TLV62095RGTT [TI]

具有 DCS Control 的 4A 同步降压转换器 | RGT | 16 | -40 to 125;
TLV62095RGTT
型号: TLV62095RGTT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 DCS Control 的 4A 同步降压转换器 | RGT | 16 | -40 to 125

DCS 分布式控制系统 开关 转换器
文件: 总29页 (文件大小:1175K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV62095  
ZHCSF07A MARCH 2016REVISED JANUARY 2017  
TLV62095 采用 DCS-Control™ 拓扑的 4A 高效降压转换器  
1 特性  
3 说明  
1
2.5V 5.5V 输入电压范围  
DCS-Control™  
TLV62095 器件是一款高频同步降压转换器,经优化具  
有小解决方案尺寸和高效率两大优点,非常适合电池供  
电类 应用。为了最大限度地提高效率,该转换器以  
1.4MHz 的标称开关频率在脉宽调制 (PWM) 模式下工  
作,并且会在轻负载电流条件下自动进入节能工作模  
式。在分布式电源和负载点稳压应用中,该器件允许对  
其他电压轨的电压进行跟踪,并且允许采用介于 10µF  
150µF 范围内甚至更高的输出电容。通过使用  
DCS-Control™ 技术,此器件可实现出色的负载静态性  
能以及精确的输出电压调节。  
效率高达 95%  
省电模式  
20µA 运行静态电流  
针对最低压降的 100% 占空比  
1.4MHz 典型开关频率  
0.8V VIN 的可调输出电压  
输出放电功能  
可调软启动  
自动切断短路保护功能  
输出电压跟踪  
输出电压启动斜坡由软启动引脚控制,可由独立电源供  
电运行,也可在跟踪配置下运行。通过配置 EN PG  
引脚还可实现电源排序。在节能模式下,该器件静态工  
作电流的典型值为 20µA。在整个负载电流范围内,自  
动进入省电模式并且以无缝方式保持高效。  
TLV62090 TPS62095 引脚兼容  
如需了解改进的特性集,请参见 TPS62095  
借助 WEBENCH® Power Designer 并使用  
TLV62095 创建定制设计方案  
该器件采用 3mm x 3mm 16 引脚超薄四方扁平无引线  
(VQFN) 封装。  
2 应用范围  
电视 (TV)、机顶盒 (STB) 和计算机  
固态硬盘 (SSD)  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
硬盘驱动器 (HDD)  
TLV62095  
VQFN (16)  
3.00mm x 3.00mm  
电池供电类 应用  
1.8V 输出应用  
L1  
1.8V 输出应用效率  
TLV62095  
1mH  
Vin  
Vout  
1.8V  
12  
11  
1
100  
2.5V to 5.5V  
PVIN  
PVIN  
SW  
SW  
R1  
2
C1  
22mF  
C2  
2 x 22mF  
200k  
10  
3
16  
5
AVIN  
DEF  
EN  
VOS  
FB  
R2  
90  
80  
70  
60  
R3  
500k  
160k  
13  
4
C5  
10nF  
PG  
SS  
Power Good  
7
8
9
CP  
CN  
C4  
10nF  
6
AGND  
PGND PGND  
14 15  
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
0.001  
0.01  
0.1  
1
5
Load (A)  
D001  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSDD3  
 
 
 
TLV62095  
ZHCSF07A MARCH 2016REVISED JANUARY 2017  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommend Operating Conditions........................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 7  
7.1 Overview ................................................................... 7  
7.2 Functional Block Diagram ......................................... 7  
7.3 Feature Description................................................... 8  
7.4 Device Functional Modes.......................................... 8  
8
9
Application and Implementation ........................ 11  
8.1 Application Information............................................ 11  
8.2 Typical Applications ................................................ 11  
Power Supply Recommendations...................... 16  
10 Layout................................................................... 16  
10.1 Layout Guidelines ................................................. 16  
10.2 Layout Example .................................................... 17  
10.3 Thermal Consideration.......................................... 17  
11 器件和文档支持 ..................................................... 18  
11.1 器件支持................................................................ 18  
11.2 接收文档更新通知 ................................................. 18  
11.3 社区资源................................................................ 18  
11.4 ....................................................................... 18  
11.5 静电放电警告......................................................... 18  
11.6 Glossary................................................................ 19  
12 机械、封装和可订购信息....................................... 19  
7
4 修订历史记录  
Changes from Original (March 2016) to Revision A  
Page  
已添加 WEBENCH® 信息至特性、详细设计流程和开发支持部分 .......................................................................................... 1  
Added SW (AC, less than 10 ns) to the Abolute Maximum Rating table ............................................................................... 4  
已添加 1, Power Good Pin Logic ..................................................................................................................................... 10  
2
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TLV62095  
www.ti.com.cn  
ZHCSF07A MARCH 2016REVISED JANUARY 2017  
5 Pin Configuration and Functions  
16-Pin VQFN with Thermal PAD  
RGT  
(Top View)  
16 15 14 13  
SW  
SW  
PVIN  
12  
1
2
11  
PVIN  
AVIN  
SS  
Exposed  
Thermal Pad  
DEF  
PG  
10  
9
3
4
5
6
7
8
Pin Functions  
PIN  
DESCRIPTION  
NAME  
NO.  
SW  
1, 2  
Switch pin of the power stage.  
This pin is used for internal logic and needs to be pulled high. This pin must be connected to the AVIN  
pin.  
DEF  
PG  
3
4
Power good open drain output. A pull up resistor can not be connected to any voltage higher than the  
input voltage.  
FB  
5
6
7
8
Feedback pin for regulating the output voltage.  
AGND  
CP  
Analog ground.  
Internal charge pump's flying capacitor. Connect a 10nF capacitor between CP and CN.  
Internal charge pump's flying capacitor. Connect a 10nF capacitor between CP and CN.  
CN  
Soft-start control pin. A capacitor is connected to this pin and sets the soft startup time. Leaving this pin  
floating sets the minimum start-up time.  
SS  
9
AVIN  
PVIN  
10  
Analog supply input voltage pin.  
Power supply input voltage pin.  
11,12  
Enable pin. This pin has an active pull down resistor of typically 400kΩ, which is active when EN is low.  
To enable the device, this pin needs to be pulled high. Pulling this pin low disables the device.  
EN  
13  
PGND  
VOS  
14,15  
16  
Power ground.  
Output voltage sense pin. This pin must be directly connected to the output voltage.  
Exposed  
Thermal Pad  
The exposed thermal pad must be connected to AGND. It must be soldered for mechanical reliability.  
Copyright © 2016–2017, Texas Instruments Incorporated  
3
TLV62095  
ZHCSF07A MARCH 2016REVISED JANUARY 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
– 0.3  
– 0.3  
– 3.0  
– 0.3  
MAX  
7
UNIT  
PVIN, AVIN, FB, SS, EN, DEF, VOS  
SW (DC), PG  
SW (AC, less than 10 ns)(3)  
VIN+0.3  
10  
Voltage at pins(2)  
Sink current  
V
CN, CP  
PG  
VIN+7.0  
1.0  
mA  
°C  
Operating junction temperature range, TJ  
Storage temperature, Tstg  
– 40  
– 65  
150  
150  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground pin.  
(3) While switching.  
6.2 ESD Ratings  
MAX  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101,  
all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommend Operating Conditions  
MIN  
2.5  
MAX  
UNIT  
VIN  
TJ  
Input voltage range  
5.5  
V
Operating junction temperature  
-40  
125  
°C  
6.4 Thermal Information  
TLV62095  
THERMAL METRIC(1)  
UNIT  
VQFN (16 PINS)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
47  
60  
RθJC(top)  
RθJB  
20  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.5  
20  
ψJB  
RθJC(bot)  
5.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2016–2017, Texas Instruments Incorporated  
TLV62095  
www.ti.com.cn  
ZHCSF07A MARCH 2016REVISED JANUARY 2017  
6.5 Electrical Characteristics  
VIN = 3.6V and TJ = 25°C (unless otherwise noted)  
PARAMETER  
SUPPLY  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIN  
Input voltage range  
2.5  
5.5  
V
Quiescent current into PVIN  
and AVIN  
IQ  
EN = High, Not switching, FB = FB +5%  
EN = Low  
20  
µA  
Shutdown current Into PVIN  
and AVIN  
ISD  
0.6  
µA  
Undervoltage lockout threshold VIN falling  
Undervoltage lockout hysteresis  
2.1  
2.2  
200  
150  
20  
2.3  
V
mV  
ºC  
ºC  
VUVLO  
Thermal shutdown  
Temperature rising  
TSD  
Thermal shutdown hysteresis  
CONTROL SIGNAL EN  
VH  
VL  
High level input voltage  
VIN = 2.5 V to 5.5 V  
VIN = 2.5 V to 5.5 V  
EN = GND or VIN  
EN = Low  
1
0.65  
0.60  
10  
V
V
Low level input voltage  
Input leakage current  
Pull down resistance  
0.4  
Ilkg  
RPD  
100  
nA  
kΩ  
400  
SOFT STARTUP  
ISS  
Softstart current  
7.5  
µA  
POWER GOOD  
Output voltage rising  
Output voltage falling  
I(sink) = 1 mA  
95%  
90%  
VTH_PG Power good threshold  
VL  
POWER SWITCH  
High side FET on-resistance  
Low level voltage  
0.4  
V
ISW = 500 mA  
ISW = 500 mA  
50  
40  
mΩ  
mΩ  
RDS(on)  
Low side FET on-resistance  
High side FET switch current  
limit  
ILIM  
4.7  
5.5  
1.4  
A
fSW  
Switching frequency  
IOUT = 3 A  
MHz  
OUTPUT  
VOUT  
RDIS  
Output voltage range  
Output discharge resistor  
Feedback regulation voltage  
Line regulation  
0.8  
VIN  
V
EN = GND, VOUT = 1.8 V  
IOUT = 1 A, PWM mode  
200  
800  
VFB  
792  
808  
mV  
%/V  
%/A  
VOUT = 1.8 V, PWM operation  
VOUT = 1.8 V, PWM operation  
0.016  
0.04  
Load regulation  
版权 © 2016–2017, Texas Instruments Incorporated  
5
TLV62095  
ZHCSF07A MARCH 2016REVISED JANUARY 2017  
www.ti.com.cn  
6.6 Typical Characteristics  
80  
70  
60  
50  
40  
30  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
10  
0
Tj = -40°C  
Tj = 25°C  
Tj = 85°C  
Tj = 125°C  
Tj = -40°C  
Tj = 25°C  
Tj = 85°C  
Tj = 125°C  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage (V)  
Input Voltage (V)  
D003  
D004  
1. High-Side FET On Resistance  
2. Low-Side FET On Resistance  
1
0.8  
0.6  
0.4  
0.2  
0
30  
20  
10  
0
Tj = -40°C  
Tj = -40°C  
Tj = 0°C  
Tj = 25°C  
Tj = 85°C  
Tj = 0°C  
Tj = 25°C  
Tj = 85°C  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage (V)  
Input Voltage (V)  
D006  
D005  
4. Shutdown Current  
3. Quiescent Current  
6
版权 © 2016–2017, Texas Instruments Incorporated  
TLV62095  
www.ti.com.cn  
ZHCSF07A MARCH 2016REVISED JANUARY 2017  
7 Detailed Description  
7.1 Overview  
The TLV62095 synchronous step down converter is based on DCS-Control™ (Direct Control with Seamless  
transition into Power Save Mode). This is an advanced regulation topology that combines the advantages of  
hysteretic and voltage mode control.  
The DCS-Control™ topology operates in PWM (Pulse Width Modulation) mode for medium to heavy load  
conditions and in Power Save Mode at light load currents. In PWM mode, the converter operates with its nominal  
switching frequency of 1.4 MHz having a controlled frequency variation over the input voltage range. As the load  
current decreases, the converter enters Power Save Mode, reducing the switching frequency and minimizing the  
current consumption of the IC to achieve high efficiency over the entire load current range. DCS-Control™  
supports both operation modes using a single building block and therefore has a seamless transition from PWM  
to Power Save Mode without effects on the output voltage. The TLV62095 offers excellent DC voltage regulation  
and load transient regulation, combined with low output voltage ripple, minimizing interference with RF circuits.  
7.2 Functional Block Diagram  
PVIN PVIN  
PG  
CP  
CN  
Charge Pump  
for  
Gate driver  
Hiccup  
current limit  
#32 counter  
VFB  
VREF  
High Side  
Current  
Sense  
AVIN  
EN  
Bandgap  
Undervoltage  
Lockout  
Thermal shutdown  
M1  
SW  
SW  
(1)  
400kW  
MOSFET Driver  
AGND  
DEF  
Anti Shoot Through  
Converter Control  
Logic  
2
M
PGND  
PGND  
VOS  
ramp  
Direct Control  
and  
Compensation  
Comparator  
Timer  
ton  
Error Amplifier  
FB  
Vref  
0.8V  
Vin  
DCS - Control™  
200Ω  
Iss  
Voltage clamp  
Vref  
÷1.56  
SS  
M3  
Output voltage  
discharge  
logic  
EN  
Copyright © 2017, Texas Instruments Incorporated  
(1) The resistor is disconnected when EN is high.  
版权 © 2016–2017, Texas Instruments Incorporated  
7
TLV62095  
ZHCSF07A MARCH 2016REVISED JANUARY 2017  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 PWM Operation  
At medium to heavy load currents, the device operates with pulse width modulation (PWM) at a nominal  
switching frequency of 1.4 MHz. As the load current decreases, the converter enters power save mode operation  
reducing its switching frequency. The device enters power save mode at the boundary to discontinuous  
conduction mode (DCM).  
7.3.2 Power Save Mode Operation  
As the load current decreases, the converter enters Power Save Mode operation. During Power Save Mode, the  
converter operates with reduced switching frequency to maintain high efficiency. Power Save Mode is based on  
a fixed on-time architecture following 公式 1.  
V
OUT  
ton =  
× 360ns × 2  
V
IN  
2 × I  
OUT  
f =  
æ
ö
÷
V
IN  
- V  
OUT  
V
IN  
- V  
ton2 1 +  
x
OUT  
ç
ç
÷
V
OUT  
L
è
ø
(1)  
In Power Save Mode, the output voltage rises slightly above the nominal output voltage in PWM mode. This  
effect is reduced by increasing the output capacitance or the inductor value. This effect is also reduced by  
programming the output voltage of the TLV62095 lower than the target value.  
7.3.3 Low Dropout Operation (100% Duty Cycle)  
The device offers low input to output voltage difference by entering 100% duty cycle mode. In this mode the high  
side MOSFET switch is constantly turned on. This is particularly useful in battery powered applications to achieve  
longest operation time by taking full advantage of the whole battery voltage range. The minimum input voltage  
where the output voltage falls below its set point is given by:  
VIN(min) = VOUT + IOUT x ( RDS(on) + RL )  
(2)  
Where  
RDS(on) = High side FET on-resistance  
RL = DC resistance of the inductor  
7.4 Device Functional Modes  
7.4.1 Enable (EN)  
The device is enabled by setting the EN pin to a logic high. Accordingly, shutdown mode is forced if the EN pin is  
pulled low with a shutdown current of typically 0.6 μA. In shutdown mode, the internal power switches as well as  
the entire control circuitry are turned off. An internal resistor of 200 Ω discharges the output through the VOS pin  
smoothly. An internal pull-down resistor of 400 kΩ is connected to the EN pin when the EN pin is low. The pull-  
down resistor is disconnected when the EN pin is high.  
7.4.2 Soft Startup (SS) and Hiccup Current Limit During Startup  
To minimize inrush current during startup, the device has an adjustable startup time depending on the capacitor  
value connected to the SS pin. The device charges the SS capacitor with a constant current of typically 7.5 µA.  
The feedback voltage follows this voltage divided by 1.56, until the internal reference voltage of 0.8 V is reached.  
The soft startup operation is completed once the voltage at the SS capacitor has reached typically 1.25 V. The  
soft startup time is calculated using 公式 3. The larger the SS capacitor, the longer the soft startup time. The  
relation between the SS pin voltage and the FB pin voltage is estimated using 公式 4.  
1.25V  
tSS = CSS  
x
7.5μA  
(3)  
(4)  
VSS  
VFB  
=
1.56  
8
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
TLV62095  
www.ti.com.cn  
ZHCSF07A MARCH 2016REVISED JANUARY 2017  
Device Functional Modes (接下页)  
During startup the switch current limit is reduced to 1/3 of its typical current limit of 5.5A when the output voltage  
is less than 0.6V. Once the output voltage exceeds typically 0.6V, the switch current limit is released to its  
nominal value. Thus, the device provides a reduced load current of 1.8A when the output voltage is below 0.6V.  
Due to this, a small or no startup time may trigger this reduced switch current limit during startup, especially for  
larger output capacitor applications. This is avoided by using a larger soft start up capacitance which extends the  
soft startup time. See Short Circuit Protection (Hiccup-Mode) for details of the reduced current limit during  
startup. Leaving the SS pin floating sets the minimum startup time (around 50 μs).  
7.4.3 Voltage Tracking (SS)  
The SS pin is externally driven by another voltage source to achieve output voltage tracking. The application  
circuit is shown in 5. The internal reference voltage follows the voltage at the SS pin with a fraction of 1.56  
until the internal reference voltage of 0.8 V is reached. The device achieves ratiometric or coincidental  
(simultaneous) output tracking, as shown in 6.  
VOUT1  
VOUT2  
TLV62095  
R1  
R3  
SS  
FB  
R2  
R4  
5. Output Voltage Tracking  
The R2 value should be set properly to achieve accurate voltage tracking by taking 7.5 μA soft startup current  
into account. 1 kΩ or smaller is a sufficient value for R2.  
Voltage  
Voltage  
VOUT1  
VOUT1  
VOUT2  
VOUT2  
R3  
R4  
R1  
1
R3  
R4  
R1  
ö
1
æ
ö
æ
1+  
< 1+  
´
R2 1.56  
1+  
= 1+  
´
÷
ç
÷
ç
R2 1.56  
ø
è
ø
è
t
t
a) Ratiometric Tracking  
b) Coincidental Tracking  
6. Voltage Tracking Options  
For decreasing the SS pin voltage, the device doesn't sink current from the output when the device is in power  
save mode. So the resulting decrease of the output voltage may be slower than the SS pin voltage if the load is  
light. When driving the SS pin with an external voltage, do not exceed the voltage rating of the SS pin which is 7  
V.  
版权 © 2016–2017, Texas Instruments Incorporated  
9
 
 
TLV62095  
ZHCSF07A MARCH 2016REVISED JANUARY 2017  
www.ti.com.cn  
Device Functional Modes (接下页)  
7.4.4 Short Circuit Protection (Hiccup-Mode)  
The device is protected against hard short circuits to GND and over-current events. This is implemented by a two  
level short circuit protection. During start-up and when the output is shorted to GND, the switch current limit is  
reduced to 1/3 of its typical current limit of 5.5 A. Once the output voltage exceeds typically 0.6 V the current limit  
is released to its nominal value. The full current limit is implemented as a hiccup current limit. Once the internal  
current limit is triggered 32 times, the device stops switching and starts a new start-up sequence after a typical  
delay time of 66 µs passed by. The device repeats these cycles until the high current condition is released.  
7.4.5 Output Discharge Function  
To make sure the device starts up under defined conditions, the output gets discharged via the VOS pin with a  
typical discharge resistor of 200 whenever the device shuts down. This happens when the device is disabled  
or if thermal shutdown, undervoltage lockout or short circuit hiccup-mode is triggered.  
7.4.6 Power Good Output  
The power good output is low when the output voltage is below its nominal value. The power good becomes high  
impedance once the output is within 5% of regulation. The PG pin is an open drain output and is specified to sink  
up to 1mA. This output requires a pull-up resistor to be monitored properly. The pull-up resistor cannot be  
connected to any voltage higher than the input voltage of the device. The PG output can be left floating if  
unused. 1 shows the PG pin logic.  
1. Power Good Pin Logic  
PG Logic Status  
Device State  
High Impedance  
Low  
V
FB VTH_PG  
FB VTH_PG  
Enable (EN=High)  
V
Shutdown (EN=Low)  
UVLO  
0.7 V < VIN VUVLO  
TJ > TSD  
Thermal Shutdown  
Power Supply Removal  
VIN 0.7 V  
7.4.7 Undervoltage Lockout  
To avoid mis-operation of the device at low input voltages, an undervoltage lockout is included. UVLO shuts  
down the device at input voltages lower than typically 2.2 V with a 200 mV hysteresis.  
7.4.8 Thermal Shutdown  
The device goes into thermal shutdown once the junction temperature exceeds typically 150°C with a 20°C  
hysteresis.  
7.4.9 Charge Pump (CP, CN)  
The CP and CN pins must attach to an external 10 nF capacitor to complete a charge pump for the gate driver.  
This capacitor must be rated for the input voltage. It is not recommended to connect any other circuits to the CP  
or CN pins.  
10  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TLV62095  
www.ti.com.cn  
ZHCSF07A MARCH 2016REVISED JANUARY 2017  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TLV62095 is a 4-A high frequency synchronous step-down converter optimized for small solution size, high  
efficiency and suitable for battery powered applications.  
8.2 Typical Applications  
8.2.1 1.8-V Output Converter  
L1  
TLV62095  
1mH  
Vin  
2.5V to 5.5V  
Vout  
1.8V  
12  
11  
1
PVIN  
PVIN  
SW  
SW  
R1  
2
C1  
22mF  
C2  
2 x 22mF  
200k  
10  
3
16  
5
AVIN  
DEF  
EN  
VOS  
FB  
R2  
R3  
500k  
160k  
13  
4
C5  
10nF  
PG  
SS  
Power Good  
7
8
9
CP  
CN  
C4  
10nF  
6
AGND  
PGND PGND  
14 15  
7. TLV62095 Typical Application Circuit  
8.2.1.1 Design Requirements  
The design guideline provides a component selection to operate the device within the recommended operating  
conditions. For the typical application example, the following input parameters are used.  
2. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
EXAMPLE VALUE  
2.5 V to 5.5 V  
1.8 V  
Output voltage  
Output ripple voltage  
Output current rating  
< 30 mV  
4 A  
3 shows the list of components for the Application Characteristic Curves.  
3. List of Components  
REFERENCE  
DESCRIPTION  
MANUFACTURER  
High efficiency step-down  
converter  
TLV62095  
Texas Instruments  
L1  
Inductor: 1 µH  
Coilcraft XAL4020-102  
(6.3V, X5R, 0805)  
C1, C2  
Ceramic capacitor: 22 μF  
版权 © 2016–2017, Texas Instruments Incorporated  
11  
 
TLV62095  
ZHCSF07A MARCH 2016REVISED JANUARY 2017  
www.ti.com.cn  
3. List of Components (接下页)  
REFERENCE  
C4, C5  
DESCRIPTION  
Ceramic capacitor, 10 nF  
Resistor  
MANUFACTURER  
Standard  
R1, R2, R3  
Standard  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TLV62095 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.1.2.2 Output Filter  
The first step is the selection of the output filter components. To simplify this process, 4 outlines possible  
inductor and capacitor value combinations.  
4. Output Filter Selection  
OUTPUT CAPACITOR VALUE [µF](2)  
INDUCTOR VALUE [µH](1)  
10  
22  
2 x 22  
100  
150  
0.47  
1.0  
(3)  
2.2  
(1) Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by +20% and  
–30%.  
(2) Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance can vary by  
+20% and –50%.  
(3) Typical application configuration. Other check mark indicates alternative filter combinations  
8.2.1.2.3 Inductor Selection  
The inductor selection is affected by several parameters like inductor ripple current, output voltage ripple,  
transition point into Power Save Mode, and efficiency. See 5 for typical inductors.  
5. Inductor Selection  
INDUCTOR VALUE  
1 µH  
COMPONENT SUPPLIER(1)  
Coilcraft XAL4020-102  
TOKO DFE322512C  
SIZE (LxWxH mm)  
4.0 x 4.0 x 2.1  
Isat / DCR  
8.75A / 13.2 mΩ  
5.9A / 21 mΩ  
0.47 µH  
3.2 x 2.5 x 1.2  
(1) See Third-Party Products disclaimer  
In addition, the inductor has to be rated for the appropriate saturation current and DC resistance (DCR). The  
inductor needs to be rated for a saturation current as high as the typical switch current limit of 5.5A or according  
to 公式 5 and 公式 6. 公式 5 and 公式 6 calculate the maximum inductor current under static load conditions. The  
formula takes the converter efficiency into account. The converter efficiency can be taken from the data sheet  
graphs or 80% can be used as a conservative approach. The calculation must be done for the maximum input  
voltage where the peak switch current is highest.  
12  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
TLV62095  
www.ti.com.cn  
ZHCSF07A MARCH 2016REVISED JANUARY 2017  
ΔI  
L
I
L
= I  
OUT  
+
2
(5)  
(6)  
æ
ö
÷
÷
ø
V
V
OUT  
η
OUT  
x η  
ç
ç
è
x
1 -  
V
IN  
I
= I  
OUT  
+
L
2 x f x L  
where  
ƒ = Converter switching frequency (typically 1.4MHz)  
L = Inductor value  
η = Estimated converter efficiency (use the number from the efficiency curves or 0.80 as a conservative  
assumption)  
Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation  
current. A margin of 20% should be added to cover for load transients during operation.  
8.2.1.2.4 Input and Output Capacitor Selection  
For best output and input voltage filtering, low ESR (X5R or X7R) ceramic capacitors are recommended. The  
input capacitor minimizes input voltage ripple, suppresses input voltage spikes and provides a stable system rail  
for the device. A 22-μF or larger input capacitor is recommended. The output capacitor value can range from 10  
μF up to 150 μF and beyond. Load transient testing and measuring the bode plot are good ways to verify stability  
with larger capacitor values.  
The recommended typical output capacitor value is 2 x 22 μF (nominal) and can vary over a wide range as  
outline in the output filter selection table. Ceramic capacitor have a DC-Bias effect, which has a strong influence  
on the final effective capacitance. Choose the right capacitor carefully in combination with considering its  
package size and voltage rating.  
8.2.1.2.5 Setting the Output Voltage  
The output voltage is set by an external resistor divider according to the following equations:  
R1  
R1  
æ
ö
æ
ö
VOUT = VFB  
´
1 +  
= 0.8 V ´ 1 +  
ç
÷
ç
÷
R2  
R2  
è
ø
è
ø
(7)  
(8)  
VFB  
0.8 V  
5 μA  
R2 =  
=
» 160 kΩ  
IFB  
æ
ç
è
ö
VOUT  
VFB  
V
OUT  
æ
ö
R1 = R2 ´  
-1 = R2 ´  
- 1  
÷
÷
ç
0.8V  
è
ø
ø
(9)  
When sizing R2, in order to achieve low quiescent current and acceptable noise sensitivity, use a minimum of 5  
µA for the feedback current IFB. Larger currents through R2 improve noise sensitivity and output voltage  
accuracy.  
版权 © 2016–2017, Texas Instruments Incorporated  
13  
TLV62095  
ZHCSF07A MARCH 2016REVISED JANUARY 2017  
www.ti.com.cn  
8.2.1.3 Application Performance Curves  
TA = 25°C, VIN = 3.6 V, VOUT = 1.8 V, unless otherwise noted.  
100  
90  
100  
90  
80  
70  
60  
80  
70  
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
60  
0.001  
0.01  
0.1  
1
5
0.001  
0.01  
0.1  
1
5
Load (A)  
Load (A)  
D001  
D017  
8. Efficiency, VOUT = 1.8 V  
9. Efficiency, VOUT = 1.2 V  
100  
90  
100  
90  
80  
80  
70  
70  
VIN = 3.3 V  
VIN = 3.6 V  
VIN = 4.2 V  
VIN = 5.0 V  
VIN = 4.2 V  
VIN = 5.0 V  
60  
60  
0.001  
0.01  
0.1  
1
5
0.001  
0.01  
0.1  
1
5
Load (A)  
Load (A)  
D018  
D019  
10. Efficiency, VOUT = 2.6 V  
11. Efficiency, VOUT = 3.3 V  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = -40èC  
TA = 25èC  
TA = 85èC  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0.001  
0.01  
0.1  
1
5
Input Voltage (V)  
D007  
Load (A)  
D002  
13. Line Regulation, VOUT = 1.8 V, IOUT = 1.0 A  
12. Load Regulation, VOUT = 1.8 V, VIN = 3.3 V  
14  
版权 © 2016–2017, Texas Instruments Incorporated  
TLV62095  
www.ti.com.cn  
ZHCSF07A MARCH 2016REVISED JANUARY 2017  
5000  
SW = 5V/div  
1000  
100  
10  
VOUT = 20 mV/div, AC  
ICOIL = 0.5 A/div  
VIN = 2.5 V  
VIN = 3.6 V  
VIN = 5.5 V  
1
Time = 1 µs/div  
0.001  
0.01  
0.1  
1
5
Load (A)  
D008  
15. Output Ripple, VOUT = 1.8 V, IOUT = 100 mA  
14. Switching Frequency, VOUT = 1.8 V  
SW = 5V/div  
VIN = 2V/div  
VOUT = 20mV/div, AC  
VOUT = 1V/div  
ICOIL = 1A/div  
ICOIL = 0.5A/div  
Time = 0.5 µs/div  
Time = 500 µs/div  
16. Output Ripple, VOUT = 1.8 V, IOUT = 3.5 A  
17. Startup, Relative to VIN, RLOAD = 1.5 Ω  
EN = 5V/div  
LOAD = 2A/div  
0.1A to 2A load step  
VIN = 2V/div  
VOUT = 0.1V/div, AC  
ICOIL = 2A/div  
VOUT = 1V/div  
ICOIL = 0.5A/div  
Time = 500 µs/div  
Time = 10 µs/div  
18. Startup, Relative to EN, RLOAD = 1.5 Ω  
19. Load Transient, VOUT = 1.8 V  
版权 © 2016–2017, Texas Instruments Incorporated  
15  
TLV62095  
ZHCSF07A MARCH 2016REVISED JANUARY 2017  
www.ti.com.cn  
LOAD = 2A/div  
VOUT = 1V/div  
ICOIL = 2A/div  
1A to 3.5A load step  
VOUT = 0.1V/div, AC  
ICOIL = 2A/div  
Time = 10 µs/div  
Time = 250 µs/div  
20. Load Transient, VOUT = 1.8 V  
21. Short Circuit, HICCUP Protection Entry  
VOUT = 1V/div  
ICOIL = 2A/div  
Time = 250 µs/div  
22. Short Circuit, HICCUP Protection Exit  
9 Power Supply Recommendations  
The TLV62095 device has no special requirements for its input power supply. The input power supply's output  
current needs to be rated according to the supply voltage, output voltage and output current of the TLV62095.  
10 Layout  
10.1 Layout Guidelines  
It is recommended to place the input capacitor as close as possible to the IC pins PVIN and PGND.  
The VOS connection is noise sensitive and needs to be routed short and direct to the output terminal of the  
inductor.  
The exposed thermal pad of the package, analog ground (pin 6) and power ground (pin 14, 15) should have a  
single point connection at the exposed thermal pad of the package. This minimizes switch node jitter.  
The charge pump capacitor connected to CP and CN should be placed close to the IC to minimize coupling of  
switching waveforms into other traces and circuits.  
Refer to 23 for an example of component placement, routing and thermal design.  
16  
版权 © 2016–2017, Texas Instruments Incorporated  
TLV62095  
www.ti.com.cn  
ZHCSF07A MARCH 2016REVISED JANUARY 2017  
10.2 Layout Example  
L1  
R1  
AGND  
R2  
C2  
VOUT  
C5  
FB  
AGND  
CP  
VOS  
PGND  
PGND  
EN  
CN  
C4  
VIN  
GND  
C1  
23. TLV62095 PCB Layout  
10.3 Thermal Consideration  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-  
dissipation limits of a given component. The Thermal Information table provides the thermal metric of the device  
and its package based on JEDEC standard. For more details on how to use the thermal parameters in real  
applications, see the application notes: SZZA017 and SPRA953.  
版权 © 2016–2017, Texas Instruments Incorporated  
17  
TLV62095  
ZHCSF07A MARCH 2016REVISED JANUARY 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.1.2 开发支持  
11.1.2.1 使用 WEBENCH® 工具定制设计方案  
请单击此处,借助 WEBENCH® Power Designer 并使用 TLV62095 器件创建定制设计方案。  
1. 在开始阶段键入输出电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化关键设计参数,如效率、封装和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他解决方案进行比较。  
WEBENCH Power Designer 提供一份定制原理图以及罗列实时价格和组件可用性的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案导出至常用 CAD 格式  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com/WEBENCH。  
11.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
DCS-Control, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
18  
版权 © 2016–2017, Texas Instruments Incorporated  
TLV62095  
www.ti.com.cn  
ZHCSF07A MARCH 2016REVISED JANUARY 2017  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016–2017, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV62095RGTR  
TLV62095RGTT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGT  
RGT  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
13O  
13O  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV62095RGTR  
TLV62095RGTT  
TLV62095RGTT  
VQFN  
VQFN  
VQFN  
RGT  
RGT  
RGT  
16  
16  
16  
3000  
250  
330.0  
180.0  
180.0  
12.4  
12.4  
12.5  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV62095RGTR  
TLV62095RGTT  
TLV62095RGTT  
VQFN  
VQFN  
VQFN  
RGT  
RGT  
RGT  
16  
16  
16  
3000  
250  
552.0  
552.0  
205.0  
346.0  
185.0  
200.0  
36.0  
36.0  
33.0  
250  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TLV62095RGTR  
TLV62095RGTT  
RGT  
RGT  
VQFN  
VQFN  
16  
16  
3000  
250  
381  
381  
4.83  
4.83  
2286  
2286  
0
0
Pack Materials-Page 3  
PACKAGE OUTLINE  
RGT0016C  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
1.0  
0.8  
C
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
1.5  
1
12  
0.30  
16X  
0.18  
13  
16  
0.1  
C A B  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.05  
0.5  
0.3  
16X  
4222419/D 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGT0016C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
(0.58) TYP  
8
(R0.05)  
ALL PAD CORNERS  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222419/D 04/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGT0016C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4222419/D 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV62130

4-17V 3A Step-Down Converter with DCS-ControlTM
TI

TLV62130A

4-17V 3A Step-Down Converter with DCS-ControlTM
TI

TLV62130ARGTR

4-17V 3A Step-Down Converter with DCS-Control
TI

TLV62130ARGTT

4-17V 3A Step-Down Converter with DCS-Control
TI

TLV62130RGTR

4-17V 3A Step-Down Converter with DCS-ControlTM
TI

TLV62130RGTT

4-17V 3A Step-Down Converter with DCS-ControlTM
TI

TLV62130_13

4-17V 3A Step-Down Converter with DCS-ControlTM
TI

TLV62150

4-17V 1A Step-Down Converter with DCS-Control?
TI

TLV62150A

4-17V 1A Step-Down Converter with DCS-Control
TI

TLV62150ARGTR

4-17V 1A Step-Down Converter with DCS-Control
TI

TLV62150ARGTT

4-17V 1A Step-Down Converter with DCS-Control
TI

TLV62150RGT

4-17V 1A Step-Down Converter with DCS-Control?
TI