TLV7081YKAR [TI]

毫微功耗微封装低电压比较器 | YKA | 4 | -40 to 125;
TLV7081YKAR
型号: TLV7081YKAR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

毫微功耗微封装低电压比较器 | YKA | 4 | -40 to 125

比较器
文件: 总22页 (文件大小:1318K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV7081  
ZHCSIE1A MAY 2018REVISED JUNE 2018  
TLV7081 瓦级功率 4 WCSP 尺寸比较器  
1 特性  
3 说明  
TLV7081 是一款单通道纳瓦级功率比较器,工作电压  
1
宽电源电压范围:1.7V 5.5V  
低至 1.7V。该比较器采用 0.7mm × 0.7mm 超小型  
WCSP 封装,使 TLV7081 适用于空间关键型设计,例  
如智能手机和其他便携式或电池供电 应用。  
370nA 静态电源电流  
4µs 低传播延迟  
漏极开路输出  
TLV7081 具有 不依赖电源电压的广泛输入电压范围。  
拥有不依赖电源电压的输入范围使 TLV7081 即使在没  
有通电的情况下也可直接连接电源。  
独立输入电压范围最高可达 5.6V  
内部磁滞:10mV  
温度范围:-40°C +125°C  
封装:  
TLV7081 具有可上拉到 V+ 之上的漏极开路输出级,  
因此适用于电平转换器和双极至单端转换器。  
0.7mm × 0.7mm WCSP (4)  
器件信息 (1)  
器件型号  
TLV7081  
封装  
WCSP (4)  
封装尺寸(标称值)  
2 应用  
0.7mm × 0.7mm  
智能手机  
笔记本电脑和平板电脑  
光学模块  
小尺寸、低功耗比较器系列  
每通道的  
系列  
tPD  
输出类型  
封装  
IQ  
数码相机  
TLV7081  
TLV7031  
TLV7041  
TLV7011  
TLV7021  
370nA  
335nA  
335nA  
5µA  
4µs  
3µs  
漏极开路  
推挽  
WCSP  
X2SON  
X2SON  
X2SON  
X2SON  
中继器和断路器  
便携式医疗设备  
门窗传感器  
3µs  
漏极开路  
推挽  
260ns  
260ns  
视频游戏控制器  
5µA  
漏极开路  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的封装选项附  
录。  
欠压检测  
IS 与 电源电压间的关系  
600  
1.8V  
Regulator  
500  
400  
Output  
Logic Levels  
0V & 1.8V  
Lithium  
Ion  
Battery  
GPIO (  
)
RPU  
R1  
300  
GPIO (input)  
PE ASIC  
+
Temp -40°C  
Temp 25°C  
Temp 85°C  
Temp 125°C  
200  
TLV7081  
R2  
100  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VS (V)  
is_v  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
TLV7081  
ZHCSIE1A MAY 2018REVISED JUNE 2018  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 10  
7.4 Device Functional Modes........................................ 10  
Application and Implementation ........................ 12  
8.1 Application Information............................................ 12  
8.2 Typical Applications ................................................ 12  
Layout ................................................................... 14  
9.1 Layout Guidelines ................................................... 14  
9.2 Layout Example ...................................................... 14  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 5  
6.7 Timing Diagrams....................................................... 6  
6.8 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
8
9
10 器件和文档支持 ..................................................... 15  
10.1 文档支持 ............................................................... 15  
10.2 接收文档更新通知 ................................................. 15  
10.3 社区资源................................................................ 15  
10.4 Trademarks........................................................... 15  
10.5 Electrostatic Discharge Caution............................ 15  
10.6 术语表 ................................................................... 15  
11 机械、封装和可订购信息....................................... 15  
7
4 修订历史记录  
Changes from Original (December 2017) to Revision A  
Page  
已更改 将预告信息更改成了生产数据” ................................................................................................................................ 1  
Added note to the Timing Diagrams section .......................................................................................................................... 6  
2
Copyright © 2018, Texas Instruments Incorporated  
 
TLV7081  
www.ti.com.cn  
ZHCSIE1A MAY 2018REVISED JUNE 2018  
5 Pin Configuration and Functions  
YKA Package  
4-Bump DSBGA  
Top View  
Top View  
A
B
OUT  
IN  
V+  
V-  
1
2
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
OUT  
V+  
Number  
A1  
O
P
P
I
Comparator output: OUT is open-drain.  
B1  
Positive (highest) power supply; functions as an external reference voltage  
Negative (lowest) power supply  
V–  
B2  
IN  
A2  
Comparator input: IN is the noninverting input  
Copyright © 2018, Texas Instruments Incorporated  
3
TLV7081  
ZHCSIE1A MAY 2018REVISED JUNE 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
– 0.3  
– 0.3  
MAX  
6
UNIT  
V
Supply voltage VS = (V+) - (V-)  
Input (IN) to (V–)(2)  
6
V
Current into input (IN)  
±10  
6
mA  
V
Output (OUT) to (V–)  
– 0.3  
Output short-circuit duration(3)  
Junction temperature, TJ  
Storage temperature, Tstg  
10  
s
150  
150  
°C  
°C  
– 65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input signals that can swing more than 0.3 V below (V–) must be current-limited to 10 mA or less.  
(3) Short-circuit to ground, one comparator per package.  
6.2 ESD Ratings  
VALUE  
±1500  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
5.5  
UNIT  
Supply voltage VS = (V+) - (V-)  
Open-Drain PULL-UP voltage VPULL-UP  
Ambient temperature, TA  
1.7  
V
V
5.5  
–40  
125  
°C  
6.4 Thermal Information  
TLV7081  
THERMAL METRIC(1)  
YKA (DSBGA)  
UNIT  
4 PINS  
207  
1.8  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
73.2  
1
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ΨJB  
73.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018, Texas Instruments Incorporated  
TLV7081  
www.ti.com  
ZHCSIE1A MAY 2018REVISED JUNE 2018  
6.5 Electrical Characteristics  
Over the operating temperature range of TA = –40°C to +125°C, VS = 3.3 V, and VPULL-UP = V+ (unless otherwise  
noted). Typical values are at TA = 25°C. Voltage at input pin (IN) is referenced to (V-).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VS = 1.8 V and 3.3 V, TA = –40°C to  
+125°C  
VIO  
Input Offset Voltage  
–10  
±1  
10  
mV  
dVIO/dT  
VHYS  
VIN  
Input Offset Voltage Drift  
Input Hysteresis Voltage  
TA = –40°C to +125°C  
±3  
10  
µV/℃  
mV  
V
(1)  
Input Voltage Range  
0
5.6  
IN = 5.6 V, positive value means current  
entering pin (IN)  
IBIAS  
Input bias current  
3
pA  
pA  
IN = 5.6 V, VS = 0 V, positive value means  
current entering pin (IN)  
ILEAK  
CI  
Input leakage current  
Input Capacitance  
4
1.9  
pF  
V
Sinking 200 µA, measured relative to (V-)  
Sinking 2 mA, measured relative to (V-)  
VS = 5 V  
0.1  
0.4  
VOL  
Low-Level Output Voltage  
V
IO-SC  
Short-circuit sink current  
Output Leakage Current  
45  
130  
75  
mA  
IN = (V+) + 0.1V (output high), VPULL-UP  
= (V+)  
IO-LKG  
PSRR  
pA  
dB  
Power Supply Rejection Ratio VS = 1.8 V to 5 V  
no load, IN = (V+) – 0.1V (output low),  
370  
470  
630  
TA = 25°C  
IS  
Supply Current  
nA  
no load, IN = (V+) – 0.1V (output low),  
TA = –40°C to +125°C  
(1) Over Operating Supply Voltage Range (Vs): 1.7 V to 5.5 V  
6.6 Switching Characteristics  
Typical values are at TA = 25°C, VS = 3.3 V; CL = 15 pF, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
High-to-low propagation  
delay  
tPHL  
tPLH  
Input overdrive = –100 mV  
4
µs  
(1)  
Low-to-high propagation  
Input overdrive = +100 mV, RPULL-UP  
4.99 k  
=
4
µs  
(1)  
delay  
tF  
Output fall time  
Measured from 20% to 80%  
7
1
ns  
(2)  
tON  
Start-up delay  
ms  
(1) High-to-low and low-to-high refers to the transition at the input pin (IN).  
(2) During power on, VS must exceed 1.7 V for 1 ms before the output is in a correct state.  
Copyright © 2018, Texas Instruments Incorporated  
5
TLV7081  
ZHCSIE1A MAY 2018REVISED JUNE 2018  
www.ti.com  
6.7 Timing Diagrams  
VPULL-UP  
VPULL-UP  
(Vt ) + 1.7V  
REF  
tON  
(Vt )  
REF  
VPULL-UP  
OUT  
+
OUT  
50%  
(Vt )  
Figure 1. Start-up Delay  
VPULL-UP  
REF + 100 mV  
REF  
IN  
REF  
OUT  
+
+
IN  
œ
REF t 100 mV  
tpHL  
tpLH  
VPULL-UP  
80%  
80%  
50%  
50%  
OUT  
20%  
20%  
Vt  
tF  
tR  
Figure 2. Timing Diagram  
NOTE  
The propagation delays tpLH and tpHL include the contribution of input offset and hysteresis.  
6
Copyright © 2018, Texas Instruments Incorporated  
TLV7081  
www.ti.com  
ZHCSIE1A MAY 2018REVISED JUNE 2018  
6.8 Typical Characteristics  
TA = 25°C, VS = 3.3 V, RPULL-UP = 4.99 k, CL = 15 pF  
9
7.5  
6
9
TA = -40èC  
TA = 25èC  
TA = 125èC  
TA = -40èC  
TA = 25èC  
TA = 125èC  
7.5  
6
4.5  
3
4.5  
3
1.5  
1.5  
10  
20  
30 40 50 70 100  
Input Overdrive (mV)  
200 300  
500  
10  
20  
30 40 50 70 100  
Input Overdrive (mV)  
200 300  
500  
tPLH  
tPHL  
VS = 1.8 V  
VS = 1.8 V  
Figure 3. Propagation Delay (L-H) vs. Input Overdrive  
Figure 4. Propagation Delay (H-L) vs. Input Overdrive  
9
9
TA = -40èC  
TA = 25èC  
TA = 125èC  
TA = -40èC  
TA = 25èC  
TA = 125èC  
7.5  
6
7.5  
6
4.5  
3
4.5  
3
1.5  
1.5  
10  
20  
30 40 50 70 100  
Input Overdrive (mV)  
200 300  
500  
10  
20  
30 40 50 70 100  
Input Overdrive (mV)  
200 300  
500  
tPLH  
tPHL  
VS = 3.3 V  
VS = 3.3 V  
Figure 5. Propagation Delay (L-H) vs. Input Overdrive  
Figure 6. Propagation Delay (H-L) vs. Input Overdrive  
1x105  
5000  
1000  
100  
10  
1x104  
1x103  
1x102  
1x101  
1
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 125èC  
0.1  
VPULL-UP = 1.8 V  
VPULL-UP = 3.3 V  
VPULL-UP = 5.0 V  
0.01  
1x100  
2x10-1  
0.002  
0.1  
1
10  
-40  
0
40  
80  
120  
160  
IN (V)  
Temperature (°C)  
ibia  
ilea  
VS = 3.3 V  
Figure 7. Input Bias Current vs. IN  
Figure 8. Output Leakage Current vs. Temperature  
Copyright © 2018, Texas Instruments Incorporated  
7
TLV7081  
ZHCSIE1A MAY 2018REVISED JUNE 2018  
www.ti.com  
Typical Characteristics (continued)  
TA = 25°C, VS = 3.3 V, RPULL-UP = 4.99 k, CL = 15 pF  
2
5
1
1
0.1  
0.1  
TA = -40°C  
TA = -40°C  
TA = 25°C  
TA = 125°C  
TA = 25°C  
TA = 125°C  
0.01  
0.01  
0.1  
0.005  
1
10  
20  
0.1  
1
10  
50  
Iout (Sink) (mA)  
Iout (Sink) (mA)  
vout  
vout  
VS = 1.8 V  
VS = 3.3 V  
Figure 9. Output Voltage Low vs. Output Sink Current  
Figure 10. Output Voltage Low vs. Output Sink Current  
0.2  
10  
Temp -40°C  
Temp 25°C  
Temp 85°C  
0.16  
Temp 125°C  
1
0.12  
0.08  
0.04  
0
0.1  
TA = -40°C  
TA = 25°C  
TA = 125°C  
0.01  
0.005  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0.1  
1
10  
100  
VS (V)  
Iout (Sink) (mA)  
vio_  
vout  
VS = 5 V  
Figure 12. Input Offset vs. VS  
Figure 11. Output Voltage Low vs. Output Sink Current  
0.16  
11  
10  
9
Temp -40°C  
Temp 25°C  
Temp 85°C  
Temp 125°C  
VS = 1.8v  
VS = 3.3v  
VS = 5v  
0.14  
0.12  
0.1  
0.08  
0.06  
0.04  
0.02  
0
8
7
6
1.5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Temperature (°C)  
VS (V)  
vio_  
vhys  
Figure 13. Input Offset vs. Temperature  
Figure 14. Hysteresis vs VS  
8
Copyright © 2018, Texas Instruments Incorporated  
TLV7081  
www.ti.com  
ZHCSIE1A MAY 2018REVISED JUNE 2018  
Typical Characteristics (continued)  
TA = 25°C, VS = 3.3 V, RPULL-UP = 4.99 k, CL = 15 pF  
20  
15  
10  
5
11  
10.5  
10  
9.5  
9
8.5  
8
7.5  
VS = 1.8v  
VS = 3.3v  
VS = 5v  
7
0
6.5  
5
-3.  
3
5
-2.  
2
5
-1.  
1
-
5
-0.  
0
1
2
3
4
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-
-
0.5  
1.5  
2.5  
3.5  
Temperature (°C)  
vos_  
vhys  
Input Offset (mV)  
Distribution Taken from 7,990 Comparators  
Figure 15. Hysteresis vs. Temperature  
Figure 16. Input Offset Histogram  
25  
20  
15  
10  
5
600  
500  
400  
300  
200  
100  
Temp -40°C  
Temp 25°C  
Temp 85°C  
Temp 125°C  
0
8
9
0
2
4
1.5  
2
2.5  
3
3.5  
VS (V)  
4
4.5  
5
5.5  
1
7.4 7.6 7.8  
8.2 8.4 8.6 8.8  
9.2 9.4 9.6 9.8  
10. 10.  
vhys  
is_v  
Hysteresis (mV)  
IN = (V+) - 0.1V (output low), No load.  
Distribution Taken from 7,990 Comparators  
Figure 18. Supply Current vs. VS  
Figure 17. Hysteresis Histogram  
600  
550  
500  
450  
400  
350  
300  
VS = 1.8v  
VS = 3.3v  
VS = 5v  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
is_t  
IN = (V+) - 0.1V (output low), No load.  
Figure 19. Supply Current vs. Temperature  
Copyright © 2018, Texas Instruments Incorporated  
9
TLV7081  
ZHCSIE1A MAY 2018REVISED JUNE 2018  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The TLV7081 is a single-channel, nano-power comparator that does not need a dedicated power supply  
connection, and can operate down to 1.7 V. The comparator is available in an ultra-small, WCSP package  
measuring 0.7 mm × 0.7 mm, making the TLV7081 applicable for space-critical designs like smartphones and  
other portable or battery-powered applications.  
The TLV7081 features a wide input-voltage range that is independent of supply voltage. Having an input range  
that is independent of supply voltage allows the TLV7081 to be directly connected to sources that are active  
even if the TLV7081 is not powered.  
The TLV7081 has an open-drain output stage that can be pulled beyond V+, making it appropriate for level  
translators and bipolar to single-ended converters.  
7.2 Functional Block Diagram  
VREF  
VPULL-UP  
TLV7081  
V+  
IN  
OUT  
+
Bias  
POR  
V-  
7.3 Feature Description  
The TLV7081 is a single-channel, nano-power comparator that operates down to 1.7 V. The inverting input is  
internally tied to V+ which helps to streamline applications which use supply as the reference. The non-inverting  
input IN extends to 5.6 V which is independent of the power supply V+ (1.7 V - 5.5 V) and it's available in an  
ultra-small, WCSP package measuring 0.7 mm × 0.7 mm.  
7.4 Device Functional Modes  
The TLV7081 has a power-on-reset (POR) circuit. While the power supply (VS) is greater than VPOR (typically 1V)  
and less than the minimum operating supply voltage, either upon ramp-up or ramp-down, the POR circuitry is  
activated.  
The POR circuit keeps the output high impedance (logical high) while activated.  
When the supply voltage is greater than, or equal to, the minimum supply voltage, the comparator output reflects  
the state of the input IN.  
10  
Copyright © 2018, Texas Instruments Incorporated  
TLV7081  
www.ti.com  
ZHCSIE1A MAY 2018REVISED JUNE 2018  
Device Functional Modes (continued)  
7.4.1 Inputs  
The TLV7081 input extends from V- to 5.6 V which is independent of supply. The input IN can be any voltage  
within these limits and no phase inversion of the comparator output occurs.  
The input of TLV7081 is fault tolerant. It maintains the same high input impedance when V+ is unpowered or  
ramping up. The input can be safely driven up to the specified maximum voltage (5.6 V) with V+ = 0 V or any  
value up to the maximum specified.  
The input bias current is typically 3 pA for input IN voltages between 0 and 5.6 V. The comparator inputs are  
protected from undervoltage by internal diodes connected to V-. As the input voltage goes under V-, the  
protection diodes become forward biased and begin to conduct causing the input bias current to increase  
exponentially. Input bias current typically doubles for every 10°C temperature increase.  
7.4.2 Internal Hysteresis  
The device hysteresis transfer curve is shown in Figure 20. This curve is a function of three components: VTH  
,
VOS, and VHYST  
:
VTH is the actual set voltage or threshold trip voltage.  
VOS is the internal offset voltage between IN and V+. This voltage is added to VTH to form the actual trip point  
at which the comparator must respond to change output states.  
VHYST is the internal hysteresis (or trip window) that is designed to reduce comparator sensitivity to noise  
(10 mV typical).  
VTH + VOS - (VHYST / 2)  
VTH + VOS  
VTH + VOS + (VHYST / 2)  
Figure 20. Hysteresis Transfer Curve  
7.4.3 Output  
The TLV7081 features an open-drain output stage enabling the output logic levels to be pulled up to an external  
source up to 5.5 V independently of the supply voltage.  
Copyright © 2018, Texas Instruments Incorporated  
11  
 
TLV7081  
ZHCSIE1A MAY 2018REVISED JUNE 2018  
www.ti.com  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TLV7081 is a 4-pin, nano-power comparator with open-drain output that is well suited for monitoring battery  
voltages. The TLV7081's benefits include a small package footprint and a unique input stage that allows the  
comparator input to be driven by a voltage source even when the operating voltage for the comparator is turned-  
off (zero volts).  
8.2 Typical Applications  
8.2.1 Nano-Power Battery Monitor  
The application of the TLV7081 for an under-voltage detection circuit is shown in Figure 21.  
VPULL-UP  
REF  
1.7 to 5.5 V  
TLV7081  
VDD  
UV  
V+  
IN  
OUT  
-
+
Micro-  
Controller  
Battery  
Vœ  
Copyright © 2017, Texas Instruments Incorporated  
Figure 21. Under-Voltage Detection  
8.2.1.1 Design Requirements  
For this design, follow these design requirements:  
The supply voltage connected to pin (V+) serves as the reference voltage for the comparator and can be any  
voltage between 1.7 V and 5.5 V.  
The voltage applied to the input pin (IN) can be any voltage in the range of 0 V to 5.6 V. This voltage range is  
uniquely independent of the supply voltage applied to pin (V+).  
The comparator output pin (OUT) requires a pull-up resistor that sets the output-high logic level (VOH) for the  
comparator. VPULL-UP should be connected to the supply voltage of the microcontroller which is monitoring the  
comparator output and serves as the level-shifting block for the logic levels in the application.  
12  
Copyright © 2018, Texas Instruments Incorporated  
 
TLV7081  
www.ti.com  
ZHCSIE1A MAY 2018REVISED JUNE 2018  
Typical Applications (continued)  
8.2.1.2 Detailed Design Procedure  
Instead of being powered directly from the battery, the TLV7081 is powered directly from a voltage reference that  
exists in the system. The input to the comparator (IN) is allowed to operate above and below the reference  
voltage due to the unique analog front end of the TLV7081. When the battery voltage is above the reference  
threshold, the output of the comparator is high and when the battery drops below the threshold of the reference,  
the output of the comparator goes low (see Figure 22 for details). For simplicity, the integrated hysteresis of the  
comparator is not shown in the timing diagram. Integrated hysteresis is helpful in avoiding glitches at the  
comparator output when operating in noisy environments or when the input voltage changes thresholds very  
slowly. An open-drain output configuration allows the output logic level of the comparator to be level-shifted to  
match the logic level of the receiving device.  
8.2.1.3 Application Curve  
When the voltage applied to the input pin (IN) falls below the reference threshold (REF), the output pin (OUT) is  
pulled low to ground (V-). Moreover, when the input voltage rises above REF, the output of the comparator goes  
into a high impedance state and the OUT pin is pulled high by the pull-up resistor and VPULL-UP supply voltage.  
IN  
REF  
VPULL-UP  
OUT  
(V-)  
Figure 22. Under-Voltage Timing Results  
8.2.2 Battery Monitoring in Portable Electronics  
A recommended circuit diagram for monitoring a battery voltage in a personal electronic device is shown in  
Figure 23. In this diagram, the GPIO pin of an application specific integrated circuit (ASIC) serves as the supply  
voltage and the voltage reference for the TLV7081. Using a GPIO pin to power the TLV7081 is possible because  
of the low quiescent current of the TLV7081. In systems where power consumption needs to be further reduced,  
the GPIO pin can be used to power-cycle the TLV7081.  
1.8V  
Regulator  
Output  
Logic Levels  
0V & 1.8V  
Lithium  
Ion  
GPIO (  
)
RPU  
R1  
Battery  
GPIO (input)  
PE ASIC  
+
TLV7081  
R2  
Figure 23. Battery Monitor  
Copyright © 2018, Texas Instruments Incorporated  
13  
 
 
TLV7081  
ZHCSIE1A MAY 2018REVISED JUNE 2018  
www.ti.com  
9 Layout  
9.1 Layout Guidelines  
A power supply bypass capacitor of 100 nF is recommended when supply output impedance is high, supply  
traces are long, or when excessive noise is expected on the supply lines. Bypass capacitors are also  
recommended when the comparator output drives a long trace or is required to drive a capacitive load. Due to  
the fast rising and falling edge rates and high-output sink and source capability of the TLV7081 output stages,  
higher than normal quiescent current can be drawn from the power supply. Under this circumstance, the system  
would benefit from a bypass capacitor across the supply pins.  
9.2 Layout Example  
Figure 24. Layout Example  
14  
Copyright © 2018, Texas Instruments Incorporated  
TLV7081  
www.ti.com  
ZHCSIE1A MAY 2018REVISED JUNE 2018  
10 器件和文档支持  
10.1 文档支持  
10.1.1 相关文档  
请参阅如下相关文档:  
TLV7081  
TLV7031  
TLV7041  
TLV7011  
TLV7021  
10.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
10.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
10.4 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
10.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
10.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
11 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
Copyright © 2018, Texas Instruments Incorporated  
15  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV7081YKAR  
ACTIVE  
DSBGA  
YKA  
4
3000 RoHS & Green SAC396 | SNAGCU  
Level-1-260C-UNLIM  
-40 to 125  
W
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Aug-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV7081YKAR  
TLV7081YKAR  
DSBGA  
DSBGA  
YKA  
YKA  
4
4
3000  
3000  
180.0  
180.0  
8.4  
8.4  
0.8  
0.8  
0.8  
0.8  
0.47  
0.47  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Aug-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV7081YKAR  
TLV7081YKAR  
DSBGA  
DSBGA  
YKA  
YKA  
4
4
3000  
3000  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YKA0004  
DSBGA - 0.4 mm max height  
SCALE 14.000  
DIE SIZE BALL GRID ARRAY  
A
D
B
E
BALL A1  
CORNER  
0.4 MAX  
C
SEATING PLANE  
0.05 C  
0.18  
0.13  
BALL TYP  
0.35 TYP  
B
A
SYMM  
0.35  
TYP  
D: Max = 0.73 mm, Min = 0.67 mm  
E: Max = 0.73 mm, Min = 0.67 mm  
1
2
0.25  
0.15  
C A B  
4X  
0.015  
SYMM  
4221909/B 08/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YKA0004  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
4X ( 0.2)  
(0.35) TYP  
2
1
A
B
SYMM  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:60X  
(
0.2)  
0.0325 MIN  
0.0325 MAX  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
(
0.2)  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221909/B 08/2018  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YKA0004  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
4X ( 0.21)  
(R0.05) TYP  
2
1
A
B
SYMM  
(0.35)  
TYP  
METAL  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 mm - 0.1 mm THICK STENCIL  
SCALE:60X  
4221909/B 08/2018  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TLV709

具有 3.2μA 电源电流的 150mA、30V 低压降 (LDO) 线性稳压器
TI

TLV709A33DBVR

具有 3.2μA 电源电流的 150mA、30V 低压降 (LDO) 线性稳压器 | DBV | 5 | -40 to 125
TI

TLV709A50DBVR

具有 3.2μA 电源电流的 150mA、30V 低压降 (LDO) 线性稳压器 | DBV | 5 | -40 to 125
TI

TLV710

Dual, 200mA, Low-IQ Low-Dropout Regulator for Portable Devices
TI

TLV710-Q1

具有使能功能的汽车类、200mA、高 PSRR、双通道低压降稳压器
TI

TLV7101828DSER

Dual, 200mA, Low-IQ Low-Dropout Regulator for Portable Devices
TI

TLV7101828DSET

Dual, 200mA, Low-IQ Low-Dropout Regulator for Portable Devices
TI

TLV7101828QDSERQ1

具有使能功能的汽车类、200mA、高 PSRR、双通道低压降稳压器 | DSE | 6 | -40 to 125
TI

TLV7103318DSER

Dual, 200mA, Low-IQ Low-Dropout Regulator for Portable Devices
TI

TLV7103318DSET

Dual, 200mA, Low-IQ Low-Dropout Regulator for Portable Devices
TI

TLV7103318QDSERQ1

具有使能功能的汽车类、200mA、高 PSRR、双通道低压降稳压器 | DSE | 6 | -40 to 125
TI

TLV710xxyyqwwwz

Dual, 200mA, Low-IQ Low-Dropout Regulator for Portable Devices
TI