TLV7032DSGR [TI]

TLV703x and TLV704x Small-Size, Nanopower, Low-Voltage Comparators;
TLV7032DSGR
型号: TLV7032DSGR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TLV703x and TLV704x Small-Size, Nanopower, Low-Voltage Comparators

文件: 总60页 (文件大小:4155K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
TLV703x and TLV704x Small-Size, Nanopower, Low-Voltage Comparators  
The TLV703x and TLV704x offer an excellent  
1 Features  
combination of speed and power, with a propagation  
delay of 3 μs and a quiescent supply current of 315  
nA. The benefit of fast response time at nanoPower  
enables power-conscious systems to monitor and  
respond quickly to fault conditions. With an operating  
voltage range of 1.6 V to 6.5 V, these comparators are  
compatible with 3-V and 5-V systems.  
Ultra-small X2SON, WSON, WQFN packages  
Tiny SOT-23, SC70, VSSOP, and TSSOP  
packages  
Wide supply voltage range of 1.6 V to 6.5 V  
Quiescent supply current of 315 nA  
Low propagation delay of 3 µs  
Rail-to-rail common-mode input voltage  
Internal hysteresis  
Push-pull output (TLV703x)  
Open-drain output (TLV704x)  
No phase reversal for overdriven inputs  
–40°C to 125°C Operating temperature  
The TLV703x and TLV704x also ensure no output  
phase inversion with overdriven inputs and internal  
hysteresis, so engineers can use this family of  
comparators for precision voltage monitoring in harsh,  
noisy environments where slow-moving input signals  
must be converted into clean digital outputs.  
The TLV703x has a push-pull output stage capable of  
sinking and sourcing milliamps of current when  
controlling an LED or driving a capacitive load. The  
TLV704x has an open-drain output stage that can be  
pulled beyond V CC, making it appropriate for level  
translators and bipolar to single-ended converters.  
2 Applications  
Mobile phones and tablets  
Headsets/headphones & earbuds  
PC & notebooks  
Gas Detector  
Smoke & heat detector  
Motion Detector  
Device Information (1)  
PART NUMBERS  
PACKAGE (PINS)  
BODY SIZE (NOM)  
0.80 mm × 0.80 mm  
2.00 mm × 1.25 mm  
2.90 mm × 1.60 mm  
3.00 mm x 3.00 mm  
2.90 mm x 1.60 mm  
2.00 mm x 2.00 mm  
3.00 mm x 3.00 mm  
4.40 mm x 5.00 mm  
X2SON (5)  
Gas Meter  
Servo drive position sensor  
TLV7031, TLV7041 SC70 (5)  
SOT-23 (5)  
3 Description  
VSSOP (8)  
The TLV7031/TLV7041 (single-channel), TLV7032/42  
(dual-channel), and TLV7034/44 (quad-channel) are  
low-voltage, nanoPower comparators. These devices  
are available in an ultra-small, leadless packages as  
well as standard 5-pin SC70, SOT-23, VSSOP, and  
TSSOP packages, making them applicable for space-  
critical designs like smartphones, smart meters, and  
other portable or battery-powered applications.  
TLV7032, TLV7042 SOT-23 (8)  
WSON (8)  
WQFN (16)  
TLV7034, TLV7044  
TSSOP (14) (2)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
(2) Preview only.  
US dime (18x18x1.35 mm3)  
0.6  
5-Lead SC70  
0.5  
0.4  
0.3  
0.2  
5-Pin X2SON  
Temp -40°C  
Temp 25°C  
Temp 125°C  
0.1  
0
X2SON Package vs SC70 and US Dime  
1.5  
2.5  
3.5  
4.5  
5.5  
6.5  
VCC (V)  
ICC vs. Supply Voltage  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
Pin Functions.................................................................... 4  
Pin Functions: TLV7032/42...............................................5  
Pin Functions: TLV7034/44...............................................6  
6 Specifications.................................................................. 7  
6.1 Absolute Maximum Ratings........................................ 7  
6.2 ESD Ratings............................................................... 7  
6.3 Recommended Operating Conditions.........................7  
6.4 Thermal Information (Single)...................................... 7  
6.5 Thermal Information (Dual).........................................8  
6.6 Thermal Information (Quad)........................................8  
6.7 Electrical Characteristics (Single)............................... 9  
6.8 Switching Characteristics (Single).............................. 9  
6.9 Electrical Characteristics (Dual)................................10  
6.10 Switching Characteristics (Dual).............................10  
6.11 Electrical Characteristics (Quad).............................11  
6.12 Switching Characteristics (Quad)............................11  
6.13 Timing Diagrams.....................................................12  
6.14 Typical Characteristics............................................13  
7 Detailed Description......................................................18  
7.1 Overview...................................................................18  
7.2 Functional Block Diagram.........................................18  
7.3 Feature Description...................................................18  
7.4 Device Functional Modes..........................................18  
8 Application and Implementation..................................20  
8.1 Application Information............................................. 20  
8.2 Typical Applications.................................................. 23  
9 Power Supply Recommendations................................30  
10 Layout...........................................................................31  
10.1 Layout Guidelines................................................... 31  
10.2 Layout Example...................................................... 31  
11 Device and Documentation Support..........................32  
11.1 Device Support........................................................32  
11.2 Documentation Support.......................................... 32  
11.3 Receiving Notification of Documentation Updates..32  
11.4 Support Resources................................................. 32  
11.5 Trademarks............................................................. 32  
11.6 Electrostatic Discharge Caution..............................32  
11.7 Glossary..................................................................32  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 32  
4 Revision History  
Changes from Revision F (November 2019) to Revision G (December 2020)  
Page  
Updated the numbering format for tables, figures, and cross-references throughout the document .................1  
Added SOT-23 (8) and WSON (8) for dual channel options...............................................................................1  
Changes from Revision E (June 2019) to Revision F (November 2019)  
Page  
Added quad channel versions............................................................................................................................ 1  
Added SOT-23 (8) and WSON (8) for dual channel options ..............................................................................1  
Added QUAD package options...........................................................................................................................1  
Added TSSOP and RTE pinout information to Pin Configuration and Functions section ..................................5  
Changes from Revision D (April 2019) to Revision E (June 2019)  
Page  
Changed VOH min from 4.7V to 4.65V for all package options in EC Table (Single) ........................................9  
Changed VOL max from 300mV to 350mV for all package options in EC Table (Single) ................................. 9  
Deleted separate rows for VOH & VOL for DBV package options only in EC Table (Single) ............................9  
Changes from Revision C (March 2019) to Revision D (April 2019)  
Page  
Added separate rows for VOH & VOL for DBV package options in EC Table (Single) ......................................9  
Changes from Revision B (May 2018) to Revision C (March 2019)  
Page  
Added dual channel versions in VSSOP package..............................................................................................1  
Changed TLV7031 to TLV703x and TLV7041 to TLV704x throughout the document ....................................... 1  
Added dual channel versions..............................................................................................................................1  
Added Device Information dual channel versions in VSSOP package...............................................................1  
Deleted The SOT-23 package is in preview only................................................................................................1  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
www.ti.com  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
Changes from Revision A (January 2018) to Revision B (May 2018)  
Page  
Changed the preview SC70 package to production data................................................................................... 1  
Changes from Revision * (September 2017) to Revision A (January 2018)  
Page  
Changed data sheet title from: TLV7031/TLV7041 Small-Size, nanoPower, Low-Voltage Comparators to:  
TLV7031 and TLV7041 Small Size, nanopower, Low-Voltage Comparators .....................................................1  
Added Internal Hysteresis bullet to Features .....................................................................................................1  
Specified which device has push-pull output and open-drain output options in Features ................................. 1  
Removed (TLV7031) from key graphic title because the graph covers both the TLV7031 and TLV7041  
devices................................................................................................................................................................1  
Added X2SON tablenote to Pin Functions table ................................................................................................4  
Changed Figure 6-2 .........................................................................................................................................12  
Added note to the Timing Diagrams section.....................................................................................................12  
Smoothed Propagation Delay plots in Figure 6-31 through .............................................................................13  
Changed vertical labels on Figure 6-20, Figure 6-21, Figure 6-17, and Figure 6-30 .......................................13  
Changed Functional Block Diagram ................................................................................................................ 18  
Changed text 'the TLV7041 features an open-drain output stage enabling the output logic levels to be pulled  
up to an external source up to 7 V' to 'the TLV7041 features an open-drain output stage enabling the output  
logic levels to be pulled up to an external source up to 6.5 V'..........................................................................19  
Changed Figure 8-3 .........................................................................................................................................23  
Added note to the Layout Example section...................................................................................................... 31  
Added Documentation Support section ........................................................................................................... 32  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
www.ti.com  
5 Pin Configuration and Functions  
OUT  
1
5
IN+  
3
VEE  
VCC  
2
4
IN  
Not to scale  
Figure 5-1. DPW Package  
5-Pin X2SON  
Top View  
OUT  
VEE  
IN+  
1
2
3
5
4
VCC  
IN-  
Figure 5-2. DBV and DCK Package  
5-Pin SOT-23 and SC70  
Top View  
Pin Functions  
PIN  
I/O(2)  
DESCRIPTION  
X2SON(1)  
SOT-23, SC70  
NAME  
1
2
3
4
5
1
5
2
4
3
OUT  
VCC  
VEE  
IN–  
O
P
P
I
Output  
Positive (highest) power supply  
Negative (lowest) power supply  
Inverting input  
IN+  
I
Noninverting input  
(1) The application report Designing and Manufacturing With TI's X2SON Packages (SCEA055) provides more details on the optimal PCB  
designs.  
(2) I = Input, O = Output, P = Power  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
 
 
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
www.ti.com  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
1
2
3
4
8
OUTA  
INA-  
INA+  
VEE  
VCC  
7
OUTB  
6
INB-  
5
INB+  
Figure 5-3. TLV7032/42 DGK, DDF Packages  
8-Pin VSSOP, SOT-23  
Top View  
1
8
7
OUTA  
INA-  
INA+  
VEE  
VCC  
2
3
4
OUTB  
INB-  
INB+  
Thermal  
Pad  
6
5
A. Connect thermal pad to V–.  
Figure 5-4. TLV7032/42 DSG Package  
8-Pin WSON With Exposed Thermal Pad  
Top View  
Pin Functions: TLV7032/42  
PIN  
I/O  
DESCRIPTION  
NAME  
INA–  
INA+  
INB–  
INB+  
OUTA  
OUTB  
VEE  
NO.  
2
I
I
Inverting input, channel A  
3
Noninverting input, channel A  
Inverting input, channel B  
6
I
5
I
Noninverting input, channel B  
Output, channel A  
1
O
O
7
Output, channel B  
4
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
VCC  
8
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
www.ti.com  
OUT A  
œIN A  
+IN A  
VCC  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
œIN D  
+IN D  
VEE  
+IN A  
VCC  
NC  
1
2
3
4
12  
11  
10  
9
+IN D  
VEE  
NC  
+IN B  
œIN B  
OUT B  
+IN C  
œIN C  
OUT C  
Thermal  
Pad  
8
+IN B  
+IN C  
Not to scale  
Figure 5-5. TLV7034/44 PW Packages  
14-Pin TSSOP  
(TOP view,  
not to scale)  
Top View  
A. Connect thermal pad to V–.  
Figure 5-6. TLV7034/44 RTE Package  
16-Pin WQFN With Exposed Thermal Pad  
Top View  
Pin Functions: TLV7034/44  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN1 A  
TSSOP  
WQFN  
2
3
16  
1
I
I
Inverting input, channel A  
+IN A  
–IN B  
+IN B  
–IN C  
+IN C  
–IN D  
+IN D  
NC  
Noninverting input, channel A  
Inverting input, channel B  
Noninverting input, channel B  
Inverting input, channel C  
Noninverting input, channel C  
Inverting input, channel D  
Noninverting input, channel D  
No internal connection  
6
5
I
5
4
I
9
8
I
10  
13  
12  
1
9
I
13  
12  
3, 10  
15  
6
I
I
O
O
O
O
OUT A  
OUT B  
OUT C  
OUT D  
VEE  
Output, channel A  
7
Output, channel B  
8
7
Output, channel C  
14  
11  
4
14  
11  
2
Output, channel D  
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
VCC  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
www.ti.com  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
MAX  
UNIT  
V
Supply voltage VS = VCC - VEE  
Input pins (IN+, IN-)(2)  
7
VEE – 0.3  
7
±10  
V
Current into Input pins (IN+, IN-)  
Output (OUT) (TLV703x)(3)  
Output (OUT) (TLV704x)  
Output short-circuit duration(4)  
Junction temperature, TJ  
mA  
V
VEE – 0.3  
VEE – 0.3  
VCC + 0.3  
7
V
10  
s
150  
°C  
°C  
Storage temperature, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Input terminals are diode-clamped to VEE. Input signals that can swing 0.3V below VEE must be current-limited to 10mA or less  
(3) Output maximum is (VCC + 0.3 V) or 7 V, whichever is less.  
(4) Short-circuit to ground, one comparator per package.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
V(ESD)  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.6  
MAX  
UNIT  
Supply voltage VS = VCC – VEE  
Input voltage range  
6.5  
VCC + 0.1  
125  
V
V
VEE – 0.1  
–40  
Ambient temperature, TA  
°C  
6.4 Thermal Information (Single)  
TLV7031/TLV7041  
THERMAL METRIC(1)  
DPW (X2SON)  
5 PINS  
533.2  
DBV (SOT-23)  
5 PINS  
297.2  
DCK (SC70)  
5 PINS  
278.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
302.7  
224.7  
186.6  
408.3  
200.1  
113.2  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
71.5  
141.2  
82.3  
ΨJB  
405.9  
198.9  
112.4  
RθJC(bot)  
188.3  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
 
 
 
 
 
 
 
 
 
 
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
www.ti.com  
6.5 Thermal Information (Dual)  
TLV7032/TLV7042  
DDF (SOT-23)  
8 PINS  
THERMAL METRIC(1)  
DGK (VSSOP)  
DSG (WSON)  
8 PINS  
106.1  
UNIT  
8 PINS  
211.7  
96.1  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
212.5  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
127.3  
127.3  
133.5  
28.3  
129.2  
72.5  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
25.8  
16.8  
ΨJB  
131.7  
N/A  
129.0  
72.2  
RθJC(bot)  
N/A  
47.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Thermal Information (Quad)  
TLV7034/44  
THERMAL METRIC(1)  
RTE (QFN)  
16 PINS  
65.4  
PW (TSSOP)  
14 PINS  
131.0  
60.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
70.2  
40.5  
74.1  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
5.6  
12.6  
ΨJB  
40.5  
73.5  
RθJC(bot)  
24.1  
n/a  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
 
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
www.ti.com  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
6.7 Electrical Characteristics (Single)  
VS = 1.8 V to 5 V, VCM = VS / 2; minimum and maximum values are at TA = –40°C to +125°C (unless otherwise noted).  
Typical values are at TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIO  
Input Offset Voltage  
VS = 1.8 V and 5 V, VCM = VS / 2  
±0.1  
±8  
mV  
VS = 1.8 V and 5 V, VCM = VS / 2,  
TA = 25°C  
VHYS  
Hysteresis  
2
7
17  
mV  
VCM  
IB  
Common-mode voltage range  
Input bias current  
VEE  
VCC + 0.1  
V
2
1
pA  
pA  
IOS  
Input offset current  
Output voltage high  
(for TLV7031 only)  
VOH  
VOL  
ILKG  
VS = 5 V, VEE = 0 V, IO = 3 mA  
VS = 5 V, VEE = 0 V, IO = 3 mA  
4.65  
4.8  
250  
100  
V
Output voltage low  
350  
mV  
pA  
Open-drain output leakage  
current (TLV7041 only)  
VS = 5 V, VID = +0.1 V (output high),  
VPULLUP = VCC  
CMRR  
PSRR  
Common-mode rejection ratio  
Power supply rejection ratio  
VEE < VCM < VCC, VS = 5 V  
VS = 1.8 V to 5 V, VCM = VS / 2  
VS = 5 V, sourcing  
73  
77  
29  
33  
dB  
dB  
ISC  
Short-circuit current  
Supply current  
mA  
nA  
VS = 5 V, sinking  
VS = 1.8 V, no load, VID = –0.1 V (Output  
Low)  
ICC  
335  
900  
6.8 Switching Characteristics (Single)  
Typical values are at TA = 25°C, VS = 5 V, VCM = VS / 2; CL = 15 pF, input overdrive = 100 mV (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Propagation delay time, high to-  
low (RP = 2.5 kΩ TLV7041  
only)  
Midpoint of input to midpoint of output,  
VOD = 100 mV  
tPHL  
3
µs  
Propagation delay time, low-to high  
(RP = 2.5 kΩ TLV7041  
only)  
Midpoint of input to midpoint of output,  
VOD = 100 mV  
tPLH  
3
µs  
tR  
tF  
Rise time (TLV7031 only)  
Fall time  
Measured from 10% to 90%  
Measured from 10% to 90%  
4.5  
4.5  
ns  
ns  
During power on, VCC must exceed 1.6V for  
200 µs before the output will reflect the input.  
tON  
Power-up time  
200  
µs  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
www.ti.com  
6.9 Electrical Characteristics (Dual)  
VS = 1.8 V to 5 V, VCM = VS / 2; minimum and maximum values are at TA = –40°C to +125°C (unless otherwise noted).  
Typical values are at TA = 25°C.  
PARAMETER  
Input Offset Voltage  
Hysteresis  
TEST CONDITIONS  
VS = 1.8 V and 5 V, VCM = VS / 2  
VS = 1.8 V and 5 V, VCM = VS / 2  
MIN  
TYP  
±0.1  
10  
MAX  
UNIT  
mV  
mV  
V
VIO  
VHYS  
VCM  
IB  
±8  
3
25  
Common-mode voltage range  
Input bias current  
Input offset current  
VEE  
VCC + 0.1  
2
1
pA  
IOS  
pA  
Output voltage high (for TLV7032  
only)  
VOH  
VOL  
ILKG  
VS = 5 V, VEE = 0 V, IO = 3 mA  
VS = 5 V, VEE = 0 V, IO = 3 mA  
4.65  
4.8  
250  
100  
V
Output voltage low  
350  
mV  
pA  
Open-drain output leakage  
current (TLV7042 only)  
VS = 5 V, VID = +0.1 V (output high),  
VPULLUP = VCC  
CMRR  
PSRR  
Common-mode rejection ratio  
Power supply rejection ratio  
VEE < VCM < VCC, VS = 5 V  
73  
77  
dB  
dB  
VS = 1.8 V to 5 V, VCM = VS / 2  
VS = 5 V, sourcing (for TLV7032 only)  
VS = 5 V, sinking  
29  
ISC  
ICC  
Short-circuit current  
mA  
nA  
33  
Supply current / Channel  
VS = 1.8 V, no load, VID = –0.1 V (Output Low)  
315  
750  
6.10 Switching Characteristics (Dual)  
Typical values are at TA = 25°C, VS = 5 V, VCM = VS / 2; CL = 15 pF, input overdrive = 100 mV (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Propagation delay time, high to-  
low (RP = 4.99 kΩ TLV7042  
only) (1)  
Midpoint of input to midpoint of output,  
VOD = 100 mV  
tPHL  
3
µs  
Propagation delay time, low-to high  
(RP = 4.99 kΩ TLV7042  
only) (1)  
Midpoint of input to midpoint of output,  
VOD = 100 mV  
tPLH  
3
µs  
tR  
tF  
Rise time (TLV7032 only)  
Fall time  
Measured from 20% to 80%  
Measured from 20% to 80%  
4.5  
4.5  
ns  
ns  
During power on, VCC must exceed 1.6V for tON  
before the output will reflect the input.  
tON  
Power-up time  
200  
µs  
(1) The lower limit for RP is 650 Ω  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
 
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
www.ti.com  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
6.11 Electrical Characteristics (Quad)  
VS = 1.8 V to 5 V, VCM = VS / 2; minimum and maximum values are at TA = –40°C to +125°C (unless otherwise noted).  
Typical values are at TA = 25°C.  
PARAMETER  
Input Offset Voltage  
Hysteresis  
TEST CONDITIONS  
VS = 1.8 V and 5 V, VCM = VS / 2  
VS = 1.8 V and 5 V, VCM = VS / 2  
MIN  
TYP  
±0.1  
10  
MAX  
UNIT  
mV  
mV  
V
VIO  
VHYS  
VCM  
IB  
±8  
3
25  
Common-mode voltage range  
Input bias current  
Input offset current  
VEE  
VCC + 0.1  
2
1
pA  
IOS  
pA  
Output voltage high (for TLV7034  
only)  
VOH  
VOL  
ILKG  
VS = 5 V, VEE = 0 V, IO = 3 mA  
VS = 5 V, VEE = 0 V, IO = 3 mA  
4.65  
4.8  
250  
100  
V
Output voltage low  
350  
mV  
pA  
Open-drain output leakage  
current (TLV7044 only)  
VS = 5 V, VID = +0.1 V (output high),  
VPULLUP = VCC  
CMRR  
PSRR  
Common-mode rejection ratio  
Power supply rejection ratio  
VEE < VCM < VCC, VS = 5 V  
73  
77  
dB  
dB  
VS = 1.8 V to 5 V, VCM = VS / 2  
VS = 5 V, sourcing (for TLV7034 only)  
VS = 5 V, sinking  
29  
ISC  
ICC  
Short-circuit current  
mA  
nA  
33  
Supply current / Channel  
VS = 1.8 V, no load, VID = –0.1 V (Output Low)  
315  
750  
6.12 Switching Characteristics (Quad)  
Typical values are at TA = 25°C, VS = 5 V, VCM = VS / 2; CL = 15 pF, input overdrive = 100 mV (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Propagation delay time, high to-  
low (RP = 4.99 kΩ TLV7044  
only) (1)  
Midpoint of input to midpoint of output,  
VOD = 100 mV  
tPHL  
3
µs  
Propagation delay time, low-to high  
(RP = 4.99 kΩ TLV7044  
only) (1)  
Midpoint of input to midpoint of output,  
VOD = 100 mV  
tPLH  
3
µs  
tR  
tF  
Rise time (TLV7034 only)  
Fall time  
Measured from 20% to 80%  
Measured from 20% to 80%  
4.5  
4.5  
ns  
ns  
During power on, VCC must exceed 1.6V for tON  
before the output will reflect the input..  
tON  
Power-up time  
400  
µs  
(1) The lower limit for RP is 650 Ω  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
 
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
www.ti.com  
6.13 Timing Diagrams  
tON  
VEE  
VEE + 1.6V  
VCC  
VOH/2  
VEE  
OUT  
Figure 6-1. Start-Up Time Timing Diagram (IN+ > IN–)  
Figure 6-2. Propagation Delay Timing Diagram  
Note  
The propagation delays tpLH and tpHL include the contribution of input offset and hysteresis.  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
www.ti.com  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
6.14 Typical Characteristics  
TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF  
0.7  
0.7  
VCM = VCC /2  
VCM = VCC  
VCM = 0  
VCM = VCC /2  
VCM = VCC  
VCM = 0  
0.6  
0.5  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.4  
0.3  
0.2  
0.1  
0
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
vio_  
vio_  
VCC = 1.8 V  
VCC = 3.3 V  
Figure 6-3. Input Offset vs Temperature  
Figure 6-4. Input Offset vs Temperature  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
Temp -40°C  
Temp 25°C  
Temp 125°C  
VCM = VCC /2  
VCM = VCC  
VCM = 0  
0
-40  
0
0
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
0.2 0.4 0.6 0.8  
1
VCM (V)  
1.2 1.4 1.6 1.8  
2
vio_  
vio_  
VCC = 5 V  
VCC = 1.8 V  
Figure 6-5. Input Offset vs Temperature  
Figure 6-6. Input Offset Voltage vs VCM  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
Temp -40°C  
Temp 25°C  
Temp 125°C  
Temp -40°C  
Temp 25°C  
Temp 125°C  
0
0
0
0
0.5  
1
1.5  
VCM (V)  
2
2.5  
3
3.5  
0.5  
1
1.5  
2
2.5  
VCM (V)  
3
3.5  
4
4.5  
5
vio_  
vio_  
VCC = 3.3 V  
VCC = 5 V  
Figure 6-7. Input Offset Voltage vs VCM  
Figure 6-8. Input Offset Voltage vs VCM  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
www.ti.com  
6.14 Typical Characteristics (continued)  
TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF  
10  
9
10  
9
8
7
6
5
4
3
2
1
8
7
6
5
4
3
VCM = VCC /2  
VCM = VCC  
VCM = 0  
Temp -40°C  
Temp 25°C  
Temp 125°C  
2
1
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
0
0.5  
1
VCM (V)  
1.5  
2
hyst  
hyst  
VCC = 1.8 V to 5 V  
Figure 6-9. Hysteresis vs Temperature  
TLV70x1  
VCC = 1.8 V  
TLV70x1  
Figure 6-10. Hysteresis vs VCM  
10  
9
8
7
6
5
4
3
2
1
10  
9
8
7
6
5
4
3
Temp -40°C  
Temp 25°C  
Temp 125°C  
Temp -40°C  
Temp 25°C  
Temp 125°C  
2
1
0
0
1
2
VCM (V)  
3
4
1
2
3
4
5
VCM (V)  
hyst  
hyst  
VCC = 3.3 V  
TLV70x1  
VCC = 5 V  
TLV70x1  
Figure 6-11. Hysteresis vs VCM  
Figure 6-12. Hysteresis vs VCM  
14.5  
14  
18  
16  
14  
12  
10  
8
13.5  
13  
12.5  
12  
11.5  
11  
10.5  
10  
VCM = VCC/2  
VCM = VCC  
VCM = 0  
9.5  
9
Temp -40°C  
Temp 25°C  
Temp 125°C  
8.5  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
6
-0.5  
0
0.5  
1
1.5  
2
VCM (V)  
VCC = 1.8 V to 5 V  
TLV70x2  
VCC = 1.8 V  
TLV70x2  
Figure 6-13. Hysteresis vs Temperature  
Figure 6-14. Hysteresis vs VCM  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
www.ti.com  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
6.14 Typical Characteristics (continued)  
TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF  
16  
15  
14  
13  
12  
11  
10  
9
14  
12  
10  
8
8
Temp -40°C  
Temp 25°C  
Temp 125°C  
Temp -40°C  
Temp 25°C  
Temp 125°C  
7
6
-0.5  
6
-0.5  
0.5  
1.5  
VCM (V)  
2.5  
3.5  
0.5  
1.5  
2.5  
VCM (V)  
3.5  
4.5  
5.5  
VCC = 3.3 V  
TLV70x2  
VCC = 5 V  
TLV70x2  
Figure 6-15. Hysteresis vs VCM  
Figure 6-16. Hysteresis vs VCM  
1.795  
1.79  
1000  
100  
10  
1.785  
1.78  
1.775  
1.77  
1
1.765  
1.76  
Temp -40°C  
Temp 25°C  
Temp 85°C  
Temp 125°C  
0.1  
0.01  
-40  
1.755  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
0.1  
0.15  
0.2  
0.25  
Output Source Current (mA)  
0.3  
0.35  
0.4  
0.45  
0.5  
voh_  
tlv7  
A.  
VCC = 5 V  
VCC = 1.8 V  
TLV703x  
Figure 6-17. Input Bias Current vs Temperature  
Figure 6-18. Output Voltage High vs Output Source Current  
5
0.1  
4.98  
4.96  
4.94  
4.92  
4.9  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
4.88  
4.86  
4.84  
4.82  
4.8  
0.02  
Temp -40°C  
Temp 25°C  
Temp 85°C  
Temp 125°C  
Temp -40°C  
Temp 25°C  
Temp 125°C  
4.78  
0.01  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Output Source Current (mA)  
4
4.5  
5
0.1  
0.2 0.3  
Output Sink Current (mA)  
0.4 0.5  
voh_  
vol_  
VCC = 5 V  
TLV703x  
VCC = 1.8 V  
Figure 6-19. Output Voltage High vs Output Source Current  
Figure 6-20. Output Voltage Low vs Output Sink Current  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
www.ti.com  
6.14 Typical Characteristics (continued)  
TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF  
0.5  
50  
40  
30  
20  
10  
VCC=3.5V  
VCC=5.5V  
0.3  
0.2  
0.1  
0.07  
0.05  
0.03  
0.02  
Temp -40°C  
Temp 25°C  
Temp 125°C  
0.01  
0.007  
0.005  
0.1  
0.2 0.3 0.40.5 0.7 1  
Output Sink Current (mA)  
2
3
4 5  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
vol_  
nisc  
VCC = 5 V  
VCM = VCC / 2  
Figure 6-21. Output Voltage Low vs Output Sink Current  
Figure 6-22. Output Short-Circuit (Sink) Current vs Temperature  
50  
50  
Vcc=3.5V  
Vcc=5.5V  
40  
30  
20  
40  
30  
20  
10  
10  
Temp -40°C  
Temp 25°C  
Temp 125°C  
0
-40  
-20  
0
20  
40  
Temperature ( °C)  
60  
80  
100 120 140  
1
1.5  
2
2.5  
3
3.5 4  
VCC(V)  
4.5  
5
5.5 6 6.5  
pisc  
nisc  
VCM = VCC / 2  
Figure 6-24. Output Short Circuit (Sink) vs VCC  
VCM = VCC / 2  
TLV703x  
Figure 6-23. Output Short-Circuit (Source) Current vs  
Temperature  
50  
45  
40  
35  
30  
25  
20  
15  
0.6  
0.5  
0.4  
0.3  
0.2  
10  
VCC = 1V  
VCC = 3V  
VCC = 5V  
Temp -40C  
Temp 25C  
Temp 125C  
5
0
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
1
1.5  
2
2.5  
3
3.5 4  
Vcc (V)  
4.5  
5
5.5  
6
6.5  
icc_  
pisc  
VCM = VCC / 2  
TLV70x1  
VCM = VCC / 2  
TLV703x  
Figure 6-26. ICC vs Temperature  
Figure 6-25. Output Short Circuit (Source) vs VCC  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
www.ti.com  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
6.14 Typical Characteristics (continued)  
TA = 25°C, VCC = 5 V, VEE = 0 V, VCM = VCC/2, CL = 15 pF  
0.6  
0.6  
0.5  
0.4  
0.3  
0.5  
0.4  
0.3  
0.2  
Temp -40°C  
Temp 25°C  
Temp 125°C  
VCC = 1.8V  
VCC = 3.3V  
VCC = 5.0V  
0.1  
0
0.2  
1
2
3
4
5
6
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
VCC (V)  
icc_  
VCM = VCC / 2  
TLV70x2  
VCM = VCC / 2  
TLV70x1  
Figure 6-28. ICC vs Temperature  
Figure 6-27. ICC vs VCC  
20000  
10000  
5000  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
Fall Time  
Rise Time  
2000  
1000  
500  
200  
100  
50  
20  
10  
5
Temp -40°C  
Temp 25°C  
Temp 125°C  
2
0
1.5  
10 2030 50 100 200 5001000  
Load Capacitance (pF)  
10000  
100000  
2.5  
3.5  
4.5  
5.5  
6.5  
tlv7  
VCC (V)  
VOD = 100 mV  
TLV703x Rise only  
VCM = VCC / 2  
TLV70x2  
Figure 6-30. Rise/Fall Time vs Load Capacitance  
Figure 6-29. ICC vs VCC  
7
6
5
4
3
2
7
6
5
4
3
2
1
Temp -40°C  
Temp 25°C  
Temp 85°C  
Temp 125°C  
Temp -40°C  
Temp 25°C  
Temp 85°C  
Temp 125°C  
1
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
VOD (mV)  
VOD (mV)  
tlv7  
tlv7  
VCC = 3.3 V to 5 V  
TLV703x  
VCC = 3.3 V to 5 V  
Figure 6-31. Propagation Delay (L-H) vs Input Overdrive  
Figure 6-32. Propagation Delay (H-L) vs Input Overdrive  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The TLV703x and TLV704x are nano-power comparators with push-pull and open-drain outputs. Operating from  
1.6 V to 6.5 V and consuming only 315 nA, the TLV703x and TLV704x are designed for portable and industrial  
applications. The TLV703x and TLV704x are available in a variety of leadless and leaded packages to offer  
significant board space saving in space-challenged designs.  
7.2 Functional Block Diagram  
VCC  
IN+  
+
OUT  
-
IN-  
Power-on-reset  
Bias  
VEE  
7.3 Feature Description  
The TLV703x and TLV704x devices are nanoPower comparators that are capable of operating at low voltages.  
The TLV703x and TLV704x feature a rail-to-rail input stage capable of operating up to 100 mV beyond the VCC  
power supply rail. The TLV703x (push-pull) and TLV704x (open-drain) also feature internal hysteresis.  
7.4 Device Functional Modes  
The TLV703x and TLV704x have a power-on-reset (POR) circuit. While the power supply (VS) is less than the  
minimum supply voltage, either upon ramp-up or ramp-down, the POR circuitry is activated.  
For the TLV703x, the POR circuit holds the output low (at VEE) while activated.  
For the TLV704x, the POR circuit keeps the output high impedance (logical high) while activated.  
When the supply voltage is greater than, or equal to, the minimum supply voltage, the comparator output reflects  
the state of the differential input (VID).  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
 
 
 
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
www.ti.com  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
7.4.1 Inputs  
The TLV703x and TLV704x input common-mode extends from VEE to 100 mV above VCC. The differential input  
voltage (VID) can be any voltage within these limits. No phase inversion of the comparator output occurs when  
the input pins exceed VCC and VEE  
The input of TLV703x and TLV704x is fault tolerant. It maintains the same high input impedance when VCC is  
unpowered or ramping up. The input can be safely driven up to the specified maximum voltage (7 V) with VCC  
.
=
0 V or any value up to the maximum specified. The VCC is isolated from the input such that it maintains its value  
even when a higher voltage is applied to the input.  
The input bias current is typically 1 pA for input voltages between VCC and VEE. The comparator inputs are  
protected from voltages below VEE by internal diodes connected to VEE. As the input voltage goes under VEE  
,
the protection diodes become forward biased and begin to conduct causing the input bias current to increase  
exponentially. Input bias current typically doubles every 10°C temperature increases.  
7.4.2 Internal Hysteresis  
The device hysteresis transfer curve is shown in Figure 7-1. This curve is a function of three components: VTH  
,
VOS, and VHYST  
:
VTH is the actual set voltage or threshold trip voltage.  
VOS is the internal offset voltage between VIN+ and VIN–. This voltage is added to VTH to form the actual trip  
point at which the comparator must respond to change output states.  
VHYST is the internal hysteresis (or trip window) that is designed to reduce comparator sensitivity to noise  
(7 mV for both TLV703x and TLV704x).  
VTH + VOS - (VHYST / 2)  
VTH + VOS  
VTH + VOS + (VHYST / 2)  
Figure 7-1. Hysteresis Transfer Curve  
7.4.3 Output  
The TLV703x features a push-pull output stage eliminating the need for an external pullup resistor. On the other  
hand, the TLV704x features an open-drain output stage enabling the output logic levels to be pulled up to an  
external source up to 6.5 V independent of the supply voltage.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
www.ti.com  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
The TLV703x and TLV704x are nano-power comparators with reasonable response time. The comparators have  
a rail-to-rail input stage that can monitor signals beyond the positive supply rail with integrated hysteresis. When  
higher levels of hysteresis are required, positive feedback can be externally added. The push-pull output stage  
of the TLV703x is optimal for reduced power budget applications and features no shoot-through current. When  
level shifting or wire-ORing of the comparator outputs is needed, the TLV704x with its open-drain output stage is  
well suited to meet the system needs. In either case, the wide operating voltage range, low quiescent current,  
and small size of the TLV703x and TLV704x make these comparators excellent candidates for battery-operated  
and portable, handheld designs.  
8.1.1 Inverting Comparator With Hysteresis for TLV703x  
The inverting comparator with hysteresis requires a three-resistor network that is referenced to the comparator  
supply voltage (VCC), as shown in Figure 8-1. When VIN at the inverting input is less than VA, the output voltage  
is high (for simplicity, assume VO switches as high as VCC). The three network resistors can be represented as  
R1 || R3 in series with R2. Equation 1 defines the high-to-low trip voltage (VA1).  
R2  
VA1 = VCC  
´
(R1 || R3) + R2  
(1)  
When VIN is greater than VA, the output voltage is low, very close to ground. In this case, the three network  
resistors can be presented as R2 || R3 in series with R1. Use Equation 2 to define the low to high trip voltage  
(VA2).  
R2 || R3  
VA2 = VCC  
´
R1 + (R2 || R3)  
(2)  
(3)  
Equation 3 defines the total hysteresis provided by the network.  
DVA = VA1 - VA2  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
 
 
 
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
www.ti.com  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
+VCC  
+5 V  
R1  
1 MW  
VIN  
5 V  
RLOAD  
VA  
VO  
100 kW  
VA2  
1.67 V  
VA1  
3.33 V  
0 V  
R3  
1 MW  
VIN  
R2  
1 MW  
VO High  
+VCC  
VO Low  
+VCC  
R1  
VA1  
R2  
R3  
R1  
VA2  
R2  
R3  
Copyright © 2016, Texas Instruments Incorporated  
Figure 8-1. TLV703x in an Inverting Configuration With Hysteresis  
8.1.2 Noninverting Comparator With Hysteresis for TLV703x  
A noninverting comparator with hysteresis requires a two-resistor network, as shown in Figure 8-2, and a voltage  
reference (VREF) at the inverting input. When VIN is low, the output is also low. For the output to switch from low  
to high, VIN must rise to VIN1. Use Equation 4 to calculate VIN1  
.
VREF  
VIN1 = R1 ´  
+ VREF  
R2  
(4)  
When VIN is high, the output is also high. For the comparator to switch back to a low state, VIN must drop to VIN2  
such that VA is equal to VREF. Use Equation 5 to calculate VIN2  
.
VREF (R1 + R2) - VCC ´ R1  
VIN2  
=
R2  
(5)  
(6)  
The hysteresis of this circuit is the difference between VIN1 and VIN2, as shown in Equation 6.  
R1  
DVIN = VCC  
´
R2  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
 
 
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
www.ti.com  
+VCC  
+5 V  
VREF  
VO  
+2.5 V  
VA  
VIN  
RLOAD  
R1  
330 kW  
R2  
1 MW  
VO High  
+VCC  
VO Low  
VIN1  
5 V  
0 V  
R2  
R1  
VA = VREF  
R2  
VO  
VA = VREF  
R1  
VIN2  
VIN1  
1.675 V 3.325 V  
VIN  
VIN2  
Copyright © 2016, Texas Instruments Incorporated  
Figure 8-2. TLV703x in a Noninverting Configuration With Hysteresis  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
www.ti.com  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
8.2 Typical Applications  
8.2.1 Window Comparator  
Window comparators are commonly used to detect undervoltage and overvoltage conditions. Figure 8-3 shows a  
simple window comparator circuit.  
3.3V  
RPU  
R1  
UV_OV  
+
Micro-  
Controller  
Sensor  
R2  
+
R3  
Figure 8-3. TLV704x-Based Window Comparator  
8.2.1.1 Design Requirements  
For this design, follow these design requirements:  
Alert (logic low output) when an input signal is less than 1.1 V  
Alert (logic low output) when an input signal is greater than 2.2 V  
Alert signal is active low  
Operate from a 3.3-V power supply  
8.2.1.2 Detailed Design Procedure  
Configure the circuit as shown in Figure 8-3. Connect VCC to a 3.3-V power supply and VEE to ground. Make R1,  
R2, and R3 each 10-MΩ resistors. These three resistors are used to create the positive and negative thresholds  
for the window comparator (VTH+ and VTH–). With each resistor being equal, VTH+ is 2.2 V and VTH- is 1.1 V.  
Large resistor values such as 10 MΩ are used to minimize power consumption. The sensor output voltage is  
applied to the inverting and noninverting inputs of the two TLV704x devices. The TLV704x is used for its open-  
drain output configuration. Using the TLV704x allows the two comparator outputs to be wire-ored together. The  
respective comparator outputs are low when the sensor is less than 1.1 V or greater than 2.2 V. VOUT is high  
when the sensor is in the range of 1.1 V to 2.2 V.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
 
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
www.ti.com  
8.2.1.3 Application Curve  
VIN  
VTH+ = 2.2 V  
VTHœ = 1.1 V  
Time (usec)  
VOUT  
Time (usec)  
50  
100  
150  
200  
Figure 8-4. Window Comparator Results  
8.2.2 IR Receiver Analog Front End  
A single TLV703x device can be used to build a complete IR receiver analog front end (AFE). The nanoamp  
quiescent current and low input bias current make it possible to be powered with a coin cell battery, which could  
last for years.  
Vref  
470 k  
470 kꢀ  
10M ꢀ  
R4  
3 V  
IR LED  
R2  
R3  
U1  
+
Output to MCU  
(Also to wake-up MCU)  
œ
VOUT  
C1  
10M ꢀ  
TLV7031  
VIN  
R1  
0.01 F  
GND  
Copyright © 2017, Texas Instruments Incorporated  
Figure 8-5. IR Receiver Analog Front End Using TLV703x  
8.2.2.1 Design Requirements  
For this design, follow these design requirements:  
Use a proper resistor (R1) value to generate an adequate signal amplitude applied to the inverting input of the  
comparator.  
The low input bias current IB (2 pA typical) ensures that a greater value of R1 to be used.  
The RC constant value (R2 and C1) must support the targeted data rate (that is, 9,600 bauds) in order to  
maintain a valid tripping threshold.  
The hysteresis introduced with R3 and R4 helps to avoid spurious output toggles.  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
www.ti.com  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
8.2.2.2 Detailed Design Procedure  
The IR receiver AFE design is highly streamlined and optimized. R1 converts the IR light energy induced current  
into voltage and applies to the inverting input of the comparator. The RC network of R2 and C1 establishes a  
reference voltage V ref, which tracks the mean amplitude of the IR signal. The noninverting input is directly  
connected to Vref through R3. R3 and R4 are used to produce a hysteresis to keep transitions free of spurious  
toggles. To reduce the current drain from the coin cell battery, data transmission must be short and infrequent.  
More technical details are provided in the TI TechNote Low Power Comparator for Signal Processing and Wake-  
Up Circuit in Smart Meters (SNVA808).  
8.2.2.3 Application Curve  
1.8 V  
VIN  
1.2 V  
4.0 V  
VOUT  
0.0 V  
1.61 V  
VREF  
1.58 V  
0.0  
200.0 u  
400.0 u  
Time  
600.0 u  
800.0 u  
Figure 8-6. IR Receiver AFE Waveforms  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
www.ti.com  
8.2.3 Square-Wave Oscillator  
A square-wave oscillator can be used as low-cost timing reference or system supervisory clock source.  
Figure 8-7. Square-Wave Oscillator  
8.2.3.1 Design Requirements  
The square-wave period is determined by the RC time constant of the capacitor and resistor. The maximum  
frequency is limited by the propagation delay of the device and the capacitance load at the output. The low input  
bias current allows a lower capacitor value and larger resistor value combination for a given oscillator frequency,  
which may help reduce BOM cost and board space.  
8.2.3.2 Detailed Design Procedure  
The oscillation frequency is determined by the resistor and capacitor values. The following section provides  
details to calculate these component values.  
Figure 8-8. Square-Wave Oscillator Timing Thresholds  
First consider the output of figure Figure 8-7 is high, which indicates the inverted input VC is lower than the  
noninverting input (VA). This causes the C1 to be charged through R4, and the voltage VC increases until it is  
equal to the noninverting input. The value of VA at the point is calculated by Equation 7.  
VCCìR2  
R2 + R1IIR3  
VA1  
=
(7)  
If R1 = R2= R3, then VA1 = 2 VCC/ 3  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
www.ti.com  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
At this time the comparator output trips pulling down the output to the negative rail. The value of VA at this point  
is calculated by Equation 8.  
VCC(R2IIR3 )  
VA2  
=
R1+R2IIR3  
(8)  
If R1 = R2 = R3, then VA2 = VCC/3  
The C1 now discharges though the R4, and the voltage VCC decreases until it reaches VA2. At this point, the  
output switches back to the starting state. The oscillation period equals the time duration from 2 VCC / 3 to VCC  
/
3 then back to 2 V CC / 3, which is given by R 4C 1 × ln2 for each trip. Therefore, the total time duration is  
calculated as 2 R4C1 × ln2. The oscillation frequency can be obtained by Equation 9:  
f = 1/ 2 R4ìC1ìIn2  
(
)
(9)  
8.2.3.3 Application Curve  
Figure 8-9 shows the simulated results of an oscillator using the following component values:  
R1 = R2 = R3 = R4 = 100 kΩ  
C1 = 100 pF, CL = 20 pF  
V+ = 5 V, V– = GND  
Cstray (not shown) from VA to GND = 10 pF  
Figure 8-9. Square-Wave Oscillator Output Waveform  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
 
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
www.ti.com  
8.2.4 Quadrature Rotary Encoder  
A quadrature encoder for rotary motors/shafts utilizing a Tunneling Magnetoresitance (TMR) Rotation Sensor  
can track the position of the motor shaft even when power is turned off, while the TLV7032 provides additional  
hysteresis to prevent unwanted output toggling between quadrants. The TLV7032 can be used with other  
sensing techniques as well, such as optical, capacitive, or inductive.  
Figure 8-10. Quadrant Encoder Detector  
8.2.4.1 Design Requirements  
TMR Rotation Sensors general have two digital, binary outputs that are 90 degrees out of phase. The TLV7032  
can be used to provide additional hysteresis to ensure there isn't any unwanted toggling of the output when the  
sensors are between the transition points of two quadrants. The TLV7032 already provides 10mV of typical  
internal hysteresis. By dividing down the output voltage from the rotation sensor using a voltage divider, the  
internal hysteresis will be scaled up by the same voltage divider ratio.  
Figure 8-11. Voltage Divider Equation  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
www.ti.com  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
8.2.4.2 Detailed Design Procedure  
First, choose a target range of hysteresis to achieve. For this design example, 50mV of hysteresis will be the  
target. Since the TLV7032 already has 10mV (typ) of internal hysteresis, the voltage output from the TMR  
Rotation Sensor should be scaled down by a factor of 5. This way, the 10mV of internal hysteresis gets scaled  
up by a factor of 5, resulting in 50mV of hysteresis. The minimum output HIGH level for the TMR Rotation  
Sensor used in Figure 47 is 5.25 V. Since 5.25V will be the minimum output high value, it can be used to  
substitute VIN from the Voltage Divider Equation in Figure 48. Since the voltage from the TMR rotation sensor  
needs to be scaled down by a factor of 5, the equation in Figure 48 can be rewritten as:  
The above equation can be solved for using standard resistor values, where R1 = 100kΩ, and R2 = 24.9kΩ. The  
minimum voltage seen at the noninverting pins of the comparator when the output is HIGH will be 1.05V. To  
make the device transition at 50% output high level, the inverting pins of the TLV7032 should be tied to a 0.525V  
reference.  
8.2.4.3 Application Curve  
Figure 49 shows the TLV7032 achieving approximately 50mV of hysteresis using the following component  
values:  
R1 = 100kΩ  
R2 = 24.9kΩ  
VREF (IN-) = 0.525V  
Figure 8-12. DC Input Voltage Sweep  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
www.ti.com  
9 Power Supply Recommendations  
The TLV703x and TLV704x have a recommended operating voltage range (VS) of 1.6 V to 6.5 V. VS is defined  
as VCC – VEE. Therefore, the supply voltages used to create VS can be single-ended or bipolar. For example,  
single-ended supply voltages of 5 V and 0 V and bipolar supply voltages of +2.5 V and –2.5 V create  
comparable operating voltages for VS. However, when bipolar supply voltages are used, it is important to realize  
that the logic low level of the comparator output is referenced to VEE  
.
Output capacitive loading and output toggle rate will cause the average supply current to rise over the quiescent  
current.  
Copyright © 2020 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
www.ti.com  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
10 Layout  
10.1 Layout Guidelines  
To reduce PCB fabrication cost and improve reliability, TI recommends using a 4-mil via at the center pad  
connected to the ground trace or plane on the bottom layer.  
TI recommends a power-supply bypass capacitor of 100 nF when supply output impedance is high, supply  
traces are long, or when excessive noise is expected on the supply lines. Bypass capacitors are also  
recommended when the comparator output drives a long trace or is required to drive a capacitive load. Due to  
the fast rising and falling edge rates and high-output sink and source capability of the TLV703x and TLV704x  
output stages, higher than normal quiescent current can be drawn from the power supply. Under this  
circumstance, the system would benefit from a bypass capacitor across the supply pins.  
10.2 Layout Example  
Figure 10-1. Layout Example  
The application report Designing and Manufacturing With TI's X2SON Packages (SCEA055) helps PCB  
designers to achieve optimal designs.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
 
 
TLV7031, TLV7032, TLV7041, TLV7042, TLV7034, TLV7044  
SLVSE13G – SEPTEMBER 2017 – REVISED DECEMBER 2020  
www.ti.com  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
11.1.1.1 Evaluation Module  
An evaluation module (EVM) is available to assist in the initial circuit performance evaluation using the TLV70x1  
device family. The TLV7011 Micro-Power Comparator Dip Adaptor Evaluation Module can be requested at the  
Texas Instruments website through the product folder or purchased directly from the TI eStore.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation, see the following:  
Designing and Manufacturing With TI's X2SON Packages (SCEA055)  
Low Power Comparator for Signal Processing and Wake-Up Circuit in Smart Meters (SNVA808)  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TLV7031 TLV7032 TLV7041 TLV7042 TLV7034 TLV7044  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTLV7034PWR  
PTLV7044PWR  
ACTIVE  
TSSOP  
TSSOP  
PW  
14  
14  
2000 RoHS (In work)  
& Non-Green  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
ACTIVE  
PW  
2000 RoHS (In work)  
& Non-Green  
Call TI  
TLV7031DBVR  
TLV7031DCKR  
TLV7031DCKT  
TLV7031DPWR  
TLV7032DDFR  
TLV7032DGKR  
TLV7032DSGR  
TLV7034PWR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SC70  
DBV  
DCK  
DCK  
DPW  
DDF  
DGK  
DSG  
PW  
5
5
3000 RoHS & Green  
NIPDAUAG  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAUAG  
NIPDAU  
Call TI  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1IE2  
19P  
3000 RoHS & Green  
SC70  
5
250  
RoHS & Green  
19P  
X2SON  
5
3000 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
7K  
ACTIVE SOT-23-THIN  
8
22KF  
7032  
1ZXH  
ACTIVE  
ACTIVE  
VSSOP  
WSON  
TSSOP  
8
8
PREVIEW  
14  
2000 RoHS (In work)  
& Non-Green  
TLV7034RTER  
TLV7041DBVR  
TLV7041DCKR  
TLV7041DCKT  
TLV7041DPWR  
TLV7042DDFR  
TLV7042DGKR  
TLV7042DSGR  
TLV7044PWR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
SOT-23  
SC70  
RTE  
DBV  
DCK  
DCK  
DPW  
DDF  
DGK  
DSG  
PW  
16  
5
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAUAG  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAUAG  
NIPDAU  
Call TI  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
TL7034  
1IF2  
19Q  
5
SC70  
5
250  
RoHS & Green  
19Q  
X2SON  
5
3000 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
7L  
ACTIVE SOT-23-THIN  
8
22LF  
7042  
1ZZH  
ACTIVE  
ACTIVE  
VSSOP  
WSON  
TSSOP  
8
8
PREVIEW  
14  
2000 RoHS (In work)  
& Non-Green  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Dec-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV7044RTER  
ACTIVE  
WQFN  
RTE  
16  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
TL7044  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV7031, TLV7041 :  
Automotive: TLV7031-Q1, TLV7041-Q1  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Dec-2020  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Dec-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV7031DBVR  
TLV7031DCKR  
TLV7031DCKT  
TLV7031DPWR  
TLV7032DDFR  
SOT-23  
SC70  
DBV  
DCK  
DCK  
DPW  
DDF  
5
5
5
5
8
3000  
3000  
250  
180.0  
178.0  
178.0  
178.0  
180.0  
8.4  
9.0  
9.0  
8.4  
8.4  
3.23  
2.4  
3.17  
2.5  
1.37  
1.2  
1.2  
0.5  
1.4  
4.0  
4.0  
4.0  
2.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q2  
Q3  
SC70  
2.4  
2.5  
X2SON  
3000  
3000  
0.91  
3.2  
0.91  
3.2  
SOT-  
23-THIN  
TLV7032DGKR  
TLV7032DSGR  
TLV7034RTER  
TLV7041DBVR  
TLV7041DCKR  
TLV7041DCKT  
TLV7041DPWR  
TLV7042DDFR  
VSSOP  
WSON  
WQFN  
SOT-23  
SC70  
DGK  
DSG  
RTE  
DBV  
DCK  
DCK  
DPW  
DDF  
8
8
2500  
3000  
3000  
3000  
3000  
250  
330.0  
180.0  
330.0  
180.0  
178.0  
178.0  
178.0  
180.0  
12.4  
8.4  
12.4  
8.4  
9.0  
9.0  
8.4  
8.4  
5.3  
2.3  
3.4  
2.3  
1.4  
1.15  
1.1  
8.0  
4.0  
8.0  
4.0  
4.0  
4.0  
2.0  
4.0  
12.0  
8.0  
12.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q2  
Q2  
Q3  
Q3  
Q3  
Q2  
Q3  
16  
5
3.3  
3.3  
3.23  
2.4  
3.17  
2.5  
1.37  
1.2  
5
SC70  
5
2.4  
2.5  
1.2  
X2SON  
5
3000  
3000  
0.91  
3.2  
0.91  
3.2  
0.5  
SOT-  
8
1.4  
23-THIN  
TLV7042DGKR  
TLV7042DSGR  
TLV7044RTER  
VSSOP  
WSON  
WQFN  
DGK  
DSG  
RTE  
8
8
2500  
3000  
3000  
330.0  
180.0  
330.0  
12.4  
8.4  
5.3  
2.3  
3.3  
3.4  
2.3  
3.3  
1.4  
1.15  
1.1  
8.0  
4.0  
8.0  
12.0  
8.0  
Q1  
Q2  
Q2  
16  
12.4  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Dec-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV7031DBVR  
TLV7031DCKR  
TLV7031DCKT  
TLV7031DPWR  
TLV7032DDFR  
TLV7032DGKR  
TLV7032DSGR  
TLV7034RTER  
TLV7041DBVR  
TLV7041DCKR  
TLV7041DCKT  
TLV7041DPWR  
TLV7042DDFR  
TLV7042DGKR  
TLV7042DSGR  
TLV7044RTER  
SOT-23  
SC70  
DBV  
DCK  
DCK  
DPW  
DDF  
DGK  
DSG  
RTE  
DBV  
DCK  
DCK  
DPW  
DDF  
DGK  
DSG  
RTE  
5
5
3000  
3000  
250  
183.0  
190.0  
190.0  
205.0  
210.0  
364.0  
210.0  
367.0  
183.0  
190.0  
190.0  
205.0  
210.0  
364.0  
210.0  
367.0  
183.0  
190.0  
190.0  
200.0  
185.0  
364.0  
185.0  
367.0  
183.0  
190.0  
190.0  
200.0  
185.0  
364.0  
185.0  
367.0  
20.0  
30.0  
30.0  
33.0  
35.0  
27.0  
35.0  
35.0  
20.0  
30.0  
30.0  
33.0  
35.0  
27.0  
35.0  
35.0  
SC70  
5
X2SON  
SOT-23-THIN  
VSSOP  
WSON  
5
3000  
3000  
2500  
3000  
3000  
3000  
3000  
250  
8
8
8
WQFN  
16  
5
SOT-23  
SC70  
5
SC70  
5
X2SON  
SOT-23-THIN  
VSSOP  
WSON  
5
3000  
3000  
2500  
3000  
3000  
8
8
8
WQFN  
16  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDF0008A  
SOT-23 - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC SMALL OUTLINE  
C
2.95  
2.65  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
6X 0.65  
8
1
2.95  
2.85  
NOTE 3  
2X  
1.95  
4
5
0.4  
0.2  
8X  
0.1  
C A  
B
1.65  
1.55  
B
1.1 MAX  
0.20  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.1  
0.0  
0 - 8  
0.6  
0.3  
DETAIL A  
TYPICAL  
4222047/B 11/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
1
8
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(R0.05)  
TYP  
(2.6)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222047/B 11/2015  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
(R0.05) TYP  
8
1
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4222047/B 11/2015  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
2X 0.95  
1.9  
3.05  
2.75  
1.9  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/E 09/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/E 09/2019  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/E 09/2019  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DPW0005A  
X2SON - 0.4 mm max height  
S
C
A
L
E
1
2
.
0
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
0.85  
0.75  
A
B
PIN 1 INDEX AREA  
0.85  
0.75  
0.4 MAX  
C
SEATING PLANE  
NOTE 3  
(0.1)  
0.05  
0.00  
(0.25)  
4X (0.05)  
0.25 0.1  
2
1
4
5
NOTE 3  
2X  
0.48  
3
2X (0.26)  
0.27  
0.17  
4X  
0.27  
0.17  
0.1 C A B  
0.05 C  
(0.06)  
3X  
0.32  
0.23  
4223102/B 09/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The size and shape of this feature may vary.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DPW0005A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.78)  
(
0.1)  
SYMM  
4X (0.42)  
VIA  
0.05 MIN  
ALL AROUND  
TYP  
1
5
4X (0.22)  
SYMM  
4X (0.26)  
(0.48)  
3
2
4
(R0.05) TYP  
SOLDER MASK  
OPENING, TYP  
4X (0.06)  
(
0.25)  
(0.21) TYP  
EXPOSED METAL  
CLEARANCE  
METAL UNDER  
SOLDER MASK  
TYP  
LAND PATTERN EXAMPLE  
SOLDER MASK DEFINED  
SCALE:60X  
4223102/B 09/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DPW0005A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
4X (0.42)  
4X (0.06)  
5
1
4X (0.22)  
SYMM  
(
0.24)  
4X (0.26)  
(0.21)  
(0.48)  
TYP  
SOLDER MASK  
EDGE  
3
2
4
(R0.05) TYP  
SYMM  
(0.78)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
92% PRINTED SOLDER COVERAGE BY AREA  
SCALE:100X  
4223102/B 09/2017  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
PIN 1 INDEX AREA  
2.1  
1.9  
0.32  
0.18  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
8X  
0.4  
0.2  
PIN 1 ID  
8X  
0.1  
C A B  
C
0.05  
4218900/D 04/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/D 04/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/D 04/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

TLV7032QDGKRQ1

TLV703x-Q1 and TLV704x-Q1 Rail-to-Rail, Low-Power Comparators
TI

TLV70330DBVR

300mA、高 PSRR、低 IQ、低压降稳压器 | DBV | 5 | -40 to 125
TI

TLV70333DBVR

300mA、高 PSRR、低 IQ、低压降稳压器 | DBV | 5 | -40 to 125
TI

TLV7034

TLV703x and TLV704x Small-Size, Nanopower, Low-Voltage Comparators
TI

TLV7034-Q1

TLV703x-Q1 and TLV704x-Q1 Rail-to-Rail, Low-Power Comparators
TI

TLV7034PWR

TLV703x and TLV704x Small-Size, Nanopower, Low-Voltage Comparators
TI

TLV7034QPWRQ1

TLV703x-Q1 and TLV704x-Q1 Rail-to-Rail, Low-Power Comparators
TI

TLV7034RTER

TLV703x and TLV704x Small-Size, Nanopower, Low-Voltage Comparators
TI

TLV703X-Q1

TLV703x-Q1 and TLV704x-Q1 Rail-to-Rail, Low-Power Comparators
TI

TLV704

150mA、24V、超低 IQ、低压降 (LDO) 稳压器
TI

TLV7041

具有漏极开路输出的毫微功耗、小型比较器
TI

TLV7041-Q1

TLV703x and TLV704x Small-Size, Nanopower, Low-Voltage Comparators
TI