TLV62085 [TI]

采用 2x2 QFN 封装的 3A 高效降压转换器;
TLV62085
型号: TLV62085
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 2x2 QFN 封装的 3A 高效降压转换器

转换器
文件: 总25页 (文件大小:903K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV62085  
ZHCSE67B OCTOBER 2015REVISED JULY 2018  
TLV62085 采用 2mm × 2mm VSON 封装的高效 3A 降压转换器  
1 特性  
3 说明  
1
DCS-Control™拓扑  
效率高达 95%  
TLV62085 器件是一款高频同步降压转换器,经优化具  
有小解决方案尺寸和高效率两大优点。该器件具有  
2.5V 6.0V 的输入电压范围,支持常见的电池技  
术。此器件主要用于宽输出电流范围内的高效降压转  
换。该转换器在中等程度的负载到高负载时运行于脉宽  
调制 (PWM) 模式,并在轻负载时自动进入省电模式运  
行,从而在整个负载电流范围内保持高效率。  
17μA 工作静态电流  
31mΩ 23mΩ 功率金属氧化物半导体场效应晶体  
(MOSFET) 开关  
输入电压范围:2.5V 6.0V  
可调输出电压:0.8V VIN  
可在轻载条件下实现高效率的省电模式  
可实现 100% 占空比,以确保最低压降  
自动切断短路保护功能  
输出放电  
为了满足系统电源轨的需求,内部补偿电路支持宽范围  
的外部输出电容值选项,10µF 150uF 甚至更高。  
加上其 DCS-Control™架构,出色的负载瞬态性能和精  
确的输出电压调整均可实现。此器件采用 2mm x 2mm  
VSON 封装。  
电源正常输出  
热关断保护  
器件信息(1)  
采用 2mm × 2mm 超薄小外形尺寸无引线 (VSON)  
封装  
器件型号  
TLV62085  
封装  
VSON (7)  
封装尺寸(标称值)  
2.00mm × 2.00mm  
如需了解改进的特性集,请参见 TPS62085  
借助 WEBENCH® Power Designer 并使用  
TLV62085 创建定制设计方案  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
2 应用  
电池供电类 应用  
负载点  
处理器电源  
传统硬盘 (HDD)/固态硬盘 (SSD)  
垫圈  
垫圈  
垫圈  
典型应用电路原理图  
VIN = 5V 时的效率  
L1  
0.47µH  
TLV62085  
100  
VIN  
2.5V to 6V  
VOUT  
VIN  
EN  
SW  
VOS  
FB  
1.8V  
C1  
10µF  
C2  
22µF  
R1  
138k  
R3  
1M  
90  
80  
70  
R2  
110k  
GND  
PG  
POWER GOOD  
VOUT = 1.2 V  
VOUT = 1.8 V  
VOUT = 3.3 V  
60  
1m  
10m  
100m  
1
5
Load (A)  
D008  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSD63  
 
 
 
 
TLV62085  
ZHCSE67B OCTOBER 2015REVISED JULY 2018  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics.......................................... 5  
6.6 Typical Characteristics.............................................. 5  
Detailed Description .............................................. 6  
7.1 Overview ................................................................... 6  
7.2 Functional Block Diagram ......................................... 6  
7.3 Feature Description................................................... 7  
7.4 Device Functional Modes.......................................... 8  
8
9
Application and Implementation .......................... 9  
8.1 Application Information.............................................. 9  
8.2 Typical Application ................................................... 9  
Power Supply Recommendations...................... 15  
10 Layout................................................................... 15  
10.1 Layout Guidelines ................................................. 15  
10.2 Layout Example .................................................... 15  
10.3 Thermal Considerations........................................ 15  
11 器件和文档支持 ..................................................... 16  
11.1 开发支持................................................................ 16  
11.2 文档支持................................................................ 16  
11.3 接收文档更新通知 ................................................. 16  
11.4 社区资源................................................................ 16  
11.5 ....................................................................... 16  
11.6 静电放电警告......................................................... 16  
11.7 术语表 ................................................................... 16  
12 机械、封装和可订购信息....................................... 17  
7
4 修订历史记录  
Changes from Revision A (January 2017) to Revision B  
Page  
已添加 3 to power save mode section ............................................................................................................................... 7  
Changes from Original (October 2015) to Revision A  
Page  
已添加 WEBENCH™ 信息和超链接至特性、详细设计流程和器件支持部分 .......................................................................... 1  
Added SW (AC) to the Absolute Maximum Rating table ....................................................................................................... 4  
已添加 1, PG Pin Logic...................................................................................................................................................... 8  
2
Copyright © 2015–2018, Texas Instruments Incorporated  
 
TLV62085  
www.ti.com.cn  
ZHCSE67B OCTOBER 2015REVISED JULY 2018  
5 Pin Configuration and Functions  
RLT Package  
7-Pin VSON  
Top View  
1
2
3
4
EN  
7
6
5
VIN  
SW  
PG  
FB  
GND  
VOS  
Pin Functions  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
EN  
1
IN  
Device enable pin. To enable the device, this pin needs to be pulled high. Pulling this pin low disables the  
device. This pin has a pulldown resistor of typically 400 kΩ when the device is disabled.  
FB  
3
5
2
IN  
Feedback pin. Connect a resistor divider to set the output voltage.  
Ground pin.  
GND  
PG  
OUT  
Power good open drain output pin. The pullup resistor can not be connected to any voltage higher than 6 V. If  
unused, leave it floating.  
SW  
6
7
4
PWR Switch pin of the power stage.  
PWR Input voltage pin.  
VIN  
VOS  
IN  
Output voltage sense pin. This pin must be directly connected to the output capacitor.  
Copyright © 2015–2018, Texas Instruments Incorporated  
3
TLV62085  
ZHCSE67B OCTOBER 2015REVISED JULY 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
– 0.3  
– 0.3  
– 3  
MAX  
7
UNIT  
VIN, FB, VOS, EN, PG  
Voltage at Pins(2)  
Temperature  
SW (DC)  
VIN + 0.3  
11  
V
SW (AC, less than 100ns)(3)  
Operating Junction, TJ  
Storage, Tstg  
– 40  
– 65  
150  
°C  
°C  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
(3) While switching.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions(1)  
MIN NOM  
2.5  
MAX UNIT  
VIN  
Input voltage range  
Output voltage range  
6
VIN  
1
V
V
VOUT  
0.8  
ISINK_PG Sink current at PG pin  
mA  
V
VPG  
TJ  
Pullup resistor voltage  
6
Operating junction temperature  
–40  
125  
°C  
(1) Refer to Application and Implementation for further information.  
6.4 Thermal Information  
TLV62085  
RLT [VSON]  
7 PINS  
107.8  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
66.2  
17.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.1  
ψJB  
17.1  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2015–2018, Texas Instruments Incorporated  
TLV62085  
www.ti.com.cn  
ZHCSE67B OCTOBER 2015REVISED JULY 2018  
6.5 Electrical Characteristics  
TJ = 25 °C, and VIN = 3.6 V, unless otherwise noted.  
PARAMETER  
SUPPLY  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IQ  
Quiescent current into VIN  
No load, device not switching  
17  
0.7  
2.2  
200  
150  
20  
µA  
µA  
ISD  
Shutdown current into VIN  
EN = Low  
VIN falling  
VIN rising  
TJ rising  
Under voltage lock out threshold  
Under voltage lock out hysteresis  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
2.1  
2.3  
0.4  
V
VUVLO  
mV  
°C  
°C  
TJSD  
TJ falling  
LOGIC INTERFACE EN  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
VIN = 2.5 V to 6.0 V  
VIN = 2.5 V to 6.0 V  
EN = High  
1.0  
V
V
IEN,LKG Input leakage current into EN pin  
RPD Pull-down resistance at EN pin  
SOFT START, POWER GOOD  
0.01  
400  
µA  
k  
EN = Low  
tSS  
Soft start time  
Time from EN high to 95% of VOUT nominal  
VOUT rising, referenced to VOUT nominal  
VOUT falling, referenced to VOUT nominal  
Isink = 1 mA  
0.8  
95%  
90%  
ms  
VPG  
Power good threshold  
VPG,OL Low-level output voltage  
IPG,LKG Input leakage current into PG pin  
OUTPUT  
0.4  
V
VPG = 5.0 V  
0.01  
µA  
PWM mode, 2.5 V VIN 6 V  
TJ = 0°C to 85 °C  
VFB  
Feedback regulation voltage  
792  
800  
808  
mV  
IFB,LKG Feedback input leakage current  
RDIS Output discharge resistor  
POWER SWITCH  
VFB = 1 V  
0.01  
260  
µA  
EN = LOW, VOUT = 1.8 V  
High-side FET on-resistance  
ISW = 500 mA  
ISW = 500 mA  
31  
23  
mΩ  
mΩ  
A
RDS(on)  
Low-side FET on-resistance  
High-side FET switch current limit  
PWM switching frequency  
ILIM  
fSW  
3.7  
4.6  
2.4  
5.5  
IOUT = 1 A  
MHz  
6.6 Typical Characteristics  
5x106  
106  
105  
104  
103  
VIN = 2.5 V  
VIN = 3.6 V  
VIN = 6.0 V  
1m  
10m  
100m  
1
5
Load (A)  
D007  
VOUT = 1.2 V  
1. Switching Frequency  
版权 © 2015–2018, Texas Instruments Incorporated  
5
 
TLV62085  
ZHCSE67B OCTOBER 2015REVISED JULY 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TLV62085 synchronous step-down converter is based on the DCS-Control (Direct Control with Seamless  
transition into Power Save Mode) topology. This is an advanced regulation topology that combines the  
advantages of hysteretic, voltage, and current mode control schemes.  
The DCS-Control topology operates in PWM (pulse width modulation) mode for medium to heavy load conditions  
and in Power Save Mode at light load currents. In PWM mode, the converter operates with its nominal switching  
frequency of 2.4 MHz, having a controlled frequency variation over the input voltage range. As the load current  
decreases, the converter enters Power Save Mode, reducing the switching frequency and minimizing the IC's  
current consumption to achieve high efficiency over the entire load current range. Because DCS-Control supports  
both operation modes (PWM and PFM) within a single building block, the transition from PWM mode to Power  
Save Mode is seamless and without effects on the output voltage. The device offers both excellent DC voltage  
and superior load transient regulation, combined with very low output voltage ripple, minimizing interference with  
RF circuits.  
7.2 Functional Block Diagram  
PG  
Hiccup  
Counter  
VFB  
VIN  
VREF  
High Side  
Current Sense  
Bandgap  
Undervoltage Lockout  
Thermal Shutdown  
EN  
400k(1)  
SW  
MOSFET Driver  
Control Logic  
GND  
VOS  
Ramp  
Direct Control  
and  
Compensation  
Comparator  
Timer  
ton  
FB  
VREF  
Error Amplifier  
260Ω  
DCS - Control TM  
Output Discharge  
Logic  
EN  
Note:  
(1) When the device is enabled, the 400 kΩ resistor is disconnected.  
2. Functional Block Diagram  
6
版权 © 2015–2018, Texas Instruments Incorporated  
TLV62085  
www.ti.com.cn  
ZHCSE67B OCTOBER 2015REVISED JULY 2018  
7.3 Feature Description  
7.3.1 Power Save Mode  
As the load current decreases, the TLV62085 enters Power Save Mode (PSM) operation. During Power Save  
Mode, the converter operates with reduced switching frequency and with a minimum quiescent current  
maintaining high efficiency. Power Save Mode occurs when the inductor current becomes discontinuous. Power  
Save Mode is based on a fixed on-time architecture, as related in 公式 1. The switching frequency over the  
whole load current range is also shown in 1 for a shown typical application.  
VOUT  
tON = 420 ns´  
V
IN  
2´IOUT  
fPFM  
=
V
VIN - VOUT  
´
2
tON  
IN  
´
VOUT  
L
(1)  
In PSM, the output voltage rises slightly above the nominal output voltage, as shown in 10. This effect is  
minimized by increasing the output capacitor or inductor value.  
During PAUSE period in PSM (shown in 3), the device does not change the PG pin state nor does it detect an  
UVLO event, in order to achieve a minimum quiescent current and maintain high efficiency at light loads.  
VOUT  
tPAUSE  
IINDUCTOR  
tON  
3. Power Save Mode Waveform Diagram  
7.3.2 100% Duty Cycle Low Dropout Operation  
The device offers low input-to-output voltage difference by entering 100% duty cycle mode. In this mode, the  
high-side MOSFET switch is constantly turned on and the low-side MOSFET is switched off. This is particularly  
useful in battery powered applications to achieve the longest operation time by taking full advantage of the whole  
battery voltage range. The minimum input voltage to maintain output regulation, depending on the load current  
and output voltage can be calculated as:  
V
= VOUT + IOUT,MAX ´(RDS(on) + RL )  
IN,MIN  
with  
VIN,MIN = Minimum input voltage to maintain an output voltage  
IOUT,MAX = Maximum output current  
RDS(on) = High-side FET ON-resistance  
RL = Inductor ohmic resistance (DCR)  
(2)  
7.3.3 Soft Start  
The TLV62085 has an internal soft-start circuitry which monotonically ramps up the output voltage and reaches  
the nominal output voltage during a soft-start time of typically 0.8 ms. This avoids excessive inrush current and  
creates a smooth output voltage slope. It also prevents excessive voltage drops of primary cells and  
rechargeable batteries with high internal impedance. The device is able to start into a prebiased output capacitor.  
The device starts with the applied bias voltage and ramps the output voltage to its nominal value.  
版权 © 2015–2018, Texas Instruments Incorporated  
7
 
 
TLV62085  
ZHCSE67B OCTOBER 2015REVISED JULY 2018  
www.ti.com.cn  
Feature Description (接下页)  
7.3.4 Switch Current Limit and Hiccup Short-Circuit Protection  
The switch current limit prevents the device from high inductor current and from drawing excessive current from  
the battery or input voltage rail. Excessive current might occur with a shorted or saturated inductor or a heavy  
load or shorted output circuit condition. If the inductor current reaches the threshold ILIM, the high-side MOSFET  
is turned off and the low-side MOSFET is turned on to ramp down the inductor current. When this switch current  
limits is triggered 32 times, the device stops switching and enables the output discharge. The device then  
automatically starts a new start-up after a typical delay time of 66 µs has passed. This is named HICCUP short-  
circuit protection. The device repeats this mode until the high load condition disappears.  
7.3.5 Undervoltage Lockout  
To avoid misoperation of the device at low input voltages, an undervoltage lockout (UVLO) is implemented,  
which shuts down the device at voltages lower than VUVLO with a hysteresis of 200 mV.  
7.3.6 Thermal Shutdown  
The device goes into thermal shutdown and stops switching when the junction temperature exceeds TJSD. When  
the device temperature falls below the threshold by 20°C, the device returns to normal operation automatically.  
7.4 Device Functional Modes  
7.4.1 Enable and Disable  
The device is enabled by setting the EN pin to a logic HIGH. Accordingly, shutdown mode is forced if the EN pin  
is pulled LOW with a shutdown current of typically 0.7 μA.  
In shutdown mode, the internal power switches as well as the entire control circuitry are turned off. An internal  
resistor of 260 Ω discharges the output through the VOS pin smoothly. The output discharge function also works  
when thermal shutdown, UVLO, or short-circuit protection are triggered.  
An internal pulldown resistor of 400 kΩ is connected to the EN pin when the EN pin is LOW. The pulldown  
resistor is disconnected when the EN pin is HIGH.  
7.4.2 Power Good  
The TLV62085 has a power good output. The power good goes high impedance once the output is above 95%  
of the nominal voltage, and is driven low once the output voltage falls below typically 90% of the nominal voltage.  
The PG pin is an open-drain output and is specified to sink up to 1 mA. The power good output requires a pull-up  
resistor connecting to any voltage rail less than 6 V. The PG signal can be used for sequencing of multiple rails  
by connecting it to the EN pin of other converters. Leave the PG pin unconnected when not used. 1 shows the  
PG pin logic.  
1. PG Pin Logic  
LOGIC STATUS  
DEVICE CONDITIONS  
HIGH Z  
LOW  
EN = High, VFB VPG  
EN = High, VFB VPG  
EN = Low  
Enable  
Shutdown  
Thermal Shutdown  
UVLO  
TJ > TJSD  
0.5 V < VIN < VUVLO  
VIN 0.5 V  
Power Supply Removal  
8
版权 © 2015–2018, Texas Instruments Incorporated  
 
TLV62085  
www.ti.com.cn  
ZHCSE67B OCTOBER 2015REVISED JULY 2018  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TLV62085 is a synchronous step-down converter in which output voltage is adjusted by component  
selection. The following section discusses the design of the external components to complete the power supply  
design for several input and output voltage options by using the typical applications as a reference.  
8.2 Typical Application  
L1  
0.47µH  
TLV62085  
VIN  
VOUT  
VIN  
EN  
SW  
VOS  
FB  
2.5V to 6V  
1.8V  
C1  
10µF  
C2  
22µF  
R1  
138k  
R3  
1M  
R2  
110k  
GND  
PG  
POWER GOOD  
4. 1.8-V Output Voltage Application  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 2 as the input parameters.  
2. Design Parameters  
DESIGN PARAMETER  
Input voltage  
EXAMPLE VALUE  
2.5 V to 6 V  
1.8 V  
Output voltage  
Output current  
3 A  
Output ripple voltage  
<30 mV  
3 lists the components used for the example.  
(1)  
3. List of Components  
REFERENCE  
DESCRIPTION  
MANUFACTURER  
C1  
C2  
L1  
10 µF, Ceramic capacitor, 10 V, X7R, size 0805, GRM21BR71A106ME51L  
22 µF, Ceramic capacitor, 6.3 V, X5R, size 0805, GRM21BR60J226ME39L  
0.47 µH, Power Inductor, size 4 mm × 4 mm × 1.5 mm, XFL4015-471ME  
Depending on the output voltage, 1%, size 0603;  
Murata  
Murata  
Coilcraft  
Std  
R1  
R2  
R3  
110 kΩ, Chip resistor, 1/16 W, 1%, size 0603;  
Std  
1 MΩ, Chip resistor, 1/16 W, 1%, size 0603  
Std  
(1) See Third-Party Products discalimer.  
版权 © 2015–2018, Texas Instruments Incorporated  
9
 
 
TLV62085  
ZHCSE67B OCTOBER 2015REVISED JULY 2018  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design with WEBENCH® Tools  
Click here to create a custom design using the TLV62085 device with the WEBENCH® Power Designer.  
1. Start by entering your VIN, VOUT, and IOUT requirements.  
2. Optimize your design for key parameters like efficiency, footprint and cost using the optimizer dial and  
compare this design with other possible solutions from Texas Instruments.  
3. The WEBENCH Power Designer provides you with a customized schematic along with a list of materials with  
real time pricing and component availability.  
4. In most cases, you will also be able to:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand the thermal performance of your board  
Export your customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share your design with colleagues  
5. Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Setting The Output Voltage  
The output voltage is set by an external resistor divider according to 公式 3:  
R1  
R1  
æ
ö
æ
ö
VOUT = VFB ´ 1+  
= 0.8 V ´ 1+  
ç
÷
ç
÷
R2  
R2  
è
ø
è
ø
(3)  
R2 must not be higher than 180 kΩ to achieve high efficiency at light load while providing acceptable noise  
sensitivity.  
8.2.2.3 Output Filter Design  
The inductor and the output capacitor together provide a low-pass filter. To simplify the selection process, 4  
outlines possible inductor and capacitor value combinations for most applications.  
4. Matrix of Output Capacitor and Inductor Combinations  
NOMINAL COUT [µF](2)  
NOMINAL L [µH](1)  
10  
22  
47  
+
100  
+
150  
+
(3)  
0.47  
1
+
+
+
+
+
+
2.2  
(1) Inductor tolerance and current derating is anticipated. The effective inductance can vary by 20% and  
–30%.  
(2) Capacitance tolerance and bias voltage derating is anticipated. The effective capacitance can vary by  
20% and –50%.  
(3) Typical application configuration. Other '+' mark indicates recommended filter combinations.  
8.2.2.4 Inductor Selection  
The main parameter for the inductor selection is the inductor value and then the saturation current of the  
inductor. To calculate the maximum inductor current under static load conditions, 公式 4 is given.  
DIL  
IL,MAX = IOUT,MAX  
+
2
VOUT  
1-  
V
IN  
DIL = VOUT  
´
L ´ fSW  
where  
IOUT,MAX = Maximum output current  
ΔIL = Inductor current ripple  
10  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
 
TLV62085  
www.ti.com.cn  
ZHCSE67B OCTOBER 2015REVISED JULY 2018  
fSW = Switching frequency  
L = Inductor value  
(4)  
TI recommends choosing the saturation current for the inductor 20% to 30% higher than the IL,MAX, out of 公式 4.  
A higher inductor value is also useful to lower ripple current but increases the transient response time as well.  
The following inductors are recommended to be used in designs.  
(1)  
5. List of Recommended Inductors  
INDUCTANCE  
[µH]  
CURRENT RATING  
[A]  
DIMENSIONS  
DC RESISTANCE  
[mΩ typical]  
PART NUMBER  
L × W × H [mm3]  
0.47  
0.47  
1
6.6  
4.7  
5.1  
4 × 4 × 1.5  
3.2 × 2.5 × 1.2  
4 × 4 × 2  
7.6  
21  
Coilcraft XFL4015-471  
TOKO DFE322512-R47N  
Coilcraft XFL4020-102  
10.8  
(1) See Third-Party Products disclaimer.  
8.2.2.5 Capacitor Selection  
The input capacitor is the low-impedance energy source for the converter which helps to provide stable  
operation. A low ESR multilayer ceramic capacitor is recommended for best filtering and must be placed between  
VIN and GND as close as possible to those pins. For most applications, 10 μF is sufficient, though a larger value  
reduces input current ripple.  
The architecture of the TLV62085 allows the use of tiny ceramic output capacitors with low equivalent series  
resistance (ESR). These capacitors provide low output voltage ripple and are recommended. To keep its low  
resistance up to high frequencies and to get narrow capacitance variation with temperature, TI recommends  
using X7R or X5R dielectrics. The recommended typical output capacitor value is 22 μF; this capacitance can  
vary over a wide range as outline in the output filter selection table. Output capacitors above 150uF may be used  
with a reduced load current during startup to avoid triggering the short circuit protection.  
A feed-forward capacitor is not required for device proper operation.  
版权 © 2015–2018, Texas Instruments Incorporated  
11  
TLV62085  
ZHCSE67B OCTOBER 2015REVISED JULY 2018  
www.ti.com.cn  
8.2.3 Application Curves  
VIN = 3.6 V, TA = 25 ºC, unless otherwise noted  
100  
90  
100  
90  
80  
70  
60  
80  
70  
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
60  
1m  
10m  
100m  
1
5
1m  
10m  
100m  
1
5
Load (A)  
Load (A)  
D001  
D002  
VOUT = 0.95 V  
VOUT = 1.2 V  
5. Efficiency  
6. Efficiency  
100  
100  
90  
80  
70  
60  
90  
80  
70  
60  
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
VIN = 3.6 V  
VIN = 4.2 V  
VIN = 5.0 V  
1m  
10m  
100m  
1
5
1m  
10m  
100m  
1
5
Load (A)  
Load (A)  
D003  
D004  
VOUT = 3.3 V  
VOUT = 1.8 V  
7. Efficiency  
8. Efficiency  
1.212  
1.212  
1.206  
1.200  
1.194  
1.188  
1.206  
1.200  
1.194  
1.188  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
1m  
10m  
100m  
1
5
Input Voltage (V)  
Load (A)  
D005  
D006  
IOUT = 1 A  
9. Line Regulation  
10. Load Regulation  
12  
版权 © 2015–2018, Texas Instruments Incorporated  
TLV62085  
www.ti.com.cn  
ZHCSE67B OCTOBER 2015REVISED JULY 2018  
t -- 500ns/div  
t -- 300ns/div  
t -- 200μs/div  
t -- 200μs/div  
Vout (AC, 20mV/div)  
Icoil (DC, 1A/div)  
Vout (AC, 20mV/div)  
Icoil (DC, 1A/div)  
SW (DC, 5V/div)  
SW (DC, 5V/div)  
IOUT = 3 A  
VOUT = 1.2 V  
IOUT = 0.1 A  
VOUT = 1.2 V  
11. PWM Operation  
12. PFM Operation  
t -- 200μs/div  
Load (DC, 2A/div)  
EN (DC, 5V/div)  
Vout (AC, 50mV/div)  
PG (DC, 5V/div)  
Vout (DC, 0.5V/div)  
Icoil (DC, 2A/div)  
Icoil (DC, 2A/div)  
IOUT = 0 A to 3 A  
VOUT = 1.2 V  
ROUT = 0.47 Ω  
VOUT = 1.2 V  
13. Load Sweep  
14. Start-Up with Load  
t -- 5μs/div  
EN (DC, 5V/div)  
EN (DC, 5V/div)  
Vout (DC, 0.5V/div)  
PG (DC, 5V/div)  
PG (DC, 5V/div)  
Vout (DC, 0.5V/div)  
Icoil (DC, 2A/div)  
Icoil (DC, 0.5A/div)  
VOUT = 1.2 V  
ROUT = 0.47 Ω  
VOUT = 1.2 V  
15. Start-Up without Load  
16. Shutdown with Load  
版权 © 2015–2018, Texas Instruments Incorporated  
13  
TLV62085  
ZHCSE67B OCTOBER 2015REVISED JULY 2018  
www.ti.com.cn  
t -- 5ms/div  
t -- 2μs/div  
EN (DC, 5V/div)  
Load (DC, 2A/div)  
Vout (DC, 0.5V/div)  
PG (DC, 5V/div)  
PG (DC, 5V/div)  
Vout (DC, 0.1V/div)  
Icoil (DC, 0.5A/div)  
Icoil (DC, 2A/div)  
VOUT = 1.2 V  
IOUT = 0.5 A to 3 A  
VOUT = 1.2 V  
17. Shutdown without Load  
18. Load Transient  
t -- 3μs/div  
t -- 200μs/div  
Load (DC, 2A/div)  
PG (DC, 5V/div)  
Vout (DC, 0.5V/div)  
PG (DC, 5V/div)  
Vout (DC, 0.1V/div)  
Icoil (DC, 2A/div)  
Icoil (DC, 2A/div)  
IOUT = 50mA to 3A  
VOUT = 1.2 V  
ROUT = 0.47 Ω  
VOUT = 1.2 V  
19. Load Transient  
20. Output Short-Circuit Protection, Entry  
t -- 200μs/div  
t -- 5μs/div  
PG (DC, 5V/div)  
PG (DC, 5V/div)  
Vout (DC, 0.5V/div)  
Vout (DC, 0.5V/div)  
Icoil (DC, 2A/div)  
Icoil (DC, 2A/div)  
ROUT = 0.47 Ω  
VOUT = 1.2 V  
ROUT = 0.47 Ω  
VOUT = 1.2 V  
21. Output Short-Circuit Protection, Recovery  
22. Output Short-Circuit Protection,  
HICCUP Zoom In  
14  
版权 © 2015–2018, Texas Instruments Incorporated  
TLV62085  
www.ti.com.cn  
ZHCSE67B OCTOBER 2015REVISED JULY 2018  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range from 2.5 V to 6 V. Ensure that the input  
power supply has a sufficient current rating for the application.  
10 Layout  
10.1 Layout Guidelines  
The printed-circuit-board (PCB) layout is an important step to maintain the high performance of the TLV62085  
device.  
The input and output capacitors and the inductor must be placed as close as possible to the IC. This keeps the  
traces short. Routing these traces direct and wide results in low trace resistance and low parasitic inductance.  
The low side of the input and output capacitors must be connected directly to the GND pin to avoid a ground  
potential shift. The sense traces connected to FB and VOS pins are signal traces. Special care must be taken to  
avoid noise being induced. By a direct routing, parasitic inductance can be kept small. GND layers might be used  
for shielding. Keep these traces away from SW nodes. See 23 for the recommended PCB layout.  
10.2 Layout Example  
L1  
VOUT  
VIN  
C1  
C2  
Solution Size  
62 mm2  
GND  
R2  
R1  
23. PCB Layout Recommendation  
10.3 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power  
dissipation limits of a given component.  
Two basic approaches for enhancing thermal performance are:  
Improving the power dissipation capability of the PCB design  
Introducing airflow in the system  
The big copper planes connecting to the pads of the IC on the PCB improve the thermal performance of the  
device. For more details on how to use the thermal parameters, see the Thermal Characteristics Application  
Notes, SZZA017 and SPRA953.  
版权 © 2015–2018, Texas Instruments Incorporated  
15  
 
TLV62085  
ZHCSE67B OCTOBER 2015REVISED JULY 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 开发支持  
11.1.1 使用 WEBENCH® 工具定制设计方案  
请单击此处,借助 WEBENCH®电源设计器并使用 TPS54360 器件创建定制设计方案。  
1. 首先输入您的 VINVOUT IOUT 要求。  
2. 使用优化器拨盘可优化效率、封装和成本等关键设计参数并将您的设计与德州仪器 (TI) 的其他可行解决方案进  
行比较。  
3. WEBENCH Power Designer 提供一份定制原理图以及罗列实时价格和组件可用性的物料清单。  
4. 在多数情况下,您还可以:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案导出至常用 CAD 格式  
打印设计方案的 PDF 报告并与同事共享  
5. 有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
11.1.2 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
《热工特性应用手册》SZZA017  
《热工特性应用手册》SPRA953  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
DCS-Control, WEBENCH, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
16  
版权 © 2015–2018, Texas Instruments Incorporated  
TLV62085  
www.ti.com.cn  
ZHCSE67B OCTOBER 2015REVISED JULY 2018  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015–2018, Texas Instruments Incorporated  
17  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jul-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV62085RLTR  
TLV62085RLTT  
ACTIVE  
ACTIVE  
VSON-HR  
VSON-HR  
RLT  
RLT  
7
7
3000 RoHS & Green  
250 RoHS & Green  
Call TI | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
12Q5  
12Q5  
Samples  
Samples  
Call TI | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jul-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-Jan-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV62085RLTR  
TLV62085RLTT  
TLV62085RLTT  
VSON-  
HR  
RLT  
RLT  
RLT  
7
7
7
3000  
250  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
1.15  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
VSON-  
HR  
VSON-  
HR  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-Jan-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV62085RLTR  
TLV62085RLTT  
TLV62085RLTT  
VSON-HR  
VSON-HR  
VSON-HR  
RLT  
RLT  
RLT  
7
7
7
3000  
250  
210.0  
182.0  
210.0  
185.0  
182.0  
185.0  
35.0  
20.0  
35.0  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RLT0007A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
1
PIN 1  
INDEX AREA  
2.1  
1.9  
C
1 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
0.5  
0.3  
3X  
(0.2) TYP  
(0.2) TYP  
3X 0.5  
2X 0.6  
1.2  
4
5
7
1.5  
1
0.3  
0.2  
0.35  
0.25  
4X  
3X  
1.4  
1.2  
3X  
0.1  
C A  
B
0.1  
C A  
B
0.05  
C
PIN 1 ID  
0.05  
C
0.5  
0.3  
4220429/A 09/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RLT0007A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
PKG  
(0.6)  
1
(0.25)  
7
2X (0.6)  
PKG  
3X (0.5)  
3X (0.25)  
5
3X (0.3)  
4
3X (1.5)  
3X (0.6)  
(0.9)  
(0.45)  
LAND PATTERN EXAMPLE  
SCALE: 30X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
PADS 1 - 4  
PADS 5 - 7  
SOLDER MASK DETAILS  
4220429/A 09/2014  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
5. Vias should not be placed on soldering pads unless they are plugged or plated shut.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RLT0007A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
PKG  
6X (0.65)  
(0.6)  
(0.21)  
1
7
EXPOSED METAL  
TYP  
2X (0.6)  
PKG  
3X (0.5)  
METAL UNDER  
SOLDER MASK  
TYP  
3X (0.21)  
6X (0.3)  
5
4
3X (0.025)  
3X  
EXPOSED METAL  
3X (0.6)  
SOLDER MASK EDGE  
TYP  
(0.9)  
(0.875)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
FOR ALL EXPOSED PADS  
85% PRINTED SOLDER COVERAGE BY AREA  
SCALE: 40X  
4220429/A 09/2014  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV62085RLTR

采用 2x2 QFN 封装的 3A 高效降压转换器 | RLT | 7 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62085RLTT

采用 2x2 QFN 封装的 3A 高效降压转换器 | RLT | 7 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62090

3A High Efficient Synchronous Step Down Converter with DCS? Control

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62090RGTR

3A High Efficient Synchronous Step Down Converter with DCS? Control

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62090RGTT

3A High Efficient Synchronous Step Down Converter with DCS? Control

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62090_16

3A High Efficiency Synchronous Step-Down Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62095

具有 DCS Control 的 4A 同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62095RGTR

具有 DCS Control 的 4A 同步降压转换器 | RGT | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62095RGTT

具有 DCS Control 的 4A 同步降压转换器 | RGT | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62130

4-17V 3A Step-Down Converter with DCS-ControlTM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62130A

4-17V 3A Step-Down Converter with DCS-ControlTM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62130ARGTR

4-17V 3A Step-Down Converter with DCS-Control

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI