TLV62568PDDCT [TI]

采用 SOT23 或 SOT563 封装的 2.5V 至 5.5V 输入、1A 高效降压转换器 | DDC | 6 | -40 to 125;
TLV62568PDDCT
型号: TLV62568PDDCT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 SOT23 或 SOT563 封装的 2.5V 至 5.5V 输入、1A 高效降压转换器 | DDC | 6 | -40 to 125

转换器
文件: 总31页 (文件大小:1621K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV62568, TLV62568P  
ZHCSFQ3B NOVEMBER 2016REVISED NOVEMBER 2017  
TLV62568 采用 SOT 封装的 1A 高效同步降压转换器  
1 特性  
在中等负载或重载条件下,该器件运行在脉宽调制  
1
(PWM) 模式下,开关频率为 1.5MHz。在轻载情况  
下,该器件自动进入节能模式 (PSM),从而在整个负  
载电流范围内保持高效率。关断时,流耗减少至 2μA  
以下。  
效率高达 95%  
RDS(ON),可在 150mΩ 100mΩ 之间切换  
输入电压范围:2.5V 5.5V  
可调输出电压:0.6V VIN  
针对轻载效率的省电模式  
针对最低压降的 100% 占空比  
35µA 静态工作电流  
TLV62568 的输出电压可通过一个外部电阻分压器进行  
调节。内部软启动电路可限制启动期间的浪涌电流。此  
外, 还内置了 诸如输出过流保护、热关断保护和电源  
正常输出等其他特性。该器件提供 SOT-23 和  
SOT563 两种封装。  
1.5MHz 开关频率  
电源正常输出指示  
过流保护  
器件信息(1)  
内部软启动  
器件型号  
TLV62568  
封装  
SOT-23 (5)  
封装尺寸(标称值)  
热关断保护  
采用小外形尺寸晶体管 (SOT) 封装  
TLV62569 引脚兼容  
借助 WEBENCH® 电源设计器,使用 TLV62568 创  
建定制设计方案  
2.90mm x 2.80mm  
TLV62568P  
TLV62568  
TLV62568P  
SOT-23 (6)  
SOT563 (6)  
SOT563 (6)  
1.60mm x 1.60mm  
(1) 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。  
2 应用  
器件比较  
通用负载点 (POL) 电源  
器件编号  
功能  
封装标记  
14VF  
9X  
网络视频摄像头  
机顶盒  
TLV62568DBV  
TLV62568PDDC  
TLV62568DRL  
TLV62568PDRL  
-
电源正常  
-
无线路由器  
18L  
电源正常  
18N  
3 说明  
TLV62568 器件是一款同步降压 DC-DC 转换器,专门  
针对高效和紧凑型解决方案进行了优化。该器件集成的  
开关能够提供高达 1A 的输出电流。  
M M  
简化电路原理图  
5V 输入电压下的效率  
VIN  
VOUT  
1.8 V / 1.0 A  
TLV62568P  
L1  
2.2 µH  
2.5 V to 5.5 V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VIN SW  
C1  
4.7 µF  
C2  
10 µF  
C3*  
R3  
499 k  
R1  
200 kꢀ  
EN  
VPG  
PG GND FB  
R2  
100 kꢀ  
C3: Optional  
Copyright Ú 2016, Texas Instruments Incorporated  
VOUT = 1.2 V  
VOUT = 1.8 V  
VOUT = 2.5 V  
VOUT = 3.3 V  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Load (A)  
1
D008  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSD89  
 
 
 
 
 
 
 
TLV62568, TLV62568P  
ZHCSFQ3B NOVEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions ...................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics.......................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 7  
7.1 Overview ................................................................... 7  
7.2 Functional Block Diagram ......................................... 7  
7.3 Feature Description................................................... 7  
7.4 Device Functional Modes.......................................... 8  
8
9
Application and Implementation .......................... 9  
8.1 Application Information.............................................. 9  
8.2 Typical Application .................................................... 9  
Power Supply Recommendations...................... 14  
10 Layout................................................................... 15  
10.1 Layout Guidelines ................................................. 15  
10.2 Layout Example .................................................... 15  
10.3 Thermal Considerations........................................ 15  
11 器件和文档支持 ..................................................... 16  
11.1 器件支持 ............................................................... 16  
11.2 文档支持 ............................................................... 16  
11.3 接收文档更新通知 ................................................. 16  
11.4 社区资源................................................................ 16  
11.5 ....................................................................... 16  
11.6 静电放电警告......................................................... 16  
11.7 Glossary................................................................ 17  
12 机械、封装和可订购信息....................................... 17  
7
4 修订历史记录  
Changes from Revision A (April 2017) to Revision B  
Page  
已将 WEBENCH 链接添加至数据表 ....................................................................................................................................... 1  
已更改 TLV62568PDDC 更改为生产状............................................................................................................................... 1  
Added DDC package thermal information.............................................................................................................................. 4  
Changed 1.2 V From: MIN value To: MAX value for High-level threshold at EN pin............................................................. 5  
Changes from Original (November 2016) to Revision A  
Page  
已更改 TLV62568DRL TLV62568PDRL 更改为生产状态。 .............................................................................................. 1  
将器件比较表移至第 1 ........................................................................................................................................................ 1  
Added DRL package thermal information............................................................................................................................... 4  
Added startup time of TLV62568DRL, TLV62568PDRL ....................................................................................................... 5  
已添加 TLV62568PDRL layout. ............................................................................................................................................ 15  
2
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TLV62568, TLV62568P  
www.ti.com.cn  
ZHCSFQ3B NOVEMBER 2016REVISED NOVEMBER 2017  
5 Pin Configuration and Functions  
SOT23-5  
DBV Package  
(Top View)  
SOT23-6  
DDC Package  
(Top View)  
SOT563-6  
DRL Package  
(Top View)  
FB  
5
VIN  
4
FB  
6
PG  
5
VIN  
NC/PG EN SW  
4
6
1
5
2
4
3
1
2
3
1
2
3
FB GND VIN  
EN  
GND  
SW  
EN  
GND  
SW  
Pin Functions  
PIN NUMBER  
I/O/PWR  
DESCRIPTION  
NAME  
EN  
SOT23-5  
SOT23-6 SOT563-6  
Device enable logic input. Logic high enables the device, logic low disables  
the device and turns it into shutdown. Do not leave floating.  
1
2
3
4
1
2
3
4
5
2
4
3
I
GND  
SW  
PWR  
PWR  
PWR  
Ground pin.  
Switch pin connected to the internal FET switches and inductor terminal.  
Connect the inductor of the output filter to this pin.  
VIN  
Power supply voltage input.  
Power good open drain output pin for TLV62568P. The pull-up resistor should  
not be connected to any voltage higher than 5.5V. If it's not used, leave the  
pin floating.  
PG  
-
5
6
O
Feedback pin for the internal control loop. Connect this pin to an external  
feedback divider.  
FB  
5
-
6
-
1
6
I
No connection pin for TLV62568DRL. The pin can be connected to the output.  
Or leave it floating.  
NC  
O
Copyright © 2016–2017, Texas Instruments Incorporated  
3
TLV62568, TLV62568P  
ZHCSFQ3B NOVEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–3.0  
–0.3  
–40  
MAX  
UNIT  
V
VIN, EN, PG  
6
VIN+0.3  
9
SW (DC)  
Voltage(2)  
V
SW (AC, less than 10 ns)(3)  
V
FB  
5.5  
V
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
–65  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. Functional operation of the  
device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to  
absolute–maximum–rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
(3) While switching.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
V
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions(1)  
MIN  
2.5  
TYP  
MAX  
5.5  
VIN  
1
UNIT  
V
VIN  
Input voltage  
VOUT  
IOUT  
TJ  
Output voltage  
0.6  
V
Output current  
A
Operating junction temperature  
–40  
125  
1
°C  
mA  
ISINK_PG Sink current at PG pin  
(1) Refer to the Application and Implementation section for further information.  
6.4 Thermal Information  
DBV  
(5 Pins)  
DDC  
(6 pins)  
DRL  
THERMAL METRIC(1)  
UNIT  
(6 pins)  
149.8  
45.7  
31.1  
1.3  
RθJA  
Junction-to-ambient thermal resistance  
191.6  
141.4  
44.5  
34.5  
43.9  
N/A  
121.6  
69.1  
45.5  
22.3  
46.0  
N/A  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
RθJB  
ψJT  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
31.7  
N/A  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2016–2017, Texas Instruments Incorporated  
TLV62568, TLV62568P  
www.ti.com.cn  
ZHCSFQ3B NOVEMBER 2016REVISED NOVEMBER 2017  
6.5 Electrical Characteristics  
VIN = 5 V, TJ = 25°C, unless otherwise noted  
PARAMETER  
SUPPLY  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IQ  
Quiescent current into VIN pin  
Shutdown current into VIN pin  
Under voltage lock out  
Not switching  
EN = 0 V  
35  
0.1  
uA  
µA  
V
ISD  
2
VIN falling  
2.3  
2.45  
VUVLO  
Under voltage lock out hysteresis  
100  
150  
130  
mV  
Junction temperature rising  
Junction temperature falling  
TJSD  
Thermal shutdown threshold  
°C  
LOGIC INTERFACE  
VIH  
VIL  
High-level threshold at EN pin  
2.5 V VIN 5.5 V  
2.5 V VIN 5.5 V  
TLV62568DBV  
0.95  
0.85  
700  
900  
1.2  
V
V
Low-level threshold at EN pin  
0.4  
tSS  
Soft startup time  
µs  
TLV62568DRL, TLV62568PDRL,  
TLV62568PDDC  
VFB rising, referenced to VFB nominal  
VFB falling, referenced to VFB nominal  
ISINK = 1 mA  
95%  
90%  
VPG  
Power good threshold, TLV62568P  
VPG,OL  
IPG,LKG  
tPG,DLY  
OUTPUT  
VFB  
Power good low-level output voltage  
Input leakage current into PG pin  
Power good delay time  
0.4  
V
VPG = 5 V  
0.01  
40  
µA  
µs  
VFB falling  
Feedback regulation voltage  
High-side FET on resistance  
Low-side FET on resistance  
High-side FET current limit  
Switching frequency  
0.588  
1.5  
0.6  
150  
100  
0.612  
V
RDS(on)  
mΩ  
ILIM  
fSW  
A
VOUT = 1.8 V  
1.5  
MHz  
版权 © 2016–2017, Texas Instruments Incorporated  
5
TLV62568, TLV62568P  
ZHCSFQ3B NOVEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
6.6 Typical Characteristics  
50  
45  
40  
35  
30  
25  
10  
9
8
7
6
5
4
3
2
1
0
VIN = 2.5V  
VIN = 3.6V  
VIN = 5.0V  
20  
15  
10  
TJ = -40°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40  
-10  
20  
50  
80  
110  
140  
Input Voltage (V)  
Junction Temperature (°C)  
D001  
D002  
1. Quiescent Current vs Input Voltage  
2. Shutdown Current vs Junction Temperature  
0.3  
TJ = -40°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
0.2  
0.1  
0.0  
-0.1  
-0.2  
-0.3  
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
D003  
3. FB Voltage Accuracy  
6
版权 © 2016–2017, Texas Instruments Incorporated  
TLV62568, TLV62568P  
www.ti.com.cn  
ZHCSFQ3B NOVEMBER 2016REVISED NOVEMBER 2017  
7 Detailed Description  
7.1 Overview  
The TLV62568 is a high-efficiency synchronous step-down converter. The device operates with an adaptive off-  
time with peak current control scheme. The device operates at typically 1.5-MHz frequency pulse width  
modulation (PWM) at moderate to heavy load currents. Based on the VIN/VOUT ratio, a simple circuit sets the  
required off time for the low-side MOSFET. It makes the switching frequency relatively constant regardless of the  
variation of input voltage, output voltage, and load current.  
7.2 Functional Block Diagram  
PG  
VIN  
VPG  
VFB  
Thermal  
Shutdown  
+
Soft Start  
UVLO  
œ
GND  
EN  
FB  
Control Logic  
Peak Current Detect  
VREF  
SW  
+
_
Gate  
Drive  
Modulator  
VSW  
VIN  
TOFF  
Zero Current Detect  
GND  
Power Good feature is only available in TLV62568P  
GND  
Copyright Ú 2016, Texas Instruments Incorporated  
4. TLV62568 Functional Block Diagram  
7.3 Feature Description  
7.3.1 Power Save Mode  
The device automatically enters Power Save Mode to improve efficiency at light load when the inductor current  
becomes discontinuous. In Power Save Mode, the converter reduces switching frequency and minimizes current  
consumption. In Power Save Mode, the output voltage rises slightly above the nominal output voltage. This effect  
is minimized by increasing the output capacitor.  
7.3.2 100% Duty Cycle Low Dropout Operation  
The device offers a low input-to-output voltage differential by entering 100% duty cycle mode. In this mode, the  
high-side MOSFET switch is constantly turned on and the low-side MOSFET is switched off. The minimum input  
voltage to maintain output regulation, depending on the load current and output voltage, is calculated as:  
VIN(MIN) = VOUT + IOUT x (RDS(ON) + RL)  
where  
RDS(ON) = High side FET on-resistance  
RL = Inductor ohmic resistance (DCR)  
(1)  
7.3.3 Soft Startup  
After enabling the device, internal soft startup circuitry ramps up the output voltage which reaches nominal output  
voltage during a startup time. This avoids excessive inrush current and creates a smooth output voltage rise  
slope. It also prevents excessive voltage drops of primary cells and rechargeable batteries with high internal  
impedance.  
版权 © 2016–2017, Texas Instruments Incorporated  
7
TLV62568, TLV62568P  
ZHCSFQ3B NOVEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
Feature Description (接下页)  
The TLV62568 is able to start into a pre-biased output capacitor. The converter starts with the applied bias  
voltage and ramps the output voltage to its nominal value.  
7.3.4 Switch Current Limit  
The switch current limit prevents the device from high inductor current and drawing excessive current from a  
battery or input voltage rail. Excessive current might occur with a heavy load or shorted output circuit condition.  
The TLV62568 adopts the peak current control by sensing the current of the high-side switch. Once the high-side  
switch current limit is reached, the high-side switch is turned off and low-side switch is turned on to ramp down  
the inductor current with an adaptive off-time.  
7.3.5 Under Voltage Lockout  
To avoid mis-operation of the device at low input voltages, under voltage lockout is implemented that shuts down  
the device at voltages lower than VUVLO with VHYS_UVLO hysteresis.  
7.3.6 Thermal Shutdown  
The device enters thermal shutdown once the junction temperature exceeds the thermal shutdown rising  
threshold, TJSD. Once the junction temperature falls below the falling threshold, the device returns to normal  
operation automatically.  
7.4 Device Functional Modes  
7.4.1 Enabling/Disabling the Device  
The device is enabled by setting the EN input to a logic High. Accordingly, a logic Low disables the device. If the  
device is enabled, the internal power stage starts switching and regulates the output voltage to the set point  
voltage. The EN input must be terminated and should not be left floating.  
7.4.2 Power Good  
The TLV62568P has a power good output. The PG pin goes high impedance once the output is above 95% of  
the nominal voltage, and is driven low once the output voltage falls below typically 90% of the nominal voltage.  
The PG pin is an open-drain output and is specified to sink up to 1 mA. The power good output requires a pull-up  
resistor connecting to any voltage rail less than 5.5 V. The PG signal can be used for sequencing of multiple rails  
by connecting it to the EN pin of other converters. Leave the PG pin unconnected when not used.  
1. PG Pin Logic  
LOGIC STATUS  
DEVICE CONDITIONS  
HIGH Z  
LOW  
EN = High, VFB VPG  
EN = High, VFB VPG  
EN = Low  
Enable  
Shutdown  
Thermal Shutdown  
UVLO  
TJ > TJSD  
1.4 V < VIN < VUVLO  
VIN 1.4 V  
Power Supply Removal  
8
版权 © 2016–2017, Texas Instruments Incorporated  
TLV62568, TLV62568P  
www.ti.com.cn  
ZHCSFQ3B NOVEMBER 2016REVISED NOVEMBER 2017  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The following section discusses the design of the external components to complete the power supply design for  
several input and output voltage options by using typical applications as a reference.  
8.2 Typical Application  
VIN  
VOUT  
1.8 V / 1.0 A  
TLV62568P  
VIN SW  
L1  
2.2 µH  
2.5 V to 5.5 V  
C1  
C2  
C3*  
4.7 µF  
10 µF  
R3  
499 k  
R1  
200 kꢀ  
EN  
VPG  
PG GND FB  
R2  
C3: Optional  
100 kꢀ  
Copyright Ú 2016, Texas Instruments Incorporated  
5. TLV62568 1.8-V Output Application  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 2 as the input parameters.  
2. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
2.5 V to 5.5 V  
1.8 V  
Input voltage  
Output voltage  
Maximum output current  
1.0 A  
3 lists the components used for the example.  
3. List of Components  
REFERENCE  
DESCRIPTION  
MANUFACTURER(1)  
C1  
C2  
4.7 µF, Ceramic Capacitor, 10 V, X7R, size 0805, GRM21BR71A475KA73L  
10 µF, Ceramic Capacitor, 10 V, X7R, size 0805, GRM21BR71A106KE51L  
2.2 µH, Power Inductor, SDER041H-2R2MS  
Murata  
Murata  
Cyntec  
Std.  
L1  
R1,R2,R3  
C3  
Chip resistor,1%,size 0603  
Optional, 6.8 pF if it is needed  
Std.  
(1) See Third-party Products Disclaimer  
版权 © 2016–2017, Texas Instruments Incorporated  
9
 
 
TLV62568, TLV62568P  
ZHCSFQ3B NOVEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TLV62568 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Setting the Output Voltage  
An external resistor divider is used to set output voltage according to 公式 2.  
When sizing R2, in order to achieve low current consumption and acceptable noise sensitivity, use a maximum of  
200 kΩ for R2. Larger currents through R2 improve noise sensitivity and output voltage accuracy but increase  
current consumption.  
R1  
R2  
R1  
R2  
æ
ö
÷
ø
æ
ö
÷
ø
VOUT = VFB ´ 1+  
= 0.6V ´ 1+  
ç
ç
è
è
(2)  
A feed forward capacitor, C3 improves the loop bandwidth to make a fast transient response (shown in 19).  
6.8-pF capacitance is recommended for R2 of 100-kΩ resistance. A more detailed discussion on the optimization  
for stability vs. transient response can be found in SLVA289.  
8.2.2.3 Output Filter Design  
The inductor and output capacitor together provide a low-pass filter. To simplify this process, 4 outlines  
possible inductor and capacitor value combinations. Checked cells represent combinations that are proven for  
stability by simulation and lab test. Further combinations should be checked for each individual application.  
4. Matrix of Output Capacitor and Inductor Combinations  
COUT [µF](2)  
VOUT [V]  
L [µH](1)  
4.7  
10  
22  
2x 22  
100  
0.6 VOUT < 1.2  
1
2.2  
1
+
++(3)  
+
1.2 VOUT < 1.8  
1.8 VOUT  
+
++(3)  
+
2.2  
1
+
+
+
2.2  
++(3)  
+
+
(1) Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by +20% and -30%.  
(2) Capacitor tolerance and bias voltage de-rating is anticipated. The effective capacitance can vary by +20% and -50%.  
(3) This LC combination is the standard value and recommended for most applications.  
10  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
TLV62568, TLV62568P  
www.ti.com.cn  
ZHCSFQ3B NOVEMBER 2016REVISED NOVEMBER 2017  
8.2.2.4 Inductor Selection  
The main parameters for inductor selection is inductor value and then saturation current of the inductor. To  
calculate the maximum inductor current under static load conditions, 公式 3 is given:  
DIL  
IL,MAX = IOUT,MAX  
+
2
VOUT  
1-  
V
IN  
DIL = VOUT  
´
L ´ fSW  
where:  
IOUT,MAX is the maximum output current  
ΔIL is the inductor current ripple  
fSW is the switching frequency  
L is the inductor value  
(3)  
It is recommended to choose a saturation current for the inductor that is approximately 20% to 30% higher than  
IL,MAX. In addition, DC resistance and size should also be taken into account when selecting an appropriate  
inductor.  
8.2.2.5 Input and Output Capacitor Selection  
The architecture of the TLV62568 allows use of tiny ceramic-type output capacitors with low equivalent series  
resistance (ESR). These capacitors provide low output voltage ripple and are thus recommended. To keep its  
resistance up to high frequencies and to achieve narrow capacitance variation with temperature, it is  
recommended to use X7R or X5R dielectric.  
The input capacitor is the low impedance energy source for the converter that helps provide stable operation. A  
low ESR multilayer ceramic capacitor is recommended for best filtering. For most applications, 4.7-µF input  
capacitance is sufficient; a larger value reduces input voltage ripple.  
The TLV62568 is designed to operate with an output capacitor of 10 µF to 47 µF, as outlined in 4.  
版权 © 2016–2017, Texas Instruments Incorporated  
11  
 
TLV62568, TLV62568P  
ZHCSFQ3B NOVEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
8.2.3 Application Performance Curves  
VIN = 5 V, VOUT = 1.8 V, L = 2.2 μH, TA = 25°C, unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 5.0 V  
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 5.0 V  
1m  
10m  
100m  
1
1m  
10m  
100m  
1
Load (A)  
Load (A)  
D004  
D005  
6. 1.2-V Output Efficiency  
7. 1.8-V Output Efficiency  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VIN = 3.3 V  
VIN = 5.0 V  
VIN = 5.0 V  
1m  
10m  
100m  
1
1m  
10m  
100m  
1
Load (A)  
Load (A)  
D007  
D006  
9. 3.3-V Output Efficiency  
8. 2.5-V Output Efficiency  
1.5  
1
1.0  
0.5  
0.5  
0
0.0  
-0.5  
-1  
-0.5  
VOUT = 1.8 V  
VOUT = 3.3 V  
IOUT = 0.5A  
IOUT = 1.0A  
-1.5  
-1.0  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Load (A)  
Input Voltage (V)  
D009  
D010  
VIN = 5 V  
VOUT = 1.8 V  
10. Load Regulation  
11. Line Regulation  
12  
版权 © 2016–2017, Texas Instruments Incorporated  
TLV62568, TLV62568P  
www.ti.com.cn  
ZHCSFQ3B NOVEMBER 2016REVISED NOVEMBER 2017  
2500  
2500  
2000  
1500  
1000  
500  
2000  
1500  
1000  
500  
VOUT = 1.2 V  
VOUT = 1.8 V  
VOUT = 2.5 V  
VOUT = 3.3 V  
VOUT = 1.2 V  
VOUT = 1.8 V  
VOUT = 2.5 V  
VOUT = 3.3 V  
0
0
0
2.5  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Load (A)  
1
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
D011  
D012  
VIN = 5 V  
IOUT = 0.5 A  
13. Switching Frequency vs Input Voltage  
12. Switching Frequency vs Load  
VSW  
VSW  
2V/DIV  
2V/DIV  
VOUT  
10mV/DIV  
AC  
VOUT  
20mV/DIV  
AC  
ICOIL  
ICOIL  
0.5A/DIV  
0.5A/DIV  
Time - 500ns/DIV  
Time - 2s/DIV  
D013  
D014  
IOUT = 0.5 A  
IOUT = 0.1 A  
15. Power Save Mode Operation  
14. PWM Operation  
VEN  
VEN  
3V/DIV  
3V/DIV  
VOUT  
VOUT  
1V/DIV  
1V/DIV  
ICOIL  
ICOIL  
1A/DIV  
0.5A/DIV  
Time - 250s/DIV  
Time - 250s/DIV  
D015  
D016  
IOUT = 1 A  
IOUT = 0.1 A  
16. Startup with Load  
17. Startup with Load  
版权 © 2016–2017, Texas Instruments Incorporated  
13  
TLV62568, TLV62568P  
ZHCSFQ3B NOVEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
VOUT  
0.1V/DIV  
VOUT  
0.1V/DIV  
ICOIL  
0.5A/DIV  
ICOIL  
0.5A/DIV  
Time - 10s/DIV  
Time - 10s/DIV  
D017  
D018  
Load Step 0.3 A to 1 A, 1A/µs slew rate  
Load Step 0.3 A to 1 A, 1A/µs slew rate  
C3 = 6.8 pF  
18. Load Transient  
19. Load Transient with a feed forward capacitor  
9 Power Supply Recommendations  
The power supply to the TLV62568 must have a current rating according to the supply voltage, output voltage  
and output current.  
14  
版权 © 2016–2017, Texas Instruments Incorporated  
TLV62568, TLV62568P  
www.ti.com.cn  
ZHCSFQ3B NOVEMBER 2016REVISED NOVEMBER 2017  
10 Layout  
10.1 Layout Guidelines  
The PCB layout is an important step to maintain the high performance of the TLV62568 device.  
The input/output capacitors and the inductor should be placed as close as possible to the IC. This keeps the  
power traces short. Routing these power traces direct and wide results in low trace resistance and low  
parasitic inductance.  
The low side of the input and output capacitors must be connected properly to the power GND to avoid a  
GND potential shift.  
The sense traces connected to FB are signal traces. Special care should be taken to avoid noise being  
induced. Keep these traces away from SW nodes.  
GND layers might be used for shielding.  
10.2 Layout Example  
GND  
L1  
VIN  
VOUT  
R1  
R2  
PAC101  
VIN  
PAC601  
SW  
GND  
EN  
FB  
GND  
VIN  
PG  
EN  
SW  
FB  
C2  
C1  
C2  
C1  
PAR202  
PAR201  
R2  
R1  
VIN  
VOUT  
L1  
GND  
20. TLV62568DBV Layout  
21. TLV62568PDRL Layout  
10.3 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow,  
convection surfaces, and the presence of other heat-generating components affect the power dissipation limits of  
a given component.  
Two basic approaches for enhancing thermal performance are listed below:  
Improving the power dissipation capability of the PCB design  
Introducing airflow in the system  
For more details on how to use the thermal parameters, see the application notes: Thermal Characteristics  
Application Notes SZZA017 and SPRA953.  
版权 © 2016–2017, Texas Instruments Incorporated  
15  
TLV62568, TLV62568P  
ZHCSFQ3B NOVEMBER 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.1.2 使用 WEBENCH® 工具定制设计方案  
单击此处,使用 TLV62568 器件并借助 WEBENCH® 电源设计器创建定制设计方案。  
1. 在开始阶段键入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化关键设计参数,如效率、封装和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他解决方案进行比较。  
WEBENCH Power Designer 提供一份定制原理图以及罗列实时价格和组件可用性的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案导出至常用 CAD 格式  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com/WEBENCH。  
11.2 文档支持  
11.2.1 相关文档  
应用报告《半导体和 IC 封装热指标》(文件编号:SPRA953)  
应用报告《采用 JEDEC PCB 设计的线性和逻辑封装散热特性》(文件编号:SZZA017)  
11.3 接收文档更新通知  
要接收文档更新通知,请转至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品信  
息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
16  
版权 © 2016–2017, Texas Instruments Incorporated  
TLV62568, TLV62568P  
www.ti.com.cn  
ZHCSFQ3B NOVEMBER 2016REVISED NOVEMBER 2017  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2016–2017, Texas Instruments Incorporated  
17  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Sep-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV62568DBVR  
TLV62568DBVT  
TLV62568DRLR  
TLV62568DRLT  
TLV62568PDDCR  
TLV62568PDDCT  
TLV62568PDRLR  
TLV62568PDRLT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
DBV  
DBV  
DRL  
DRL  
DDC  
DDC  
DRL  
DRL  
5
5
6
6
6
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
14VF  
14VF  
18L  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU | SN  
Call TI | SN  
Call TI | SN  
Call TI | SN  
Call TI | SN  
Call TI | SN  
Call TI | SN  
SOT-5X3  
SOT-5X3  
18L  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
(9X9, 9XW)  
(9X9, 9XW)  
18N  
ACTIVE  
ACTIVE  
SOT-5X3  
SOT-5X3  
18N  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Sep-2022  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV62568DBVR  
TLV62568DBVT  
TLV62568DRLR  
TLV62568DRLT  
TLV62568PDDCR  
SOT-23  
SOT-23  
DBV  
DBV  
DRL  
DRL  
DDC  
5
5
6
6
6
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
3.2  
3.2  
2.0  
2.0  
3.2  
3.2  
3.2  
1.8  
1.8  
3.2  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
SOT-5X3  
SOT-5X3  
3000  
250  
0.75  
0.75  
1.4  
SOT-23-  
THIN  
3000  
TLV62568PDDCT  
SOT-23-  
THIN  
DDC  
6
250  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
TLV62568PDRLR  
TLV62568PDRLT  
SOT-5X3  
SOT-5X3  
DRL  
DRL  
6
6
3000  
250  
180.0  
180.0  
8.4  
8.4  
2.0  
2.0  
1.8  
1.8  
0.75  
0.75  
4.0  
4.0  
8.0  
8.0  
Q3  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV62568DBVR  
TLV62568DBVT  
TLV62568DRLR  
TLV62568DRLT  
TLV62568PDDCR  
TLV62568PDDCT  
TLV62568PDRLR  
TLV62568PDRLT  
SOT-23  
SOT-23  
DBV  
DBV  
DRL  
DRL  
DDC  
DDC  
DRL  
DRL  
5
5
6
6
6
6
6
6
3000  
250  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
SOT-5X3  
3000  
250  
SOT-5X3  
SOT-23-THIN  
SOT-23-THIN  
SOT-5X3  
3000  
250  
3000  
250  
SOT-5X3  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DDC0006A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
6
4X 0.95  
1.9  
3.05  
2.75  
4
3
0.5  
0.3  
0.1  
6X  
TYP  
0.0  
0.2  
C A B  
C
0 -8 TYP  
0.25  
GAGE PLANE  
SEATING PLANE  
0.20  
0.12  
TYP  
0.6  
0.3  
TYP  
4214841/C 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X (0.95)  
4
3
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4214841/C 04/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214841/C 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DRL0006A  
SOT - 0.6 mm max height  
S
C
A
L
E
8
.
0
0
0
PLASTIC SMALL OUTLINE  
1.7  
1.5  
PIN 1  
ID AREA  
A
1
6
4X 0.5  
1.7  
1.5  
2X 1  
NOTE 3  
4
3
1.3  
1.1  
0.3  
6X  
0.05  
TYP  
0.00  
B
0.1  
0.6 MAX  
C
SEATING PLANE  
0.05 C  
0.18  
0.08  
6X  
SYMM  
SYMM  
0.27  
0.15  
6X  
0.1  
0.05  
C A B  
0.4  
0.2  
6X  
4223266/C 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-293 Variation UAAD  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRL0006A  
SOT - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
6X (0.67)  
SYMM  
1
6
6X (0.3)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.48)  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDERMASK DETAILS  
4223266/C 12/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRL0006A  
SOT - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
6X (0.67)  
SYMM  
1
6
6X (0.3)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.48)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4223266/C 12/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV62568PDRLR

采用 SOT23 或 SOT563 封装的 2.5V 至 5.5V 输入、1A 高效降压转换器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62568PDRLT

采用 SOT23 或 SOT563 封装的 2.5V 至 5.5V 输入、1A 高效降压转换器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62569

采用 SOT23 或 SOT563 封装的 2.5V-5.5V 输入、2A 高效降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62569A

采用 SOT 封装并具有强制 PWM 的 2A 高效降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62569ADRLR

采用 SOT 封装并具有强制 PWM 的 2A 高效降压转换器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62569ADRLT

采用 SOT 封装并具有强制 PWM 的 2A 高效降压转换器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62569APDRLR

采用 SOT 封装并具有强制 PWM 的 2A 高效降压转换器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62569APDRLT

采用 SOT 封装并具有强制 PWM 的 2A 高效降压转换器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62569DBVR

采用 SOT23 或 SOT563 封装的 2.5V-5.5V 输入、2A 高效降压转换器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62569DBVT

采用 SOT23 或 SOT563 封装的 2.5V-5.5V 输入、2A 高效降压转换器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62569DRLR

采用 SOT23 或 SOT563 封装的 2.5V-5.5V 输入、2A 高效降压转换器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62569DRLT

采用 SOT23 或 SOT563 封装的 2.5V-5.5V 输入、2A 高效降压转换器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI