 抑制滤波器,在过驱  
条件下无相位反转,并具有高静电放电 (ESD) 保护  
(4kV HBM)。  
1
符合面向汽车应用的 AEC-Q100 标准  
器件温度等级 1–40°C +125°CTA  
器件 HBM ESD 分类等级 3A  
器件 CDM ESD 分类等级 C6  
适用于成本敏感型系统的通用型放大器  
电源电压范围:1.8V 5.5V  
增益带宽:1MHz  
这些器件经过优化,适合在低至 1.8V (±0.9V) 和高达  
5.5V (±2.75V) 的电压下工作,并且具有 –40°C 至  
+125°C 的额定扩展工作温度范围。  
低静态电流:75μA/通道  
轨至轨输入和输出  
单通道 TLV6001-Q1 采用 SC70-5 封装,双通道  
TLV6002-Q1 采用 SOIC VSSOP 封装。  
低失调电压:0.75mV  
器件信息(1)  
单位增益稳定  
输入电压噪声密度:1kHz 时为 28nV/Hz  
内部射频和电磁干扰滤波器  
器件型号  
封装  
SC70 (5)  
封装尺寸(标称值)  
2.00mm × 1.25mm  
3.91mm × 4.90mm  
3.00mm × 3.00mm  
TLV6001-Q1  
扩展温度范围:  
–40°C 125°C  
SOIC (8)  
TLV6002-Q1  
VSSOP (8)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
2 应用  
针对 AEC-Q100 等级 1 应用进行了 优化  
CMRR PSRR 与温度间的关系  
电动汽车逆变器  
信息娱乐系统  
被动安全  
110  
105  
PSRR  
100  
95  
90  
车身电子装置和照明  
CMRR  
85  
80  
75  
70  
65  
60  
3 说明  
TLV600x-Q1 系列单通道和双通道运算放大器专为通用  
汽车 应用而设计。该系列具有轨至轨输入和输出  
(RRIO) 摆幅、低静态电流(典型值为 75µA)、高带  
(1MHz) 以及超低噪声(1kHz 时为 28nV/Hz)等  
特性,因此对于需要在成本与性能之间实现良好平衡的  
各种 汽车应用(如信息娱乐系统、发动机控制单元和  
汽车照明)而言很具有吸引力。低输入偏置电流(典型  
值为 ±1pA)使 TLV600x-Q1 适合用于 具有 兆欧级源  
阻抗的应用。  
-50  
-25  
0
25  
50  
75  
100  
125  
C001  
Temperature (oC)  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS934  
 
 
 
 
 
TLV6001-Q1, TLV6002-Q1  
ZHCSIO7A AUGUST 2018REVISED DECEMBER 2018  
www.ti.com.cn  
目录  
7.5 Input and ESD Protection ....................................... 14  
Application and Implementation ........................ 15  
8.1 Application Information............................................ 15  
8.2 Typical Application ................................................. 15  
8.3 System Examples .................................................. 16  
Power Supply Recommendations...................... 17  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings ............................................................ 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information: TLV6001-Q1 ........................... 6  
6.5 Thermal Information: TLV6002-Q1 ........................... 6  
8
9
10 Layout................................................................... 18  
10.1 Layout Guidelines ................................................. 18  
10.2 Layout Example: Single Channel.......................... 18  
10.3 Layout Example: Dual Channel ............................ 19  
11 器件和文档支持 ..................................................... 20  
11.1 文档支持................................................................ 20  
11.2 相关链接................................................................ 20  
11.3 接收文档更新通知 ................................................. 20  
11.4 社区资源................................................................ 20  
11.5 ....................................................................... 20  
11.6 静电放电警告......................................................... 20  
11.7 术语表 ................................................................... 20  
12 机械、封装和可订购信息....................................... 21  
6.6 Electrical Characteristics: VS = 1.8 V to 5 V (±0.9 V  
to ±2.75 V) ................................................................. 7  
6.7 Typical Characteristics: Table of Graphs.................. 8  
6.8 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 13  
7.4 Device Functional Modes........................................ 14  
7
4 修订历史记录  
Changes from Original (August 2018) to Revision A  
Page  
已添加 在数据表中添加了 TLV6002-Q1 器件 ......................................................................................................................... 1  
已添加 在整个数据表中添加 TLV6002-Q1 器件的双通道信................................................................................................ 1  
已添加 添加了 TLV600x-Q1 系列的 ESD 分类级................................................................................................................ 1  
2
Copyright © 2018, Texas Instruments Incorporated  
 
TLV6001-Q1, TLV6002-Q1  
www.ti.com.cn  
ZHCSIO7A AUGUST 2018REVISED DECEMBER 2018  
5 Pin Configuration and Functions  
TLV6001-Q1 DCK Package  
5-Pin SC70  
Top View  
+IN  
Vœ  
1
2
3
5
V+  
+
œ
œIN  
4
OUT  
Not to scale  
Pin Functions: TLV6001-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN  
NO.  
3
I
Inverting input  
+IN  
1
I
Noninverting input  
OUT  
V–  
4
O
Output  
2
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
5
Copyright © 2018, Texas Instruments Incorporated  
3
TLV6001-Q1, TLV6002-Q1  
ZHCSIO7A AUGUST 2018REVISED DECEMBER 2018  
www.ti.com.cn  
TLV6002-Q1 D, DGK Packages  
8-Pin SOIC, VSSOP  
Top View  
OUT A  
1
2
3
4
8
7
6
5
V+  
œIN A  
+IN A  
Vœ  
OUT B  
œIN B  
+IN B  
Not to scale  
Pin Functions: TLV6002-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN A  
–IN B  
+IN A  
+IN B  
OUT A  
OUT B  
V–  
NO.  
2
I
I
Inverting input, channel A  
Inverting input, channel B  
Noninverting input, channel A  
Noninverting input, channel B  
Output, channel A  
6
3
I
5
I
1
O
O
7
Output, channel B  
4
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
8
4
Copyright © 2018, Texas Instruments Incorporated  
TLV6001-Q1, TLV6002-Q1  
www.ti.com.cn  
ZHCSIO7A AUGUST 2018REVISED DECEMBER 2018  
6 Specifications  
6.1 Absolute Maximum Ratings  
over recommended operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply voltage (V+) – (V–)  
Voltage  
7
(V+) + 0.5  
10  
V
Signal input pins, voltage(2)  
Signal input pins, current(2)  
Output short-circuit(3)  
Operating, TA  
(V–) – 0.5  
–10  
Current  
mA  
°C  
Continuous  
–40  
150  
150  
150  
Temperature  
Junction, TJ  
Storage, Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input pins are diode-clamped to the power-supply rails. Input signals that may swing more than 0.5 V beyond the supply rails must be  
current limited to 10 mA or less.  
(3) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 3A  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC Q100-011  
CDM ESD Classification Level C4B  
±1000  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.8  
MAX  
UNIT  
V
VS  
TA  
Supply voltage  
5.5  
Specified temperature  
–40  
125  
°C  
Copyright © 2018, Texas Instruments Incorporated  
5
 
TLV6001-Q1, TLV6002-Q1  
ZHCSIO7A AUGUST 2018REVISED DECEMBER 2018  
www.ti.com.cn  
6.4 Thermal Information: TLV6001-Q1  
TLV6001-Q1  
DCK (SC70)  
5 PINS  
281.4  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
91.6  
59.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.5  
ψJB  
58.8  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
6.5 Thermal Information: TLV6002-Q1  
TLV6002-Q1  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
131.6  
71.4  
DGK (VSSOP)  
8 PINS  
186.0  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
73.2  
75.4  
107.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
22.7  
14.4  
ψJB  
74.6  
105.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Copyright © 2018, Texas Instruments Incorporated  
TLV6001-Q1, TLV6002-Q1  
www.ti.com.cn  
ZHCSIO7A AUGUST 2018REVISED DECEMBER 2018  
6.6 Electrical Characteristics: VS = 1.8 V to 5 V (±0.9 V to ±2.75 V)(1)  
at TA = 25°C, RL = 10 kΩ connected to VS / 2, and VCM = VOUT = VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VOS  
Input offset voltage  
0.75  
2
4.5  
mV  
µV/°C  
dB  
dVOS/dT  
PSRR  
VOS vs temperature  
TA = –40°C to +125°C  
Power-supply rejection ratio  
86  
INPUT BIAS CURRENT  
IB  
Input bias current  
Input offset current  
TA = 25°C  
±1  
±1  
pA  
pA  
IOS  
INPUT IMPEDANCE  
ZID  
ZIC  
Differential  
Common-mode  
100 || 1  
1 || 5  
MΩ || pF  
1013Ω || pF  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage range  
Common-mode rejection ratio  
No phase reversal, rail-to-rail input  
VCM = –0.2 V to 5.7 V  
(V–) – 0.2  
60  
(V+) + 0.2  
V
CMRR  
76  
dB  
OPEN-LOOP GAIN  
AOL  
Open-loop voltage gain  
0.3 V < VO < (V+) – 0.3 V, RL = 2 kΩ  
90  
110  
65  
Phase margin  
VS = 5 V, G = 1  
°
OUTPUT  
RL = 100 kΩ  
RL = 2 kΩ  
5
75  
VO  
Voltage output swing from supply rails  
mV  
100  
ISC  
RO  
Short-circuit current  
±15  
2300  
mA  
Open-loop output impedance  
Ω
FREQUENCY RESPONSE  
GBW  
SR  
Gain-bandwidth product  
1
0.5  
5
MHz  
V/µs  
µs  
Slew rate  
tS  
Settling time  
To 0.1%, VS = 5 V, 2-V step , G = +1  
NOISE  
Input voltage noise (peak-to-peak)  
Input voltage noise density  
Input current noise density  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
6
28  
5
µVPP  
en  
in  
nV/Hz  
fA/Hz  
f = 1 kHz  
POWER SUPPLY  
VS  
IQ  
Specified voltage range  
1.8 (±0.9)  
5.5 (±2.75)  
100  
V
Quiescent current per amplifier  
Power-on time  
IO = 0 mA, VS = 5 V  
75  
10  
µA  
µs  
VS = 0 V to 5 V, to 90% IQ level  
(1) Parameters with minimum or maximum specification limits are 100% production tested at 25°C, unless otherwise noted.  
Overtemperature limits are based on characterization and statistical analysis.  
版权 © 2018, Texas Instruments Incorporated  
7
 
TLV6001-Q1, TLV6002-Q1  
ZHCSIO7A AUGUST 2018REVISED DECEMBER 2018  
www.ti.com.cn  
6.7 Typical Characteristics: Table of Graphs  
1. Table of Graphs  
TITLE  
FIGURE  
1  
Open-Loop Gain and Phase vs Frequency  
Quiescent Current vs Supply Voltage  
2  
Offset Voltage Production Distribution  
3  
Offset Voltage vs Common-Mode Voltage (Maximum Supply)  
CMRR and PSRR vs Frequency (RTI)  
4  
5  
0.1-Hz to 10-Hz Input Voltage Noise (5.5 V)  
Input Voltage Noise Spectral Density vs Frequency (1.8 V, 5.5 V)  
Input Bias and Offset Current vs Temperature  
Open-Loop Output Impedance vs Frequency  
Maximum Output Voltage vs Frequency and Supply Voltage  
Output Voltage Swing vs Output Current  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
Closed-Loop Gain vs Frequency, G = 1, –1, 10 (1.8 V)  
Small-Signal Step Response, Noninverting (1.8 V)  
Small-Signal Step Response, Noninverting (5.5 V)  
Large-Signal Step Response, Noninverting (1.8 V)  
Large-Signal Step Response, Noninverting (5.5 V)  
No Phase Reversal  
EMIRR IN+ vs Frequency  
8
版权 © 2018, Texas Instruments Incorporated  
TLV6001-Q1, TLV6002-Q1  
www.ti.com.cn  
ZHCSIO7A AUGUST 2018REVISED DECEMBER 2018  
6.8 Typical Characteristics  
at TA = 25°C, VS = 5 V, RL = 10 kΩ connected to VS / 2, and VCM = VOUT = VS / 2 (unless otherwise noted)  
140  
120  
100  
80  
180  
135  
90  
45  
0
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
Gain  
Phase  
CL = 10 pF  
60  
40  
20  
CL = 100 pF  
0
-20  
1
10  
100  
1k  
10k 100k 1M  
10M 100M  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Frequency (Hz)  
C003  
Supply Voltage (V)  
1. Open-Loop Gain and Phase vs Frequency  
2. Quiescent Current vs Supply  
1500  
1200  
900  
9
8
7
6
5
4
3
2
1
0
600  
300  
0
-300  
-600  
-900  
-1200  
-1500  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Common-Mode Voltage (V)  
Offset Voltage (mV)  
C007  
C005  
3. Offset Voltage Production Distribution  
4. Offset Voltage vs Common-Mode Voltage  
120  
100  
80  
60  
40  
20  
0
+PSRR  
CMRR  
-PSRR  
Time (1 s/div)  
10  
100  
1k  
10k  
100k  
1M  
C009  
C011  
Frequency (Hz)  
5. CMRR and PSRR vs Frequency (Referred-to-Input)  
6. 0.1-Hz to 10-Hz Input Voltage Noise  
版权 © 2018, Texas Instruments Incorporated  
9
 
 
TLV6001-Q1, TLV6002-Q1  
ZHCSIO7A AUGUST 2018REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5 V, RL = 10 kΩ connected to VS / 2, and VCM = VOUT = VS / 2 (unless otherwise noted)  
1000  
100  
10  
200  
150  
100  
50  
VS = 1.8 V  
IBN  
IBP  
0
VS = 5.5 V  
IOS  
-50  
-100  
1
1
10  
100  
1k  
10k  
100k  
C012  
-50  
-25  
0
25  
50  
75  
100  
125  
C014  
Frequency (Hz)  
Temperature (oC)  
7. Input Voltage Noise Spectral Density vs Frequency  
8. Input Bias and Offset Current vs Temperature  
100k  
6
5
VS = 5.5 V  
4
VS = 1.8 V  
VS = 1.8 V  
3
10k  
2
1
0
VS = 5.5 V  
1000  
1000  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
C016  
Frequency (Hz)  
C015  
9. Open-Loop Output Impedance vs Frequency  
10. Maximum Output Voltage vs Frequency and Supply  
Voltage  
3
40  
G = +10 V/V  
2
1
20  
G = +1 V/V  
o
o
-40 o  
C
+125C  
+25  
C
0
0
-1  
-2  
-3  
G = -1 V/V  
-20  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0
5
10  
Output Current (mA)  
15  
20  
Frequency (Hz)  
C018  
C017  
11. Output Voltage Swing vs Output Current  
12. Closed-Loop Gain vs Frequency  
(Minimum Supply)  
10  
版权 © 2018, Texas Instruments Incorporated  
 
TLV6001-Q1, TLV6002-Q1  
www.ti.com.cn  
ZHCSIO7A AUGUST 2018REVISED DECEMBER 2018  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5 V, RL = 10 kΩ connected to VS / 2, and VCM = VOUT = VS / 2 (unless otherwise noted)  
CL = 100 pF  
CL = 100 pF  
VIN  
VIN  
CL = 10 pF  
CL = 10 pF  
Time (1 µs/div)  
C004  
Time (1 µs/div)  
C023  
13. Small-Signal Pulse Response (Minimum Supply)  
14. Small-Signal Pulse Response (Maximum Supply)  
VOUT  
VOUT  
VIN  
VIN  
Time (2.5 µs/div)  
Time (2.5 µs/div)  
C024  
C025  
15. Large-Signal Pulse Response (Minimum Supply)  
16. Large-Signal Pulse Response (Maximum Supply)  
120  
100  
80  
60  
40  
20  
0
VOUT  
VIN  
Time (125 µs/div)  
10  
100  
1000  
10000  
C028  
Frequency (MHz)  
C033  
17. No Phase Reversal  
18. EMIRR IN+ vs Frequency  
版权 © 2018, Texas Instruments Incorporated  
11  
 
TLV6001-Q1, TLV6002-Q1  
ZHCSIO7A AUGUST 2018REVISED DECEMBER 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TLV600x-Q1 family of operational amplifiers is a general-purpose, low-cost family that is designed for a wide  
range of portable applications. Rail-to-rail input and output swings, low quiescent current, and wide dynamic  
range make the operational amplifier designed to drive sampling analog-to-digital converters (ADCs) and other  
single-supply applications.  
7.2 Functional Block Diagram  
V+  
Reference  
Current  
VIN+  
VIN-  
VBIAS1  
Class AB  
Control  
Circuitry  
VO  
VBIAS2  
V-  
(Ground)  
12  
版权 © 2018, Texas Instruments Incorporated  
 
TLV6001-Q1, TLV6002-Q1  
www.ti.com.cn  
ZHCSIO7A AUGUST 2018REVISED DECEMBER 2018  
7.3 Feature Description  
7.3.1 Operating Voltage  
The TLV600x-Q1 family is fully specified and tested from 1.8 V to 5.5 V (±0.9 V to ±2.75 V).The Typical  
Characteristics section shows parameters that vary with supply voltage.  
7.3.2 Rail-to-Rail Input  
The input common-mode voltage range of the TLV600x-Q1 family extends 200 mV beyond the supply rails. This  
performance is achieved with a complementary input stage: an N-channel input differential pair in parallel with a  
P-channel differential pair, as the Functional Block Diagram section shows. The N-channel pair is active for input  
voltages close to the positive rail, typically (V+) – 1.3 V to 200 mV above the positive supply, while the P-channel  
pair is on for inputs from 200 mV below the negative supply to approximately (V+) – 1.3 V. There is a small  
transition region, typically (V+) – 1.4 V to (V+) – 1.2 V, in which both pairs are on. This 200-mV transition region  
can vary up to 300 mV with process variation. As a result, the transition region (both stages on) can range from  
(V+) – 1.7 V to (V+) – 1.5 V on the low end, and up to (V+) – 1.1 V to (V+) – 0.9 V on the high end. Within this  
transition region, PSRR, CMRR, offset voltage, offset drift, and THD can degrade compared to device operation  
outside this region.  
7.3.3 Rail-to-Rail Output  
Designed as a micro-power, low-noise operational amplifier, the TLV600x-Q1 family delivers a robust output  
drive capability. A class AB output stage with common source transistors achieve full rail-to-rail output swing  
capability. For resistive loads up to 100 kΩ, the output swings typically to within 5 mV of either supply rail  
regardless of the power supply voltage that is applied. 11 shows that different load conditions change the  
ability of the amplifier to swing close to the rails.  
7.3.4 Common-Mode Rejection Ratio (CMRR)  
CMRR for the TLV600x-Q1 family is specified in several ways so the best match for a given application can be  
used; see the Electrical Characteristics. First, the CMRR of the device in the common-mode range below the  
transition region (VCM < (V+) – 1.3 V) is shown. This specification is the best indicator of the capability of the  
device when the application requires the use of one of the differential input pairs. Second, the CMRR over the  
entire common-mode range is specified at (VCM = –0.2 V to 5.7 V). This last value includes the variations seen  
through the transition region, as 4 shows.  
7.3.5 Capacitive Load and Stability  
The TLV600x-Q1 family is designed to be used in applications where driving a capacitive load is required. As  
with all operational amplifiers, there can be specific instances where the TLV600x-Q1 family can become  
unstable. The particular op amp circuit configuration, layout, gain, and output loading are some of the factors to  
consider when establishing if an amplifier is stable in operation. An operational amplifier in the unity-gain (1-V/V)  
buffer configuration that drives a capacitive load exhibits a greater tendency for instability than an amplifier that is  
operated at a higher noise gain. The capacitive load in conjunction with the op amp output resistance creates a  
pole within the feedback loop that degrades the phase margin. The degradation of the phase margin increases  
as the capacitive loading increases. When operating in the unity-gain configuration, the TLV600x-Q1 family  
remains stable with a pure capacitive load up to approximately 1 nF. The equivalent series resistance (ESR) of  
some capacitors (CL greater than 1 µF) is sufficient to alter the phase characteristics in the feedback loop such  
that the amplifier remains stable. Increasing the amplifier closed-loop gain allows the amplifier to drive  
increasingly larger capacitance. This increased capability is evident when observing the overshoot response of  
the amplifier at higher voltage gains.  
版权 © 2018, Texas Instruments Incorporated  
13  
TLV6001-Q1, TLV6002-Q1  
ZHCSIO7A AUGUST 2018REVISED DECEMBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
One technique for increasing the capacitive load drive capability of the amplifier when the device operates in a  
unity-gain configuration is to insert a small resistor, typically 10 Ω to 20 Ω, in series with the output, as 19  
shows. This resistor reduces the overshoot and ringing associated with large capacitive loads. One possible  
problem with this technique is that a voltage divider is created with the added series resistor and any resistor  
connected in parallel with the capacitive load. The voltage divider introduces a gain error at the output that  
reduces the output swing.  
V+  
RS  
VOUT  
Device  
VIN  
10 W to  
20 W  
RL  
CL  
19. Improving Capacitive Load Drive  
7.3.6 EMI Susceptibility and Input Filtering  
Operational amplifiers vary with regard to the susceptibility of the device to electromagnetic interference (EMI). If  
conducted EMI enters the op amp, the dc offset observed at the amplifier output can shift from the nominal value  
while EMI is present. This shift is a result of signal rectification associated with the internal semiconductor  
junctions. While all op amp pin functions can be affected by EMI, the signal input pins are likely to be the most  
susceptible. The TLV600x-Q1 family incorporates an internal input low-pass filter that reduces the amplifiers  
response to EMI. This filter provides common-mode and differential mode filtering. The filter is designed for a  
cutoff frequency of approximately 35 MHz (–3 dB) with a rolloff of 20 dB per decade.  
Texas Instruments developed the ability to accurately measure and quantify the immunity of an operational  
amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz. The EMI rejection ratio (EMIRR)  
metric allows op amps to be directly compared by the EMI immunity. 18 shows the results of this testing on  
the TLV600x-Q1 family. EMI Rejection Ratio of Operational Amplifiers shows detailed information, and is  
available for download from www.ti.com.  
7.4 Device Functional Modes  
The TLV600x-Q1 family has a single functional mode. The device is powered on if the power-supply voltage is  
between 1.8 V (±0.9 V) and 5.5 V (±2.75 V).  
7.5 Input and ESD Protection  
The TLV600x-Q1 family incorporates internal electrostatic discharge (ESD) protection circuits on all pins. In the  
case of input and output pins, this protection primarily consists of current-steering diodes connected between the  
input and power supply pins. The ESD protection diodes provide in-circuit, input overdrive protection if the  
current is limited to 10 mA, as the Absolute Maximum Ratings lists. 20 shows how a series input resistor can  
be added to the driven input to limit the input current. The added resistor contributes thermal noise at the  
amplifier input and the value must be kept to a minimum in noise-sensitive applications.  
V+  
IOVERLOAD  
10-mA max  
VOUT  
Device  
VIN  
5 kW  
20. Input Current Protection  
14  
版权 © 2018, Texas Instruments Incorporated  
 
 
TLV6001-Q1, TLV6002-Q1  
www.ti.com.cn  
ZHCSIO7A AUGUST 2018REVISED DECEMBER 2018  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TLV600x-Q1 is a low-power, rail-to-rail input and output operational amplifier specifically designed for  
portable applications. The device operates from 1.8 V to 5.5 V, is unity-gain stable, and is designed for a wide  
range of general-purpose applications. The class AB output stage can drive 10-kΩ loads connected to any  
point between V+ and ground. The input common-mode voltage range includes both rails and allows the  
TLV600x-Q1 family to be used in any single-supply application.  
8.2 Typical Application  
A typical application for an operational amplifier is an inverting amplifier, as 21 shows. An inverting amplifier  
takes a positive voltage on the input and outputs a signal inverted to the input, making a negative voltage of the  
same magnitude. In the same manner, the amplifier makes negative input voltages positive on the output. To add  
amplification, select an input resistor (RI) and a feedback resistor (RF.)  
RF  
VSUP+  
RI  
VOUT  
+
VIN  
VSUPœ  
21. Application Schematic  
8.2.1 Design Requirements  
Select a supply voltage value that is larger than the input voltage range and the desired output range. Users  
must consider the limits of the input common-mode range (VCM) and the output voltage swing to the rails (VO) .  
For example, this application scales a signal of ±0.5 V (1 V) to ±1.8 V (3.6 V). Setting the supply at ±2.5 V is  
sufficient to accommodate this application.  
8.2.2 Detailed Design Procedure  
Use 公式 1 and 公式 2 to calculate the required gain for the inverting amplifier:  
VOUT  
AV  
=
V
IN  
(1)  
(2)  
1.8  
AV  
=
= -3.6  
-0.5  
版权 © 2018, Texas Instruments Incorporated  
15  
 
 
 
TLV6001-Q1, TLV6002-Q1  
ZHCSIO7A AUGUST 2018REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Application (接下页)  
When the desired gain is determined, select a value for RI or RF. Selecting a value in the kilohm range is  
desirable for general-purpose applications because the amplifier circuit uses currents in the milliamp range. This  
milliamp current range ensures the device does not draw too much current. The trade-off is that large resistors  
(hundreds of kilohms) draw the smallest current but generate the highest noise. Small resistors (hundreds of  
ohms) generate low noise but draw high current. In this example, RI equals 10 kΩ, and RF equals 36 V. 公式 3  
determines these values:  
RF  
AV = -  
RI  
(3)  
8.2.3 Application Curve  
2
1.5  
1
Input  
Output  
0.5  
0
-0.5  
-1  
-1.5  
-2  
Time  
22. Inverting Amplifier Input and Output  
8.3 System Examples  
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required.  
To establish this minimum bandwidth, place an RC filter at the noninverting pin of the amplifier, as 23 shows.  
RG  
RF  
R1  
VOUT  
VIN  
C1  
1
2pR1C1  
f
=
-3 dB  
VOUT  
VIN  
RF  
1
1 + sR1C1  
=
1 +  
(
(
(  
(
RG  
23. Single-Pole Low-Pass Filter  
16  
版权 © 2018, Texas Instruments Incorporated  
 
 
TLV6001-Q1, TLV6002-Q1  
www.ti.com.cn  
ZHCSIO7A AUGUST 2018REVISED DECEMBER 2018  
System Examples (接下页)  
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this  
task, as 24 shows. For best results, the amplifier must have a bandwidth that is 8 to 10 times larger than the  
filter frequency bandwidth. Failure to follow this guideline can result in phase shift of the amplifier.  
C1  
R1 = R2 = R  
C1 = C2 = C  
R1  
R2  
Q = Peaking factor  
(Butterworth Q = 0.707)  
VIN  
VOUT  
C2  
1
2pRC  
f
=
-3 dB  
RF  
RF  
RG  
=
1
2 -  
RG  
(
(
Q
24. Two-Pole, Low-Pass, Sallen-Key Filter  
9 Power Supply Recommendations  
The TLV600x-Q1 family is specified for operation from 1.8 V to 5.5 V (±0.9 V to ±2.75 V). The Typical  
Characteristics section presents parameters that can exhibit significant variance with regard to operating voltage  
or temperature.  
CAUTION  
Supply voltages larger than 7 V may permanently damage the device. (See the  
Absolute Maximum Ratings ).  
Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see the Layout  
Guidelines section.  
版权 © 2018, Texas Instruments Incorporated  
17  
 
TLV6001-Q1, TLV6002-Q1  
ZHCSIO7A AUGUST 2018REVISED DECEMBER 2018  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit and the operational  
amplifier. Use bypass capacitors to reduce the coupled noise by providing low-impedance power sources  
local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of the circuitry is one of the simplest and most  
effective methods of noise suppression. One or more layers on multilayer PCBs are typically devoted to  
ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Take care to  
physically separate digital and analog grounds, paying attention to the flow of the ground current. For  
more detailed information, see Circuit Board Layout Techniques (available for download from  
www.ti.com).  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If the traces cannot be kept separate, crossing the sensitive trace perpendicularly is much better  
than crossing in parallel with the noisy trace.  
Place the external components as close to the device as possible. Keep RF and RG close to the inverting  
input in order to minimize parasitic capacitance, as shown in 25.  
Keep the length of input traces as short as possible. Remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly  
reduce leakage currents from nearby traces that are at different potentials.  
10.2 Layout Example: Single Channel  
Run the input traces  
as far away from  
VS+  
the supply lines  
VIN  
as possible.  
VSœ  
+IN  
Vœ  
V+  
GND  
Use a low-ESR,  
ceramic bypass  
capacitor.  
Use a low-ESR,  
ceramic bypass  
capacitor.  
RG  
OUT  
œIN  
VOUT  
GND  
RF  
Place components  
close to the device  
and to each other to  
reduce parasitic  
errors.  
25. Operational Amplifier Board Layout for Noninverting Configuration  
VIN  
+
VOUT  
RG  
RF  
26. Schematic Representation of 25  
18  
版权 © 2018, Texas Instruments Incorporated  
 
TLV6001-Q1, TLV6002-Q1  
www.ti.com.cn  
ZHCSIO7A AUGUST 2018REVISED DECEMBER 2018  
10.3 Layout Example: Dual Channel  
VIN 1  
VIN 2  
+
+
VOUT 1  
VOUT 2  
RG  
RG  
RF  
RF  
27. Schematic Representation for 25  
Place components  
close to device and to  
each other to reduce  
parasitic errors.  
OUT 1  
Use low-ESR,  
ceramic bypass  
capacitor . Place as  
close to the device  
as possible .  
VS+  
GND  
OUT1  
V+  
RF  
RG  
OUT 2  
GND  
IN1œ  
IN1+  
Vœ  
OUT2  
IN2œ  
IN2+  
RF  
VIN 1  
GND  
VIN 2  
RG  
Keep input traces short  
and run the input traces  
as far away from  
the supply lines  
Use low-ESR,  
GND  
ceramic bypass  
capacitor . Place as  
close to the device  
as possible .  
VSœ  
Ground (GND) plane on another layer  
as possible .  
28. Layout Example  
版权 © 2018, Texas Instruments Incorporated  
19  
TLV6001-Q1, TLV6002-Q1  
ZHCSIO7A AUGUST 2018REVISED DECEMBER 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《运算放大器的 EMI 抑制比》  
德州仪器 (TI)《电路板布局技巧》  
11.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
2. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
TLV6001-Q1  
TLV6002-Q1  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
20  
版权 © 2018, Texas Instruments Incorporated  
TLV6001-Q1, TLV6002-Q1  
www.ti.com.cn  
ZHCSIO7A AUGUST 2018REVISED DECEMBER 2018  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV6001QDCKRQ1  
TLV6002QDGKRQ1  
TLV6002QDRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
SC70  
VSSOP  
SOIC  
DCK  
DGK  
D
5
8
8
3000 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAUAG  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
1B1  
NIPDAUAG  
NIPDAU  
1NX6  
V6002Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jul-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV6001QDCKRQ1  
TLV6002QDGKRQ1  
TLV6002QDRQ1  
SC70  
VSSOP  
SOIC  
DCK  
DGK  
D
5
8
8
3000  
2500  
2500  
180.0  
330.0  
330.0  
8.4  
2.47  
5.3  
2.3  
3.4  
5.2  
1.25  
1.4  
4.0  
8.0  
8.0  
8.0  
Q3  
Q1  
Q1  
12.4  
12.4  
12.0  
12.0  
6.4  
2.1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jul-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV6001QDCKRQ1  
TLV6002QDGKRQ1  
TLV6002QDRQ1  
SC70  
VSSOP  
SOIC  
DCK  
DGK  
D
5
8
8
3000  
2500  
2500  
183.0  
366.0  
340.5  
183.0  
364.0  
336.1  
20.0  
50.0  
25.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV6001IDBVR

单路、5.5V、1MHz、RRIO 运算放大器 | DBV | 5 | -40 to 125
TI

TLV6001IDBVT

单路、5.5V、1MHz、RRIO 运算放大器 | DBV | 5 | -40 to 125
TI

TLV6001IDCKR

单路、5.5V、1MHz、RRIO 运算放大器 | DCK | 5 | -40 to 125
TI

TLV6001IDCKT

单路、5.5V、1MHz、RRIO 运算放大器 | DCK | 5 | -40 to 125
TI

TLV6001QDCKRQ1

汽车级、单路、5.5V、1MHz、RRIO 运算放大器 | DCK | 5 | -40 to 125
TI

TLV6001RIDBVR

单路、5.5V、1MHz、RRIO 运算放大器 | DBV | 5 | -40 to 125
TI

TLV6001RIDBVT

单路、5.5V、1MHz、RRIO 运算放大器 | DBV | 5 | -40 to 125
TI

TLV6001UIDBVR

单路、5.5V、1MHz、RRIO 运算放大器 | DBV | 5 | -40 to 125
TI

TLV6001UIDBVT

单路、5.5V、1MHz、RRIO 运算放大器 | DBV | 5 | -40 to 125
TI

TLV6002

双路 5.5V 1MHz RRIO 运算放大器
TI

TLV6002-Q1

汽车级、双路、5.5V、1MHz、RRIO 运算放大器
TI

TLV6002IDGKR

双路 5.5V 1MHz RRIO 运算放大器 | DGK | 8 | -40 to 125
TI