TLV61048 [TI]

采用 SOT-23 封装的 14V 输出电压非同步升压转换器;
TLV61048
型号: TLV61048
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 SOT-23 封装的 14V 输出电压非同步升压转换器

升压转换器
文件: 总21页 (文件大小:827K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV61048  
ZHCSJH5 MARCH 2019  
采用 SOT-23 封装的 TLV61048 15V 输出电压非同步升压转换器  
1 特性  
3 说明  
1
输入电压:2.61V 5.5V(下降 2.4V)  
输出电压最高 15V  
TLV61048 是一款非同步升压转换器,为由低电压超级  
电容器和单芯锂离子电池供电的产品提供电源解决方  
案。TLV61048 将电源开关与 4.7A 典型电流限制相集  
成,在不影响最大负载交付的情况下增强了输入电源的  
放电能力。TLV61048 也支持使用尺寸更小的宽范围外  
部电感器和输出电容器来简化设计工作。  
集成低侧 FET:输入电压为 3.3V 时,电阻为  
85mΩ  
4.7A(典型值)开关电流限制  
600kHz 1MHz 可选开关频率  
1µA 关断电流  
通过配置 FREQ 引脚,TLV61048 的可选开关频率为  
600kHz 1MHz。在轻负载时,该器件会进入 PFM  
运行模式来实现更高的效率。TLV61048 具有 2ms 内  
置软启动时间,从而可最大程度地降低浪涌电流。  
输出电压精度为 2.5%  
轻负载下采用 PFM 运行模式  
内部 2ms 软启动时间  
热关断保护  
TLV61048 采用 3mm × 3mm 6 引脚 SOT-23 封装。  
6 引脚 3mm × 3mm SOT-23 封装  
器件信息(1)  
2 应用  
器件型号  
TLV61048  
封装  
SOT-23 (6)  
封装尺寸(标称值)  
PLC 备用电源  
2.90mm × 1.60mm  
LCD 偏置电源  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
直流/直流工业隔离  
简化原理图  
L1  
1.5 V ~ 2.6 V  
C1  
12V  
D1  
3.3V  
VIN  
SW  
FREQ  
FB  
C3  
C2  
GND  
R1  
R2  
ON  
OFF  
EN  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEX0  
 
 
 
TLV61048  
ZHCSJH5 MARCH 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
Application and Implementation .......................... 9  
8.1 Application Information.............................................. 9  
8.2 Typical Applications .................................................. 9  
Power Supply Recommendations...................... 14  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
Detailed Description .............................................. 6  
7.1 Overview ................................................................... 6  
7.2 Functional Block Diagram ......................................... 6  
7.3 Feature Description................................................... 6  
7.4 Device Functional Modes.......................................... 7  
10 Layout................................................................... 14  
10.1 Layout Guidelines ................................................. 14  
10.2 Layout Example .................................................... 14  
11 器件和文档支持 ..................................................... 15  
11.1 器件支持 ............................................................... 15  
11.2 接收文档更新通知 ................................................. 15  
11.3 社区资源................................................................ 15  
11.4 ....................................................................... 15  
11.5 静电放电警告......................................................... 15  
11.6 术语表 ................................................................... 15  
12 机械、封装和可订购信息....................................... 15  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2019 3 月  
*
初始发行版  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TLV61048  
www.ti.com.cn  
ZHCSJH5 MARCH 2019  
5 Pin Configuration and Functions  
DBV Package  
6-Pin SOT-23  
Top View  
SW  
GND  
FB  
FREQ  
VIN  
EN  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
1
NAME  
SW  
PWR  
PWR  
The switch pin of the converter. It is connected to the drain of the internal power MOSFET.  
Ground  
2
GND  
Voltage feedback of adjustable output voltage. Connected to the center tap of a resistor  
divider to program the output voltage.  
3
FB  
I
Enable logic input. Logic high voltage enables the device. Logic low voltage disables the  
device and turns it into shutdown mode.  
4
5
6
EN  
VIN  
I
I
I
IC power supply input  
Frequency select pin. The device operates at 600 kHz if FREQ is left floating and at 1 MHz if  
connected to GND.  
FREQ  
Copyright © 2019, Texas Instruments Incorporated  
3
TLV61048  
ZHCSJH5 MARCH 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
– 0.3  
–0.3  
-0.3  
MAX  
UNIT  
V
VIN, EN, FREQ  
6
18  
(2)  
Voltage range at terminals  
SW  
FB  
V
3.6  
150  
V
Operating junction temperature range, TJ  
–40  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
V
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(2)  
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(3)  
(1)  
V(ESD)  
Electrostatic discharge  
V
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges in  
to the device.  
(2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.6  
TYP  
MAX  
5.5  
14  
UNIT  
V
VIN  
VOUT  
L
Input voltage range  
Output voltage range  
3.3  
V
Effective inductance range  
Effective input capacitance range  
Effective output capacitance range  
Operating junction temperature  
2.2  
4.7  
1
10  
µH  
µF  
µF  
°C  
CIN  
COUT  
TJ  
0.22  
4.7  
–40  
125  
6.4 Thermal Information  
TLV61048  
DBV (SOT23)  
6 PINS  
177.7  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
RθJC(top)  
RθJB  
120.6  
Junction-to-board thermal resistance  
33.2  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
21.5  
ψJB  
32.6  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2019, Texas Instruments Incorporated  
TLV61048  
www.ti.com.cn  
ZHCSJH5 MARCH 2019  
6.5 Electrical Characteristics  
TA = –40°C to 85°C, VIN = 3.3 V. Typical values are at TA = 25°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
2.6  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VIN  
Input voltage range  
5.5  
V
V
VIN rising  
VIN falling  
2.55  
2.4  
2.61  
VIN_UVLO  
Under voltage lockout threshold  
2.3  
VIN_HYS  
IQ_VIN  
ISD  
VIN UVLO hysteresis  
150  
100  
mV  
µA  
µA  
Quiescent current into VIN pin  
Shutdown current into VIN pin  
IC enabled, no load, no switching  
IC disabled, VIN = 2.6 V to 5.5 V, TA = 25°C  
1.0  
OUTPUT  
VOUT  
Output voltage range  
Feedback voltage  
3.3  
15  
V
V
PWM mode, TJ=-40°C to 125°C  
PFM mode, TA=25°C  
TA = 25°C  
0.78  
0.8  
0.82  
VREF  
0.81  
V
IFB_LKG  
ISW_LKG  
Leakage current into FB pin  
Leakage current into SW pin  
50  
nA  
nA  
IC disabled, SW = 5.5V  
500  
POWER SWITCH  
RDS(on) Low-side MOSFET on resistance  
Vin = 3.3, Vout = 12V  
Default, SW = 1.5V  
Default, SW = 2.6V  
600kHz, SW = 1.5V  
600kHz, VIN = 3.3V  
85  
550  
1150  
130  
4.7  
m  
kHz  
kHz  
ns  
480  
620  
fSW  
Switching frequency  
1020  
1280  
tOFF_min Min. off time  
ILIM_SW  
Peak switch current limit  
Startup time  
3.8  
0.4  
0.4  
5.6  
1.2  
A
tSTARTUP  
2
ms  
LOGIC INTERFACE  
VEN_H  
VEN_L  
EN Logic high threshold  
V
V
EN Logic low threshold  
EN Pull Down Resistor  
FREQ pull up resistance  
FREQ logic high threshold  
FREQ logic low threshold  
REN  
1
MΩ  
kΩ  
V
RFREQ  
VFREQ_H  
VFREQ_L  
800  
1.2  
V
PROTECTION  
TSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
150  
20  
°C  
°C  
TSD_HYS  
TJ falling below TSD  
版权 © 2019, Texas Instruments Incorporated  
5
TLV61048  
ZHCSJH5 MARCH 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TLV61048 is a non-synchronous boost converter supporting output voltage up to 15 V with input ranging  
from 2.61 V to 5.5 V. The TLV61048 integrates a power switch with current limit up to 4.7 A (typical). The device  
operates in a current mode scheme with quasi-constant frequency with internal loop compensation built in. The  
switching frequency is selectable between 600 kHz and 1 MHz. There is internal fixed soft start time which is 2  
ms typically to control the inrush current during startup.  
Topology of the TLV61048 boost converter is adaptive off-time with peak current control, which provides superior  
load and line transient responses. The selectable switching frequency offers the possibility to optimize the design  
either for the use of small sized inductor (1 MHz) or for higher system efficiency (600 kHz).  
The converter operates in continuous conduction mode (CCM) when the inductor valley current is above zero,  
while switches into discontinuous conduction mode (DCM) if valley current crossing zero. If the load is further  
lowered, the device enters into PFM operation to achieve even higher efficiency.  
7.2 Functional Block Diagram  
1
VIN  
SW  
5
Gate Driver  
UVLO  
Current  
Limit  
VIN  
SW  
4
EN  
Control  
Logic  
FREQ  
6
PWM Generator  
Off Time  
On Time  
EA  
3
FB  
GND  
2
Thermal Shutdown  
SS  
REF  
7.3 Feature Description  
7.3.1 Undervoltage Lockout  
An undervoltage lockout (UVLO) circuit stops the operation of the converter when the input voltage drops below  
the typical UVLO threshold of 2.4 V. A hysteresis of 150 mV is added so that the device cannot be enabled again  
until the input voltage goes up to 2.55 V. This function is implemented in order to prevent malfunctioning of the  
device when the input voltage is between 2.4 V and 2.55 V.  
6
版权 © 2019, Texas Instruments Incorporated  
TLV61048  
www.ti.com.cn  
ZHCSJH5 MARCH 2019  
Feature Description (接下页)  
7.3.2 Enable and Disable  
When the input voltage is above typical UVLO rising threshold of 2.55 V and the EN pin is pulled high, the  
TLV61048 is enabled. When the EN pin is pulled low, the TLV61048 stops the PWM switch and turns off the low  
side switch. The EN pin has an internal pull-down resistance of 1MΩ, the device is disabled when the EN pin is  
floating. In shutdown mode, less than 1-µA input current is consumed.  
7.3.3 Soft Start  
The soft-start feature helps the regulator to gradually reach the steady state operating point, thus reducing start-  
up stresses and surge. When the input voltage is applied, the output capacitor is charged to VIN through the  
inductor and high side rectifier diode. After reaching the 2.55 V (typical) UVLO threshold, the internal soft-start  
control circuit initiates to ramp the reference voltage to 0.8 V within 2 ms (typical), while the low side FET starts  
switching after output capacitor is charged to the input voltage.  
7.3.4 Frequency Select (FREQ)  
The frequency select pin FREQ allows to set the switching frequency of the device to 600 kHz (FREQ = floating)  
or 1 MHz (FREQ = GND). Higher switching frequency improves load transient response but reduces efficiency  
slightly. The other benefit of higher switching frequency is lower output ripple voltage.  
7.4 Device Functional Modes  
The TLV61048 has two operation modes: PWM mode and PFM mode.  
7.4.1 PWM Mode  
The TLV61048 uses a quasi-constant frequency pulse width modulation (PWM) at moderate to heavy load  
currents. Based on the VIN/VOUT ratio, a circuit predicts the required off-time. At the beginning of the switching  
cycle, the integrated NMOS switching FET, shown in the functional block diagram, is turned on. The input voltage  
is applied across the inductor and the inductor current ramps up. In this phase, the output capacitor is discharged  
by the load current. When the inductor current hits the current threshold that is set by the error amplifier output,  
the PWM switch is turned off, and the external power diode is forward-biased. The inductor transfers its stored  
energy to replenish the output capacitor and supply the load. When the off-time is expired, the next switching  
cycle starts again. The error amplifier compares the FB pin voltage with an internal reference, and its output  
determines the duty cycle of the PWM switching.  
The TLV61048 has a built-in compensation circuit that can accommodate a wide range of input and output  
voltages for stable operation.  
7.4.2 PFM Mode  
The TLV61048 integrates a power save mode with pulse frequency modulation (PFM) to improve efficiency at  
light load. When the load current decreases, the inductor peak current set by the output of the error amplifier  
declines to regulate the output voltage. When the inductor peak current hits the low limit (400 mA typical), the  
output voltage exceeds the set threshold voltage as the load current decreases further. When the FB voltage hits  
the PFM reference voltage, the TLV61048 goes into power-save mode. In the power-save mode, the device only  
switches when the output voltage trips below a set threshold voltage. It ramps up the output with several pulses  
and enters the power save mode when the output voltage exceeds the set threshold voltage.  
版权 © 2019, Texas Instruments Incorporated  
7
TLV61048  
ZHCSJH5 MARCH 2019  
www.ti.com.cn  
Device Functional Modes (接下页)  
Output  
Voltage  
PFM mode at light load  
1.01 x VOUT_NOM  
VOUT_NOM  
PWM mode at heavy load  
8
版权 © 2019, Texas Instruments Incorporated  
TLV61048  
www.ti.com.cn  
ZHCSJH5 MARCH 2019  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
TLV61048 is a boost DC/DC converter integrating a power switch and loop compensation circuits. The device  
supports up to 15-V output with the input range from 2.61 V to 5.5 V. The device can operate down to 1.5 V if an  
external 3.3-V bias supply is applied to the VIN pin. The TLV61048 adopts the current-mode control with  
adaptive constant off-time. The switching frequency is quasi-constant and selectable between 600 kHz and 1  
MHz. The following design procedure can be used to select component values for the TLV61048.  
8.2 Typical Applications  
8.2.1 12-V Output Boost Converter With External Bias  
In this design example, TLV61048 VIN pin is supplied by an external 3.3-V bias voltage to keep internal circuitry  
on in order to extend power stage operating VIN to 1.5 V. 600-kHz switching frequency is selected to reduce  
switching loss in order to improve overall efficiency.  
L1  
1.5 V ~ 2.6 V  
VIN  
C1  
1.0uF  
4.7uH  
12 V  
3.3 V  
Bias VIN  
VIN  
SW  
FREQ  
FB  
C3  
0.1uF  
C2  
10uF  
R1  
GND  
1.5M  
TLV61048  
ON  
OFF  
EN  
R2  
107kꢀ  
1. 12-V Boost Converter With External Bias  
8.2.1.1 Design Requirements  
For this design example, see parameters are shown in 1:  
1. Design Requirements  
PARAMETERS  
Power input voltage  
Control input voltage  
Output voltage  
VALUE  
1.5 V to 2.7 V  
3.3 V  
12 V  
Frequency  
600 kHz  
0 - 100 mA  
Output current  
版权 © 2019, Texas Instruments Incorporated  
9
 
TLV61048  
ZHCSJH5 MARCH 2019  
www.ti.com.cn  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Programming the Output Voltage  
Output voltage is programmed via external resistor divider. By selecting the external resistor divider R1 and R2,  
as shown in 公式 1, the output voltage is programmed to the desired value. When the output voltage is regulated,  
the typical voltage at the FB pin is VREF of 800 mV.  
«
VOUT  
VREF  
R1=  
-1 ìR2  
÷
where  
VOUT is the desired output voltage  
VREF is the internal reference voltage at the FB pin  
(1)  
For best accuracy, R2 should be kept smaller than 150 kΩ to ensure the current flowing through R2 is at least  
100 times larger than the FB pin leakage current. Changing R2 towards a lower value increases the immunity  
against noise injection. Changing the R2 towards a higher value reduces the quiescent current for achieving  
higher efficiency at low load currents.  
8.2.1.2.2 Inductor Selection  
Because the selection of the inductor affects steady state operation, transient behavior, and loop stability, the  
inductor is the most important component in power regulator design. There are three important inductor  
specifications, inductor value, saturation current, and DC resistance (DCR). The TLV61048 is designed to work  
with inductor values between 2.2 µH and 10 µH. Use 公式 2 to 公式 4 to calculate the peak current of the  
application inductor. To calculate the current in the worst case, use the minimum input voltage, maximum output  
voltage, and maximum load current of the application. To have enough design margin, choose the inductor value  
with –30% tolerance, and a low power-conversion efficiency for the calculation. In a boost regulator, the inductor  
dc current can be calculated with 公式 2.  
VOUT ìIOUT  
IL(DC)  
=
V ì h  
IN  
where  
VOUT = output voltage  
IOUT = output current  
VIN = input voltage  
η = power conversion efficiency, use 80% for most applications  
(2)  
The inductor ripple current is calculated with the 公式 3 for an asynchronous boost converter in continuous  
conduction mode (CCM).  
V
ì V  
+ 0.8V - V  
(
)
IN  
OUT IN  
DIL(P-P)  
=
L ì fSW ì V  
+ 0.8V  
(
)
OUT  
where  
ΔIL(P-P) = inductor ripple current  
L = inductor value  
fSW = switching frequency  
VOUT = output voltage  
VIN = input voltage  
(3)  
(4)  
Therefore, the inductor peak current is calculated with 公式 4.  
DIL P-P  
(
2
)
IL P = IL DC  
+
(
)
(
)
Normally, it is advisable to work with an inductor peak-to-peak current of less than 40% of the average inductor  
current for maximum output current. A smaller ripple from a larger valued inductor reduces the magnetic  
hysteresis losses in the inductor and EMI. However, in the same way, load transient response time is increased.  
2 lists the recommended inductor for the TLV61048 in the 600-kHz configuration.  
10  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
TLV61048  
www.ti.com.cn  
ZHCSJH5 MARCH 2019  
2. Recommended Inductors for the TLV61048 at 600-kHz Configuration  
SATURATION CURRENT  
TYPICAL (A)  
PART NUMBER  
L (µH)  
DCR MAX (mΩ)  
SIZE (L×W×H) (mm)  
VENDOR(1)  
SWPA5040S4R7NT  
XAL4030-472ME  
SWPA5040S100MT  
XAL4040-103ME  
4.7  
4.7  
10  
39  
44.1  
83  
3.9  
4.5  
2.9  
3
5 × 5 × 4  
4 × 4 × 3  
5 × 5 × 4  
4 × 4 × 4  
Sunlord  
Coilcraft  
Sunlord  
Coilcraft  
10  
92.4  
(1) See Third-party Products Disclaimer  
8.2.1.2.3 Input and Output Capacitor Selection  
The output capacitor is mainly selected to meet the requirements for output ripple and loop stability. This ripple  
voltage is related to the capacitor’s capacitance and its equivalent series resistance (ESR). Assuming a ceramic  
capacitor with zero ESR, the minimum capacitance needed for a given ripple can be calculated by:  
IOUT ìDMAX  
fSW ì VRIPPLE  
COUT  
=
where  
DMAX = maximum switching duty cycle  
VRIPPLE = peak to peak output voltage ripple  
(5)  
The ESR impact on the output ripple must be considered if tantalum or aluminum electrolytic capacitors are  
used.  
Take care when evaluating the derating of a ceramic capacitor under DC bias, aging, and AC signal. For  
example, the DC bias can significantly reduce capacitance. A ceramic capacitor can lose more than 50% of its  
capacitance at its rated voltage. Therefore, always leave margin on the voltage rating to ensure adequate  
capacitance at the required output voltage.  
TI recommends using the output capacitor with effective capacitance in the range of 4.7 µF to 10 µF for 600-kHz  
configuration. TI also recommends placing a small 1 µF capacitor right across the rectifier diode cathode to the  
GND pin of the TLV61048 to reduce the high RMS current loop's inductance. The output capacitor affects the  
small signal control loop stability of the boost regulator. If the output capacitor is below the range, the boost  
regulator can potentially become unstable. Increasing the output capacitor makes the output voltage ripple  
smaller in PWM mode. 3 lists the recommended capacitor for the TLV61048.  
3. Recommended Output Capacitors for the TLV61048  
PART NUMBER  
TMK316BLD106KL  
CC1206KKX5R8BB106  
COUT (µF)  
RATING  
25 V, X5R  
25 V, X5R  
PACKAGE  
1206  
VENDOR(1)  
Taiyo Yuden  
Yageo  
10  
10  
1206  
(1) See Third-party Products Disclaimer.  
版权 © 2019, Texas Instruments Incorporated  
11  
 
 
TLV61048  
ZHCSJH5 MARCH 2019  
www.ti.com.cn  
For input capacitor, a ceramic capacitor with more than 1 µF is enough for most applications.  
8.2.1.3 Application Curves  
SW  
SW  
5 V/div  
5 V/div  
Vout (AC)  
20 mV/div  
Vout (AC)  
50 mV/div  
Inductor  
Current  
Inductor  
Current  
300 mA/div  
400 mA/div  
VIN = 2.5 V  
VOUT = 12 V  
IOUT = 0.1 A  
VIN = 2.5 V  
VOUT = 12 V  
IOUT = 10 mA  
2. Switching Waveform in CCM  
3. Switching Waveform in PFM  
EN  
EN  
2 V/div  
2 V/div  
Vout  
Vout  
3 V/div  
3 V/div  
Inductor  
Current  
Inductor  
Current  
300 mA/div  
300 mA/div  
4. Start-up Waveform  
5. Shutdown Waveform  
Vout (AC)  
Vout (AC)  
300 mV/div  
100 mV/div  
Input  
Voltage  
1 V/div  
Output  
Current  
50 mA/div  
VIN= 2.5 V  
VOUT= 12 V  
IOUT= 0.06A to 0.1  
A
VIN= 1.5 V to 2.6 V  
VOUT= 12 V  
IOUT= 0.1 A  
7. Line Transient  
6. Load Transient  
12  
版权 © 2019, Texas Instruments Incorporated  
TLV61048  
www.ti.com.cn  
ZHCSJH5 MARCH 2019  
8.2.2 15-V Output Boost Converter  
In this design example, TLV61048 is configured to output 15-V DC voltage. 1-MHz switching frequency is  
selected to reduce output ripple and improve load transient performance. TI recommends placing an RC snubber  
from the switch node to the ground node to ensure voltage spike does not exceed the specified absolute  
maximum rating.  
L1  
3.3 µH  
C1  
1 µF  
15 V  
VIN  
SW  
FREQ  
FB  
C2  
10 µF  
R1  
2 M  
GND  
TLV61048  
EN  
R2  
113 kꢀ  
8. 15-V Boost Converter  
4. Design Requirements  
8.2.2.1 Design Requirements  
PARAMETER  
Power input voltage  
Output voltage  
Frequency  
VALUE  
2.6 V to 5.5 V  
15 V  
1 MHz  
Output current  
0 to 300 mA  
8.2.2.2 Detailed Design Procedure  
8.2.2.2.1 Inductor Selection  
Load transient and loop response performance is optimized at 1-MHz configuration, a smaller inductance is  
selected to push the right-half-plane-zero to a higher frequency beyond the crossover frequency of the control  
loop. The recommended inductors for 1-MHz operation are listed in 5.  
5. Recommended Inductors for the TLV61048 at 1-MHz Configuration  
SATURATION CURRENT  
PART NUMBER  
L (µH) DCR MAX (mΩ)  
SIZE (LxWxH) (mm)  
VENDOR(1)  
TYPICAL (A)  
SWPA5040S2R2NT  
XAL4020-222ME  
SWPA5040S3R3NT  
XAL4030-332ME  
2.2  
2.2  
3.3  
3.3  
25  
38.7  
31  
5.6  
5.6  
4.6  
5.5  
5 × 5 × 4  
4 × 4 × 3  
5 × 5 × 4  
4 × 4 × 4  
Sunlord  
Coilcraft  
Sunlord  
Coilcraft  
28.6  
(1) See Third-party Products Disclaimer.  
8.2.2.2.2 Input and Output Capacitor Selection  
For 1-MHz configuration, use the information provided in Input and Output Capacitor Selection.  
版权 © 2019, Texas Instruments Incorporated  
13  
 
TLV61048  
ZHCSJH5 MARCH 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 1.5 V to 5.5 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the converter, additional bulk  
capacitance may be required in addition to the ceramic bypass capacitors. A typical choice is an electrolytic or  
tantalum capacitor with a value of 47 µF. Output current of the input power supply must be rated according to the  
supply voltage, output voltage and output current of the TLV61048.  
10 Layout  
10.1 Layout Guidelines  
As for all switching power supplies, especially those running at high switching frequency and high currents,  
layout is an important design step. If the layout is not carefully done, the regulator could suffer from instability  
and noise problems. To maximize efficiency, switch rise and fall time are very fast. To prevent radiation of high  
frequency noise (for example, EMI), proper layout of the high-frequency switching path is essential. Minimize the  
length and area of all traces connected to the SW pin, and always use a ground plane under the switching  
regulator to minimize interplane coupling. The input capacitor must not only to be close to the VIN pin, but also to  
the GND in in order to reduce input supply ripple.  
The most critical current path for all boost converters is from the switching FET, through the rectifier diode, then  
the output capacitors, and back to ground of the switching FET. This high current path contains nanosecond rise  
and fall time and must be kept as short as possible. Therefore, the output capacitor must not only to be close to  
the VOUT pin, but also to the GND pin to reduce the overshoot at the SW pin and VOUT pin.  
10.2 Layout Example  
VIN  
FREQ  
VIN  
EN  
GND  
SW  
GND  
FB  
VOUT  
9. TLV61048 Layout  
14  
版权 © 2019, Texas Instruments Incorporated  
TLV61048  
www.ti.com.cn  
ZHCSJH5 MARCH 2019  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
15  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV61048DBVR  
TLV61048DBVT  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
DBV  
DBV  
6
6
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
1VSF  
1VSF  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TLV61048DBVR

采用 SOT-23 封装的 14V 输出电压非同步升压转换器 | DBV | 6 | -40 to 125
TI

TLV61048DBVT

采用 SOT-23 封装的 14V 输出电压非同步升压转换器 | DBV | 6 | -40 to 125
TI

TLV61070A

具有 0.5V 超低输入电压的 5V、2A 升压转换器
TI

TLV61070ADBVR

具有 0.5V 超低输入电压的 5V、2A 升压转换器 | DBV | 6 | -40 to 125
TI

TLV61220

LOW INPUT VOLTAGE STEP-UP CONVERTER IN THIN SOT-23 PACKAGE
TI

TLV61220DBVR

LOW INPUT VOLTAGE STEP-UP CONVERTER IN THIN SOT-23 PACKAGE
TI

TLV61220DBVT

LOW INPUT VOLTAGE STEP-UP CONVERTER IN THIN SOT-23 PACKAGE
TI

TLV61224

Single Cell High Efficient Step-Up Converter in 6 Pin SC-70 Package
TI

TLV61224DCK

BATTERY CHARGE CONTROLLER, PDSO6, PLASTIC, SC-70, 6 PIN
TI

TLV61224DCKR

Single Cell High Efficient Step-Up Converter in 6 Pin SC-70 Package
TI

TLV61224DCKT

Single Cell High Efficient Step-Up Converter in 6 Pin SC-70 Package
TI

TLV61225

SINGLE CELL HIGH EFFICIENT STEP-UP CONVERTER IN 6 PIN SC-70 PACKAGE
TI