TLV62569APDRLT [TI]

采用 SOT 封装并具有强制 PWM 的 2A 高效降压转换器 | DRL | 6 | -40 to 125;
TLV62569APDRLT
型号: TLV62569APDRLT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 SOT 封装并具有强制 PWM 的 2A 高效降压转换器 | DRL | 6 | -40 to 125

转换器
文件: 总23页 (文件大小:1844K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV62568A, TLV62569A  
ZHCSI23B APRIL 2018REVISED MARCH 2020  
采用 SOT563 封装并具有强制 PWM TLV6256xA 1A2A 降压转换器  
1 特性  
3 说明  
1
强制 PWM 模式可减少输出电压纹波  
TLV62568ATLV62569A 器件是经过优化而具有高效  
率和紧凑型解决方案尺寸的同步降压型直流/直流转换  
器。该器件集成了输出电流高达 2A 的开关。在整个负  
载范围内,该器件将以 1.5MHz 开关频率在脉宽调制  
(PWM) 模式下运行。关断时,流耗减少至 2μA 以下。  
效率高达 95%  
RDS(ON) 开关:100mΩ/60mΩ  
输入电压范围为 2.5V 5.5V  
可调输出电压范围为 0.6V VIN  
100% 占空比,可实现超低压降  
1.5MHz 典型开关频率  
内部软启动电路可限制启动期间的浪涌电流。此外,  
还内置了 诸如输出过流保护、热关断保护和电源正常  
输出等其他特性。该器件采用 SOT563 封装。  
电源正常输出  
过流保护  
器件信息(1)  
内部软启动  
器件型号  
封装  
封装尺寸(标称值)  
热关断保护  
TLV62568ADRL  
TLV62568APDRL  
TLV62569ADRL  
TLV62569APDRL  
采用 SOT563 封装  
TLV62568TLV62569 引脚对引脚兼容  
借助 WEBENCH® 电源设计器创建定制设计方案  
SOT563 (6)  
1.60mm x 1.60mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
2 应用  
通用负载点 (POL) 电源  
器件比较  
STB DVR  
器件型号  
输出电流  
功能  
IP 网络摄像头  
TLV62568ADRL  
TLV62568APDRL  
TLV62569ADRL  
TLV62569APDRL  
-
无线路由器  
1A  
电源正常  
-
固态硬盘 (SSD) – 企业级  
2A  
电源正常  
sp  
sp  
sp  
sp5V 输入电压下的效率  
sp典型应用原理图  
VIN  
2.5 V to 5.5 V  
VOUT  
1.8 V / 2.0 A  
100  
95  
90  
85  
80  
75  
70  
65  
60  
TLV62569A  
L1  
1.0 µH  
VIN  
SW  
C1  
4.7 µF  
C2  
22 µF  
C3*  
R1  
200 k  
EN  
GND FB  
R2  
100 kꢀ  
C3: Optional  
VOUT = 1.2 V  
VOUT = 1.8 V  
VOUT = 2.5 V  
VOUT = 3.3 V  
Copyright Ú 2016, Texas Instruments Incorporated  
0.0  
0.5  
1.0  
Load (A)  
1.5  
2.0  
D008  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSE95  
 
 
 
