TLV62084ADSGR [TI]

采用 2mm x 2mm 小外形尺寸无引线 (SON) 封装的 2A 高效降压转换器 | DSG | 8 | -40 to 125;
TLV62084ADSGR
型号: TLV62084ADSGR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 2mm x 2mm 小外形尺寸无引线 (SON) 封装的 2A 高效降压转换器 | DSG | 8 | -40 to 125

开关 光电二极管 输出元件 转换器
文件: 总30页 (文件大小:1869K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV62080, TLV62084, TLV62084A  
ZHCS484H OCTOBER 2011REVISED JANUARY 2017  
TLV6208x 采用 2mm x 2mm WSON 封装的 1.2A 2A 高效降压转换器  
1 特性  
3 说明  
1
DCS-Control™架构,用于快速瞬态稳压  
TLV6208x 系列器件是小型降压转换器,所用外部组件  
较少,可实现具有成本效益的解决方案。此类器件属于  
同步降压转换器,其输入电压范围为  
2.5V 6V 输入电压范围 (TLV62080)  
2.7V 6V 输入电压范围(TLV62084 和  
TLV62084A)  
2.5V/2.7VTLV62080 2.5VTLV62084x 为  
2.7V)至 6VTLV6208x 器件专注于在宽输出电流范  
围内实现高效降压转换。该转换器在中等至高负载条件  
下采用脉宽调制 (PWM) 模式,而在轻载电流条件下自  
动进入省电模式,从而在整个负载电流范围内保持高效  
运行。  
100% 占空比,以实现最低压降  
用于实现轻载效率的省电模式  
输出放电功能  
电源正常输出  
热关断  
采用 2mm x 2mm8 引脚晶圆级小外形无引线  
(WSON) 封装  
为了满足系统电源轨需求,内部补偿电路支持在较大外  
部输出电容值范围内进行选择。凭借 DCS-Control™  
(无缝过渡至节能模式的直接控制)架构,该器件实现  
了优异的负载瞬态性能和输出电压稳压精度。该器件采  
用带有散热焊盘的 2mm x 2mm 晶圆级小外形无引线  
(WSON) 封装。  
有关改进的 特性 集,请参见 TPS62080  
使用 TLV6208x 并借助 WEBENCH® Power  
Designer 创建定制设计方案  
2 应用范围  
电池供电类便携式器件  
负载点稳压器  
器件信息(1)  
器件型号  
TLV62080  
封装  
封装尺寸(标称值)  
PC、笔记本电脑、服务器  
机顶盒  
WSON (8)  
2.00mm x 2.00mm  
TLV62084,  
TLV62084A  
固态硬盘 (SSD)、存储器电源  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
空白  
典型应用电路原理图  
效率与输出电流间的关系(VOUT = 1.2V)  
空白  
空白  
POWER GOOD  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.7 V to 6 V  
VIN  
VIN  
EN  
PG  
180 kΩ  
1 µH  
SW  
VOUT  
TLV62084  
10 µF  
22 µF  
GND  
GND  
VOS  
FB  
R1  
R2  
VIN = 2.8 V  
VIN = 3.6 V  
VIN = 4.2 V  
1E-5  
0.0001  
0.001  
0.01  
0.1  
1
2
Copyright © 2016, Texas Instruments Incorporated  
Output Current (A)  
D002  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION  
DATA.  
English Data Sheet: SLVSAK9  
 
 
 
 
 
 
TLV62080, TLV62084, TLV62084A  
ZHCS484H OCTOBER 2011REVISED JANUARY 2017  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 4  
Pin Configurations and Functions....................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 9  
8.1 Overview ................................................................... 9  
8.2 Functional Block Diagram ......................................... 9  
8.3 Feature Description................................................... 9  
8.4 Device Functional Modes........................................ 11  
9
Application and Implementation ........................ 12  
9.1 Application Information............................................ 12  
9.2 Typical Application .................................................. 12  
10 Power Supply Recommendations ..................... 18  
11 Layout................................................................... 18  
11.1 Layout Guidelines ................................................. 18  
11.2 Layout Example .................................................... 18  
11.3 Thermal Considerations........................................ 19  
12 器件和文档支持 ..................................................... 20  
12.1 器件支持................................................................ 20  
12.2 文档支持................................................................ 20  
12.3 相关链接................................................................ 20  
12.4 ....................................................................... 20  
12.5 静电放电警告......................................................... 20  
12.6 接收文档更新通知 ................................................. 21  
12.7 社区资源................................................................ 21  
12.8 Glossary................................................................ 21  
13 机械、封装和可订购信息....................................... 21  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision G (September 2016) to Revision H  
Page  
已添加 WEBENCH® 信息至 特性、详细设计流程和器件支持部分 ......................................................................................... 1  
Added SW (AC, less than 10 ns) to the Absolute Maximum Rating table ............................................................................. 5  
Changes from Revision F (January 2015) to Revision G  
Page  
已添加 TLV62084A 器件和 相关应用 ..................................................................................................................................... 1  
已添加 Power Good Pin Logic Table (TLV62080/84) and Power Good Pin Logic Table (TLV62084A) ............................. 10  
已添加 scale factors in 14 ............................................................................................................................................... 16  
已更改 PCB Layout Image ................................................................................................................................................... 18  
已添加 接收文档更新通知社区资源部分。 ........................................................................................................................ 21  
Changes from Revision E (February 2014) to Revision F  
Page  
已更改 器件信息表。 .............................................................................................................................................................. 1  
Renamed the Configuration and Functions section .............................................................................................................. 4  
已添加 new TI-Legal note to Application and Implementation section................................................................................. 12  
Renamed "Thermal Information" to Thermal Considerations............................................................................................... 19  
Changes from Revision D (June 2013) to Revision E  
Page  
已添加 器件信息表,电源相关建议器件和文档支持以及机械、封装和可订购信息...................................................... 1  
阐明了 TLV62080 器件的输入范围 2.5V 5.5V 以及 TLV62084 器件的输入范围 2.7V 5.5V.......................................... 1  
Changed the Ordering Information table to the Device Comparison table and removed the Package Marking, TA,  
and Package columns from the table .................................................................................................................................... 4  
Changed the word pin to terminal in most cases throughout the document ......................................................................... 4  
Added the Handling Ratings table which now contains the storage temperature range and ESD ratings ........................... 5  
2
版权 © 2011–2017, Texas Instruments Incorporated  
 
TLV62080, TLV62084, TLV62084A  
www.ti.com.cn  
ZHCS484H OCTOBER 2011REVISED JANUARY 2017  
Added ILIM range for TLV62084 in Electrical Characteristics table......................................................................................... 6  
Replaced the Switching Frequency vs Load Current graph to the new Switching Frequency vs Output Current graph  
in the Typical Characteristics section ..................................................................................................................................... 7  
已添加 the higher output voltage Output Voltage vs Load Current graph in the Typical Characteristics section .................. 8  
Replaced the TLV62080 typical application circuit with the circuit for the TLV62084.......................................................... 12  
已删除 the Parameter Measurement Information Section and moved image and list of components to Typical  
Application section................................................................................................................................................................ 12  
已添加 4 to the Design Requirements section ................................................................................................................ 12  
已添加 Moved Waveforms from the Typical Characteristics section into the Application Curves section. Changed  
LCOIL (coil inductance) to ICOIL (coil current) in the Typical Application (PWM Mode and PFM Mode), Load Transient,  
Line Transient, and Startup waveforms................................................................................................................................ 15  
已添加 the output capacitance and inductance conditions to the first (original) Load Transient graph ............................... 16  
已添加 the second Load Transient graph (14)................................................................................................................. 16  
Changes from Revision C (May 2013) to Revision D  
Page  
已删除 TLV62084 device number from datasheet ............................................................................................................... 19  
Changes from Revision B (July 2012) to Revision C  
Page  
Changed the Thermal Information table values ..................................................................................................................... 5  
Changes from Revision A (November 2011) to Revision B  
Page  
Changed QFN to SON in ORDERING INFORMATION......................................................................................................... 4  
Changed QFN to SON in DEVICE INFORMATION............................................................................................................... 4  
Changed Thermal Pad description in Pin Functions .............................................................................................................. 4  
Changed TJ in the Absolute Maximum Ratings(1) From: –40 to 125°C To: -40 to 150°C ...................................................... 5  
已更改 several instances of DSC to DCS in DEVICE OPERATION section ......................................................................... 9  
已更改 DSC to DCS in Functional Block Diagram.................................................................................................................. 9  
Changes from Original (October 2011) to Revision A  
Page  
已更改 pin VSNS to VOS in 9.......................................................................................................................................... 12  
已更改 pin VSNS to VOS in 10........................................................................................................................................ 15  
版权 © 2011–2017, Texas Instruments Incorporated  
3
TLV62080, TLV62084, TLV62084A  
ZHCS484H OCTOBER 2011REVISED JANUARY 2017  
www.ti.com.cn  
5
Device Comparison Table  
PART NUMBER(1)  
TLV62080  
INPUT VOLTAGE  
OUTPUT CURRENT  
Power Good Logic Level (EN=Low)  
High Impedance  
2.5 V to 6 V  
2.7 V to 6 V  
2.7 V to 6 V  
1.2 A  
2 A  
TLV62084  
High Impedance  
TLV62084A  
2 A  
Low  
(1) For detailed ordering information please check the 机械、封装和可订购信息 section at the end of this datasheet.  
6 Pin Configurations and Functions  
space  
8-Pin WSON With Thermal Pad  
DSG Package  
(Top View)  
EN  
GND  
GND  
FB  
1
2
3
4
8
7
6
5
VIN  
SW  
PG  
Exposed  
Thermal  
Pad  
VOS  
space  
space  
Pin Functions  
PIN  
NO. NAME  
I/O  
DESCRIPTION  
Device enable logic input. Do not leave floating.  
Logic HIGH enables the device, logic LOW disables the device and turns it into shutdown.  
1
EN  
IN  
2, 3 GND  
PWR Power and signal ground.  
Feedback terminal for the internal control loop.  
Connect this terminal to the external feedback divider to program the output voltage.  
4
5
FB  
IN  
VOS  
IN  
Output voltage sense terminal for the internal control loop. Must be connected to output.  
Power Good open drain output.  
6
PG  
OUT  
This terminal is pulled to low if the output voltage is below regulation limits. This terminal can be left floating if not  
used.  
Switch terminal connected to the internal MOSFET switches and inductor terminal.  
Connect the inductor of the output filter here.  
7
8
SW  
VIN  
PWR  
PWR Power supply voltage input.  
Exposed  
Thermal Pad  
Must be connected to GND. Must be soldered to achieve appropriate power dissipation and mechanical  
reliability.  
4
Copyright © 2011–2017, Texas Instruments Incorporated  
TLV62080, TLV62084, TLV62084A  
www.ti.com.cn  
ZHCS484H OCTOBER 2011REVISED JANUARY 2017  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
MIN  
– 0.3  
– 0.3  
– 3.0  
– 0.3  
– 0.3  
MAX UNIT  
VIN, PG, VOS  
SW  
SW (AC, less than 10 ns)(3)  
7
VIN + 0.3  
10  
V
V
Voltage range(2)  
V
FB  
EN  
3.6  
V
VIN + 0.3  
1
V
Power Good Sink Current PG  
mA  
°C  
°C  
Operating junction temperature range, TJ  
Storage temperature range, Tstg  
– 40  
– 65  
150  
150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
(3) While switching.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
V
Human body model (HBM) ESD stress voltage(1)  
Charged device model (CDM) ESD stress voltage(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows safe  
manufacturing with a standard ESD control process.  
(2) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe  
manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions(1)  
MIN  
2.5  
TYP  
MAX  
6
UNIT  
V
VIN  
VIN  
TJ  
Input voltage range, TLV62080  
Input voltage range, TLV62084, TLV62084A  
Operating junction temperature  
2.7  
6
V
–40  
125  
°C  
(1) Refer to the Application Information section for further information.  
7.4 Thermal Information  
TLV6208x  
DSG  
THERMAL METRIC(1)  
UNITS  
(8 PINS)  
θJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
59.7  
70.1  
30.9  
1.4  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJCtop  
θJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
31.5  
8.6  
θJCbot  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2011–2017, Texas Instruments Incorporated  
5
TLV62080, TLV62084, TLV62084A  
ZHCS484H OCTOBER 2011REVISED JANUARY 2017  
www.ti.com.cn  
7.5 Electrical Characteristics  
Over recommended free-air temperature range, TA = –40°C to 85°C, typical values are at TA = 25°C (unless otherwise noted),  
VIN= 3.6 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY  
VIN  
Input voltage range,TLV62080  
Input voltage range,TLV62084, TLV62084A  
Quiescent current into VIN  
Shutdown current into VIN  
Under voltage lock out  
2.5  
2.7  
6
6
V
V
VIN  
IQ  
IOUT = 0 mA, Device not switching  
EN = LOW  
30  
uA  
µA  
V
ISD  
1
2
Input voltage falling  
1.8  
120  
150  
20  
VUVLO  
TJSD  
Under voltage lock out hysteresis  
Thermal shutdown  
Rising above VUVLO  
mV  
°C  
°C  
Temperature rising  
Thermal shutdown hysteresis  
Temperature falling below TJSD  
LOGIC INTERFACE (EN)  
VIH  
VIL  
High level input voltage  
2.5 V VIN 6 V  
2.5 V VIN 6 V  
1
V
V
Low level input voltage  
Input leakage current  
0.4  
0.5  
ILKG  
0.01  
µA  
POWER GOOD  
VPG Power good threshold  
VOUT falling referenced to VOUT nominal  
–15  
–10  
5
–5  
%
%
V
Power good hysteresis  
Low level voltage  
VOL  
Isink = 500 µA  
VPG = 5.0 V  
0.3  
0.1  
IPG,LKG PG Leakage current  
0.01  
µA  
OUTPUT  
VOUT  
VFB  
IFB  
Output voltage range  
0.5  
4
V
Feedback regulation voltage  
Feedback input bias current  
Output discharge resistor  
High side FET on-resistance  
Low side FET on-resistance  
V
IN 2.5 V and VIN VOUT + 1 V  
0.438  
0.45 0.462  
V
VFB = 0.45 V  
10  
1
100  
nA  
kΩ  
mΩ  
mΩ  
RDIS  
EN = LOW, VOUT = 1.8 V  
ISW = 500 mA  
120  
90  
RDS(on)  
ISW = 500 mA  
High side FET switch current-limit,  
TLV62080  
ILIM  
ILIM  
Rising inductor current  
Rising inductor current  
1.6  
2.3  
2.8  
2.8  
4
4
A
A
High side FET switch current-limit,  
TLV62084, TLV62084A  
6
版权 © 2011–2017, Texas Instruments Incorporated  
 
TLV62080, TLV62084, TLV62084A  
www.ti.com.cn  
ZHCS484H OCTOBER 2011REVISED JANUARY 2017  
7.6 Typical Characteristics  
See Typical Application for characterization setup.  
space  
1. Table of Graphs  
FIGURE  
1  
Load current, VOUT = 0.9 V  
Load current, VOUT = 1.2 V  
Load current, VOUT = 2.5 V  
Input Voltage, VOUT = 0.9 V  
Input Voltage, VOUT = 2.5 V  
Load current, VOUT = 0.9 V  
Load current, VOUT = 2.5 V  
Efficiency  
2  
3  
4  
5  
Output Voltage  
Accuracy  
6  
7  
Switching Frequency Load current, VOUT = 2.5 V  
8  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 2.8 V  
VIN = 3.6 V  
VIN = 4.2 V  
VIN = 2.8 V  
VIN = 3.6 V  
VIN = 4.2 V  
1E-5  
0.0001  
0.001  
0.01  
0.1  
1
2
1E-5  
0.0001  
0.001  
0.01  
0.1  
1 2  
Output Current (A)  
Output Current (A)  
D001  
D002  
VOUT = 0.9 V  
VOUT = 1.2 V  
1. Efficiency vs Load Current  
2. Efficiency vs Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.91  
0.905  
0.9  
0.895  
0.89  
0.885  
0.88  
IOUT = 10 mA, TA = 25èC  
IOUT = 1 A, TA = 25èC  
IOUT = 2 A, TA = 25èC  
IOUT = 10 mA, TA = -40èC  
IOUT = 1 A, TA = -40èC  
IOUT = 2 A, TA = -40èC  
IOUT = 10 mA, TA = 85èC  
IOUT = 1 A, TA = 85èC  
IOUT = 2 A, TA = 85èC  
VIN = 3.6 V  
VIN = 4.2 V  
VIN = 5 V  
1E-5  
0.0001  
0.001  
Output Current (A)  
0.01  
0.1  
1
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
D003  
Input Voltage (V)  
D004  
VOUT = 2.5 V  
VOUT = 0.9 V  
3. Efficiency vs Load Current  
4. Output Voltage vs Input Voltage  
版权 © 2011–2017, Texas Instruments Incorporated  
7
 
 
TLV62080, TLV62084, TLV62084A  
ZHCS484H OCTOBER 2011REVISED JANUARY 2017  
www.ti.com.cn  
0.92  
0.912  
0.904  
0.896  
0.888  
0.88  
2.54  
2.52  
2.5  
2.48  
IOUT = 10 mA, TA = 25èC  
IOUT = 1 A, TA = 25èC  
IOUT = 2 A, TA = 25èC  
IOUT = 10 mA, TA = -40èC  
IOUT = 1 A, TA = -40èC  
IOUT = 2 A, TA = -40èC  
IOUT = 10 mA, TA = 85èC  
IOUT = 1 A, TA = 85èC  
IOUT = 2 A, TA = 85èC  
2.46  
2.44  
2.42  
TA = -40èC  
TA = 25èC  
TA = 85èC  
1E-5  
0.0001  
0.001  
0.01  
0.1  
1 2  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Output Current (A)  
D006  
Input Voltage (V)  
D005  
VIN = 3.6 V  
VOUT = 2.5 V  
6. Output Voltage vs Load Current  
5. Output Voltage vs Input Voltage  
2.54  
2.52  
2.5  
5
4
3
2
1
0
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5 V  
2.48  
TA = -40èC  
TA = 25èC  
TA = 85èC  
2.46  
1E-5  
0.0001  
0.001  
0.01  
0.1  
1
2
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
Output Current (A)  
Output Current (A)  
D007  
D008  
VIN = 3.6 V  
VOUT = 2.5 V  
7. Output Voltage vs Load Current  
8. Switching Frequency vs Output Current  
8
版权 © 2011–2017, Texas Instruments Incorporated  
 
TLV62080, TLV62084, TLV62084A  
www.ti.com.cn  
ZHCS484H OCTOBER 2011REVISED JANUARY 2017  
8 Detailed Description  
8.1 Overview  
The TLV62080 and TLV62084x synchronous switched-mode converters are based on DCS-Control™. DCS-  
Control™ is an advanced regulation topology that combines the advantages of hysteretic and voltage mode  
control.  
The DCS-Control™ topology operates in PWM (pulse width modulation) mode for medium to heavy load  
conditions and in power save mode at light load currents. In PWM mode, the TLV6208x converter operates with  
the nominal switching frequency of 2 MHz, having a controlled frequency variation over the input voltage range.  
As the load current decreases, the converter enters power save mode, reducing the switching frequency and  
minimizing the IC quiescent current to achieve high efficiency over the entire load current range. DCS-Control™  
supports both operation modes (PWM and PFM) using a single building block with a seamless transition from  
PWM to power save mode without effects on the output voltage. The TLV62080 and TLV62084x devices offer  
both excellent DC voltage and superior load transient regulation, combined with very low output voltage ripple,  
minimizing interference with RF circuits.  
8.2 Functional Block Diagram  
space  
VIN  
High Side  
N-MOS  
Power  
Good  
PG  
50  
Gate  
Control  
Logic  
Driver  
SW  
Low Side  
N-MOS  
Active  
Output  
Discharge  
Thermal  
Shutdown  
GND  
VOS  
ramp  
Softstart  
EN  
direct control  
&
compensation  
comparator  
Under  
Voltage  
Shutdown  
FB  
error  
amplifier  
minimum  
on-timer  
REF  
DCS-CONTROLTM  
Copyright © 2016, Texas Instruments Incorporated  
space  
8.3 Feature Description  
8.3.1 100% Duty-Cycle Low-Dropout Operation  
The devices offer low input-to-output voltage difference by entering the 100% duty-cycle mode. In this mode the  
high-side MOSFET switch is constantly turned on and the low-side MOSFET is switched off. This mode is  
particularly useful in battery powered applications to achieve the longest operation time by taking full advantage  
of the whole battery voltage range. 公式 1 calculates the minimum input voltage to maintain regulation based on  
the load current and output voltage.  
版权 © 2011–2017, Texas Instruments Incorporated  
9
TLV62080, TLV62084, TLV62084A  
ZHCS484H OCTOBER 2011REVISED JANUARY 2017  
www.ti.com.cn  
Feature Description (接下页)  
space  
V
= VOUT + IOUT,MAX ´(RDS(on) + RL )  
IN,MIN  
With:  
VIN,MIN = Minimum input voltage  
IOUT,MAX = Maximum output current  
RDS(on) = High-side FET on-resistance  
RL = Inductor ohmic resistance  
(1)  
space  
8.3.2 Enabling and Disabling the Device  
The device is enabled by setting the EN input to a logic HIGH. Accordingly, a logic LOW disables the device. If  
the device is enabled, the internal power stage starts switching and regulates the output voltage to the  
programmed threshold. The EN input must be terminated and not left floating.  
8.3.3 Output Discharge  
The output gets discharged through the SW terminal with a typical discharge resistor of RDIS whenever the  
device shuts down (by disable, thermal shutdown or UVLO).  
8.3.4 Soft Start  
When EN is set to start device operation, the device starts switching after a delay of about 40 μs and VOUT rises  
with a slope of about 10mV/μs (See 16 and 17 for typical startup operation). Soft start avoids excessive  
inrush current and creates a smooth output voltage rise slope. Soft start also prevents excessive voltage drops of  
primary cells and rechargeable batteries with high internal impedance.  
If the output voltage is not reached within the soft start time, such as in the case of heavy load, the converter  
enters standard operation. Consequently, the inductor current limit operates as described in Inductor Current-  
Limit. The TLV62080 and TLV62084x devices are able to start into a pre-biased output capacitor. The converter  
starts with the applied bias voltage and ramps the output voltage to the nominal value.  
8.3.5 Power Good  
The TLV62080 and TLV62084x devices have a power-good output going low when the output voltage is below  
the nominal value. The power good maintains high impedance once the output is above 95% of the regulated  
voltage, and is driven to low once the output voltage falls below typically 90% of the regulated voltage. The PG  
terminal is an open drain output and is specified to sink typically up to 0.5 mA. The power good output requires a  
pull-up resistor which is recommended connecting to the device output. When the device is off because of  
disable, UVLO, or thermal shutdown, the PG terminal is at high impedance. TLV62084A features PG=Low in  
these cases. 2 and 3 show the different PG operation for the TLV6208x and TLV62084A. The PG output  
can be left floating if unused.  
space  
2. Power Good Pin Logic Table (TLV62080/84)  
PG Logic Status  
Device Information  
High Z  
Low  
V
FB VPG  
FB VPG  
Enable (EN=High)  
V
Shutdown (EN=Low)  
UVLO  
0.7V < VIN < VUVLO  
TJ > TJSD  
Thermal Shutdown  
Power Supply Removal  
VIN < 0.7V  
10  
版权 © 2011–2017, Texas Instruments Incorporated  
 
TLV62080, TLV62084, TLV62084A  
www.ti.com.cn  
ZHCS484H OCTOBER 2011REVISED JANUARY 2017  
space  
3. Power Good Pin Logic Table (TLV62084A)  
PG Logic Status  
Device Information  
High Z  
Low  
V
FB VPG  
FB VPG  
Enable (EN=High)  
V
Shutdown (EN=Low)  
UVLO  
0.7V < VIN < VUVLO  
TJ > TJSD  
Thermal Shutdown  
Power Supply Removal  
VIN < 0.7V  
space  
The PG signal can be used for sequencing of multiple rails by connecting to the EN terminal of other converters.  
Leave the PG terminal unconnected when not in use.  
8.3.6 Undervoltage Lockout  
To avoid misoperation of the device at low input voltages, an undervoltage lockout is implemented which shuts  
down the device at voltages lower than VUVLO with a VHYS_UVLO hysteresis.  
8.3.7 Thermal Shutdown  
The device goes into thermal shutdown once the junction temperature exceeds typically TJSD. Once the device  
temperature falls below the threshold, the device returns to normal operation automatically.  
8.3.8 Inductor Current-Limit  
The Inductor current-limit prevents the device from high inductor current and drawing excessive current from the  
battery or input voltage rail. Excessive current can occur with a shorted or saturated inductor, a heavy load, or  
shorted output circuit condition.  
The incorporated inductor peak-current limit measures the current during the high-side and low-side power  
MOSFET on-phase. Once the high-side switch current-limit is tripped, the high-side MOSFET is turned off and  
the low-side MOSFET is turned on to reduce the inductor current. When the inductor current drops down to the  
low-side switch current-limit, the low-side MOSFET is turned off and the high-side switch is turned on again. This  
operation repeats until the inductor current does not reach the high-side switch current-limit. Because of an  
internal propagation delay, the real current-limit value exceeds the static-current limit in the Electrical  
Characteristics table.  
8.4 Device Functional Modes  
8.4.1 Power Save Mode  
As the load current decreases, the TLV62080 and TLV62084x devices enter power save mode operation. During  
power save mode, the converter operates with a reduced switching frequency in PFM mode and with a minimum  
quiescent current maintaining high efficiency. Power save mode occurs when the inductor current becomes  
discontinuous. Operation in power save mode is based on a fixed on time architecture. The typical on time is  
given by ton = 400 ns × (VOUT / VIN). The switching frequency over the whole load current range is shown in 8.  
版权 © 2011–2017, Texas Instruments Incorporated  
11  
TLV62080, TLV62084, TLV62084A  
ZHCS484H OCTOBER 2011REVISED JANUARY 2017  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The devices are designed to operate from an input voltage supply range between 2.5 V (2.7 V for the TLV62084x  
devices) and 6 V with a maximum output current of 2 A (1.2 A for the TLV62080 device). The TLV6208x devices  
operate in PWM mode for medium to heavy load conditions and in power save mode at light load currents.  
In PWM mode the TLV6208x converters operate with the nominal switching frequency of 2 MHz which provides a  
controlled frequency variation over the input voltage range. As the load current decreases, the converter enters  
power save mode, reducing the switching frequency and minimizing the IC quiescent current to achieve high  
efficiency over the entire load current range.  
The WEBENCH software uses an iterative design procedure and accesses a comprehensive database of  
components when generating a design. See the 文档支持 section for additional documentation.  
9.2 Typical Application  
POWER GOOD  
2.7 V to 6 V  
VIN  
VIN  
EN  
PG  
SW  
VOS  
FB  
R3  
R1  
R2  
L1  
VOUT  
+
TLV62084  
C3  
C1  
C2  
GND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
9. Typical Application Schematic  
9.2.1 Design Requirements  
Use the following typical application design procedure to select external components values for the TLV62084  
device.  
4. Design Parameters  
DESIGN PARAMETERS  
Input Voltage Range  
Output Voltage  
EXAMPLE VALUES  
2.8 V to 4.2 V  
1.2 V  
Transient Response  
Input Voltage Ripple  
Output Voltage Ripple  
Output Current Rating  
Operating frequency  
±5% VOUT  
400 mV  
30 mV  
2 A  
2 MHz  
12  
版权 © 2011–2017, Texas Instruments Incorporated  
TLV62080, TLV62084, TLV62084A  
www.ti.com.cn  
ZHCS484H OCTOBER 2011REVISED JANUARY 2017  
9.2.2 Detailed Design Procedure  
9.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TLV62080 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
5. List of Components  
REFERENCE  
DESCRIPTION  
MANUFACTURER(1)  
C1  
10 μF, Ceramic Capacitor, 6.3 V, X5R, size 0603  
Std  
22 μF, Ceramic Capacitor, 6.3 V, X5R, size 0805,  
GRM21BR60J226ME39L  
C2  
C3  
L1  
Murata  
Kemet  
47 μF, Tantalum Capacitor, 8 V, 35 mΩ, size 3528,  
T520B476M008ATE035  
1 μH, Power Inductor, 2.2 A, size 3 mm × 3 mm × 1.2 mm,  
XFL3012-102MEB  
Coilcraft  
R1  
R2  
R3  
65.3 kΩ, Chip Resistor, 1/16 W, 1%, size 0603  
39.2 kΩ, Chip Resistor, 1/16 W, 1%, size 0603  
178 kΩ, Chip Resistor, 1/16 W, 1%, size 0603  
Std  
Std  
Std  
(1) See Third-party Products Disclaimer  
9.2.2.2 Output Filter Design  
The inductor and the output capacitor together provide a low pass frequency filter. To simplify this process 6  
outlines possible inductor and capacitor value combinations for the most application.  
6. Matrix of Output Capacitor and Inductor Combinations  
COUT [µF](1)  
L [µH](1)  
10  
22  
47  
100  
150  
0.47  
1
(2)(3)  
+
+
+
+
+
+
+
2.2  
4.7  
+
(1) Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance can vary by  
+20% and –50%. Inductor tolerance and current de-rating is anticipated. The effective inductance can  
vary by +20% and –30%.  
(2) Plus signs (+) indicates recommended filter combinations.  
(3) Filter combination in typical application.  
版权 © 2011–2017, Texas Instruments Incorporated  
13  
 
TLV62080, TLV62084, TLV62084A  
ZHCS484H OCTOBER 2011REVISED JANUARY 2017  
www.ti.com.cn  
9.2.2.3 Inductor Selection  
The main parameter for the inductor selection is the inductor value and then the saturation current of the  
inductor. To calculate the maximum inductor current under static load conditions, 公式 2 is given.  
DIL  
IL,MAX = IOUT,MAX  
+
2
VOUT  
1-  
V
IN  
DIL = VOUT  
´
L ´ fSW  
Where  
IOUT,MAX = Maximum output current  
ΔIL = Inductor current ripple  
fSW = Switching frequency  
L = Inductor value  
(2)  
space  
TI recommends choosing the saturation current for the inductor 20% to approximately 30% higher than the IL,MAX  
,
out of 公式 2. A higher inductor value is also useful to lower ripple current, but increases the transient response  
time as well. The following inductors are recommended to be used in designs (see 7).  
7. List of Recommended Inductors  
INDUCTANCE  
[µH]  
CURRENT RATING  
[mA]  
DIMENSIONS  
DC RESISTANCE  
TYPE  
MANUFACTURER(1)  
L x W x H [mm3]  
[mΩ typ]  
1
2500  
1650(2)  
2500  
3 × 3 × 1.2  
3 × 3 × 1.2  
35  
40  
49  
81  
XFL3012-102ME  
LQH3NPN1R0NJ0  
LQH44PN2R2MP0  
XFL3012-222ME  
Coilcraft  
Murata  
Murata  
Coilcraft  
1
2.2  
2.2  
4 × 3.7 × 1.65  
3 × 3 × 1.2  
1600(2)  
(1) See Third-party Procucts Disclaimer  
(2) Recommended for TLV62080 only due to limited current rating  
9.2.2.4 Capacitor Selection  
The input capacitor is the low impedance energy source for the converter which helps to provide stable  
operation. A low ESR multilayer ceramic capacitor is recommended for best filtering and must be placed between  
VIN and GND as close as possible to those terminals. For most applications 10 μF is sufficient though a larger  
value reduces input current ripple.  
The architecture of the TLV6208x device allows use of tiny ceramic-type output capacitors with low equivalent-  
series resistance (ESR). These capacitors provide low output voltage ripple and are recommended. To keep the  
resistance up to high frequencies and to get narrow capacitance variation with temperature, TI recommends use  
of the X7R or X5R dielectric. The TLV62080 and TLV62084x devices are designed to operate with an output  
capacitance of 10 to 100 µF and beyond, as listed in 6. Load transient testing and measuring the bode plot  
are good ways to verify stability with larger capacitor values.  
8. List of Recommended Capacitors  
CAPACITANCE  
[µF]  
DIMENSIONS  
TYPE  
MANUFACTURER(1)  
L x W x H [mm3]  
10  
22  
22  
GRM188R60J106M  
GRM188R60G226M  
GRM21BR60J226M  
0603: 1.6 × 0.8 × 0.8  
0603: 1.6 × 0.8 × 0.8  
0805: 2 × 1.2 × 1.25  
Murata  
Murata  
Murata  
(1) See Third-party Products Disclaimer  
14  
版权 © 2011–2017, Texas Instruments Incorporated  
 
 
TLV62080, TLV62084, TLV62084A  
www.ti.com.cn  
ZHCS484H OCTOBER 2011REVISED JANUARY 2017  
9.2.2.5 Setting the Output Voltage  
By selecting R1 and R2, the output voltage is programmed to the desired value. Use 公式 3 to calculate R1 and  
R2.  
POWER GOOD  
2.7 V to 6 V  
VIN  
VIN  
EN  
PG  
SW  
VOS  
FB  
180 kΩ  
1 µH  
VOUT  
TLV62084  
10 µF  
22 µF  
GND  
GND  
R1  
R2  
Copyright © 2016, Texas Instruments Incorporated  
10. Typical Application Circuit  
space  
VOUT = VFB ´ 1+  
R1  
R1  
æ
ö
÷
ø
æ
ö
= 0.45V ´ 1+  
ç
ç
÷
R2  
R2  
è
è
ø
(3)  
For best accuracy, R2 must be kept smaller than 40 kΩ to ensure that the current flowing through R2 is at least  
100-times larger than IFB. Changing the sum towards a lower value increases the robustness against noise  
injection. Changing the sum towards higher values reduces the current consumption.  
9.2.3 Application Curves  
SW  
SW  
(2 V/div)  
(2 V/div)  
VOUT  
VOUT  
(20 mV/div)  
(20 mV/div)  
ICOIL  
ICOIL  
(0.5 A/div)  
(0.2 A/div)  
Time (200 ns/div)  
Time (2 µs/div)  
VIN = 3.3 V  
VOUT = 1.2 V  
ILOAD = 500 mA  
VIN = 3.3 V  
VOUT = 1.2 V  
ILOAD = 10 mA  
11. Typical Application (PWM Mode)  
12. Typical Application (PFM Mode)  
版权 © 2011–2017, Texas Instruments Incorporated  
15  
 
TLV62080, TLV62084, TLV62084A  
ZHCS484H OCTOBER 2011REVISED JANUARY 2017  
www.ti.com.cn  
1 A  
LOAD  
50 mA  
(1 A/div)  
LOAD  
(1A/div)  
VOUT  
(20 mV/div)  
VOUT  
(50mV/div)  
ICOIL  
(1 A/div)  
ICOIL  
(2A/div)  
Time (20 µs/div)  
COUT = 22 µF  
Time (50 µs/div)  
L = 1 µH  
VOUT = 1.2 V  
VIN = 3.3 V  
L = 1 µH  
COUT = 22 µF  
VIN = 3.3 V  
ILOAD = 200 mA to 1.8 A  
VOUT = 1.2 V  
ILOAD = 50 mA to 1 A  
14. Load Transient  
13. Load Transient  
4.2 V  
EN  
(5 V/div)  
VIN  
3.3 V  
(1 V/div)  
PG  
(1 V/div)  
VOUT  
(1 V/div)  
VOUT  
(50 mV/div)  
ICOIL  
(0.5 A/div)  
Time (100 µs/div)  
Time (20 µs/div)  
VIN = 3.3 to 4.2 V  
VOUT = 1.2 V  
ILOAD = 2.2 Ω  
VIN = 3.3 V  
VOUT = 1.2 V  
ILOAD = 2.2 Ω  
15. Line Transient  
16. Startup  
16  
版权 © 2011–2017, Texas Instruments Incorporated  
TLV62080, TLV62084, TLV62084A  
www.ti.com.cn  
ZHCS484H OCTOBER 2011REVISED JANUARY 2017  
EN  
(5 V/div)  
PG  
(1 V/div)  
VOUT  
(1 V/div)  
ICOIL  
(0.2 A/div)  
Time (20 µs/div)  
VIN = 3.3 V  
VOUT = 1.2 V  
17. Startup (No Load)  
版权 © 2011–2017, Texas Instruments Incorporated  
17  
TLV62080, TLV62084, TLV62084A  
ZHCS484H OCTOBER 2011REVISED JANUARY 2017  
www.ti.com.cn  
10 Power Supply Recommendations  
The input power supply's output current needs to be rated according to the supply voltage, output voltage and  
output current of the TLV6208x.  
11 Layout  
11.1 Layout Guidelines  
The PCB layout is an important step to maintain the high performance of the TLV62080 and TLV62084x devices.  
Place input and output capacitors, along with the inductor, as close as possible to the IC which keeps the  
traces short. Routing these traces direct and wide results in low trace resistance and low parasitic inductance.  
Use a common-power GND.  
Properly connect the low side of the input and output capacitors to the power GND to avoid a GND potential  
shift.  
The sense traces connected to FB and VOS terminals are signal traces. Keep these traces away from SW  
nodes.  
Use care to avoid noise induction. By a direct routing, parasitic inductance can be kept small.  
Use GND layers for shielding if needed.  
11.2 Layout Example  
space  
space  
space  
L1  
VOUT  
GND  
VIN  
C1  
C2  
GND  
R1  
R2  
18. PCB Layout Suggestion  
18  
版权 © 2011–2017, Texas Instruments Incorporated  
TLV62080, TLV62084, TLV62084A  
www.ti.com.cn  
ZHCS484H OCTOBER 2011REVISED JANUARY 2017  
11.3 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-  
dissipation limits of a given component.  
Three basic approaches for enhancing thermal performance are listed below:  
Improving the power dissipation capability of the PCB design.  
Improving the thermal coupling of the component to the PCB by soldering the Thermal Pad.  
Introducing airflow in the system.  
For more details on how to use the thermal parameters, see the Thermal Characteristics application notes  
SZZA017 and SPRA953.  
版权 © 2011–2017, Texas Instruments Incorporated  
19  
TLV62080, TLV62084, TLV62084A  
ZHCS484H OCTOBER 2011REVISED JANUARY 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.1.2 开发支持  
12.1.2.1 使用 WEBENCH® 工具定制设计方案  
请单击此处,借助 WEBENCH® Power Designer 并使用 TLV62080 器件定制设计方案  
1. 在开始阶段键入输出电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化关键设计参数,如效率、封装和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他解决方案进行比较。  
WEBENCH Power Designer 提供一份定制原理图以及罗列实时价格和组件可用性的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案导出至常用 CAD 格式  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com/WEBENCH。  
12.2 文档支持  
相关文档请参见以下部分:  
TLV62080EVM-756 用户指南》,采用 2mm x 2mm 小外形尺寸无引线 (SON) 封装的 TLV620801.2A,高  
效降压转换器文献编号:SLVU640  
12.3 相关链接  
下面的表格列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购  
买链接。  
9. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
立即购买  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
TLV62080  
TLV62084  
TLV62084A  
12.4 商标  
DCS-Control, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
20  
版权 © 2011–2017, Texas Instruments Incorporated  
TLV62080, TLV62084, TLV62084A  
www.ti.com.cn  
ZHCS484H OCTOBER 2011REVISED JANUARY 2017  
12.6 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.7 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2011–2017, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Apr-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV62080DSGR  
TLV62080DSGT  
TLV62084ADSGR  
TLV62084ADSGT  
TLV62084DSGR  
TLV62084DSGT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
8
8
8
8
8
8
3000 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
250 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
RAU  
RAU  
14M  
14M  
SLO  
SLO  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Apr-2022  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV62080DSGR  
TLV62080DSGR  
TLV62080DSGT  
TLV62080DSGT  
TLV62084ADSGR  
TLV62084ADSGT  
TLV62084DSGR  
TLV62084DSGT  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
8
8
8
8
8
8
8
8
3000  
3000  
250  
178.0  
179.0  
178.0  
179.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
2.25  
2.2  
2.25  
2.2  
2.3  
2.3  
2.3  
2.3  
2.25  
2.2  
2.25  
2.2  
2.3  
2.3  
2.3  
2.3  
1.0  
1.2  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
1.0  
250  
1.2  
3000  
250  
1.15  
1.15  
1.15  
1.15  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV62080DSGR  
TLV62080DSGR  
TLV62080DSGT  
TLV62080DSGT  
TLV62084ADSGR  
TLV62084ADSGT  
TLV62084DSGR  
TLV62084DSGT  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
8
8
8
8
8
8
8
8
3000  
3000  
250  
205.0  
213.0  
205.0  
213.0  
210.0  
210.0  
210.0  
210.0  
200.0  
191.0  
200.0  
191.0  
185.0  
185.0  
185.0  
185.0  
33.0  
35.0  
33.0  
35.0  
35.0  
35.0  
35.0  
35.0  
250  
3000  
250  
3000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.32  
0.18  
PIN 1 INDEX AREA  
2.1  
1.9  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.05  
0.00  
SIDE WALL  
0.08 C  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
PIN 1 ID  
(45 X 0.25)  
8X  
0.4  
0.2  
8X  
0.1  
C A B  
C
0.05  
4218900/E 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/E 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/E 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV62084ADSGT

采用 2mm x 2mm 小外形尺寸无引线 (SON) 封装的 2A 高效降压转换器 | DSG | 8 | -40 to 125
TI

TLV62084DSG

IC SWITCHING REGULATOR, Switching Regulator or Controller
TI

TLV62084DSGR

采用 2mm x 2mm 小外形尺寸无引线 (SON) 封装的 2A 高效降压转换器 | DSG | 8 | -40 to 125
TI

TLV62084DSGT

采用 2mm x 2mm 小外形尺寸无引线 (SON) 封装的 2A 高效降压转换器 | DSG | 8 | -40 to 125
TI

TLV62085

采用 2x2 QFN 封装的 3A 高效降压转换器
TI

TLV62085RLTR

采用 2x2 QFN 封装的 3A 高效降压转换器 | RLT | 7 | -40 to 125
TI

TLV62085RLTT

采用 2x2 QFN 封装的 3A 高效降压转换器 | RLT | 7 | -40 to 125
TI

TLV62090

3A High Efficient Synchronous Step Down Converter with DCS? Control
TI

TLV62090RGTR

3A High Efficient Synchronous Step Down Converter with DCS? Control
TI

TLV62090RGTT

3A High Efficient Synchronous Step Down Converter with DCS? Control
TI

TLV62090_16

3A High Efficiency Synchronous Step-Down Converter
TI

TLV62095

具有 DCS Control 的 4A 同步降压转换器
TI