TLV627432 [TI]

具有超低静态电流的 2.15V 至 5.5V、400mA 高效降压转换器;
TLV627432
型号: TLV627432
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有超低静态电流的 2.15V 至 5.5V、400mA 高效降压转换器

转换器
文件: 总31页 (文件大小:2587K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV627432  
ZHCSKJ9B JUNE 2016 REVISED MARCH 2021  
TLV627432 具有超低静态电流的高效降压转换器  
1 特性  
3 说明  
• 输入电压范围2.15V 5.5V  
• 高400mA 的输出电流  
• 工作静态电流很低  
10µA 输出电流时的效率高90%  
• 节能模式操作  
• 可选输出电压  
TLV627432 是一款高效降压转换器具有典型值为  
360nA 的超低工作静态电流。该器件经过优化可与  
2.2µH 电感10µF 输出电容配合使用。该器件采用  
DCS-Control 技术开关频率典型值1.2MHz。在节  
能模式下该器件可将轻负载效率向下扩展10µA 负  
载电流及以下。TLV627432 的输出电流300mA。  
TLV627432 提供了八个可编程的输出电压可通过三  
个选择引脚1.2V 3.3V 范围内进行选择。  
TLV627432 经优化使用一个小型输出电容即可获得  
低输出电压纹波和低噪声。一旦输入电压接近输出电  
器件便会进入无纹100% 模式以防止输出纹  
波电压增大。在此工作模式下器件会停止开关操作并  
导通高MOSFET。  
– 八个电压选项1.2V 3.3V)  
• 输出电压放电  
• 低输出电压纹波  
• 自动转换至无纹100% 模式  
• 射(RF) 友好DCS-Control  
• 总体解决方案尺寸小10mm2  
• 小1.57mm × 0.88mm 8 WCSP 封装  
器件信息  
封装(1)  
2 应用  
封装尺寸标称值)  
器件型号  
可穿戴设备  
健身追踪器  
智能手表  
健康监测  
TLV627432  
DSBGA (8)  
1.57mm × 0.88mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
®
• 低功耗蓝牙、RF4CEZigbee  
• 高效率、超低功耗应用  
能量收集  
VIN  
100  
95  
90  
85  
80  
75  
70  
TLV627432  
L 2.2 mH  
2.15 V to 5.5 V  
VOUT  
Low Power  
MCU & RF  
VIN  
SW  
CIN  
EN  
VOS  
4.7 mF  
COUT  
10 mF  
VSEL1  
VSEL2  
VSEL3  
GND  
VIN = 5.0V  
65  
60  
VIN = 4.2V  
典型应用  
55  
VIN = 3.6V  
50  
45  
40  
0.001  
0.01  
0.1  
1
10  
100  
1000  
IOUT [mA]  
C001  
效率  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDH5  
 
 
 
 
TLV627432  
ZHCSKJ9B JUNE 2016 REVISED MARCH 2021  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................10  
9 Application and Implementation..................................12  
9.1 Application Information............................................. 12  
9.2 Typical Application ................................................... 12  
10 Power Supply Recommendations..............................18  
11 Layout...........................................................................19  
11.1 Layout Guidelines................................................... 19  
11.2 Layout Example...................................................... 19  
12 Device and Documentation Support..........................20  
12.1 Device Support....................................................... 20  
12.2 接收文档更新通知................................................... 20  
12.3 支持资源..................................................................20  
12.4 Trademarks.............................................................20  
12.5 静电放电警告.......................................................... 20  
12.6 术语表..................................................................... 20  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table ..............................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings........................................ 6  
7.2 ESD Ratings .............................................................. 6  
7.3 Recommended Operating Conditions.........................6  
7.4 Thermal Information ...................................................6  
7.5 Electrical Characteristics.............................................7  
7.6 Timing Requirements..................................................8  
7.7 Typical Characteristics................................................8  
8 Detailed Description........................................................9  
8.1 Overview.....................................................................9  
8.2 Functional Block Diagram...........................................9  
8.3 Feature Description.....................................................9  
Information.................................................................... 21  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (December 2019) to Revision B (March 2021)  
Page  
• 更新了整个文档的表、图和交叉参考的编号格式。.............................................................................................1  
Changes from Revision * (June 2016) to Revision A (December 2019)  
Page  
• 首次公开发布的文档........................................................................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLV627432  
 
TLV627432  
ZHCSKJ9B JUNE 2016 REVISED MARCH 2021  
www.ti.com.cn  
5 Device Comparison Table  
OUTPUT  
CURRENT  
PACKAGE  
MARKING  
TA  
PART NUMBER  
OUTPUT VOLTAGE SETTINGS (VSEL 1 - 3)  
TLV627432  
1.2 V, 1.5 V, 1.8 V, 2.1 V, 2.5 V, 2.8 V, 3.0 V, 3.3 V  
400 mA  
160322  
40°C to 85°C  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLV627432  
 
TLV627432  
ZHCSKJ9B JUNE 2016 REVISED MARCH 2021  
www.ti.com.cn  
6 Pin Configuration and Functions  
1
2
SW  
EN  
VIN  
GND  
VOS  
A
B
C
D
VSEL1  
VSEL2  
VSEL3  
6-1. 8-Pin DSBGA YFP Package (Top View)  
6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO  
VIN  
A2  
PWR VIN power supply pin. Connect the input capacitor close to this pin for best noise and voltage spike  
suppression. A ceramic capacitor of 4.7 µF is required.  
SW  
A1  
B2  
C2  
OUT  
The switch pin is connected to the internal MOSFET switches. Connect the inductor to this terminal.  
GND  
VOS  
PWR GND supply pin. Connect this pin close to the GND terminal of the input and output capacitor.  
IN  
Feedback pin for the internal feedback divider network and regulation loop. Discharges VOUT when the  
converter is disabled. Connect this pin directly to the output capacitor with a short trace.  
VSEL3  
VSEL2  
VSEL1  
EN  
D2  
D1  
C1  
B1  
IN  
IN  
IN  
IN  
Output voltage selection pins. See 6-2 for VOUT selection. These pin must be terminated. The pins can  
be dynamically changed during operation.  
High level enables the devices, low level turns the device off. The pin must be terminated.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLV627432  
 
TLV627432  
ZHCSKJ9B JUNE 2016 REVISED MARCH 2021  
www.ti.com.cn  
6-2. Output Voltage Setting  
Output Voltage Setting VOUT [V]  
VSEL Setting  
TLV627432  
VSEL3  
VSEL2  
VSEL1  
1.2  
1.5  
1.8  
2.1  
2.5  
2.8  
3.0  
3.3  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLV627432  
 
TLV627432  
ZHCSKJ9B JUNE 2016 REVISED MARCH 2021  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
0.3  
0.3  
0.3  
0.3  
40  
65  
MAX  
UNIT  
VIN  
6
V
SW  
Pin voltage(2)  
VIN +0.3V  
VIN +0.3V  
3.7  
V
V
EN, VSEL1-3  
VOS  
Operating junction temperature, TJ  
Storage temperature, Tstg  
V
125  
°C  
°C  
150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolutemaximumrated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal GND.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. The human body  
model is a 100-pF capacitor discharged through a 1.5-kΩresistor into each pin.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN NOM MAX UNIT  
VIN  
IOUT  
TJ  
Supply voltage VIN  
2.15  
5.5  
300  
400  
V
5.5V VIN (VOUTnom + 0.7V) 2.15V  
5.5V VIN (VOUTnom + 0.7V) 3V  
Device output current  
mA  
Operating junction temperature range  
-40  
125 °C  
7.4 Thermal Information  
TLV627432  
YFP Package  
(DSBGA)  
THERMAL METRIC(1)  
UNIT  
8 PINS  
103  
1.0  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
20  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJT  
20  
ψJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLV627432  
 
 
 
 
 
 
 
 
 
 
TLV627432  
ZHCSKJ9B JUNE 2016 REVISED MARCH 2021  
www.ti.com.cn  
7.5 Electrical Characteristics  
VIN = 3.6V, TA = 40°C to 85°C typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
SUPPLY  
EN = VIN, IOUT = 0µA, VOUT = 1.8V, device not switching  
EN = VIN, IOUT = 0mA, VOUT = 1.8V , device switching  
EN = GND, shutdown current into VIN  
Rising VIN  
360 1800  
460  
Operating quiescent  
current  
IQ  
nA  
nA  
V
ISD  
Shutdown current  
70 1000  
VTH_ UVLO+  
VTH_UVLO-  
2.075  
1.925  
2.15  
2
Undervoltage  
lockout threshold  
Falling VIN  
INPUTS (EN, VSEL1-3)  
High level input  
threshold  
VIH TH  
VIL TH  
1.1  
25  
V
2.2V VIN 5.5V  
2.2V VIN 5.5V  
Low level input  
threshold  
0.4  
V
IIN  
Input bias Current  
10  
nA  
POWER SWITCHES  
High side MOSFET  
on-resistance  
0.45  
0.22  
650  
650  
1.12  
0.65  
800  
RDS(ON)  
IOUT = 50mA  
Low Side MOSFET  
on-resistance  
High side MOSFET  
switch current limit  
590  
3.0V VIN 5.5V  
ILIMF  
mA  
Low side MOSFET  
switch current limit  
OUTPUT VOLTAGE DISCHARGE  
MOSFET on-  
RDSCH_VOS  
EN = GND, IVOS = -10mA into VOS pin  
EN = VIN, VOUT = 2V  
30  
65  
resistance  
Bias current into  
VOS pin  
IIN_VOS  
40 1010  
nA  
AUTO 100% MODE TRANSITION  
Auto 100% Mode  
VTH_100+  
leave detection  
Rising VIN,100% Mode is left with VIN = VOUT + VTH_100+  
Falling VIN, 100% Mode is entered with VIN = VOUT + VTH_100-  
150  
85  
250  
350  
290  
threshold (1)  
mV  
Auto 100% Mode  
enter detection  
threshold (1)  
VTH_100-  
200  
OUTPUT  
High side softstart  
switch current limit  
80  
150  
150  
200  
ILIM_softstart  
EN=low to high  
mA  
V
Low side softstart  
switch current limit  
Output voltage  
range  
Output voltages are selected with pins VSEL 1 - 3  
1.2  
3.3  
IOUT = 10mA, VOUT = 1.8V  
IOUT = 100mA, VOUT = 1.8V  
-2.5  
0%  
0%  
2.5  
2
Output voltage  
accuracy  
2  
VOUT  
DC output voltage  
load regulation  
VOUT = 1.8V  
0.001  
0
%/mA  
%/V  
DC output voltage  
line regulation  
VOUT = 1.8V, IOUT = 100mA, 2.5V VIN 5.0V  
(1) VIN is compared to the programmed output voltage (VOUT). When VINVOUT falls below VTH_100- the device enters 100% Mode by  
turning the high side MOSFET on. The 100% Mode is exited when VINVOUT exceeds VTH_100+ and the device starts switching. The  
hysteresis for the 100% Mode detection threshold VTH_100+ - VTH_100- will always be positive and will be approximately 50 mV(typ)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLV627432  
 
 
TLV627432  
ZHCSKJ9B JUNE 2016 REVISED MARCH 2021  
www.ti.com.cn  
7.6 Timing Requirements  
VIN = 3.6V, TJ = 40°C to 85°C typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
Minimum ON time  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
ns  
tONmin  
VOUT = 2.0V, IOUT = 0 mA  
225  
50  
tOFFmin  
Minimum OFF time  
ns  
Regulator start up  
delay time  
tStartup_delay  
tSoftstart  
From transition EN = low to high until device starts switching  
10  
25  
ms  
µs  
Softstart time  
700 1200  
2.5V VIN 5.5V, EN = VIN  
7.7 Typical Characteristics  
700  
250  
VIN = 2.2 V  
VIN = 2.5 V  
VIN = 3.6 V  
VIN = 5.5 V  
VIN = 6.0 V  
VIN = 2.2 V  
VIN = 2.5 V  
VIN = 3.6 V  
VIN = 5.5 V  
225  
600  
200  
VIN = 6.0 V  
175  
150  
125  
100  
75  
500  
400  
300  
200  
50  
25  
0
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (èC)  
Temperature (èC)  
D002  
D001  
EN = GND  
EN = VIN, VOUT = 1.8V Device Not Switching  
7-2. Shutdown Current ISD vs Temperature  
7-1. Quiescent Current vs Temperature  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.5  
0.45  
0.4  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
0.2  
VIN = 2.2 V  
VIN = 2.5 V  
VIN = 3.6 V  
VIN = 2.2 V  
VIN = 2.5 V  
VIN = 3.6 V  
0.05  
0
0.1  
0
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (èC)  
Temperature (èC)  
D004  
D003  
7-4. Low-side RDSON vs Temperature  
7-3. High Side RDSON vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLV627432  
 
 
TLV627432  
ZHCSKJ9B JUNE 2016 REVISED MARCH 2021  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TLV627432 is a high frequency step down converter with ultra low quiescent current. The device operates  
with a quasi fixed switching frequency typically at 1.2 MHz. Using TI's DCS-Controltopology the device  
extends the high efficiency operation area down to a few microamperes of load current during Power Save Mode  
Operation.  
8.2 Functional Block Diagram  
Ultra Low Power  
Reference  
EN  
Softstart  
VOS  
UVLO  
EN  
VOUT  
Discharge  
VOS  
VSEL1  
VSEL2  
VSEL3  
Internal  
VFB feedback  
divider  
Auto 100% Mode  
Comp  
UVLO  
Comp  
100%  
̶
network*  
VIN  
̶
VIN  
Mode  
UVLO  
+
VTH_100  
+
VTH_UVLO  
Power Stage  
PMOS  
Current  
Limit Comparator  
VIN  
SW  
Timer  
UVLO  
DCS  
Control  
VIN  
VOS  
Limit  
Min. On  
High Side  
Min. OFF  
VOS  
Direct Control  
& Compensation  
Control  
Logic  
EN  
Gate Driver  
Anti  
Shoot-Through  
VFB  
̶
VREF  
+
NMOS  
Limit  
Error  
amplifier  
Main  
Comparator  
Low Side  
GND  
Current  
Limit Comparator  
* typical 50 MW  
8.3 Feature Description  
8.3.1 DCS-Control™  
TI's DCS-Control (Direct Control with Seamless Transition into Power Save Mode) is an advanced regulation  
topology, which combines the advantages of hysteretic and voltage mode control. Characteristics of DCS-  
Control™ are excellent AC load regulation and transient response, low output ripple voltage and a seamless  
transition between PFM and PWM mode operation. DCS-Control™ includes an AC loop which senses the output  
voltage (VOS pin) and directly feeds the information to a fast comparator stage. This comparator sets the  
switching frequency, which is constant for steady state operating conditions, and provides immediate response  
to dynamic load changes. In order to achieve accurate DC load regulation, a voltage feedback loop is used. The  
internally compensated regulation network achieves fast and stable operation with small external components  
and low ESR capacitors.  
The DCS-Controltopology supports PWM (Pulse Width Modulation) mode for medium and high load  
conditions and a Power Save Mode at light loads. During PWM mode, it operates in continuous conduction  
mode. The switching frequency is typically 1.2 MHz with a controlled frequency variation depending on the input  
voltage and load current. If the load current decreases, the converter seamlessly enters Power Save Mode to  
maintain high efficiency down to very light loads. In Power Save Mode, the switching frequency varies linearly  
with the load current. Since DCS-Control™ supports both operation modes within one single building block, the  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLV627432  
 
 
 
 
TLV627432  
ZHCSKJ9B JUNE 2016 REVISED MARCH 2021  
www.ti.com.cn  
transition from PWM to Power Save Mode is seamless with minimum output voltage ripple. The TLV627432  
offers both excellent DC voltage and superior load transient regulation, combined with low output voltage ripple,  
minimizing interference with RF circuits.  
8.3.2 Power Save Mode Operation  
In Power Save Mode the device operates in PFM (Pulse Frequency Modulation) that generates a single  
switching pulse to ramp up the inductor current and recharges the output capacitor, followed by a sleep period  
where most of the internal circuits are shutdown to achieve lowest operating quiescent current. During this time,  
the load current is supported by the output capacitor. The duration of the sleep period depends on the load  
current and the inductor peak current. During the sleep periods, the current consumption of TLV627432 is  
reduced to 360 nA. This low quiescent current consumption is achieved by an ultra low power voltage reference,  
an integrated high impedance feedback divider network and an optimized Power Save Mode operation.  
8.3.3 Output Voltage Selection  
The TLV627432 doesn't require an external resistor divider network to program the output voltage. The device  
integrates a high impedance feedback resistor divider network that is programmed by the pins VSEL1-3.  
TLV627432 supports an output voltage range from 1.2 V to 3.3 V. The output voltage is programmed according  
to 6-2. The output voltage can be changed during operation. This can be used for simple dynamic output  
voltage scaling.  
8.3.4 Output Voltage Discharge of the Buck Converter  
The device provides automatic output voltage discharge when EN is pulled low or the UVLO is triggered. The  
output of the buck converter is discharged over VOS. Because of this the output voltage will ramp up from zero  
once the device is enabled again. This is very helpful for accurate start-up sequencing.  
8.3.5 Undervoltage Lockout UVLO  
To avoid misoperation of the device at low input voltages, an undervoltage lockout is used. The UVLO shuts  
down the device at a maximum voltage level of 2.0 V. The device will start at a UVLO level of 2.15 V.  
8.3.6 Short circuit protection  
The TLV627432 integrates a current limit on the high side, as well on the low side MOSFETs to protect the  
device against overload or short circuit conditions. The peak current in the switches is monitored cycle by cycle.  
If the high side MOSFET current limit is reached, the high side MOSFET is turned off and the low side MOSFET  
is turned on until the switch current decreases below the low side MOSFET current limit. Once the low side  
MOSFET current limit trips, the low side MOSFET is turned off and the high side MOSFET turns on again.  
8.4 Device Functional Modes  
8.4.1 Enable and Shutdown  
The device is turned on with EN=high. With EN=low the device enters shutdown. This pin must be terminated.  
8.4.2 Device Start-up and Softstart  
The device has an internal softstart to minimize input voltage drop during start-up. This allows the operation from  
high impedance battery cells. Once the device is enabled the device starts switching after a typical delay time of  
10ms. Then the softstart time of typical 700 µs begins with a reduced current limit of typical 150 mA. When this  
time passed by the device enters full current limit operation. This allows a smooth start-up and the device can  
start into full load current. Furthermore, larger output capacitors impact the start-up behaviour of the DC/DC  
converter. Especially when the output voltage does not reach its nominal value after the typical soft-start time of  
700 µs, has passed.  
8.4.3 Automatic Transition Into No Ripple 100% Mode  
Once the input voltage comes close to the output voltage, the DC/DC converter stops switching and enters  
100% duty cycle operation. It connects the output VOUT via the inductor and the internal high side MOSFET  
switch to the input VIN, once the input voltage VIN falls below the 100% mode enter threshold, VTH_100-. The  
DC/DC regulator is turned off, switching stops and therefore no output voltage ripple is generated. Since the  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLV627432  
 
TLV627432  
ZHCSKJ9B JUNE 2016 REVISED MARCH 2021  
www.ti.com.cn  
output is connected to the input, the output voltage follows the input voltage minus the voltage drop across the  
internal high side switch and the inductor. Once the input voltage increases and trips the 100% mode exit  
threshold, VTH_100+ , the DC/DC regulator turns on and starts switching again. See 8-1 and 9-14.  
VIN  
VIN,  
VOUT  
100%  
Mode  
100%  
Mode  
VTH_100+  
VTH_100-  
Step Down Operation  
VOUT  
tracks VIN  
VOUT  
tracks VIN  
VUVLO+  
VUVLO-  
VOUT  
discharge  
tsoftstart  
8-1. Automatic Transition into 100% Mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLV627432  
 
TLV627432  
ZHCSKJ9B JUNE 2016 REVISED MARCH 2021  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TLV627432 is a high efficiency step down converter with ultra low quiescent current of typically 360 nA. The  
device operates with a tiny 2.2-µH inductor and 10-µF output capacitor over the entire recommended operation  
range. A dedicated measurement set-up is required for the light load efficiency measurement and device  
quiescent current due to the operation in the sub microampere range. In this range any leakage current in the  
measurement set-up will impact the measurement results.  
9.2 Typical Application  
VIN  
TLV627432  
L 2.2 mH  
2.15 V to 5.5 V  
VOUT  
Low Power  
MCU & RF  
VIN  
SW  
CIN  
EN  
VOS  
4.7 mF  
COUT  
10 mF  
VSEL1  
VSEL2  
VSEL3  
GND  
9-1. TLV627432 Typical Application Circuit  
9.2.1 Design Requirements  
The TLV627432 is a highly integrated DC/DC converter. The output voltage is set via a VSEL pin interface. The  
design guideline provides a component selection to operate the device within the recommended operating  
conditions.  
9-1 shows the list of components for the Application Characteristic Curves  
9-1. Components for Application Characteristic Curves  
Reference  
TLV627432  
CIN  
Description  
Value  
Manufacturer (1)  
Texas Instruments  
Murata  
360nA Iq step down converter  
Ceramic capacitor, GRM155R61C475ME15  
Ceramic capacitor, GRM155R60J106ME11  
Inductor DFE201610C  
4.7 µF  
10 µF  
2.2 µH  
COUT  
L
Murata  
Toko  
(1) See Third-Party Products Disclaimer  
9.2.2 Detailed Design Procedure  
The first step in the design procedure is the selection of the output filter components. To simplify this process, 表  
9-2 outlines possible inductor and capacitor value combinations.  
9-2. Recommended LC Output Filter Combinations  
Output Capacitor Value [µF](1)  
Inductor Value  
[µH](2)  
4.7µF  
10µF  
22µF  
47µF  
100µF  
(3)  
2.2  
(1) Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance varies by +20% and 50%.  
(2) Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by 20% and -30%.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLV627432  
 
 
 
 
 
 
 
 
TLV627432  
ZHCSKJ9B JUNE 2016 REVISED MARCH 2021  
www.ti.com.cn  
(3) Typical application configuration. Other check marks indicate alternative filter combinations.  
9.2.2.1 Inductor Selection  
The inductor value affects the peak-to-peak ripple current, the PWM-to-PFM transition point, the output voltage  
ripple and the efficiency. The selected inductor has to be rated for its DC resistance and saturation current. The  
inductor ripple current (ΔIL) decreases with higher inductance and increases with higher VIN or VOUT and can be  
estimated according to 方程1.  
方程式 2 calculates the maximum inductor current under static load conditions. The saturation current of the  
inductor should be rated higher than the maximum inductor current, as calculated with 程式 2. This is  
recommended because during a heavy load transient the inductor current rises above the calculated value. A  
more conservative way is to select the inductor saturation current according to the high-side MOSFET switch  
current limit, ILIMF  
.
Vout  
Vin  
1-  
DIL = Vout ´  
L ´ ¦  
(1)  
(2)  
DI  
L
I
= I  
+
Lmax  
outmax  
2
where  
f = switching frequency  
L = inductor value  
• ΔIL= Peak to Peak inductor ripple current  
ILmax = Maximum Inductor current  
The table below shows a list of possible inductors.  
9-3. List of Possible Inductors  
INDUCTANCE [µH] DIMENSIONS [mm3]  
INDCUTOR TYPE  
ISAT/DCR  
SUPPLIER  
TOKO  
COMMENT  
2.2  
2.2  
2.2  
2.2  
2.0 x 1.6 x 1.0  
2.0 × 1.25 × 1.0  
2.0 x 1.2 x 1.0  
1.6 x 0.8 x 0.8  
DFE201610C  
1.4 A/170 mΩ  
0.7 A/230 mΩ  
0.7 A/200 mΩ  
0.7 A/300 mΩ  
MIPSZ2012D 2R2  
744 797 752 22  
FDK  
Efficiency plot  
Wurth Electronik  
TOKO  
MDT1608-CH2R2M  
9.2.2.2 Output Capacitor Selection  
The DCS-Control™ scheme of the TLV627432 allows the use of tiny ceramic capacitors. Ceramic capacitors  
with low ESR values have the lowest output voltage ripple and are recommended. The output capacitor requires  
either an X7R or X5R dielectric. At light load currents, the converter operates in Power Save Mode and the  
output voltage ripple is dependent on the output capacitor value. A larger output capacitors can be used  
reducing the output voltage ripple. The leakage current of the output capacitor adds to the overall quiescent  
current.  
9.2.2.3 Input Capacitor Selection  
Because the buck converter has a pulsating input current, a low ESR input capacitor is required for best input  
voltage filtering to minimize input voltage spikes. For most applications a 4.7-µF input capacitor is sufficient. The  
input capacitor can be increased without any limit for better input voltage filtering. The leakage current of the  
input capacitor adds to the overall quiescent current. 9-4 shows a selection of input and output capacitors.  
9-4. List of Possible Capacitors  
SIZE  
CAPACITOR TYPE  
SUPPLIER  
CAPACITANCE [μF]  
4.7  
0402  
GRM155R61C475ME15  
Murata  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLV627432  
 
 
 
 
TLV627432  
ZHCSKJ9B JUNE 2016 REVISED MARCH 2021  
www.ti.com.cn  
9-4. List of Possible Capacitors (continued)  
SIZE  
CAPACITOR TYPE  
SUPPLIER  
CAPACITANCE [μF]  
10  
0402  
GRM155R60J106ME11  
Murata  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLV627432  
TLV627432  
ZHCSKJ9B JUNE 2016 REVISED MARCH 2021  
www.ti.com.cn  
9.2.3 Application Curves  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
VIN = 5.0V  
VIN = 4.2V  
VIN = 3.6V  
VIN = 3.0V  
VIN = 5.0V  
VIN = 4.2V  
VIN = 3.6V  
0.001  
0.01  
0.1  
1
10  
100  
1000  
0
0
0
1
10  
100  
1000  
IOUT [mA]  
IOUT [mA]  
C001  
C001  
9-2. Efficiency vs Load Current, VOUT = 3.3 V  
9-3. Efficiency vs Load Current; VOUT = 1.8 V  
90  
85  
80  
75  
70  
1800  
VIN = 5.0 V  
VIN = 3.6 V  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
VIN = 5.0V  
65  
60  
55  
50  
45  
40  
35  
30  
VIN = 4.2V  
VIN = 3.6V  
VIN = 3.0V  
0.001  
0.01  
0.1  
1
10  
100  
1000  
IOUT [mA]  
C001  
0
50  
100  
150  
200  
250  
300  
350  
IOUT (mA)  
D011  
9-4. Efficiency vs Load Current; VOUT = 1.2 V  
9-5. Switching Frequency vs Load Current  
VOUT = 3.3 V  
1600  
1400  
1200  
1000  
800  
1400  
1200  
1000  
800  
600  
VIN = 5.0 V  
VIN = 3.6 V  
VIN = 3.0 V  
VIN = 2.2 V  
600  
400  
200  
0
400  
VIN = 5.0 V  
VIN = 3.6 V  
VIN = 3.0 V  
VIN = 2.0 V  
200  
0
0
50  
100  
150  
200  
250  
300  
350  
0
50  
100  
150  
200  
250  
300 350  
IOUT (mA)  
IOUT (mA)  
D012  
D013  
9-6. Switching Frequency vs Load Current  
9-7. Switching Frequency vs Load Current  
VOUT = 1.8 V  
VOUT = 1.2 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLV627432  
TLV627432  
ZHCSKJ9B JUNE 2016 REVISED MARCH 2021  
www.ti.com.cn  
9-8. PFM (Power Save Mode) Mode Operation  
9-9. PWM Mode Operation  
IL  
IL  
9-11. Startup Into 300 mA Electronic Load  
9-10. Startup Into 100 mA Electronic Load  
Soft-Start Delay  
EN Delay + Soft-Start Delay  
IL  
IL  
9-12. Load Transient Response; 100 mA to 290  
9-13. Load Transient Response; 5 mA to 290 mA  
mA  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLV627432  
TLV627432  
ZHCSKJ9B JUNE 2016 REVISED MARCH 2021  
www.ti.com.cn  
9-14. 100% Mode Entry and Leave Operation  
IOUT = 30 mA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLV627432  
 
TLV627432  
ZHCSKJ9B JUNE 2016 REVISED MARCH 2021  
www.ti.com.cn  
10 Power Supply Recommendations  
The power supply must provide a current rating according to the supply voltage, output voltage and output  
current of the TLV627432.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLV627432  
 
TLV627432  
ZHCSKJ9B JUNE 2016 REVISED MARCH 2021  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
As for all switching power supplies, the layout is an important step in the design. Care must be taken in board  
layout to get the specified performance.  
It is critical to provide a low inductance, impedance ground path. Therefore, use wide and short traces for the  
main current paths.  
The input capacitor should be placed as close as possible to the IC pins VIN and GND. This is the most  
critical component placement.  
The VOS line is a sensitive high impedance line and should be connected to the output capacitor and routed  
away from noisy components and traces (e.g. SW line) or other noise sources.  
11.2 Layout Example  
VOUT  
GND  
COUT  
L
CIN  
VIN  
11-1. Recommended PCB Layout  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLV627432  
 
 
 
TLV627432  
ZHCSKJ9B JUNE 2016 REVISED MARCH 2021  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLV627432  
 
 
 
 
 
 
 
 
TLV627432  
ZHCSKJ9B JUNE 2016 REVISED MARCH 2021  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLV627432  
 
TLV627432  
ZHCSKJ9B JUNE 2016 REVISED MARCH 2021  
www.ti.com.cn  
PACKAGE OUTLINE  
YFP0008-C01  
DSBGA - 0.531 mm max height  
SCALE 10.000  
DIE SIZE BALL GRID ARRAY  
B
E
A
BALL A1  
CORNER  
D
0.341  
0.283  
C
0.531 MAX  
SEATING PLANE  
0.05 C  
0.19  
0.13  
SYMM  
D
C
B
SYMM  
1.2  
D: Max = 1.592 mm, Min = 1.531 mm  
E: Max = 0.896 mm, Min = 0.836 mm  
TYP  
0.4 TYP  
A
0.25  
0.21  
1
2
8X  
0.015  
0.4 TYP  
C A B  
4226583/A 03/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLV627432  
TLV627432  
ZHCSKJ9B JUNE 2016 REVISED MARCH 2021  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
YFP0008-C01  
DSBGA - 0.531 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
8X ( 0.23)  
1
2
A
(0.4) TYP  
B
C
SYMM  
D
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 50X  
0.05 MIN  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
( 0.23)  
METAL  
(
0.23)  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4226583/A 03/2021  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLV627432  
TLV627432  
ZHCSKJ9B JUNE 2016 REVISED MARCH 2021  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
YFP0008-C01  
DSBGA - 0.531 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
8X ( 0.25)  
1
2
A
(0.4) TYP  
B
C
SYMM  
METAL  
TYP  
D
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 50X  
4226583/A 03/2021  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLV627432  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Mar-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV627432YFPR  
ACTIVE  
DSBGA  
YFP  
8
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
-40 to 85  
160322  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV627432YFPR  
DSBGA  
YFP  
8
3000  
180.0  
8.4  
0.98  
1.68  
0.59  
4.0  
8.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
DSBGA YFP  
SPQ  
Length (mm) Width (mm) Height (mm)  
182.0 182.0 20.0  
TLV627432YFPR  
8
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YFP0008  
DSBGA - 0.5 mm max height  
SCALE 10.000  
DIE SIZE BALL GRID ARRAY  
B
E
A
BALL A1  
CORNER  
D
0.30  
0.25  
C
0.5 MAX  
SEATING PLANE  
0.05 C  
0.19  
0.13  
SYMM  
D
C
B
SYMM  
1.2  
TYP  
D: Max = 1.592 mm, Min =1.531 mm  
E: Max = 0.896 mm, Min =0.836 mm  
0.4 TYP  
A
0.25  
8X  
1
2
0.21  
0.4 TYP  
0.015  
C A B  
4225242/A 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFP0008  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
8X ( 0.23)  
1
2
A
(0.4) TYP  
B
C
SYMM  
D
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 50X  
0.05 MIN  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
(
0.23)  
METAL  
(
0.23)  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225242/A 08/2019  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFP0008  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
8X ( 0.25)  
1
2
A
(0.4) TYP  
B
C
SYMM  
METAL  
TYP  
D
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 50X  
4225242/A 08/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV627432YFPR

具有超低静态电流的 2.15V 至 5.5V、400mA 高效降压转换器 | YFP | 8 | -40 to 85
TI

TLV6700

采用集成基准的低功耗窗口比较器
TI

TLV6700-Q1

TLV6700-Q1 Micropower, 18-V Window Comparator With 400-mV Reference
TI

TLV6700DDCR

采用集成基准的低功耗窗口比较器 | DDC | 6 | -40 to 125
TI

TLV6700DDCT

采用集成基准的低功耗窗口比较器 | DDC | 6 | -40 to 125
TI

TLV6700DSER

采用集成基准的低功耗窗口比较器 | DSE | 6 | -40 to 125
TI

TLV6700QDDCRQ1

TLV6700-Q1 Micropower, 18-V Window Comparator With 400-mV Reference
TI

TLV6700QDSERQ1

TLV6700-Q1 Micropower, 18-V Window Comparator With 400-mV Reference
TI

TLV6703

具有集成基准电压的 18V 比较器
TI

TLV6703-Q1

具有集成基准的汽车类 18V 比较器
TI

TLV6703DDCR

具有集成基准电压的 18V 比较器 | DDC | 6 | -40 to 125
TI

TLV6703DDCT

具有集成基准电压的 18V 比较器 | DDC | 6 | -40 to 125
TI