 
TLV62568A, TLV62569A  
ZHCSI23B APRIL 2018REVISED MARCH 2020  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ...................................... 3  
6.2 ESD Ratings.............................................................. 3  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 4  
6.6 Typical Characteristics.............................................. 5  
Detailed Description .............................................. 6  
7.1 Overview ................................................................... 6  
7.2 Functional Block Diagrams ....................................... 6  
7.3 Feature Description................................................... 6  
7.4 Device Functional Modes.......................................... 7  
8
9
Application and Implementation .......................... 8  
8.1 Application Information.............................................. 8  
8.2 Typical Application .................................................... 8  
Power Supply Recommendations...................... 13  
10 Layout................................................................... 13  
10.1 Layout Guidelines ................................................. 13  
10.2 Layout Example .................................................... 13  
10.3 Thermal Considerations........................................ 14  
11 器件和文档支持 ..................................................... 14  
11.1 器件支持 ............................................................... 14  
11.2 文档支持 ............................................................... 14  
11.3 接收文档更新通知 ................................................. 14  
11.4 支持资源................................................................ 14  
11.5 ....................................................................... 15  
11.6 静电放电警告......................................................... 15  
11.7 Glossary................................................................ 15  
12 机械、封装和可订购信息....................................... 15  
7
4 修订历史记录  
Changes from Revision A (May 2018) to Revision B  
Page  
已更改 Power Good pin sink current capability from 1 mA to 2 mA ...................................................................................... 7  
Changes from Original (April 2018) to Revision A  
Page  
已更改 将状态从预告信息更改为生产数据” ........................................................................................................................ 1  
2
Copyright © 2018–2020, Texas Instruments Incorporated  
 
TLV62568A, TLV62569A  
www.ti.com.cn  
ZHCSI23B APRIL 2018REVISED MARCH 2020  
5 Pin Configuration and Functions  
SOT563-6  
DRL Package  
(Top View)  
NC/PG EN SW  
6
1
5
2
4
3
FB GND VIN  
Pin Functions  
SOT563-6  
NAME  
I/O/PWR  
DESCRIPTION  
PIN  
NUMBER  
FB  
1
2
3
I
Feedback pin for the internal control loop. Connect this pin to an external feedback divider.  
GND  
VIN  
PWR  
PWR  
Ground pin.  
Power supply voltage input.  
Switch pin connected to the internal FET switches and inductor terminal. Connect the inductor of  
the output filter to this pin.  
SW  
EN  
PG  
NC  
4
5
6
6
PWR  
Device enable logic input. Logic high enables the device, logic low disables the device and turns  
it into shutdown. Do not leave floating.  
I
O
-
Power good open drain output pin for TLV62569APDRL. The pull-up resistor should not be  
connected to any voltage higher than 5.5V. If it's not used, leave the pin floating.  
No connection pin for TLV62569ADRL. The pin can be connected to the output or the ground for  
enhancing thermal performance. Or leave it floating.  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
-0.3  
-0.3  
-3.0  
-0.3  
-40  
MAX  
UNIT  
VIN, EN, PG  
6
SW (DC)  
Voltage(2)  
VIN + 0.3  
V
SW (AC, less than 10ns)(3)  
9
FB  
3
TJ  
Junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
-65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
(3) While switching.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±2000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2018–2020, Texas Instruments Incorporated  
3
TLV62568A, TLV62569A  
ZHCSI23B APRIL 2018REVISED MARCH 2020  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.5  
0.6  
0
NOM  
MAX  
UNIT  
V
VIN  
Input voltage  
5.5  
VIN  
2
VOUT  
IOUT  
TJ  
Output voltage  
Output current  
Junction temperature  
V
A
-40  
125  
°C  
6.4 Thermal Information  
TLV62568Ax, TLV62569Ax  
(1)  
THERMAL METRIC  
JEDEC (DRL)  
EVM (DRL)  
6 PINS  
UNIT  
6 PINS  
142.8  
51.1  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
124.8  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
(2)  
n/a  
(2)  
28.9  
n/a  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.4  
1.6  
ΨJB  
28.7  
23.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Not applicable to an EVM.  
6.5 Electrical Characteristics  
VIN = 5.0 V, TJ = 25 °C, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
ISD  
Shutdown current into VIN pin  
Under voltage lock out  
EN = 0 V  
0.01  
2.3  
2
µA  
V
VIN falling  
2.45  
VUVLO  
under voltage lock out hysteresis  
100  
150  
130  
mV  
TJ rising  
TJ falling  
TJSD  
Thermal shutdown  
°C  
LOGIC INTERFACE  
VIH  
VIL  
High-level input voltage at EN pin  
2.5 VIN 5.5  
2.5 VIN 5.5  
1.2  
V
V
Low-level input voltage at EN pin  
0.4  
0.4  
From EN high to 95% of VOUT  
nominal  
tSS  
Soft startup time  
0.9  
ms  
VFB rising, referenced to VFB nominal  
VFB falling, referenced to VFB nominal  
ISINK = 1 mA  
95%  
90%  
VPG  
Power good threshold  
VPG,OL  
IPG,LKG  
tPG,DLY  
Low-level output voltage at PG pin  
Input leakage current into PG pin  
Power good delay time  
V
VPG = 5 V  
100  
40  
nA  
µs  
VFB falling  
4
Copyright © 2018–2020, Texas Instruments Incorporated  
TLV62568A, TLV62569A  
www.ti.com.cn  
ZHCSI23B APRIL 2018REVISED MARCH 2020  
Electrical Characteristics (continued)  
VIN = 5.0 V, TJ = 25 °C, unless otherwise noted  
PARAMETER  
OUTPUT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VFB  
IFB  
Feedback regulation voltage  
Input leakage current into FB pin  
High-side FET on resistance  
Low-side FET on resistance  
0.588  
0.6  
10  
0.612  
V
VFB = 0.6 V  
nA  
100  
60  
RDS(on)  
mΩ  
TLV62569A, TLV62569AP  
TLV62568A, TLV62568AP  
3
2
ILIM  
fSW  
High-side FET current limit  
Switching frequency  
A
1.5  
MHz  
6.6 Typical Characteristics  
0.606  
0.603  
0.600  
0.597  
0.594  
0.5  
VIN = 2.5V  
VIN = 3.6V  
VIN = 5.0V  
0.4  
0.3  
0.2  
0.1  
0.0  
TJ = -40°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
-40  
-20  
0
20  
40  
60  
Junction Temperature (°C)  
80  
100  
120  
D003  
D002  
2. FB Voltage Accuracy  
1. Shutdown Current vs Junction Temperature  
4.0  
3.0  
2.5  
2.0  
1.5  
3.5  
3.0  
2.5  
VIN = 2.7V  
VIN = 3.6V  
VIN = 5.0V  
VIN = 2.7V  
VIN = 3.6V  
VIN = 5.0V  
-40  
-20  
0
20  
Junction Temperature (°C)  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
Junction Temperature (°C)  
40  
60  
80  
100  
120  
D020  
D021  
3. Switch Current Limit, TLV62569A  
4. Switch Current Limit, TLV62568A  
版权 © 2018–2020, Texas Instruments Incorporated  
5
TLV62568A, TLV62569A  
ZHCSI23B APRIL 2018REVISED MARCH 2020  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The device is a high-efficiency synchronous step-down converter. The device operates with an adaptive off time  
with peak current control scheme. The device operates at typically 1.5-MHz frequency pulse width modulation  
(PWM) . Based on the VIN/VOUT ratio, a simple circuit sets the required off time for the low-side MOSFET. It  
makes the switching frequency relatively constant regardless of the variation of input voltage, output voltage, and  
load current.  
7.2 Functional Block Diagrams  
PG  
VIN  
VPG  
VFB  
Thermal  
Shutdown  
+
Soft Start  
UVLO  
œ
GND  
EN  
Control Logic  
Peak Current Detect  
VREF  
SW  
+
_
Gate  
Drive  
Modulator  
FB  
VSW  
VIN  
TOFF  
GND  
GND  
Copyright Ú 2018, Texas Instruments Incorporated  
5. TLV62569A Functional Block Diagram  
7.3 Feature Description  
7.3.1 100% Duty Cycle Low Dropout Operation  
The device offers a low input-to-output voltage differential by entering 100% duty cycle mode. In this mode, the  
high-side MOSFET switch is constantly turned on and the low-side MOSFET is switched off. The minimum input  
voltage to maintain output regulation, depending on the load current and output voltage, is calculated as:  
VIN(MIN) = VOUT + IOUT x (RDS(ON) + RL)  
where  
RDS(ON) = High side FET on-resistance  
RL = Inductor ohmic resistance (DCR)  
(1)  
7.3.2 Soft Startup  
After enabling the device, internal soft startup circuitry ramps up the output voltage which reaches nominal output  
voltage during a startup time. This avoids excessive inrush current and creates a smooth output voltage rise  
slope. It also prevents excessive voltage drops of primary cells and rechargeable batteries with high internal  
impedance.  
6
版权 © 2018–2020, Texas Instruments Incorporated  
TLV62568A, TLV62569A  
www.ti.com.cn  
ZHCSI23B APRIL 2018REVISED MARCH 2020  
Feature Description (接下页)  
The device is able to start into a pre-biased output capacitor. The converter starts with the applied bias voltage  
and ramps the output voltage to its nominal value.  
7.3.3 Switch Current Limit  
The switch current limit prevents the device from high inductor current and drawing excessive current from a  
battery or input voltage rail. Excessive current might occur with a heavy load or shorted output circuit condition.  
The device adopts the peak current control by sensing the current of the high-side switch. Once the high-side  
switch current limit is reached, the high-side switch is turned off and low-side switch is turned on to ramp down  
the inductor current with an adaptive off-time.  
7.3.4 Under Voltage Lockout  
To avoid mis-operation of the device at low input voltages, under voltage lockout is implemented that shuts down  
the device at voltages lower than VUVLO with VHYS_UVLO hysteresis.  
7.3.5 Thermal Shutdown  
The device enters thermal shutdown once the junction temperature exceeds the thermal shutdown rising  
threshold, TJSD. Once the junction temperature falls below the falling threshold, the device returns to normal  
operation automatically.  
7.4 Device Functional Modes  
7.4.1 Enabling/Disabling the Device  
The device is enabled by setting the EN input to a logic High. Accordingly, a logic Low disables the device. If the  
device is enabled, the internal power stage starts switching and regulates the output voltage to the set point  
voltage. The EN input must be terminated and should not be left floating.  
7.4.2 Power Good  
The TLV62568AP and TLV62569AP have a power good output. The PG pin goes high impedance once the  
output is above 95% of the nominal voltage, and is driven low once the output voltage falls below typically 90%  
of the nominal voltage. The PG pin is an open-drain output and is specified to sink up to 2 mA. The power good  
output requires a pull-up resistor connecting to any voltage rail less than 5.5 V. The PG signal can be used for  
sequencing of multiple rails by connecting it to the EN pin of other converters. Leave the PG pin unconnected  
when not used.  
1. PG Pin Logic  
LOGIC STATUS  
DEVICE CONDITIONS  
HIGH Z  
LOW  
EN = High, VFB VPG  
EN = High, VFB VPG  
EN = Low  
Enable  
Shutdown  
Thermal Shutdown  
UVLO  
TJ > TJSD  
1.4 V < VIN < VUVLO  
VIN 1.4 V  
Power Supply Removal  
版权 © 2018–2020, Texas Instruments Incorporated  
7
TLV62568A, TLV62569A  
ZHCSI23B APRIL 2018REVISED MARCH 2020  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The following section discusses the design of the external components to complete the power supply design for  
several input and output voltage options by using typical applications as a reference.  
8.2 Typical Application  
VIN  
2.5 V to 5.5 V  
VOUT  
1.8 V / 2.0 A  
TLV62569A  
L1  
1.0 µH  
VIN  
SW  
C1  
4.7 µF  
C2  
22 µF  
C3*  
R1  
200 k  
EN  
GND FB  
R2  
100 kꢀ  
C3: Optional  
Copyright Ú 2016, Texas Instruments Incorporated  
6. TLV62569A 1.8-V Output Application  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 2 as the input parameters.  
2. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
Input voltage  
2.5 V to 5.5 V  
1.8 V  
Output voltage  
Maximum output current  
2.0 A  
3 lists the components used for the example.  
3. List of Components  
REFERENCE  
DESCRIPTION  
MANUFACTURER(1)  
C1  
C2  
4.7 µF, Ceramic Capacitor, 10 V, X7R, size 0805, GRM21BR71A475KA73L  
22 µF, Ceramic Capacitor, 6.3 V, X7T, size 0805, GRM21BD70J226ME44  
1.0 µH, Power Inductor, size 4mmx4mm, XAL4020-102ME  
Chip resistor,1%,size 0603  
Murata  
Murata  
Coilcraft  
Std.  
L1  
R1,R2,R3  
C3  
Optional, 10 pF if it is needed  
Std.  
(1) See Third-party Products Disclaimer  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TLV62569A device with the WEBENCH® Power Designer.  
8
版权 © 2018–2020, Texas Instruments Incorporated  
 
 
TLV62568A, TLV62569A  
www.ti.com.cn  
ZHCSI23B APRIL 2018REVISED MARCH 2020  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Setting the Output Voltage  
An external resistor divider is used to set output voltage according to 公式 2.  
When sizing R2, in order to achieve low current consumption and acceptable noise sensitivity, use a maximum of  
200 kΩ for R2. Larger currents through R2 improve noise sensitivity and output voltage accuracy but increase  
current consumption.  
R1  
R2  
R1  
R2  
æ
ö
÷
ø
æ
ö
÷
ø
VOUT = VFB ´ 1+  
= 0.6V ´ 1+  
ç
ç
è
è
(2)  
A feed forward capacitor, C3 improves the loop bandwidth to make a fast transient response (shown in 24). A  
10-pF capacitance is recommended for R2 of 100-kΩ resistance. A more detailed discussion on the optimization  
for stability vs. transient response can be found in SLVA289.  
8.2.2.3 Output Filter Design  
The inductor and output capacitor together provide a low-pass filter. To simplify this process, 4 outlines  
possible inductor and capacitor value combinations. Checked cells represent combinations that are proven for  
stability by simulation and lab test. Further combinations should be checked for each individual application.  
4. Matrix of Output Capacitor and Inductor Combinations  
COUT [µF](2)  
VOUT [V]  
L [µH](1)  
4.7  
10  
22  
47  
+
100  
0.6 VOUT < 1.2  
1.2 VOUT  
1
1
++(3)  
+
(1) Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by +20% and -30%.  
(2) Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance can vary by +20% and -50%.  
(3) This LC combination is the standard value and recommended for most applications.  
8.2.2.4 Inductor Selection  
The main parameters for inductor selection is inductor value and then saturation current of the inductor. To  
calculate the maximum inductor current under static load conditions, 公式 3 is given:  
DIL  
IL,MAX = IOUT,MAX  
+
2
VOUT  
1-  
V
IN  
DIL = VOUT  
´
L ´ fSW  
where:  
IOUT,MAX is the maximum output current  
ΔIL is the inductor current ripple  
版权 © 2018–2020, Texas Instruments Incorporated  
9
 
