TLV62585DRLR [TI]

采用 2x2 QFN 或 SOT563 封装的 2.5V-5.5V 输入、3A 高效降压转换器 | DRL | 6 | -40 to 125;
TLV62585DRLR
型号: TLV62585DRLR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 2x2 QFN 或 SOT563 封装的 2.5V-5.5V 输入、3A 高效降压转换器 | DRL | 6 | -40 to 125

转换器
文件: 总28页 (文件大小:1867K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV62585  
ZHCSGK2F NOVEMBER 2019REVISED NOVEMBER 2019  
采用 QFN SOT563 封装的 TLV62585 3A 高效  
同步降压转换器  
1 特性  
3 说明  
1
效率高达 95%  
TLV62585 器件是一款高频同步降压转换器,经优化具  
有解决方案尺寸紧凑和高效率两大优点。该器件集成了  
可提供高达 3A 输出电流的开关。在中等负载至重负载  
情况下,该转换器将以 1.5MHz 典型开关频率在脉宽  
调制 (PWM) 模式下运行。在轻载情况下,该器件自动  
进入节能模式 (PSM),从而在整个负载电流范围内保  
持高效率。关断时,流耗减少至 2μA 以下。  
RDS(ON) 电源开关:56mΩ/32mΩ  
输入电压范围为 2.5V 5.5V  
可调输出电压范围为 0.6V VIN  
可实现轻负载效率的省电模式  
可实现最低压降的 100% 占空比  
35μA 工作静态电流  
1.5MHz 典型开关频率  
短路保护 (HICCUP)  
内部补偿电路可实现紧凑型解决方案和较少外部组件  
数。内部软启动电路可限制启动期间的浪涌电流。此  
外, 还内置了 其他功能,如短路保护、热关断保护、  
输出放电和电源良好指示。  
输出放电  
电源正常状态输出  
热关断保护  
该器件采用 2mm × 2mm QFN 封装或 1.6mm ×  
1.6mm SOT563 封装。  
采用 2mm × 2mm QFN 封装或 1.6mm x 1.6mm  
SOT563 封装  
使用 TLV62585 并借助 WEBENCH® 电源设计器创  
建定制设计方案  
器件信息(1)  
器件型号  
TLV62585RWT  
TLV62585DRL  
TLV62585PDRL  
封装  
QFN (12)  
封装尺寸(标称值)  
2.00mm × 2.00mm  
2 应用  
SOT563 (6)  
1.60mm x 1.60mm  
通用负载点电源  
电池供电型应用  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
无线路由器、固态硬盘  
机顶盒、多功能打印机  
电机控制  
空白  
空白  
空白  
典型应用原理图  
5V 输入电压效率  
VPG  
TLV62585  
100  
PG  
R3  
1 M  
VOUT  
1.8 V / 3.0 A  
VIN  
2.5 V to 5.5 V  
L1  
1.0 µH  
95  
90  
85  
VIN  
SW  
C1  
10 µF  
C2  
10 µF  
C3*  
R1  
200 kꢀ  
EN  
FB  
PGND  
AGND  
R2  
100 kꢀ  
C3: Optional  
80  
VOUT = 1.2 V  
VOUT = 1.8 V  
VOUT = 2.5 V  
VOUT = 3.3 V  
75  
70  
0
0.5  
1
1.5  
Load (A)  
2
2.5  
3
D008  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDE5  
 
 
 
 
 
TLV62585  
ZHCSGK2F NOVEMBER 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics.......................................... 5  
6.6 Typical Characteristics.............................................. 5  
Detailed Description .............................................. 6  
7.1 Overview ................................................................... 6  
7.2 Functional Block Diagram ......................................... 6  
7.3 Feature Description................................................... 6  
7.4 Device Functional Modes.......................................... 7  
8
9
Application and Implementation .......................... 8  
8.1 Application Information.............................................. 8  
8.2 Typical Application ................................................... 8  
Power Supply Recommendations...................... 14  
10 Layout................................................................... 14  
10.1 Layout Guidelines ................................................. 14  
10.2 Layout Example .................................................... 14  
10.3 Thermal Considerations........................................ 15  
11 器件和文档支持 ..................................................... 16  
11.1 器件支持................................................................ 16  
11.2 文档支持................................................................ 16  
11.3 接收文档更新通知 ................................................. 16  
11.4 支持资源................................................................ 16  
11.5 ....................................................................... 16  
11.6 静电放电警告......................................................... 16  
11.7 Glossary................................................................ 16  
12 机械、封装和可订购信息....................................... 17  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision E (June 2018) to Revision F  
Page  
Changed Temperature Range for 1% Accuracy from 25°C to 0°C-85°C............................................................................... 5  
Changes from Revision D (April 2018) to Revision E  
Page  
TLV62585DRL TLV62585PDRL 产品预发布 更改为生产 数据 ................................................................................. 1  
已添加 PCB layout recommendation for TLV62585PDRL ................................................................................................... 14  
Changes from Revision C (November 2017) to Revision D  
Page  
器件信息 表添加了 TLV62585DRL TLV62585PDRL...................................................................................................... 1  
Added DRL and PDRL devices to the Pin Configurations and Functions.............................................................................. 3  
Added the DRL Thermal Information ..................................................................................................................................... 4  
Added 22 ......................................................................................................................................................................... 13  
Changes from Revision B (September 2017) to Revision C  
Page  
Changed HBM From: ±1000 To: ±2000 in the ESD Ratings table......................................................................................... 4  
Changes from Revision A (August 2017) to Revision B  
Page  
将器件状态从预告信息更改为生产数据.............................................................................................................................. 1  
Changed HBM From: TBD To: ±1000 in the ESD Ratings table ........................................................................................... 4  
Changes from Original (July 2017) to Revision A  
Page  
将器件状态从生产更改为预告信息” ..................................................................................................................................... 1  
Changed HBM From: ±2000 To: TBD in the ESD Ratings table ........................................................................................... 4  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TLV62585  
www.ti.com.cn  
ZHCSGK2F NOVEMBER 2019REVISED NOVEMBER 2019  
5 Pin Configuration and Functions  
DRL Package  
6-Pin (SOT563)  
Top View  
PDRL Package  
6-Pin (SOT563)  
Top View  
GND  
SW  
1
2
3
6
5
4
NC  
FB  
EN  
GND  
SW  
1
2
3
6
5
4
PG  
FB  
EN  
VIN  
VIN  
Not to scale  
Not to scale  
RWT Package  
12-Pin (QFN)  
Top View  
VIN  
SW  
1
2
3
4
10  
9
8
7
6
PG  
EN  
FB  
SW  
11  
PGND  
AGND  
PGND  
12  
5
NC  
Not to scale  
Pin Functions  
PIN  
DRL  
(QFN) (SOT563) (SOT563)  
I/O  
DESCRIPTION  
RWT  
PDRL  
NAME  
VIN  
1, 10  
3
3
PWR Power supply voltage pin.  
Switch pin connected to the internal FET switches and inductor terminal. Connect the  
inductor of the output filter to this pin.  
SW  
2, 11  
2
2
PWR  
GND  
PGND  
AGND  
NC  
-
1
-
1
-
PWR Ground pin.  
3, 12  
4
PWR Power ground pin.  
-
-
-
-
Ground pin.  
5, 6  
6
-
No connection pin. Leave these pins open, or connect those pins to the output or to  
AGND.  
FB  
7
5
5
I
Feedback pin for the internal control loop. Connect this pin to an external feedback  
divider.  
Device enable logic input. Logic high enables the device, logic low disables the device  
and turns it into shutdown. Do not leave floating.  
EN  
PG  
8
9
4
-
4
6
I
Power good open drain output pin. The pull-up resistor can not be connected to any  
voltage higher than 5.5 V. If unused, leave it floating or connect to AGND.  
O
Copyright © 2019, Texas Instruments Incorporated  
3
TLV62585  
ZHCSGK2F NOVEMBER 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
MIN  
–0.3  
–0.3  
–0.3  
–3.0  
–40  
MAX  
UNIT  
VIN, EN, PG  
6
FB  
Voltage at Pins(1)  
SW (DC)  
3
VIN + 0.3  
9
V
SW (AC, less than 10ns)(2)  
Operating Junction, TJ  
Temperature  
150  
°C  
°C  
Storage, Tstg  
–65  
150  
(1) All voltage values are with respect to network ground terminal.  
(2) While switching  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-  
±2000  
±500  
001(1)  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
2.5  
NOM  
MAX  
5.5  
VIN  
1
UNIT  
V
VIN  
Input voltage range  
VOUT  
ISINK_PG  
IOUT  
TJ  
Output voltage range  
Sink current at PG pin  
Output current  
0.6  
V
mA  
A
0
3
Operating junction temperature  
–40  
125  
°C  
6.4 Thermal Information  
TLV62585  
THERMAL METRIC(1)  
UNIT  
RWT [QFN]  
95.7  
DRL [SOT]  
132.7  
43.8  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
74.1  
29.4  
27.3  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
5.8  
1.2  
ψJB  
29.7  
26.6  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2019, Texas Instruments Incorporated  
TLV62585  
www.ti.com.cn  
ZHCSGK2F NOVEMBER 2019REVISED NOVEMBER 2019  
6.5 Electrical Characteristics  
TJ = 25 °C, and VIN = 5 V, unless otherwise noted.  
PARAMETER  
SUPPLY  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IQ  
Quiescent current into VIN  
No load, device not switching  
35  
0.7  
2.3  
150  
150  
20  
µA  
ISD  
Shutdown current into VIN  
EN = Low  
VIN falling  
2
µA  
V
Under voltage lock out threshold  
Under voltage lock out hysteresis  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
2.45  
VUVLO  
mV  
°C  
°C  
TJ rising  
TJSD  
LOGIC INTERFACE EN  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
VIN = 2.5 V to 5.5 V  
VIN = 2.5 V to 5.5 V  
1.2  
V
V
0.4  
0.4  
SOFT START, POWER GOOD  
tSS  
Soft start time  
Time from EN high to 95% of VOUT nominal  
VOUT rising, referenced to VOUT nominal  
VOUT falling, referenced to VOUT nominal  
Isink = 1 mA  
900  
95%  
90%  
µs  
VPG  
Power good threshold  
VPG,OL Low-level output voltage  
IPG,LKG Input leakage current into PG pin  
tPG,DLY Power good delay  
OUTPUT  
V
VPG = 5.0 V  
0.01  
40  
µA  
µs  
VFB falling  
PWM mode, 2.5 V VIN 5.5 V, 0°C to 85°C  
PWM mode, 2.5 V VIN 5.5 V, -40°C to 125°C  
VFB = 0.6 V  
594  
588  
600  
600  
0.01  
10  
606  
612  
VFB  
Feedback regulation voltage  
mV  
IFB,LKG Feedback input leakage current  
RDIS Output discharge FET on-resistance  
POWER SWITCH  
µA  
EN = Low, VOUT = 1.8 V  
High-side FET on-resistance  
56  
32  
mΩ  
mΩ  
A
RDS(on)  
Low-side FET on-resistance  
High-side FET switch current limit  
PWM switching frequency  
ILIM  
fSW  
4
4.6  
1.5  
VOUT = 1.8V, IOUT = 1 A  
MHz  
6.6 Typical Characteristics  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
1.0  
VIN = 2.5V  
VIN = 3.0V  
VIN = 3.6V  
0.8  
VIN = 5.0V  
0.6  
0.4  
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 105°C  
TJ = 125°C  
0.2  
0
0.0  
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
-40  
-10  
20  
Junction Temperature (°C)  
50  
80  
110  
140  
D001  
D002  
1. Quiescent Current vs Input Voltage  
2. Shutdown Current vs Junction Temperature  
版权 © 2019, Texas Instruments Incorporated  
5
TLV62585  
ZHCSGK2F NOVEMBER 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TLV62585 is a high-efficiency synchronous step-down converter. The device operates with an adaptive off-  
time with peak current control scheme. The device operates at typically 1.5-MHz frequency pulse width  
modulation (PWM) at moderate to heavy load currents. Based on the VIN/VOUT ratio, a simple circuit sets the  
required off time for the low-side MOSFET. It makes the switching frequency relatively constant regardless of the  
variation of input voltage, output voltage, and load current.  
7.2 Functional Block Diagram  
PG  
VIN  
VPG  
VFB  
+
Thermal  
Shutdown  
UVLO  
Soft Start  
œ
GND  
Hiccup  
Counter  
EN  
Control Logic  
Peak Current Detect  
VREF  
SW  
+
_
Gate  
Drive  
Modulator  
Output  
Discharge  
FB  
EN  
VSW  
VIN  
TOFF  
Zero Current Detect  
GND  
GND  
3. Functional Block Diagram  
7.3 Feature Description  
7.3.1 Power Save Mode  
The device automatically enters Power Save Mode to improve efficiency at light load when the inductor current  
becomes discontinuous. In Power Save Mode, the converter reduces switching frequency and minimizes current  
consumption. In Power Save Mode, the output voltage rises slightly above the nominal output voltage. This effect  
is minimized by increasing the output capacitor, or adding a feed forward capacitor, as shown in 14.  
7.3.2 100% Duty Cycle Low Dropout Operation  
The device offers low input-to-output voltage difference by entering 100% duty cycle mode. In this mode, the  
high-side MOSFET switch is constantly turned on and the low-side MOSFET is switched off. The minimum input  
voltage to maintain output regulation, depending on the load current and output voltage, is calculated as:  
VIN(MIN) = VOUT + IOUT x RDS(ON) + RL  
Where  
RDS(ON) = High side FET on-resistance  
RL = Inductor ohmic resistance (DCR)  
(1)  
6
版权 © 2019, Texas Instruments Incorporated  
TLV62585  
www.ti.com.cn  
ZHCSGK2F NOVEMBER 2019REVISED NOVEMBER 2019  
Feature Description (接下页)  
7.3.3 Soft Start  
After enabling the device, internal soft startup circuitry ramps up the output voltage which reaches nominal output  
voltage during a startup time. This avoids excessive inrush current and creates a smooth output voltage rise  
slope. It also prevents excessive voltage drops of primary cells and rechargeable batteries with high internal  
impedance.  
The TLV62585 is able to start into a pre-biased output capacitor. The converter starts with the applied bias  
voltage and ramps the output voltage to its nominal value.  
7.3.4 Switch Current Limit and Short Circuit Protection (HICCUP)  
The switch current limit prevents the device from high inductor current and from drawing excessive current from  
the battery or input voltage rail. Excessive current might occur with a shorted or saturated inductor or a over load  
or shorted output circuit condition. If the inductor current reaches the threshold ILIM, the high-side MOSFET is  
turned off and the low-side MOSFET is turned on to ramp down the inductor current with an adaptive off-time.  
When this switch current limits is triggered 32 times, the device reduces the current limit for further 32 cycles and  
then stops switching to protect the output. The device then automatically start a new startup after a typical delay  
time of 500 μs has passed. This is named HICCUP short circuit protection. The devices repeat this mode until  
the high load condition disappears. HICCUP protection is also enabled during the startup.  
7.3.5 Undervoltage Lockout  
To avoid misoperation of the device at low input voltages, an undervoltage lockout (UVLO) is implemented,  
which shuts down the device at voltages lower than VUVLO with a hysteresis of 150 mV.  
7.3.6 Thermal Shutdown  
The device goes into thermal shutdown and stops switching when the junction temperature exceeds TJSD. When  
the device temperature falls below the threshold by 20°C, the device returns to normal operation automatically.  
7.4 Device Functional Modes  
7.4.1 Enable and Disable  
The device is enabled by setting the EN pin to a logic HIGH. Accordingly, shutdown mode is forced if the EN pin  
is pulled LOW with a shutdown current of typically 0.7 μA.  
In shutdown mode, the internal power switches as well as the entire control circuitry are turned off. An internal  
output discharge FET discharges the output through the SW pin smoothly.  
7.4.2 Power Good  
The TLV62585 has a power good output. The power good goes high impedance once the output is above 95%  
of the nominal voltage, and is driven low once the output voltage falls below typically 90% of the nominal voltage.  
The PG pin is an open-drain output and is specified to sink up to 1 mA. The power good output requires a pull-up  
resistor connecting to any voltage rail less than 5.5 V. The PG signal can be used for sequencing of multiple rails  
by connecting it to the EN pin of other converters. Leave the PG pin unconnected when not used.  
1. PG Pin Logic  
LOGIC STATUS  
DEVICE CONDITIONS  
HIGH Z  
LOW  
EN = High, VFB VPG  
EN = High, VFB VPG  
EN = Low  
Enable  
Shutdown  
Thermal Shutdown  
UVLO  
1.4 V < VIN < 2.3 V  
Power Supply Removal  
VIN 1.4 V  
版权 © 2019, Texas Instruments Incorporated  
7
TLV62585  
ZHCSGK2F NOVEMBER 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TLV62585 is a synchronous step-down converter in which output voltage is adjusted by component  
selection. The following section discusses the design of the external components to complete the power supply  
design for several input and output voltage options by using typical applications as a reference.  
8.2 Typical Application  
VPG  
TLV62585  
PG  
R3  
1 M  
VOUT  
1.8 V / 3.0 A  
VIN  
2.5 V to 5.5 V  
L1  
1.0 µH  
VIN  
SW  
C3*  
C1  
10 µF  
C2  
10 µF  
R1  
200 kꢀ  
EN  
FB  
PGND  
AGND  
R2  
100 kꢀ  
C3: Optional  
4. 1.8-V Output Voltage Application  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 2 as the input parameters.  
2. Design Parameters  
DESIGN PARAMETER  
Input voltage  
EXAMPLE VALUE  
2.5 V to 5.5 V  
1.8 V  
Output voltage  
Maximum output current  
3 A  
3 lists the components used for the example.  
(1)  
3. List of Components  
REFERENCE  
DESCRIPTION  
MANUFACTURER  
C1  
C2  
C3  
L1  
10 µF, Ceramic capacitor, 10 V, X7R, size 0805, GRM21BR71A106ME51  
22 µF, Ceramic capacitor, 6.3 V, X7T, size 0805, GRM21BD70J226ME44  
Optional  
Murata  
Murata  
Std  
1 µH, Power Inductor, size 4 mm × 4 mm × 1.5 mm, XFL4020-102ME  
Depending on the output voltage, 1%, size 0603;  
100 kΩ, Chip resistor, 1/16 W, 1%, size 0603;  
Coilcraft  
Std  
R1  
R2  
R3  
Std  
1 MΩ, Chip resistor, 1/16 W, 1%, size 0603  
Std  
(1) See Third-Party Products disclaimer.  
8
版权 © 2019, Texas Instruments Incorporated  
 
 
TLV62585  
www.ti.com.cn  
ZHCSGK2F NOVEMBER 2019REVISED NOVEMBER 2019  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TLV62585 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Setting The Output Voltage  
The output voltage is set by an external resistor divider according to 公式 2:  
R1  
R2  
R1  
R2  
æ
ö
÷
ø
æ
ö
÷
ø
VOUT = VFB ´ 1+  
= 0.6V ´ 1+  
ç
ç
è
è
(2)  
R2 must not be higher than 100 kΩ to achieve high efficiency at light load while providing acceptable noise  
sensitivity.  
8.2.2.3 Output Filter Design  
The inductor and the output capacitor together provide a low-pass filter. To simplify the selection process, 4  
outlines possible inductor and capacitor value combinations for most applications.  
4. Matrix of Output Capacitor and Inductor Combinations  
NOMINAL COUT [µF](2)(3)  
NOMINAL L [µH](1)  
10  
22  
47  
100  
0.47  
1
(4)  
+
+
+
2.2  
(1) Inductor tolerance and current derating is anticipated. The effective inductance can vary by 20% and  
–30%.  
(2) For low output voltage applications (< 1.8 V), more output capacitance is recommended (usually 22  
μF) for smaller ripple. For output capacitance higher than 47 µF, a feed forward capacitor is needed.  
(3) Capacitance tolerance and bias voltage derating is anticipated. The effective capacitance can vary by  
20% and –50%.  
(4) Typical application configuration. Other '+' mark indicates recommended filter combinations.  
版权 © 2019, Texas Instruments Incorporated  
9
 
 
TLV62585  
ZHCSGK2F NOVEMBER 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
8.2.2.4 Inductor Selection  
The main parameter for the inductor selection is the inductor value and then the saturation current of the  
inductor. To calculate the maximum inductor current under static load conditions, 公式 3 is given.  
DIL  
IL,MAX = IOUT,MAX  
+
2
VOUT  
1-  
V
IN  
DIL = VOUT  
´
L ´ fSW  
where  
IOUT,MAX = Maximum output current  
ΔIL = Inductor current ripple  
fSW = Switching frequency  
L = Inductor value  
(3)  
TI recommends choosing the saturation current for the inductor 20% to 30% higher than the IL,MAX, out of 公式 3.  
A higher inductor value is also useful to lower ripple current but increases the transient response time as well.  
8.2.2.5 Input and Output Capacitor Selection  
The architecture of the TLV62585 allows use of tiny ceramic-type output capacitors with low equivalent series  
resistance (ESR). These capacitors provide low output voltage ripple and are thus recommended. To keep its  
resistance up to high frequencies and to achieve narrow capacitance variation with temperature, it is  
recommended to use X7R or X5R dielectric.  
The input capacitor is the low impedance energy source for the converter that helps provide stable operation. A  
low ESR multilayer ceramic capacitor is recommended for best filtering. For most applications, 10-μF input  
capacitor is sufficient; a larger value reduces input voltage ripple.  
The TLV62585 is designed to operate with an output capacitor of 10 μF to 47 μF, as outlined in 4.  
A feed forward capacitor reduces the output ripple in PSM and improves the load transient response. A 22-pF  
capacitor is good for the 1.8-V output typical application.  
10  
版权 © 2019, Texas Instruments Incorporated  
 
TLV62585  
www.ti.com.cn  
ZHCSGK2F NOVEMBER 2019REVISED NOVEMBER 2019  
8.2.3 Application Curves  
VIN = 5 V, VOUT = 1.8 V, TA = 25 ºC, unless otherwise noted.  
100  
95  
90  
85  
80  
75  
100  
95  
90  
85  
80  
75  
70  
65  
60  
70  
VIN = 2.5V  
VIN = 3.3V  
VIN = 5.0V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 5.0V  
65  
60  
1m  
10m  
100m  
Load (A)  
1
3
1m  
10m  
100m  
Load (A)  
1
3
D004  
D005  
VOUT = 1.2 V  
VOUT = 1.8 V  
5. Efficiency  
6. Efficiency  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
95  
90  
85  
80  
75  
70  
65  
60  
VIN = 3.3V  
VIN = 5.0V  
VIN = 5 V  
10m  
1m  
10m  
100m  
1
3
1m  
100m  
1
3
Load (A)  
Load (A)  
D006  
D007  
VOUT = 2.5 V  
VOUT = 3.3 V  
7. Efficiency  
8. Efficiency  
0.5  
1.0  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.5  
IOUT = 0.5A  
IOUT = 1.0A  
IOUT = 3.0A  
VOUT = 1.8 V  
VOUT = 3.3 V  
-1.0  
0.5  
1
1.5  
2
2.5  
3
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
Load (A)  
D009  
D010  
VIN = 5 V  
VOUT = 1.8 V  
9. Load Regulation  
10. Line Regulation  
版权 © 2019, Texas Instruments Incorporated  
11  
TLV62585  
ZHCSGK2F NOVEMBER 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
2000  
1500  
1000  
500  
2000  
1500  
1000  
500  
0
VOUT = 1.2V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 3.3V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 3.3V  
0
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Load (A)  
3
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
D011  
D012  
VIN = 5 V  
IOUT = 1 A  
11. Switching Frequency  
12. Switching Frequency  
ICOIL  
ICOIL  
0.5A/DIV  
0.5A/DIV  
VOUT  
50mV/DIV  
AC  
VOUT  
50mV/DIV  
AC  
VSW  
VSW  
5V/DIV  
5V/DIV  
Time - 5s/DIV  
Time - 5s/DIV  
D014  
D019  
IOUT = 0.1 A  
IOUT = 0.1 A  
C3 = 22 pF  
13. PSM Operation  
14. PSM Operation with A Feedforward Capacitor  
VEN  
ICOIL  
2V/DIV  
0.5A/DIV  
VOUT  
10mV/DIV  
AC  
VOUT  
1V/DIV  
ICOIL  
VSW  
2A/DIV  
5V/DIV  
Time - 500ns/DIV  
Time - 500s/DIV  
D013  
D015  
IOUT = 3 A  
ROUT = 0.6 Ω  
16. Start-Up and Shut-Down with Load  
15. PWM Operation  
12  
版权 © 2019, Texas Instruments Incorporated  
TLV62585  
www.ti.com.cn  
ZHCSGK2F NOVEMBER 2019REVISED NOVEMBER 2019  
VEN  
2V/DIV  
ILOAD  
2A/DIV  
VOUT  
1V/DIV  
VOUT  
0.1V/DIV  
ICOIL  
0.5A/DIV  
Time - 500s/DIV  
Time - 100s/DIV  
D016  
D017  
No Load  
17. Start-Up and Shut-Down without Load  
IOUT = 0.1 A to 3 A  
18. Load Transient  
Entry  
Recovery  
ILOAD  
2A/DIV  
VOUT  
1V/DIV  
VOUT  
0.1V/DIV  
ILOAD  
2A/DIV  
Time - 100s/DIV  
Time - 500s/DIV  
D018  
D020  
IOUT = 0.1 A to 3 A  
C3 = 22 pF  
IOUT = 0.1 A  
20. Output Short Protection (HICCUP)  
19. Load Transient with A Feedforward Capacitor  
Entry  
VOUT  
1V/DIV  
ILOAD  
2A/DIV  
Time - 10s/DIV  
D021  
IOUT = 0.1 A  
21. Output Short Protection (HICCUP) - Zoom In  
22. Temperature Rise of DRL Package on EVM  
版权 © 2019, Texas Instruments Incorporated  
13  
TLV62585  
ZHCSGK2F NOVEMBER 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range from 2.5 V to 5.5 V. Ensure that the input  
power supply has a sufficient current rating for the application.  
10 Layout  
10.1 Layout Guidelines  
The printed-circuit-board (PCB) layout is an important step to maintain the high performance of the TLV62585  
device.  
The input/output capacitors and the inductor should be placed as close as possible to the IC. This keeps the  
power traces short. Routing these power traces direct and wide results in low trace resistance and low  
parasitic inductance.  
The low side of the input and output capacitors must be connected properly to the GND pin to avoid a ground  
potential shift.  
The sense traces connected to FB is a signal trace. Special care should be taken to avoid noise being  
induced. Keep these traces away from SW nodes.  
A common ground should be used. GND layers might be used for shielding.  
See 23 and 24 for the recommended PCB layout.  
10.2 Layout Example  
Vin  
C1  
U1  
L1  
R2 R1  
C2  
GND  
Vout  
24. PCB Layout Recommendation (TLV62585PDRL)  
23. PCB Layout Recommendation (TLV62585RWT)  
14  
版权 © 2019, Texas Instruments Incorporated  
 
TLV62585  
www.ti.com.cn  
ZHCSGK2F NOVEMBER 2019REVISED NOVEMBER 2019  
10.3 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power  
dissipation limits of a given component.  
Two basic approaches for enhancing thermal performance are:  
Improving the power dissipation capability of the PCB design  
Introducing airflow in the system  
The big copper planes connecting to the pads of the IC on the PCB improve the thermal performance of the  
device. For more details on how to use the thermal parameters, see: .  
Thermal Characteristics Application Notes, SZZA017 and SPRA953  
版权 © 2019, Texas Instruments Incorporated  
15  
TLV62585  
ZHCSGK2F NOVEMBER 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.1.2 使用 WEBENCH® 工具创建定制设计方案  
单击此处,使用 TLV62585 器件并借助 WEBENCH® 电源设计器创建定制设计方案。  
1. 首先输入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化该设计的关键参数,如效率、尺寸和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案以常用 CAD 格式导出  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
《热工特性应用手册》  
《热工特性应用手册》  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册后,即可每  
周定期收到已更改的产品信息。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
16  
版权 © 2019, Texas Instruments Incorporated  
TLV62585  
www.ti.com.cn  
ZHCSGK2F NOVEMBER 2019REVISED NOVEMBER 2019  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
17  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Sep-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV62585DRLR  
TLV62585DRLT  
TLV62585PDRLR  
TLV62585PDRLT  
TLV62585RWTR  
TLV62585RWTT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
VQFN-HR  
VQFN-HR  
DRL  
DRL  
DRL  
DRL  
RWT  
RWT  
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
Call TI | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1BQ  
1BQ  
1BP  
1BP  
17BI  
17BI  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Call TI | SN  
Call TI | SN  
Call TI | SN  
Call TI | SN  
Call TI | SN  
6
6
12  
12  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Sep-2022  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Oct-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV62585DRLR  
TLV62585DRLT  
TLV62585PDRLR  
TLV62585PDRLT  
TLV62585RWTR  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
DRL  
DRL  
DRL  
DRL  
RWT  
6
6
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
2.0  
2.0  
2.0  
2.0  
2.3  
1.8  
1.8  
1.8  
1.8  
2.3  
0.75  
0.75  
0.75  
0.75  
1.15  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q2  
6
3000  
250  
6
VQFN-  
HR  
12  
3000  
TLV62585RWTR  
TLV62585RWTT  
TLV62585RWTT  
VQFN-  
HR  
RWT  
RWT  
RWT  
12  
12  
12  
3000  
250  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
1.15  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
VQFN-  
HR  
VQFN-  
HR  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Oct-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV62585DRLR  
TLV62585DRLT  
TLV62585PDRLR  
TLV62585PDRLT  
TLV62585RWTR  
TLV62585RWTR  
TLV62585RWTT  
TLV62585RWTT  
SOT-5X3  
SOT-5X3  
SOT-5X3  
SOT-5X3  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
DRL  
DRL  
DRL  
DRL  
RWT  
RWT  
RWT  
RWT  
6
6
3000  
250  
210.0  
210.0  
210.0  
210.0  
182.0  
210.0  
182.0  
210.0  
185.0  
185.0  
185.0  
185.0  
182.0  
185.0  
182.0  
185.0  
35.0  
35.0  
35.0  
35.0  
20.0  
35.0  
20.0  
35.0  
6
3000  
250  
6
12  
12  
12  
12  
3000  
3000  
250  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RWT0012A  
VQFN-HR - 1 mm max height  
S
C
A
L
E
5
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
2.1  
1.9  
B
A
PIN 1 INDEX AREA  
2.1  
1.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
0.55  
0.45  
0.4  
0.3  
2X  
2X  
(0.1) TYP  
5
6X 0.5  
4
6
12  
11  
2X  
SYMM  
1.5  
0.5  
PIN 1 ID  
9
1
10  
0.3  
0.2  
0.1  
0.24  
0.20  
10X  
2X  
SYMM  
C A B  
0.05  
0.45  
8X  
0.35  
4223084/B 10/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RWT0012A  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
10  
2X (0.55)  
8X (0.6)  
10X (0.25)  
1
9
(0.5)  
11  
12  
SYMM  
(R0.05) TYP  
(1.85)  
2X (0.22)  
6X (0.5)  
6
4
5
2X (0.5)  
(1.8)  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223084/B 10/2018  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, it is recommended that vias under  
paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RWT0012A  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
2X (0.55)  
10  
8X (0.6)  
9
10X (0.25)  
1
(0.5)  
11  
12  
SYMM  
(R0.05) TYP  
(1.85)  
6X (0.5)  
2X (0.22)  
6
4
5
SYMM  
2X (0.5)  
(1.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4223084/B 10/2018  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DRL0006A  
SOT - 0.6 mm max height  
S
C
A
L
E
8
.
0
0
0
PLASTIC SMALL OUTLINE  
1.7  
1.5  
PIN 1  
ID AREA  
A
1
6
4X 0.5  
1.7  
1.5  
2X 1  
NOTE 3  
4
3
1.3  
1.1  
0.3  
6X  
0.05  
TYP  
0.00  
B
0.1  
0.6 MAX  
C
SEATING PLANE  
0.05 C  
0.18  
0.08  
6X  
SYMM  
SYMM  
0.27  
0.15  
6X  
0.1  
0.05  
C A B  
0.4  
0.2  
6X  
4223266/C 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-293 Variation UAAD  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRL0006A  
SOT - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
6X (0.67)  
SYMM  
1
6
6X (0.3)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.48)  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDERMASK DETAILS  
4223266/C 12/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRL0006A  
SOT - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
6X (0.67)  
SYMM  
1
6
6X (0.3)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.48)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4223266/C 12/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TLV62585DRLT

采用 2x2 QFN 或 SOT563 封装的 2.5V-5.5V 输入、3A 高效降压转换器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62585PDRLR

采用 2x2 QFN 或 SOT563 封装的 2.5V-5.5V 输入、3A 高效降压转换器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62585PDRLT

采用 2x2 QFN 或 SOT563 封装的 2.5V-5.5V 输入、3A 高效降压转换器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62585RWTR

采用 2x2 QFN 或 SOT563 封装的 2.5V-5.5V 输入、3A 高效降压转换器 | RWT | 12 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62585RWTT

采用 2x2 QFN 或 SOT563 封装的 2.5V-5.5V 输入、3A 高效降压转换器 | RWT | 12 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62595

采用 1.5mm x 1.5mm QFN 封装、具有 1% 输出精度的 2.5V 至 5.5V 输入、4A 降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV62595DMQR

采用 1.5mm x 1.5mm QFN 封装、具有 1% 输出精度的 2.5V 至 5.5V 输入、4A 降压转换器 | DMQ | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV627432

具有超低静态电流的 2.15V 至 5.5V、400mA 高效降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV627432YFPR

具有超低静态电流的 2.15V 至 5.5V、400mA 高效降压转换器 | YFP | 8 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV6700

采用集成基准的低功耗窗口比较器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV6700-Q1

TLV6700-Q1 Micropower, 18-V Window Comparator With 400-mV Reference

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV6700DDCR

采用集成基准的低功耗窗口比较器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI