TLV6710 [TI]

采用集成基准的低功耗高电压窗口比较器;
TLV6710
型号: TLV6710
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用集成基准的低功耗高电压窗口比较器

比较器
文件: 总28页 (文件大小:1533K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV6710  
ZHCSHH2B JANUARY 2018REVISED OCTOBER 2018  
具有 400mV 基准电压的 TLV6710 微功耗、36V 窗口比较器  
1 特性  
3 说明  
1
高电源电压范围:1.8V 36V  
可调节阈值:低至 400mV  
高阈值精度:  
TLV6710 是一款高电压窗口比较器,工作电压范围为  
1.8V 36V。此器件具有两个内部基准电压为 400mV  
的高精度比较器和两个额定电压为 25V 的开漏输出  
TLV6710 可以作为一个窗口比较器使用,也可以作为  
两个独立的比较器使用。可以使用外部电阻器设定监控  
电压。  
0.25%(典型值)  
在工作温度范围内最大值为 0.75%  
低静态电流:7μA(典型值)  
漏极开路输出  
INA+ 上的电压下降至低于 (VITP - VHYS)时,OUTA  
被驱动至低电平,当电压返回到相应阈值 (VITP) 之上  
时,OUTA 变为高电平。当 INB- 上的电压上升至高于  
内部滞后:5.5mV(典型值)  
温度范围:-40°C 125°C  
封装:超薄 SOT-23-6  
VITP时,OUTB 被驱动至低电平,当电压下降至低于相  
应阈值 (VITP - VHYS) 时,OUTB 变为高电平。  
2 应用  
TLV6710 中的两个比较器都具有内置迟滞来抑制短时  
毛刺脉冲,确保稳定的输出运行,不会引起误触发。  
笔记本电脑和平板电脑  
智能手机  
TLV6710 采用薄型 SOT-23-6 封装,额定结温范围为  
–40°C 125°C。  
数码相机  
视频游戏控制器  
中继器和断路器  
便携式医疗设备  
门窗传感器  
器件信息(1)  
器件编号  
TLV6710  
封装  
SOT-23 (6)  
封装尺寸(标称值)  
2.90mm × 1.60mm  
便携式和电池供电类产品  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
简化框图  
VPULL-UP  
(Up To 25 V)  
1.8 V to 36 V  
VDD  
OUTA  
INA+  
OUTB  
INB–  
Reference  
GND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNVSAV4  
 
 
 
 
 
TLV6710  
ZHCSHH2B JANUARY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 12  
9.1 Application Information............................................ 12  
9.2 Typical Application ................................................. 15  
9.3 Do's and Don'ts....................................................... 17  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
器件比较............................................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ..................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements................................................ 6  
7.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
8.1 Overview ................................................................. 10  
8.2 Functional Block Diagram ....................................... 10  
8.3 Feature Description................................................. 11  
9
10 Power Supply Recommendations ..................... 18  
11 Layout................................................................... 19  
11.1 Layout Guidelines ................................................. 19  
11.2 Layout Example .................................................... 19  
12 器件和文档支持 ..................................................... 20  
12.1 器件支持................................................................ 20  
12.2 文档支持................................................................ 20  
12.3 接收文档更新通知 ................................................. 20  
12.4 社区资源................................................................ 20  
12.5 ....................................................................... 20  
12.6 静电放电警告......................................................... 20  
12.7 术语表 ................................................................... 20  
13 机械、封装和可订购信息....................................... 20  
8
4 修订历史记录  
Changes from Revision A (April 2018) to Revision B  
Page  
将首页上 简化方框图、说明和应用信息部分的 输出 说明文字 从 36V 更改为 25V............................................................ 1  
Changes from Original (January 2018) to Revision A  
Page  
预告信息更改为生产数据” ............................................................................................................................................... 1  
2
版权 © 2018, Texas Instruments Incorporated  
 
TLV6710  
www.ti.com.cn  
ZHCSHH2B JANUARY 2018REVISED OCTOBER 2018  
5 器件比较表  
1. TLV67xx 集成比较器系列  
器件编号  
TLV6700  
TLV6703  
TLV6710  
TLV6713  
配置  
窗口  
工作电压范围  
1.8V 18V  
1.8V 18V  
1.8V 36V  
1.8V 36V  
整个温度范围内的精度阈值  
1%  
1%  
同相单通道  
窗口  
0.75%  
0.75%  
同相单通道  
6 Pin Configuration and Functions  
DDC Package  
SOT-6  
(Top View)  
OUTA  
GND  
INA  
1
2
3
6
5
4
OUTB  
VDD  
INB  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
GND  
2
I
Ground  
Comparator A input. This pin is connected to the voltage to be monitored with the use of an  
external resistor divider. When the voltage at this terminal drops below the threshold voltage  
VIT–(INA), OUTA is driven low.  
INA  
INB  
3
4
Comparator B input. This pin is connected to the voltage to be monitored with the use of an  
external resistor divider. When the voltage at this terminal exceeds the threshold voltage  
VIT+(INB), OUTB is driven low.  
I
INA comparator open-drain output. OUTA is driven low when the voltage at this comparator  
OUTA  
OUTB  
VDD  
1
6
5
O
O
I
is less than VIT–(INA). The output goes high when the sense voltage rises above VIT+(INA)  
INB comparator open-drain output. OUTB is driven low when the voltage at this comparator  
exceeds VIT+(INB). The output goes high when the sense voltage falls below VIT–(INB)  
.
.
Supply voltage input. Connect a 1.8-V to 36-V supply to VDD to power the device. It is good  
analog design practice to place a 0.1-µF ceramic capacitor close to this pin.  
Copyright © 2018, Texas Instruments Incorporated  
3
TLV6710  
ZHCSHH2B JANUARY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating junction temperature range, unless otherwise noted.(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
+40  
+28  
+7  
UNIT  
V
VDD  
Voltage(2)  
VOUTA, VOUTB  
V
VINA, VINB  
V
Current  
Output pin current  
Operating junction, TJ  
Storage temperature, Tstg  
40  
mA  
°C  
°C  
–40  
–65  
+125  
+150  
Temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to network ground terminal.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
MIN  
1.8  
0
NOM  
MAX  
36  
UNIT  
V
VDD  
Supply pin voltage  
Input pin voltage  
VINA, VINB  
VOUTA, VOUTB  
IOUTA, IOUTB  
TJ  
1.7  
V
Output pin voltage  
Output pin current  
Junction temperature  
0
25  
V
0
10  
mA  
°C  
–40  
+25  
+125  
7.4 Thermal Information  
TLV6710  
DDC (SOT)  
6 PINS  
201.6  
47.8  
THERMAL METRIC(1)  
UNITS  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
51.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.7  
ψJB  
50.8  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
4
Copyright © 2018, Texas Instruments Incorporated  
TLV6710  
www.ti.com.cn  
ZHCSHH2B JANUARY 2018REVISED OCTOBER 2018  
7.5 Electrical Characteristics  
Over the operating temperature range of TJ = –40°C to +125°C, 1.8 V VDD < 36 V, and pullup resistors RP1,2 = 100 kΩ,  
unless otherwise noted. Typical values are at TJ = 25°C and VDD = 12 V.  
PARAMETER  
Supply voltage range  
Power-on reset voltage(1)  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VDD  
1.8  
36  
0.8  
V
V
V(POR)  
VIT–(INA)  
VOL 0.2 V  
INA pin negative input threshold voltage VDD = 1.8 V to 36 V  
397  
400  
400  
403  
413  
mV  
mV  
VIT+(INA) INA pin positive input threshold voltage VDD = 1.8 V to 36 V  
405.5  
INA pin hysteresis voltage  
VHYS(INA)  
2
5.5  
12  
mV  
(HYS = VIT+(INA) – VIT–(INA)  
)
VIT–(INB)  
INB pin negative input threshold voltage VDD = 1.8 V to 36 V  
387  
397  
394.5  
400  
400  
403  
mV  
mV  
VIT+(INB) INB pin positive input threshold voltage VDD = 1.8 V to 36 V  
INB pin hysteresis voltage  
VHYS(INB)  
2
5.2  
12  
mV  
(HYS = VIT+(INB) – VIT–(INB)  
)
VDD = 1.8 V, IOUT = 3 mA  
130  
150  
+1  
+1  
10  
250  
250  
+25  
+15  
300  
11  
mV  
mV  
nA  
nA  
nA  
µA  
V
VOL  
Low-level output voltage  
VDD = 5 V, IOUT = 5 mA  
VDD = 1.8 V and 36 V, VINA, VINB = 6.5 V  
VDD = 1.8 V and 36 V, VINA, VINB = 0.1 V  
VDD = 1.8 V and 36 V, VOUT = 25 V  
VDD = 1.8 V – 36 V  
–25  
–15  
IIN  
Input current (at INA, INB pins)  
ID(leak)  
IDD  
Open-drain output leakage current  
Supply current  
Undervoltage lockout(2)  
8
UVLO  
VDD falling  
1.3  
1.5  
1.7  
(1) The lowest supply voltage (VDD) at which output is active; tr(VDD) > 15 µs/V. If less than V(POR), the output is undetermined.  
(2) When VDD falls below UVLO, OUTA is driven low and OUTB goes to high impedance. The outputs cannot be determined if less than  
V(POR)  
.
Copyright © 2018, Texas Instruments Incorporated  
5
 
TLV6710  
ZHCSHH2B JANUARY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
7.6 Timing Requirements  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
VDD = 24 V, ±10-mV input overdrive,  
RL = 100 kΩ, VOH = 0.9 × VDD, VOL = 250 mV  
.tpd(HL)  
tpd(LH)  
High-to-low propagation delay(1)  
9.9  
µs  
VDD = 24 V, ±10-mV input overdrive,  
RL = 100 kΩ, VOH = 0.9 × VDD, VOL = 250 mV  
Low-to-high propagation delay(1)  
Startup delay  
28.1  
155  
2.7  
µs  
µs  
µs  
(2)  
td(start)  
tr  
VDD = 5 V  
VDD = 12 V, 10-mV input overdrive,  
RL = 100 kΩ, CL = 10 pF, VO = (0.1 to 0.9) × VDD  
Output rise time  
VDD = 12 V, 10-mV input overdrive,  
RL = 100 kΩ, CL = 10 pF, VO = (0.9 to 0.1) × VDD  
tf  
Output fall time  
0.12  
µs  
(1) High-to-low and low-to-high refers to the transition at the input pins (INA and INB).  
(2) During power on, VDD must exceed 1.8 V for at least 150 µs (typ) before the output state reflects the input condition.  
VDD  
V(POR)  
VIT+(INA)  
VITœ(INA)  
VHYS  
INA  
OUTA  
tpd(LH)  
tpd(HL)  
tpd(LH)  
VIT+(INB)  
VITœ(INB)  
VHYS  
INB  
OUTB  
tpd(LH)  
tpd(HL)  
td(start)  
Figure 1. Timing Diagram  
6
Copyright © 2018, Texas Instruments Incorporated  
 
TLV6710  
www.ti.com.cn  
ZHCSHH2B JANUARY 2018REVISED OCTOBER 2018  
7.7 Typical Characteristics  
At TJ = 25°C and VDD = 12 V, unless otherwise noted.  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
INA  
INB  
6
4
TJ = -40èC  
TJ = 0èC  
6
2
4
TJ = 25èC  
TJ = 85èC  
TJ = 125èC  
2
0
0
0
6
12  
18  
24  
30  
36  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Supply Voltage (V)  
Overdrive (%)  
D001  
D011  
VDD = 24 V  
Figure 2. Supply Current vs Supply Voltage  
Figure 3. Minimum Pulse Duration vs  
Threshold Overdrive Voltage(1) (1)  
400.2  
400.05  
399.9  
408.5  
408  
VDD = 1.8 V  
VDD = 12 V  
VDD = 36 V  
407.5  
407  
406.5  
406  
399.75  
399.6  
405.5  
405  
VDD = 1.8 V  
VDD = 12 V  
VDD = 36 V  
399.45  
404.5  
404  
399.3  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ (èC)  
TJ (èC)  
D005  
D002  
Figure 4. INA Positive Input Threshold Voltage (VIT+(INA)) vs  
Temperature  
Figure 5. INA Negative Input Threshold Voltage (VIT–(INA)) vs  
Temperature  
400.35  
395.7  
395.4  
395.1  
394.8  
394.5  
394.2  
393.9  
393.6  
VDD = 1.8 V  
VDD = 12 V  
VDD = 36 V  
400.2  
400.05  
399.9  
399.75  
399.6  
393.3  
VDD = 1.8 V  
VDD = 12 V  
VDD = 36 V  
392.7  
393  
399.45  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ (èC)  
TJ (èC)  
D004  
D003  
Figure 6. INB Positive Input Threshold Voltage (VIT+(INB)) vs  
Temperature  
Figure 7. INB Negative Input Threshold Voltage (VIT–(INB)) vs  
Temperature  
(1) Minimum pulse duration required to trigger output high-to-low transition. INA = negative spike below VIT– and INB = positive spike above  
VIT+  
.
Copyright © 2018, Texas Instruments Incorporated  
7
 
TLV6710  
ZHCSHH2B JANUARY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
At TJ = 25°C and VDD = 12 V, unless otherwise noted.  
3500  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
3000  
2500  
2000  
1500  
1000  
500  
0
0
D022  
D020  
VIT+(INA) Threshold Voltage (mV)  
VIT-(INA) Threshold Voltage (mV)  
VDD = 1.8 V  
VDD = 1.8 V  
Figure 8. INA Positive Input Threshold Voltage (VIT+(INA)  
)
Figure 9. INA Negative Input Threshold Voltage (VIT–(INA))  
Distribution  
Distribution  
3000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
2500  
2000  
1500  
1000  
500  
0
0
D021  
D023  
VIT+(INB) Threshold Voltage (mV)  
VIT-(INB) Threshold Voltage (mV)  
VDD = 1.8 V  
VDD = 1.8 V  
Figure 10. INB Positive Input Threshold Voltage (VIT+(INB)  
)
Figure 11. INB Negative Input Threshold Voltage (VIT–(INB)  
)
Distribution  
Distribution  
12  
3.3  
VDD = 1.8 V, INA to OUTA  
VDD = 1.8 V, INA to OUTA  
VDD = 36 V, INA to OUTA  
VDD = 1.8 V, INB to OUTB  
VDD = 36 V, INA to OUTA  
VDD = 1.8 V, INB to OUTB  
11  
3
VDD = 36 V, INB to OUTB  
VDD = 36 V, INB to OUTB  
10  
2.7  
9
8
7
6
5
2.4  
2.1  
1.8  
1.5  
1.2  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ (èC)  
TJ (èC)  
D007  
D008  
Input step ±200 mV  
Input step ±200 mV  
Figure 12. Propagation Delay vs Temperature  
(High-to-Low Transition at the Inputs)  
Figure 13. Propagation Delay vs Temperature  
(Low-to-High Transition at the Inputs)  
8
Copyright © 2018, Texas Instruments Incorporated  
TLV6710  
www.ti.com.cn  
ZHCSHH2B JANUARY 2018REVISED OCTOBER 2018  
Typical Characteristics (continued)  
At TJ = 25°C and VDD = 12 V, unless otherwise noted.  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
TJ = -40èC  
TJ = 0èC  
TJ = -40èC  
TJ = 0èC  
TJ = 25èC  
TJ = 85èC  
TJ = 125èC  
0.5  
TJ = 25èC  
TJ = 85èC  
TJ = 125èC  
0.4  
0.3  
0.2  
0.1  
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
IOUT (mA)  
IOUT (mA)  
D009  
D010  
VDD = 1.8 V  
VDD = 12 V  
Figure 14. Output Voltage Low vs Output Sink Current  
Figure 15. Output Voltage Low vs Output Sink Current  
210  
195  
180  
165  
150  
135  
120  
Startup  
Delay  
Period  
VDD (2 V/div)  
OUTA (2 V/div)  
OUTB (2 V/div)  
-40  
-20  
0
20  
40  
TJ (èC)  
60  
80  
100 120 140  
Time (50 µs/div)  
D025  
VDD = 5 V, VINA = 390 mV, VINB = 410 mV, VPULLUP = 3.3 V  
VDD = 5 V  
Figure 17. Start-Up Delay  
Figure 16. Start-Up Delay vs Temperature  
Startup  
Delay  
Period  
VDD (2 V/div)  
OUTA (2 V/div)  
OUTB (2 V/div)  
Time (50 µs/div)  
VDD = 5 V, VINA = 410 mV, VINB = 390 mV, VPULLUP = 3.3 V  
Figure 18. Start-Up Delay  
Copyright © 2018, Texas Instruments Incorporated  
9
TLV6710  
ZHCSHH2B JANUARY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TLV6710 combines two comparators (referred to as A and B) and a precision reference for overvoltage and  
undervoltage detection. The TLV6710 features a wide supply voltage range (1.8 V to 36 V) and high-accuracy  
window threshold voltages of 400 mV (0.75% over temperature) with built-in hysteresis. The outputs are rated to  
25 V and can sink up to 10 mA.  
Set each input pin (INA, INB) to monitor any voltage above 0.4 V by using an external resistor divider network.  
Each input pin has very low input leakage current, allowing the use of large resistor dividers without sacrificing  
system accuracy. To form a window comparator, use the two input pins and three resistors (see the Window  
Comparator Considerations section). In this configuration, the TLV6710 is designed to assert the output signals  
when the monitored voltage is within the window band. Each input can also be used independently. The  
relationship between the inputs and the outputs is shown in Table 2. Broad voltage thresholds are supported that  
enable the device to be used in a wide array of applications.  
Table 2. Truth Table  
CONDITION  
INA > VIT+(INA)  
INA < VIT–(INA)  
INB > VIT+(INB)  
INB < VIT–(INB)  
OUTPUT  
OUTA high  
OUTA low  
OUTB low  
OUTB high  
OUTPUT STATE  
Output A high impedance  
Output A sinking  
Output B sinking  
Output B high impedance  
8.2 Functional Block Diagram  
VDD  
INA  
OUTA  
A
OUTB  
B
INB  
Reference  
GND  
10  
Copyright © 2018, Texas Instruments Incorporated  
 
TLV6710  
www.ti.com.cn  
ZHCSHH2B JANUARY 2018REVISED OCTOBER 2018  
8.3 Feature Description  
8.3.1 Inputs (INA, INB)  
The TLV6710 combines two comparators with a precision reference voltage. Each comparator has one external  
input; the other input is connected to the internal reference. The rising threshold on INB and the falling threshold  
on INA are designed and trimmed to be equal to the reference voltage (400 mV). This configuration optimizes the  
device accuracy when used as a window comparator. Both comparators also have built-in hysteresis that proves  
immunity to noise and ensures stable operation.  
The comparator inputs swings from ground to 1.7 V (7.0 V absolute maximum), regardless of the device supply  
voltage used. Although not required in most cases, it is good analog design practice to place a 1-nF to 10-nF  
bypass capacitor at the comparator input for noisy applications in order to reduce sensitivity to transient voltage  
changes on the monitored signal.  
For comparator A, the corresponding output (OUTA) is driven to logic low when the input INA voltage drops  
below VIT–(INA). When the voltage exceeds VIT+(INA), OUTA goes to a high-impedance state; see Figure 1.  
For comparator B, the corresponding output (OUTB) is driven to logic low when the voltage at input INB exceeds  
VIT+(INB). When the voltage drops below VIT–(INB) OUTB goes to a high-impedance state; see Figure 1. Together,  
these two comparators form a window-detection function as described in the Window Comparator Considerations  
section.  
8.3.2 Outputs (OUTA, OUTB)  
In a typical TLV6710 application, the outputs are connected to a GPIO input of the processor (such as a digital  
signal processor [DSP], central processing unit [CPU], field-programmable gate array [FPGA], or application-  
specific integrated circuit [ASIC]).  
The TLV6710 provides two open-drain outputs (OUTA and OUTB); use pullup resistors to hold these lines high  
when the output goes to a high-impedance state. Connect pullup resistors to the proper voltage rails to enable  
the outputs to be connected to other devices at correct interface voltage levels. The TLV6710 outputs can be  
pulled up to 25 V, independent of the device supply voltage. To ensure proper voltage levels, give some  
consideration when choosing the pullup resistor values. The pullup resistor value is determined by VOL, output  
capacitive loading, and output leakage current (ID(leak)). These values are specified in the Electrical  
Characteristics table. Use wired-OR logic to merge OUTA and OUTB into one logic signal.  
Table 2 and the Inputs (INA, INB) section describe how the outputs are asserted or high impedance. See  
Figure 1 for a timing diagram that describes the relationship between threshold voltages and the respective  
output.  
8.4 Device Functional Modes  
8.4.1 Normal Operation (VDD > UVLO)  
When the voltage on VDD is greater than 1.8 V for at least 155 µs, the OUTA and OUTB signals correspond to  
the voltage on INA and INB as listed in Table 2.  
8.4.2 Undervoltage Lockout (V(POR) < VDD < UVLO)  
When the voltage on VDD is less than the device UVLO voltage, and greater than the power-on reset voltage,  
V(POR), the OUTA and OUTB signals are asserted and high impedance, respectively, regardless of the voltage on  
INA and INB.  
8.4.3 Power On Reset (VDD < V(POR)  
)
When the voltage on VDD is lower than the required voltage to internally pull the asserted output to GND  
(V(POR)), both outputs are in a high-impedance state.  
Copyright © 2018, Texas Instruments Incorporated  
11  
 
TLV6710  
ZHCSHH2B JANUARY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TLV6710 device is a wide-supply voltage window comparator that operates over a VDD range of 1.8 V to  
36 V. The device has two high-accuracy comparators with an internal 400-mV reference and two open-drain  
outputs rated to 25 V for overvoltage and undervoltage detection. The device can be used either as a  
window comparator or as two independent voltage monitors. The monitored voltages are set with the use of  
external resistors.  
9.1.1 Window Comparator Considerations  
The inverting and noninverting configuration of the comparators forms a window-comparator detection circuit  
using a resistor divider network, as shown in Figure 19 and Figure 20. The input pins can monitor any system  
voltage above 400 mV with the use of a resistor divider network. INA and INB monitor for undervoltage and  
overvoltage conditions, respectively.  
VMON  
1.8 V to 25 V  
R1  
RP1  
(2.21 MW)  
VDD  
Device  
GND  
(50 kW)  
INA  
OUTA  
R2  
(13.7 kW)  
OUT  
INB  
OUTB  
UV VMON OV  
R3  
(69.8 kW)  
Figure 19. Window Comparator Block Diagram  
VMON(OV)  
Overvoltage  
Limit  
VMON(OV_HYS)  
VMON  
VMON(UV_HYS)  
VMON(UV)  
Undervoltage  
Limit  
OUTB  
OUTA  
Figure 20. Window Comparator Timing Diagram  
12  
Copyright © 2018, Texas Instruments Incorporated  
 
 
TLV6710  
www.ti.com.cn  
ZHCSHH2B JANUARY 2018REVISED OCTOBER 2018  
Application Information (continued)  
The TLV6710 flags the overvoltage or undervoltage condition with the greatest accuracy. The highest accuracy  
threshold voltages are VIT–(INA) and VIT+(INB), and correspond with the falling undervoltage flag, and the rising  
overvoltage flag, respectively. These thresholds represent the accuracy when the monitored voltage is within the  
valid window (both OUTA and OUTB are in a high-impedance state), and correspond to the VMON(UV) and  
VMON(OV) trigger voltages, respectively. If the monitored voltage is outside of the valid window (VMON is less than  
the undervoltage limit, VMON(UV), or greater than overvoltage limit, VMON(OV)), then the input threshold voltages to  
re-enter the valid window are VIT+(INA) or VIT–(INB), and correspond with the VMON(UV_HYS) and VMON(OV_HYS)  
monitored voltages, respectively.  
The resistor divider values and target threshold voltage can be calculated by using Equation 1 through  
Equation 4:  
RTOTAL = R1 + R2 + R3  
(1)  
Choose an RTOTAL value so that the current through the divider is approximately 100 times higher than the input  
current at the INA and INB pins. Resistors with high values minimize current consumption; however, the input  
bias current degrades accuracy if the current through the resistors is too low. See application report Optimizing  
Resistor Dividers at a Comparator Input (SLVA450), for details on sizing input resistors.  
R3 is determined by Equation 2:  
RTOTAL  
R3 =  
VIT+(INB)  
VMON(OV)  
where  
VMON(OV) is the target voltage at which an overvoltage condition is detected.  
(2)  
R2 is determined by either Equation 3 or Equation 4:  
RTOTAL  
R2 =  
VIT+(INA) - R3  
VMON(UV_HYS)  
where  
VMON(UV_HYS) is the target voltage at which an undervoltage condition is removed as VMON rises.  
(3)  
(4)  
RTOTAL  
R2 =  
VIT-(INA) - R3  
VMON(UV)  
where  
VMON(UV) is the target voltage at which an undervoltage condition is detected.  
9.1.2 Input and Output Configurations  
Figure 21 to Figure 23 show examples of the various input and output configurations.  
Copyright © 2018, Texas Instruments Incorporated  
13  
 
 
 
 
TLV6710  
ZHCSHH2B JANUARY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Application Information (continued)  
VPULLUP  
1.8 V to 36 V  
(up to 25 V)  
VDD  
INA  
OUTA  
Device  
OUTB  
INB  
GND  
Figure 21. Interfacing to Voltages Other than VDD  
1.8 V to 25 V  
VDD  
INA  
OUTA  
Device  
INB  
OUTB  
GND  
Figure 22. Monitoring the Same Voltage as VDD  
14  
Copyright © 2018, Texas Instruments Incorporated  
TLV6710  
www.ti.com.cn  
ZHCSHH2B JANUARY 2018REVISED OCTOBER 2018  
Application Information (continued)  
VMON  
1.8 V to 25 V  
VDD  
R1  
INA  
OUTA  
R2  
Device  
INB  
OUTB  
R3  
GND  
NOTE: The inputs can monitor a voltage higher than VDD (max) with the use of an external resistor divider network.  
Figure 23. Monitoring a Voltage Other than VDD  
9.1.3 Immunity to Input Pin Voltage Transients  
The TLV6710 is immune to short voltage transient spikes on the input pins. Sensitivity to transients depends on  
both transient duration and amplitude; see Figure 3, Minimum Pulse Duration vs Threshold Overdrive Voltage.  
9.2 Typical Application  
VMON  
24 V  
0.01 F  
+
VPULLUP  
3.3 V  
œ
2.0 M  
6.81 kΩ  
30.9 kΩ  
VDD  
Device  
GND  
100 kΩ  
100 kΩ  
INA  
INB  
OUTA  
OUTB  
Figure 24. 24-V, 10% Window Comparator  
Copyright © 2018, Texas Instruments Incorporated  
15  
TLV6710  
ZHCSHH2B JANUARY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Application (continued)  
9.2.1 Design Requirements  
Table 3. Design Parameters  
PARAMETER  
DESIGN REQUIREMENT  
DESIGN RESULT  
24-V nominal, rising (VMON(OV)) and  
falling (VMON(UV)) threshold  
±10% nominal (26.4 V and 21.6 V,  
respectively)  
Monitored voltage  
VMON(OV) = 26.4 V ±2.7%, VMON(UV) = 21.6 V ±2.7%  
Output logic voltage  
3.3-V CMOS  
30 µA  
3.3-V CMOS  
24 µA  
Maximum current consumption  
9.2.2 Detailed Design Procedure  
1. Determine the minimum total resistance of the resistor network necessary to achieve the current  
consumption specification by using Equation 1. For this example, the current flow through the resistor  
network was chosen to be 13 µA; a lower current can be selected, however, care should be taken to avoid  
leakage currents that are artifacts of the manufacturing process. Leakage currents significantly impact the  
accuracy if they are greater than 1% of the resistor network current.  
VMON(OV)  
26.4 V  
RTOTAL  
=
=
= 2.03 M  
I
13 mA  
where  
VMON(OV) is the target voltage at which an overvoltage condition is detected as VMON rises.  
I is the current flowing through the resistor network.  
(5)  
2. After RTOTAL is determined, R3 can be calculated using Equation 6. Select the nearest 1% resistor value for  
R3. In this case, 30.9 kΩ is the closest value.  
RTOTAL  
2.03 MW  
R3 =  
VIT+(INB)  
=
0.4 V = 30.7 kW  
26.4 V  
VMON(OV)  
(6)  
3. Use Equation 7 to calculate R2. Select the nearest 1% resistor value for R2. In this case, 6.81 kΩ is the  
closest value.  
RTOTAL  
2.03 MW  
21.6 V  
R2 =  
ñ VIT-(INA+) -R3 =  
ñ0.4 V -30.9 k= 6.69 kꢀ  
VMON(UV)  
(7)  
4. Use Equation 8 to calculate R1. Select the nearest 1% resistor value for R1. In this case, 2 MΩ is the closest  
value.  
R1 =RTOTAL -R2 -R3 = 2.03 M-6.81 k-30.9 k=1.99 Mꢀ  
(8)  
5. The worst-case tolerance can be calculated by referring to Equation 13 in application report Optimizing  
Resistor Dividers at a Comparator Input (SLVA450). An example of the rising threshold error, VMON(OV), is  
given in Equation 9:  
V
0.4  
IT+(INB)  
% ACC = % TOL(VIT+(INB) ) + 2 • 1-  
÷• % TOLR= 0.75 % + 2 • 1-  
• 1% = 2.72 %  
÷
÷
VMON(OV)  
26.4  
«
«
where  
% TOL(VIT+(INB)) is the tolerance of the INB positive threshold.  
% ACC is the total tolerance of the VMON(OV) voltage.  
% TOLR is the tolerance of the resistors selected.  
(9)  
6. When the outputs switch to the high-Z state, the rise time of the OUTA or OUTB node depends on the pullup  
resistance and the capacitance on the node. Choose pullup resistors that satisfy the downstream timing  
requirements; 100-kΩ resistors are a good choice for low-capacitive loads.  
9.2.3 Application Curve  
16  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
TLV6710  
www.ti.com.cn  
ZHCSHH2B JANUARY 2018REVISED OCTOBER 2018  
VDD (10 V/div)  
OUTA (2 V/div)  
OUTB (2 V/div)  
Time (5 ms/div)  
Figure 25. 24-V Window Monitor Output Response  
9.3 Do's and Don'ts  
It is good analog design practice to have a 0.1-µF decoupling capacitor from VDD to GND.  
If the monitored rail is noisy, connect decoupling capacitors from the comparator inputs to GND.  
Do not use resistors for the voltage divider that cause the current through them to be less than 100 times the  
input current of the comparators without also accounting for the effect to the accuracy.  
Do not use pullup resistors that are too small, because the larger current sunk by the output then exceeds the  
desired low-level output voltage (VOL).  
Copyright © 2018, Texas Instruments Incorporated  
17  
TLV6710  
ZHCSHH2B JANUARY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
10 Power Supply Recommendations  
The TLV6710 has a 40-V absolute maximum rating on the VDD pin, with a recommended operating condition of  
36 V. If the voltage supply that is providing power to VDD is susceptible to any large voltage transient that may  
exceed 40 V, or if the supply exhibits high voltage slew rates greater than 1 V/µs, take additional precautions.  
Place an RC filter between the supply and VDD to filter any high-frequency transient surges on the VDD pin. A  
100-Ω resistor and 0.01-µF capacitor is required in these cases, as shown in Figure 26.  
100  
0.01 F  
+
œ
VPULLUP  
R1  
VDD  
INA  
INB  
OUTA  
OUTB  
R2  
R3  
GND  
Figure 26. Using an RC Filter to Remove High-Frequency Disturbances on VDD  
18  
Copyright © 2018, Texas Instruments Incorporated  
 
TLV6710  
www.ti.com.cn  
ZHCSHH2B JANUARY 2018REVISED OCTOBER 2018  
11 Layout  
11.1 Layout Guidelines  
Place R1, R2, and R3 close to the device to minimize noise coupling into the INA and INB nodes.  
Place the VDD decoupling capacitor close to the device.  
Avoid using long traces for the VDD supply node. The VDD capacitor (CVDD), along with parasitic inductance  
from the supply to the capacitor, may form an LC tank and create ringing with peak voltages above the  
maximum VDD voltage. If this is unavoidable, see Figure 26 for an example of filtering VDD.  
11.2 Layout Example  
Pullup  
Voltage  
RP1  
RP2  
Overvoltage  
Flag  
Undervoltage  
Flag  
6
1
CVDD  
Input  
Supply  
5
4
2
3
R1  
R2  
R3  
Monitored  
Voltage  
Figure 27. Recommended Layout  
版权 © 2018, Texas Instruments Incorporated  
19  
TLV6710  
ZHCSHH2B JANUARY 2018REVISED OCTOBER 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
DIP 适配器评估模块可以将 SOT-23-6 封装转换为标准 DIP-6 引脚排列以便轻松构建原型和进行工作台评估。  
12.2 文档支持  
12.2.1 相关文档  
请参阅如下相关文档:  
《优化比较器输入上的电阻分压器》(SLVA450)  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
20  
版权 © 2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV6710DDCR  
TLV6710DDCT  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
6
6
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
1I61  
1I61  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV6710DDCR  
TLV6710DDCT  
SOT-  
23-THIN  
DDC  
DDC  
6
6
3000  
250  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
SOT-  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
23-THIN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV6710DDCR  
TLV6710DDCT  
SOT-23-THIN  
SOT-23-THIN  
DDC  
DDC  
6
6
3000  
250  
213.0  
213.0  
191.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDC0006A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
6
4X 0.95  
1.9  
3.05  
2.75  
4
3
0.5  
0.3  
0.1  
6X  
TYP  
0.0  
0.2  
C A B  
C
0 -8 TYP  
0.25  
GAGE PLANE  
SEATING PLANE  
0.20  
0.12  
TYP  
0.6  
0.3  
TYP  
4214841/C 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X (0.95)  
4
3
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4214841/C 04/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214841/C 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TLV6710DDCR

采用集成基准的低功耗高电压窗口比较器

| DDC | 6 | -40 to 125
TI

TLV6710DDCT

采用集成基准的低功耗高电压窗口比较器

| DDC | 6 | -40 to 125
TI

TLV6713

具有集成基准电压的 36V 比较器
TI

TLV6713DDCR

具有集成基准电压的 36V 比较器 | DDC | 6 | -40 to 125
TI

TLV6713DDCT

具有集成基准电压的 36V 比较器 | DDC | 6 | -40 to 125
TI

TLV6741

单路、5.5V、10MHz、低噪声 (4.6nV/√Hz) 运算放大器
TI

TLV6741DCKR

Single, 5.5-V, 10-MHz, low noise (4.6-nV/√Hz) operational amplifier | DCK | 5 | -40 to 125
TI

TLV6741DCKT

Single, 5.5-V, 10-MHz, low noise (4.6-nV/√Hz) operational amplifier | DCK | 5 | -40 to 125
TI

TLV6741_V04

TLV6741, TLV6742, TLV6744 10-MHz, Low Broadband Noise, RRO, Operational Amplifier
TI

TLV6741_V05

TLV6741, TLV6742, TLV6744 10-MHz, Low Broadband Noise, RRO, Operational Amplifier
TI

TLV6741_V06

TLV6741, TLV6742, TLV6744 10-MHz, Low Broadband Noise, RRO, Operational Amplifier
TI

TLV6742

双路、5.5V、10MHz、低噪声 (4.6nV/√Hz) 运算放大器
TI