 
 
TLV62568A, TLV62569A  
ZHCSI23B APRIL 2018REVISED MARCH 2020  
www.ti.com.cn  
fSW is the switching frequency  
L is the inductor value  
(3)  
It is recommended to choose a saturation current for the inductor that is approximately 20% to 30% higher than  
IL,MAX. In addition, DC resistance and size should also be taken into account when selecting an appropriate  
inductor.  
8.2.2.5 Input and Output Capacitor Selection  
The architecture of the device allows use of tiny ceramic-type output capacitors with low equivalent series  
resistance (ESR). These capacitors provide low output voltage ripple and are thus recommended. To keep its  
resistance up to high frequencies and to achieve narrow capacitance variation with temperature, it is  
recommended to use X7T or X5R dielectric.  
The input capacitor is the low impedance energy source for the converter that helps provide stable operation. A  
low ESR multilayer ceramic capacitor is recommended for best filtering. For most applications, 4.7-μF input  
capacitance is sufficient; a larger value reduces input voltage ripple.  
The device is designed to operate with an output capacitor of 22 µF to 47 µF, as outlined in 4.  
8.2.3 Application Performance Curves  
VIN = 5 V, VOUT = 1.8 V, TA = 25 °C, external components shown in 3, unless otherwise noted.  
10  
8
95  
90  
85  
80  
75  
70  
65  
60  
55  
6
4
TJ = -40°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
2
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
0
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
0.0  
0.5  
1.0  
Load (A)  
1.5  
2.0  
D001  
D005  
VOUT = 0.6 V  
7. Quiescent Current  
8. 0.6-V Output Efficiency  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
0.0  
0.5  
1.0  
Load (A)  
1.5  
2.0  
0.0  
0.5  
1.0  
Load (A)  
1.5  
2.0  
D006  
D004  
9. 1.2-V Output Efficiency  
10. 1.8-V Output Efficiency  
10  
版权 © 2018–2020, Texas Instruments Incorporated  
TLV62568A, TLV62569A  
www.ti.com.cn  
ZHCSI23B APRIL 2018REVISED MARCH 2020  
100  
95  
90  
85  
80  
75  
70  
65  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
VIN = 4.2 V  
VIN = 5.0 V  
60  
0.0  
0.5  
1.0  
Load (A)  
1.5  
2.0  
0.0  
0.5  
1.0  
Load (A)  
1.5  
2.0  
D019  
D007  
11. 2.5-V Output Efficiency  
12. 3.3-V Output Efficiency  
1.00  
0.50  
100  
95  
90  
85  
80  
75  
70  
65  
0.00  
-0.50  
VOUT = 0.6 V  
VOUT = 1.2 V  
VOUT = 1.8 V  
VOUT = 2.5 V  
VOUT = 3.3 V  
VOUT = 1.2 V  
VOUT = 1.8 V  
VOUT = 3.3 V  
-1.00  
60  
0.0  
0.5  
1.0  
Load (A)  
1.5  
2.0  
0.0  
0.5  
1.0  
Load (A)  
1.5  
2.0  
D009  
D008  
VIN = 5 V  
14. Load Regulation  
13. 5.0-V Input Efficiency  
1.00  
0.50  
0.00  
-0.50  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VOUT = 0.6 V  
VOUT = 1.2 V  
VOUT = 1.8 V  
VOUT = 3.3 V  
TA = 25°C  
TA = 65°C  
TA = 85°C  
-1.00  
2.5  
3.0  
IOUT = 1 A  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
D010  
D019  
PG is high  
15. Line Regulation  
16. Maximum Output Current at VOUT = 1.8 V  
版权 © 2018–2020, Texas Instruments Incorporated  
11  
TLV62568A, TLV62569A  
ZHCSI23B APRIL 2018REVISED MARCH 2020  
www.ti.com.cn  
2000  
1500  
2000  
1500  
1000  
500  
0
1000  
VOUT = 0.6 V  
VOUT = 1.2 V  
VOUT = 1.8 V  
VOUT = 2.5 V  
VOUT = 3.3 V  
VOUT = 0.6 V  
VOUT = 1.2 V  
500  
VOUT = 1.8 V  
VOUT = 2.5 V  
VOUT = 3.3 V  
0
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
0
0.5  
1
Load (A)  
1.5  
2
D012  
D011  
IOUT = 1 A  
VIN = 5 V  
18. Switching Frequency vs Input Voltage  
17. Switching Frequency vs Load  
VSW  
VSW  
5V/DIV  
5V/DIV  
ICOIL  
ICOIL  
0.5A/DIV  
0.5A/DIV  
VOUT  
10mV/DIV  
AC  
VOUT  
10mV/DIV  
AC  
Time - 500ns/DIV  
Time - 500ns/DIV  
D014  
D013  
IOUT = 36 mA  
IOUT = 1 A  
19. PWM Operation  
20. PWM Operation  
VEN  
VEN  
2V/DIV  
2V/DIV  
VOUT  
VOUT  
0.5V/DIV  
0.5V/DIV  
ICOIL  
ICOIL  
1A/DIV  
0.5A/DIV  
Time - 200s/DIV  
Time - 500s/DIV  
D015  
D016  
Load = 0.9 Ω  
21. Startup and Shutdown with Load  
Load = 9 Ω  
22. Startup and Shutdown with Load  
12  
版权 © 2018–2020, Texas Instruments Incorporated  
TLV62568A, TLV62569A  
www.ti.com.cn  
ZHCSI23B APRIL 2018REVISED MARCH 2020  
VOUT  
0.1V/DIV  
AC  
VOUT  
0.1V/DIV  
AC  
ICOIL  
ICOIL  
0.5A/DIV  
0.5A/DIV  
Time - 20s/DIV  
Time - 20s/DIV  
D017  
D018  
Load Step 0 A to 1 A, 1A/μs slew rate  
23. Load Transient  
Load Step 0 A to 1 A, 1A/μs slew rate  
C3 = 10 pF  
24. Load Transient with A Feed Forward Capacitor  
9 Power Supply Recommendations  
The power supply to the TLV62569A must have a current rating according to the supply voltage, output voltage  
and output current.  
10 Layout  
10.1 Layout Guidelines  
The PCB layout is an important step to maintain the high performance of the TLV62569A device.  
The input/output capacitors and the inductor should be placed as close as possible to the IC. This keeps the  
power traces short. Routing these power traces direct and wide results in low trace resistance and low  
parasitic inductance.  
The low side of the input and output capacitors must be connected properly to the power GND to avoid a  
GND potential shift.  
The sense traces connected to FB are signal traces. Special care should be taken to avoid noise being  
induced. Keep these traces away from SW nodes.  
GND layers might be used for shielding.  
10.2 Layout Example  
GND  
R1  
R2  
FB  
GND  
VIN  
PG  
EN  
SW  
C2  
C1  
VIN  
VOUT  
L1  
25. TLV62569APDRL Layout  
版权 © 2018–2020, Texas Instruments Incorporated  
13  
TLV62568A, TLV62569A  
ZHCSI23B APRIL 2018REVISED MARCH 2020  
www.ti.com.cn  
10.3 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow,  
convection surfaces, and the presence of other heat-generating components affect the power dissipation limits of  
a given component.  
Two basic approaches for enhancing thermal performance are listed below:  
Improving the power dissipation capability of the PCB design  
Introducing airflow in the system  
For more details on how to use the thermal parameters, see the application notes: Thermal Characteristics  
Application Notes SZZA017 and SPRA953.  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.1.2 开发支持  
11.1.2.1 使用 WEBENCH® 工具创建定制设计  
单击此处,使用 TLV62569A 器件并借助 WEBENCH® 电源设计器创建定制设计方案。  
1. 首先输入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化该设计的关键参数,如效率、尺寸和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案以常用 CAD 格式导出  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
11.2 文档支持  
11.2.1 相关文档  
德州仪器 (TI)《半导体和 IC 封装热指标》 应用报告  
德州仪器 (TI)《采用 JEDEC PCB 设计的线性和逻辑封装热工特性》 应用报告  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
14  
版权 © 2018–2020, Texas Instruments Incorporated  
TLV62568A, TLV62569A  
www.ti.com.cn  
ZHCSI23B APRIL 2018REVISED MARCH 2020  
11.5 商标  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018–2020, Texas Instruments Incorporated  
15  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV62568ADRLR  
TLV62568ADRLT  
TLV62568APDRLR  
TLV62568APDRLT  
TLV62569ADRLR  
TLV62569ADRLT  
TLV62569APDRLR  
TLV62569APDRLT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
DRL  
DRL  
DRL  
DRL  
DRL  
DRL  
DRL  
DRL  
6
6
6
6
6
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
Call TI | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1BE  
1BE  
1BF  
1BF  
1BG  
1BG  
1BH  
1BH  
Call TI | SN  
Call TI | SN  
Call TI | SN  
Call TI | SN  
Call TI | SN  
Call TI | SN  
Call TI | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Nov-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV62568ADRLR  
TLV62568ADRLT  
TLV62568APDRLR  
TLV62568APDRLT  
TLV62569ADRLR  
TLV62569ADRLT  
TLV62569APDRLR  
TLV62569APDRLT  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
DRL  
DRL  
DRL  
DRL  
DRL  
DRL  
DRL  
DRL  
6
6
6
6
6
6
6
6
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
0.75  
0.75  
0.75  
0.75  
0.75  
0.75  
0.75  
0.75  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Nov-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV62568ADRLR  
TLV62568ADRLT  
TLV62568APDRLR  
TLV62568APDRLT  
TLV62569ADRLR  
TLV62569ADRLT  
TLV62569APDRLR  
TLV62569APDRLT  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
DRL  
DRL  
DRL  
DRL  
DRL  
DRL  
DRL  
DRL  
6
6
6
6
6
6
6
6
3000  
250  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DRL0006A  
SOT - 0.6 mm max height  
S
C
A
L
E
8
.
0
0
0
PLASTIC SMALL OUTLINE  
1.7  
1.5  
PIN 1  
ID AREA  
A
1
6
4X 0.5  
1.7  
1.5  
2X 1  
NOTE 3  
4
3
1.3  
1.1  
0.3  
6X  
0.05  
TYP  
0.00  
B
0.1  
0.6 MAX  
C
SEATING PLANE  
0.05 C  
0.18  
0.08  
6X  
SYMM  
SYMM  
0.27  
0.15  
6X  
0.1  
0.05  
C A B  
0.4  
0.2  
6X  
4223266/C 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-293 Variation UAAD  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRL0006A  
SOT - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
6X (0.67)  
SYMM  
1
6
6X (0.3)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.48)  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDERMASK DETAILS  
4223266/C 12/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRL0006A  
SOT - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
6X (0.67)  
SYMM  
1
6
6X (0.3)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.48)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4223266/C 12/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TLV62569DBVR

采用 SOT23 或 SOT563 封装的 2.5V-5.5V 输入、2A 高效降压转换器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62569DBVT

采用 SOT23 或 SOT563 封装的 2.5V-5.5V 输入、2A 高效降压转换器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62569DRLR

采用 SOT23 或 SOT563 封装的 2.5V-5.5V 输入、2A 高效降压转换器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62569DRLT

采用 SOT23 或 SOT563 封装的 2.5V-5.5V 输入、2A 高效降压转换器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62569PDDCR

采用 SOT23 或 SOT563 封装的 2.5V-5.5V 输入、2A 高效降压转换器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62569PDDCT

采用 SOT23 或 SOT563 封装的 2.5V-5.5V 输入、2A 高效降压转换器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62569PDRLR

采用 SOT23 或 SOT563 封装的 2.5V-5.5V 输入、2A 高效降压转换器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62569PDRLT

采用 SOT23 或 SOT563 封装的 2.5V-5.5V 输入、2A 高效降压转换器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV6256x

TLV6256x 1.5-A High Efficiency Step-Down Converters in SOT-23 5-Pin Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62585

采用 2x2 QFN 或 SOT563 封装的 2.5V-5.5V 输入、3A 高效降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62585DRLR

采用 2x2 QFN 或 SOT563 封装的 2.5V-5.5V 输入、3A 高效降压转换器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62585DRLT

采用 2x2 QFN 或 SOT563 封装的 2.5V-5.5V 输入、3A 高效降压转换器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI