TLV73311PQDRVRQ1 [TI]

具有使能功能的汽车类 300mA、低 IQ、低压降稳压器 | DRV | 6 | -40 to 150;
TLV73311PQDRVRQ1
型号: TLV73311PQDRVRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有使能功能的汽车类 300mA、低 IQ、低压降稳压器 | DRV | 6 | -40 to 150

光电二极管 输出元件 稳压器 调节器
文件: 总31页 (文件大小:2786K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV733P-Q1
ZHCSFD8F AUGUST 2016 REVISED OCTOBER 2020  
TLV733P-Q1  
无电容 300mA 低压降 (LDO) 线性稳压器  
1 特性  
3 说明  
符合面向汽车应用的 AEC-Q100 标准  
TLV733P-Q1 系列低压降 (LDO) 线性稳压器尺寸超小  
且静态电流较低可提供 300mA 拉电流线路和负载  
瞬态性能优异。此类器件可提供典型值为 1% 的精度。  
– 温度等级 1: 40 ° C 125 ° C T A  
器件结温范围:  
40°C 150°C  
TLV733P-Q1 系列采用现代无电容架构设计无需使  
用输入或输出电容即可确保运行稳定。移除输出电容有  
助于减小解决方案的尺寸并且可以消除启动时的浪涌  
电流。此外如果必须使用陶瓷电容TLV733P-Q1  
系列依然可以稳定运行。使用输出电容时TLV733P-  
Q1 系列还可以在器件上电和使能期间提供折返电流控  
制。该功能对于电池供电类器件尤为重要。  
输入电压范围1.4V 5.5V  
有无电容器均可实现稳定运行  
折返过流保护  
封装:  
2.0mm × 2.0mm WSON-6  
2.9mm × 1.6mm SOT-23  
非常低的压降300mA 时为 125mV (3.3VOUT  
精度典型值为 1%最大值为 1.4%  
IQ34µA  
TLV733P-Q1 系列提供有源下拉电路处于禁用状态  
时可使输出负载快速放电。  
)
TLV733P-Q1 系列采用 6 引脚 DRV (WSON) 5 引脚  
DBV (SOT-23) 封装。  
可提供固定输出电压:  
1.0V 3.3V  
器件信息 (1)  
PSRR1kHz 时为 50dB  
有源输出放电  
封装尺寸标称值)  
器件型号  
封装  
WSON (6)  
SOT-23 (5)  
2.00mm × 2.00mm  
2.90mm × 1.60mm  
TLV733P-Q1  
2 应用  
摄像头模块  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
汽车信息娱乐系统  
导航系统  
180  
VOUT = 3.3 V  
VOUT = 1.8 V  
IN  
OUT  
GND  
160  
140  
120  
100  
80  
COUT  
CIN  
TLV733P-Q1  
EN  
Optional  
Optional  
ON  
OFF  
60  
典型应用电路  
40  
20  
0
0
30  
60  
90 120 150 180 210 240 270 300  
IOUT (mA)  
D020  
压降电压与输出电流间的关系  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBVS283  
 
 
 
TLV733P-Q1  
ZHCSFD8F AUGUST 2016 REVISED OCTOBER 2020  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................13  
7.4 Device Functional Modes..........................................14  
8 Application and Implementation..................................15  
8.1 Application Information............................................. 15  
8.2 Typical Applications.................................................. 16  
9 Layout.............................................................................18  
9.1 Layout Guidelines..................................................... 18  
9.2 Layout Examples...................................................... 18  
10 Device and Documentation Support..........................19  
10.1 Device Support....................................................... 19  
10.2 Receiving Notification of Documentation Updates..19  
10.3 Support Resources................................................. 19  
10.4 Trademarks.............................................................19  
10.5 Electrostatic Discharge Caution..............................19  
10.6 Glossary..................................................................19  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Timing Requirements..................................................7  
6.7 Typical Characteristics................................................8  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................12  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision E (July 2019) to Revision F (October 2020)  
Page  
更新了整个文档的表和图的编号格式.................................................................................................................. 1  
更改了特定于汽车的特性 项目符号.....................................................................................................................1  
Changed storage temperature max parameter from 160°C to 150°C................................................................ 5  
Added classificaton levels to ESD Ratings table................................................................................................ 5  
Changes from Revision D (December 2018) to Revision E (July 2019)  
Page  
Changed description of EN pin in Pin Functions table........................................................................................4  
Deleted typical specifications from VEN(HI) and VEN(LO) parameters in Electrical Characteristics table..............6  
Added maximum specification to ILIM parameter in Electrical Characteristics table........................................... 6  
Added and Output Enable to title and changed first paragraph of Shutdown and Output Enable section....... 13  
Changes from Revision C (October 2018) to Revision D (December 2018)  
Page  
DBV 封装状态更改为“量产数据”................................................................................................................1  
Changes from Revision B (August 2018) to Revision C (October 2018)  
Page  
向文档添加了 DBV 封装“预发布”状态..................................................................................................... 1  
Changes from Revision A (August 2016) to Revision B (August 2018)  
Page  
添加了器件结温范围 特性项目符号.....................................................................................................................1  
Changed TJ maximum specification from 135°C to 150°C ................................................................................5  
Changed Electrical Characteristics conditions statement from TJ, TA = 40°C to +125°C to TJ = 40°C to  
+150°C, TA = 40°C to +125°C ........................................................................................................................6  
Added last 6 rows to VDO parameter ................................................................................................................. 6  
Added second row to IGND parameter, added temperature range to first row test conditions ..........................6  
Changed Typical Characteristics condition statement from TJ = 40°C to +125°C to TJ = 40°C to +150°C ..  
8
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLV733P-Q1  
 
TLV733P-Q1  
ZHCSFD8F AUGUST 2016 REVISED OCTOBER 2020  
www.ti.com.cn  
Changed operating junction temperature from 40°C to +135°C to 40°C to +150°C in Overview section....  
12  
Changed junction temperature limit from 135°C to 150°C in Thermal Shutdown section................................ 13  
Changes from Revision * (August 2016) to Revision A (August 2016)  
Page  
已投入量产..........................................................................................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLV733P-Q1  
TLV733P-Q1  
ZHCSFD8F AUGUST 2016 REVISED OCTOBER 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
IN  
GND  
EN  
1
2
3
5
OUT  
OUT  
NC  
1
2
3
6
5
4
IN  
GND  
NC  
EN  
GND  
4
NC  
Not to scale  
Not to scale  
NC No internal connection.  
5-2. DBV Package, 5-Pin SOT-23, Top View  
5-1. DRV Package, 6-Pin WSON, Top View  
5-1. Pin Functions  
NO.  
NAME  
EN  
DRV  
4
DBV  
I/O  
DESCRIPTION  
Enable pin. Drive EN greater than VEN(HI) to turn on the regulator.  
Drive EN less than VEN(LO) to put the LDO into shutdown mode.  
3
2
1
4
I
GND  
IN  
3
Ground pin  
Input pin. A small capacitor is recommended from this pin to ground.  
See the Input and Output Capacitor Selection section for more details.  
6
I
NC  
2, 5  
No internal connection  
Regulated output voltage pin. For best transient response, use a small 1-μF ceramic  
capacitor from this pin to ground. See the Input and Output Capacitor Selection section for  
more details.  
OUT  
1
5
O
The thermal pad is electrically connected to the GND node.  
Connect to the GND plane for improved thermal performance.  
Thermal pad  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLV733P-Q1  
 
TLV733P-Q1  
ZHCSFD8F AUGUST 2016 REVISED OCTOBER 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted); all voltages are with respect to GND(1)  
MIN  
0.3  
0.3  
0.3  
MAX  
UNIT  
V
VIN  
6.0  
VIN + 0.3  
3.6  
Voltage  
VEN  
VOUT  
IOUT  
Current  
Internally limited  
Indefinite  
150  
A
Output short-circuit duration  
Operating junction, TJ  
Storage, Tstg  
40  
65  
Temperature  
°C  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1), classification level 2  
Electrostatic  
discharge  
V(ESD)  
All pins  
V
Charged-device model (CDM), per AEC Q100-011,  
classification level C4B  
Corner pins (1, 3, 4, and 6)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
MIN  
1.4  
1.0  
0
NOM  
MAX  
5.5  
UNIT  
V
VIN  
VOUT  
IOUT  
VEN  
TJ  
Input range  
Output range  
3.3  
V
Output current  
Enable range  
300  
VIN  
mA  
V
0
Junction temperature  
Ambient temperature  
150  
125  
°C  
°C  
40  
40  
TA  
6.4 Thermal Information  
TLV733P-Q1  
THERMAL METRIC(1)  
DRV (WSON)  
6 PINS  
92.5  
DBV (SOT-23)  
5 PINS  
198.3  
118.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
123.9  
61.9  
65.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
9.7  
42.4  
ψJT  
62.3  
65.5  
ψJB  
RθJC(bot)  
30.9  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLV733P-Q1  
 
 
 
 
 
 
 
 
TLV733P-Q1  
ZHCSFD8F AUGUST 2016 REVISED OCTOBER 2020  
www.ti.com.cn  
6.5 Electrical Characteristics  
at operating temperature range (TJ = 40°C to +150°C, TA = 40°C to +125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever  
is greater), IOUT = 1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted); all typical values are at TJ = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN  
Input voltage  
1.4  
5.5  
V
TJ = 25°C  
1%  
1%  
1.4%  
DC output accuracy  
Undervoltage lockout  
1.4%  
1.4  
40°C TJ 150°C  
VIN rising  
1.3  
UVLO  
V
VIN falling  
1.25  
ΔVI = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater) to  
5.5 V  
Line regulation  
Load regulation  
1
mV  
mV  
ΔVO(ΔVI)  
ΔVO(ΔIO)  
25  
ΔIO = 1 mA to 300 mA  
510  
450  
VOUT = 1.1 V, 40°C TJ +125°C  
1.2 V VOUT < 1.5 V, 40°C TJ ≤  
125°C  
1.5 V VOUT < 1.8 V, 40°C TJ ≤  
125°C  
400  
300  
290  
1.8 V VOUT < 2.5 V, 40°C TJ ≤  
125°C  
2.5 V VOUT < 3.3 V, 40°C TJ ≤  
125°C  
VOUT = 0.98 ×  
125  
270  
560  
VOUT = 3.3 V, 40°C TJ 125°C  
VDO  
Dropout voltage(1)  
VOUT(nom)  
,
mV  
VOUT = 1.1 V, 40°C TJ 150°C  
IOUT = 300 mA  
1.2 V VOUT < 1.5 V, 40°C TJ ≤  
150°C  
490  
440  
340  
330  
1.5 V VOUT < 1.8 V, 40°C TJ ≤  
150°C  
1.8 V VOUT < 2.5 V, 40°C TJ ≤  
150°C  
2.5 V VOUT < 3.3 V, 40°C TJ ≤  
150°C  
320  
62  
78  
1
VOUT = 3.3 V, 40°C TJ 150°C  
34  
IOUT = 0 mA, 40°C TJ 125°C  
IOUT = 0 mA, 40°C TJ 150°C  
IGND  
Ground pin current  
Shutdown current  
µA  
µA  
ISHDN  
0.1  
68  
V
EN 0.35 V, 2.0 V VIN 5.5 V, TJ = 25°C  
f = 100 Hz  
Power-supply  
rejection ratio  
VOUT = 1.8 V,  
IOUT = 300 mA  
PSRR  
f = 10 kHz  
35  
dB  
f = 100 kHz  
28  
Vn  
Output noise voltage BW = 10 Hz to 100 kHz, VOUT = 1.8 V, IOUT = 10 mA  
120  
µVRMS  
V
EN pin high voltage  
(enabled)  
VEN(HI)  
0.9  
EN pin low voltage  
(disabled)  
VEN(LO)  
IEN  
0.35  
700  
V
EN pin current  
VEN = 5.5 V  
VIN = 2.3 V  
0.01  
120  
µA  
Pulldown resistor  
Output current limit  
Ω
ILIM  
IOS  
360  
mA  
VOUT shorted to GND, VOUT = 1.0 V  
VOUT shorted to GND, VOUT = 3.3 V  
150  
170  
Short-circuit current  
limit  
mA  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLV733P-Q1  
 
TLV733P-Q1  
ZHCSFD8F AUGUST 2016 REVISED OCTOBER 2020  
www.ti.com.cn  
at operating temperature range (TJ = 40°C to +150°C, TA = 40°C to +125°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever  
is greater), IOUT = 1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted); all typical values are at TJ = 25°C  
PARAMETER  
TEST CONDITIONS  
Shutdown, temperature increasing  
Reset, temperature decreasing  
MIN  
TYP  
160  
140  
MAX  
UNIT  
Tsd  
Thermal shutdown  
°C  
(1) Dropout voltage for the TLV73310P is not valid at room temperature. The device engages undervoltage lockout (VIN < UVLOFALL  
)
before the dropout condition is met.  
6.6 Timing Requirements  
MIN NOM MAX UNIT  
Time from EN assertion to 98% × VOUT(nom), VOUT = 1.0 V, IOUT = 0 mA  
Time from EN assertion to 98% × VOUT(nom), VOUT = 3.3 V, IOUT = 0 mA  
250  
tSTR  
Startup time  
µs  
800  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLV733P-Q1  
 
 
TLV733P-Q1  
ZHCSFD8F AUGUST 2016 REVISED OCTOBER 2020  
www.ti.com.cn  
6.7 Typical Characteristics  
at operating temperature range (TJ = 40°C to +150°C), VIN = VOUT(nom) + 0.5 V or 2.0 V (whichever is greater),  
IOUT = 1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted)  
1.816  
1.814  
1.812  
1.81  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
TJ = -40èC  
TJ = 0èC  
TJ = 25èC  
TJ = 85èC  
TJ = 125èC  
TJ = -40èC  
TJ = 0èC  
TJ = 25èC  
TJ = 85èC  
TJ = 125èC  
1.808  
1.806  
1.804  
1.802  
1.8  
1.798  
1.796  
2
2.5  
3
3.5  
VIN (V)  
4
4.5  
5
5.5  
0
30  
60  
90 120 150 180 210 240 270 300  
IOUT (mA)  
D019  
D012  
6-1. 1.8-V Regulation vs VIN (Line Regulation)  
6-2. Ground Pin Current vs IOUT and  
and Temperature  
Temperature  
40  
100  
TJ = 25èC  
TJ = -40èC  
TJ = 0èC  
TJ = 25èC  
35  
TJ = 85èC  
30  
25  
20  
15  
10  
5
10  
1
TJ = 125èC  
0.1  
0.01  
0
0.5  
1
1.5  
2
2.5  
3
VIN (V)  
3.5  
4
4.5  
5
5.5  
0
1
2
3
VIN (V)  
4
5
6
D013  
D015  
IOUT = 0 mA  
6-3. Ground Pin Current vs VIN  
6-4. Shutdown Current vs VIN and Temperature  
0.675  
0.65  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
VEN(LO)  
VEN(HI)  
0.625  
0.6  
0.575  
0.55  
0.525  
0.5  
0.3  
0.2  
0.1  
0
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
0.475  
0.45  
0.425  
-40  
-20  
0
20  
40  
TJ (èC)  
60  
80  
100 120 140  
150 200 250 300 350 400 450 500 550 600 650 700  
Output Current (mA)  
D014  
D023  
6-5. Enable Threshold vs Temperature  
6-6. Output Voltage vs 1.0-V Foldback Current  
Limit and Temperature  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLV733P-Q1  
 
 
TLV733P-Q1  
ZHCSFD8F AUGUST 2016 REVISED OCTOBER 2020  
www.ti.com.cn  
2
1.75  
1.5  
3.5  
3
2.5  
2
1.25  
1
1.5  
1
0.75  
0.5  
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
0.25  
0.5  
0
0
150  
200  
250  
300 350  
Output Current (mA)  
400  
450  
500  
150  
200  
250  
300 350  
Output Current (mA)  
400  
450  
500  
D021  
D022  
6-7. Output Voltage vs 1.8-V Foldback Current  
6-8. Output Voltage vs 3.3-V Foldback Current  
Limit and Temperature  
Limit and Temperature  
10  
80  
VOUT = 1 V  
VOUT = 1.8 V  
VOUT = 3.3 V  
No Output Capacitor  
1-mF Output Capacitor  
70  
60  
50  
40  
30  
20  
10  
0
1
0.1  
0.01  
0.005  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
D016  
D017  
IOUT = 300 mA  
IOUT = 300 mA  
6-10. Output Spectral Noise Density vs  
6-9. Power-Supply Rejection Ratio vs Frequency  
Frequency and Output Voltage  
VIN (2 V/div)  
VIN (2 V/div)  
VOUT (1 V/div,  
AC Coupled)  
VOUT (1 V/div,  
AC Coupled)  
Time (20 µs/div)  
Time (20 µs/div)  
IOUT = 10 mA, 1-µF output capacitor  
IOUT = 300 mA, 1-µF output capacitor  
6-11. Line Transient  
6-12. Line Transient  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLV733P-Q1  
 
TLV733P-Q1  
ZHCSFD8F AUGUST 2016 REVISED OCTOBER 2020  
www.ti.com.cn  
VOUT (200 mV/div,  
AC Coupled)  
VOUT (200 mV/div,  
AC Coupled)  
ILOAD (100 mA/div)  
ILOAD (100 mA/div)  
Time (20 µs/div)  
Time (20 µs/div)  
VIN = 2.0 V, 1-µF output capacitor, output current slew rate =  
0.25 A/µs  
VIN = 2.0 V, no output capacitor, output current slew rate =  
0.25 A/µs  
6-13. 1.0-V, 50-mA to 300-mA Load Transient  
6-14. 1.0 V, 50-mA to 300-mA Load Transient  
VOUT (100 mV/div,  
AC Coupled)  
VOUT (100 mV/div,  
AC coupled)  
ILOAD (100 mA/div)  
ILOAD (200 mA/div)  
Time (20 µs/div)  
Time (50 µs/div)  
VIN = 3.8 V,1-µF output capacitor, output current slew rate =  
0.25 A/µs  
VIN = 3.8 V, no output capacitor, output current slew rate =  
0.25 A/µs  
6-15. 3.3 V, 50-mA to 300-mA Load Transient  
6-16. 3.3 V, 50-mA to 300-mA Load Transient  
VEN (500 mV/div)  
VIN (1 V/div)  
VOUT (1 V/div)  
ILOAD (200 mA/div)  
VOUT (500 mV/div)  
Time (100 µs/div)  
Time (100 µs/div)  
RL = 6.2 Ω, 1-µF output capacitor  
RL = 6.2 Ω, VEN = VIN, 1-µF output capacitor  
6-18. Startup with EN  
6-17. VIN Power-Up and Power-Down  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLV733P-Q1  
TLV733P-Q1  
ZHCSFD8F AUGUST 2016 REVISED OCTOBER 2020  
www.ti.com.cn  
VOUT (500 mV/div)  
VEN (500 mV/div)  
VOUT (500 mV/div)  
ILOAD (200 mA/div)  
Time (100 µs/div)  
Time (100 µs/div)  
1-µF output capacitor  
IOUT = 300 mA, 1-µF output capacitor  
6-20. Foldback Current Limit Response  
6-19. Shutdown Response with Enable  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLV733P-Q1  
TLV733P-Q1  
ZHCSFD8F AUGUST 2016 REVISED OCTOBER 2020  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TLV733P-Q1 belongs to a family of low dropout (LDO) linear regulators. These devices consume low  
quiescent current and deliver excellent line and load transient performance. These characteristics, combined  
with low noise and good PSRR with low dropout voltage, make this family of devices ideal for portable consumer  
applications.  
This family of regulators offers foldback current limit, shutdown, and thermal protection. The operating junction  
temperature for this family of devices is 40°C to +150°C.  
7.2 Functional Block Diagram  
IN  
OUT  
Current  
Limit  
Thermal  
Shutdown  
UVLO  
120 W  
Band Gap  
EN  
Logic  
TLV733P-Q1  
GND  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLV733P-Q1  
 
 
 
TLV733P-Q1  
ZHCSFD8F AUGUST 2016 REVISED OCTOBER 2020  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Undervoltage Lockout (UVLO)  
The TLV733P-Q1 family uses an undervoltage lockout (UVLO) circuit that disables the output until the input  
voltage is greater than the rising UVLO voltage. This circuit ensures that the device does not exhibit any  
unpredictable behavior when the supply voltage is lower than the operational range of the internal circuitry.  
During UVLO disable, the output is connected to ground with a 120-Ω pulldown resistor.  
7.3.2 Shutdown and Output Enable  
The enable pin (EN) is active high. Enable the device by forcing the EN pin to exceed VEN(HI). Turn off the device  
by forcing the EN pin to drop below VEN(LO). If shutdown capability is not required, connect EN to IN. There is no  
internal pulldown resistor connected to the EN pin.  
The TLV733P-Q1 has an internal pulldown MOSFET that connects a 120-Ω resistor to ground when the device  
is disabled. The discharge time after disabling depends on the output capacitance (COUT) and the load  
resistance (RL) in parallel with the 120-Ω pulldown resistor. The time constant is calculated in 方程式 1:  
120 · RL  
t =  
· COUT  
120 + RL  
(1)  
7.3.3 Internal Foldback Current Limit  
The TLV733P-Q1 has an internal foldback current limit that protects the regulator during fault conditions. The  
current allowed through the device is reduced when the output voltage falls. When the output is shorted, the  
LDO supplies a typical current of 150 mA. The output voltage is not regulated when the device is in current limit.  
In this condition, the output voltage is the product of the regulated current and the load resistance. When the  
device output is shorted, the PMOS pass transistor dissipates power [(VIN VOUT) × IOS] until thermal shutdown  
is triggered and the device turns off. After the device cools down, the internal thermal shutdown circuit turns the  
device back on. If the fault condition continues, the device cycles between current limit and thermal shutdown;  
see the Thermal Information table for more details.  
The foldback current-limit circuit limits the current allowed through the device to current levels lower than the  
minimum current limit at a nominal VOUT current limit (ILIM) during startup. See 6-6 to 6-8 for typical  
foldback current limit values. If the output is loaded by a constant-current load during startup, or if the output  
voltage is negative when the device is enabled, then the load current demanded by the load can exceed the  
foldback current limit and the device may not rise to the full output voltage. For constant-current loads, disable  
the output load until the TLV733P-Q1 has fully risen to the nominal output voltage.  
The TLV733P-Q1 PMOS pass element has an intrinsic body diode that conducts current when the voltage at the  
OUT pin exceeds the voltage at the IN pin. Do not force the output voltage to exceed the input voltage because  
excessively high current can flow through the body diode.  
7.3.4 Thermal Shutdown  
Thermal shutdown protection disables the output when the junction temperature rises to approximately 160°C.  
Disabling the device eliminates the power dissipated by the device, allowing the device to cool. When the  
junction temperature cools to approximately 140°C, the output circuitry is again enabled. Depending on power  
dissipation, thermal resistance, and ambient temperature, the thermal protection circuit can cycle on and off.  
This cycling limits regulator dissipation, protecting the device from damage as a result of overheating.  
Activating the thermal shutdown feature usually indicates excessive power dissipation as a result of the product  
of the (VIN VOUT) voltage and the load current. For reliable operation, limit junction temperature to 150°C  
(maximum). To estimate the margin of safety in a complete design, increase the ambient temperature until the  
thermal protection is triggered; use worst-case loads and signal conditions.  
The TLV733P-Q1 internal protection circuitry protects against overload conditions but is not intended to be  
activated in normal operation. Continuously running the TLV733P-Q1 into thermal shutdown degrades device  
reliability.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLV733P-Q1  
 
 
 
 
TLV733P-Q1  
ZHCSFD8F AUGUST 2016 REVISED OCTOBER 2020  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Normal Operation  
The device regulates to the nominal output voltage under the following conditions:  
The input voltage has previously exceeded the UVLO rising voltage and has not decreased below the UVLO  
falling threshold.  
The input voltage is greater than the nominal output voltage added to the dropout voltage.  
The enable voltage has previously exceeded the enable rising threshold voltage and has not decreased  
below the enable falling threshold.  
The output current is less than the current limit.  
The device junction temperature is less than the thermal shutdown temperature.  
7.4.2 Dropout Operation  
If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other  
conditions are met for normal operation, the device operates in dropout mode. In this condition, the output  
voltage is the same as the input voltage minus the dropout voltage. The transient performance of the device is  
significantly degraded because the pass device is in a triode state and no longer controls the current through the  
LDO. Line or load transients in dropout can result in large output voltage deviations.  
7.4.3 Disabled  
The device is disabled under the following conditions:  
The input voltage is less than the UVLO falling voltage, or has not yet exceeded the UVLO rising threshold.  
The enable voltage is less than the enable falling threshold voltage or has not yet exceeded the enable rising  
threshold.  
The device junction temperature is greater than the thermal shutdown temperature.  
When the device is disabled, the active pulldown resistor discharges the output.  
7-1 shows the conditions that lead to the different modes of operation.  
7-1. Device Functional Mode Comparison  
PARAMETER  
OPERATING MODE  
VIN  
VEN  
IOUT  
TJ  
VIN > VOUT(nom) + VDO  
and VIN > UVLORISE  
Normal mode  
Dropout mode  
VEN > VEN(HI)  
VEN > VEN(HI)  
IOUT < ILIM  
IOUT < ILIM  
TJ < 160°C  
TJ < 160°C  
UVLORISE < VIN < VOUT(nom) + VDO  
Disabled mode  
(any true condition  
disables the device)  
VIN < UVLOFALL  
VEN < VEN(LO)  
TJ > 160°C  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLV733P-Q1  
 
 
TLV733P-Q1  
ZHCSFD8F AUGUST 2016 REVISED OCTOBER 2020  
www.ti.com.cn  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Input and Output Capacitor Selection  
The TLV733P-Q1 uses an advanced internal control loop to obtain stable operation both with and without the  
use of input or output capacitors. Dynamic performance is improved with the use of an output capacitor, and can  
be improved with an input capacitor. An output capacitance of 0.1 μF or larger generally provides good dynamic  
response. Use X5R- and X7R-type ceramic capacitors because these capacitors have minimal variation in value  
and equivalent series resistance (ESR) over temperature.  
Although an input capacitor is not required for stability, increased output impedance from the input supply can  
compromise the performance of the TLV733P-Q1. Good analog design practice is to connect a 0.1-µF to 1-µF  
capacitor from IN to GND. This capacitor counteracts reactive input sources and improves transient response,  
input ripple, and PSRR. Use an input capacitor if the source impedance is greater than 0.5 Ω. Use a higher-  
value capacitor if large, fast rise-time load transients are anticipated, or if the device is located several inches  
from the input power source.  
8-1 shows the transient performance improvements with an external 1-µF capacitor on the output versus no  
output capacitor. The data in this figure are taken with an increasing load step from 50 mA to 300 mA, and the  
peak output voltage deviation (load transient response) is measured. For low output current slew rates,  
(< 0.1 A/µs), the transient performance of the device is similar with or without an output capacitor. When the  
current slew rate is increased, the peak voltage deviation is significantly increased. For loads that exhibit fast  
current slew rates above 0.1 A/µs, use an output capacitor. For best performance, the maximum recommended  
output capacitance is 100 µF.  
35  
1-mF COUT  
COUT Removed  
30  
25  
20  
15  
10  
5
0
0.01  
0.1  
Output Load Transient Slew Rate (A/ms)  
1
D027  
Output current stepped from 50 mA to 300 mA, output voltage change measured at positive dI/dt  
8-1. Output Voltage Deviation vs Load Step Slew Rate  
Some applications benefit from the removal of the output capacitor. In addition to space and cost savings, the  
removal of the output capacitor lowers inrush current as a result of eliminating the required current flow into the  
output capacitor at startup. In these cases, take care to ensure that the load is tolerant of the additional output  
voltage deviations.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLV733P-Q1  
 
 
 
 
TLV733P-Q1  
ZHCSFD8F AUGUST 2016 REVISED OCTOBER 2020  
www.ti.com.cn  
8.1.2 Dropout Voltage  
The TLV733P-Q1 uses a PMOS pass transistor to achieve low dropout. When (VIN VOUT) is less than the  
dropout voltage (VDO), the PMOS pass device is in the linear region of operation and the input-to-output  
resistance is the RDS(ON) of the PMOS pass element. VDO scales approximately with output current because the  
PMOS device behaves like a resistor in dropout mode. As with any linear regulator, PSRR and transient  
response degrade when (VIN VOUT) approaches dropout operation.  
8.2 Typical Applications  
8.2.1 DC-DC Converter Post Regulation  
VOUT  
1.8 V  
VOUT  
1.5 V  
IN  
OUT  
CIN  
1 µF  
COUT  
1 µF  
DC-DC  
Converter  
Load  
TLV733P-Q1  
EN  
GND  
ON  
OFF  
8-2. DC-DC Converter Post Regulation  
8.2.1.1 Design Requirements  
8-1. Design Parameters  
PARAMETER  
DESIGN REQUIREMENT  
Input voltage  
Output voltage  
1.8 V, ±5%  
1.5 V, ±1%  
Output current  
200-mA dc, 300-mA peak  
< 10%, 1-A/µs load step from 50 mA to 200 mA  
85°C  
Output voltage transient deviation  
Maximum ambient temperature  
8.2.1.2 Design Considerations  
The TLV733P-Q1 can provide post regulation after a dc-dc converter, as shown in 8-2. For this application,  
input and output capacitors are required to achieve the output voltage transient requirements. Capacitance  
values of 1 µF are selected to give the maximum output capacitance in a small, low-cost package.  
8.2.1.3 Application Curve  
8-3 shows the TLV733P-Q1 startup, regulation, and shutdown as specified in 8-2.  
VIN (500 mV/div)  
VOUT (500 mV/div)  
IOUT (100 mA/div)  
Time (50 µs/div)  
8-3. 1.8-V to 1.5-V Regulation at 300 mA  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLV733P-Q1  
 
 
 
TLV733P-Q1  
ZHCSFD8F AUGUST 2016 REVISED OCTOBER 2020  
www.ti.com.cn  
8.2.2 Capacitor-Free Operation from a Battery Input Supply  
IN  
OUT  
TLV733P-Q1  
VBAT  
Load  
EN  
GND  
8-4. Capacitor-Free Operation from a Battery Input Supply  
8.2.2.1 Design Requirements  
8-2. Design Parameters  
PARAMETER  
Input voltage  
DESIGN REQUIREMENT  
3.0 V to 1.8 V (two 1.5-V batteries)  
1.0 V, ±1%  
Output voltage  
Input current  
200 mA, maximum  
100-mA dc  
Output load  
Maximum ambient temperature  
70°C  
8.2.2.2 Design Considerations  
The TLV733P-Q1 can be directly powered off of a battery, as shown in 8-4. An input capacitor is not required  
for this design because of the direct low impedance connection to the battery.  
Eliminating the output capacitor allows for the minimal possible inrush current during startup, ensuring that the  
200-mA maximum input current is not exceeded.  
8.2.2.3 Application Curve  
8-5 shows no inrush with the capacitor-free startup.  
VIN (1 V/div)  
VOUT (500 mV/div)  
IIN (100 mA/div)  
Time (50 µs/div)  
8-5. No Inrush Startup, 3.0-V to 1.0-V Regulation  
Power Supply Recommendations  
Connect a low output impedance power supply directly to the IN pin of the TLV733P-Q1. Inductive impedances  
between the input supply and the IN pin can create significant voltage excursions at the IN pin during startup or  
load transient events. If inductive impedances are unavoidable, use an input capacitor.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLV733P-Q1  
 
 
TLV733P-Q1  
ZHCSFD8F AUGUST 2016 REVISED OCTOBER 2020  
www.ti.com.cn  
9 Layout  
9.1 Layout Guidelines  
Place input and output capacitors as close to the device as possible.  
Use copper planes for device connections, in order to optimize thermal performance.  
Place thermal vias around the device to distribute the heat.  
9-1 and 9-2 show examples of how the TLV733P-Q1 is laid out on a printed circuit board (PCB).  
9.2 Layout Examples  
Input Capacitor  
Input  
Trace  
Enable  
Trace  
Grounded  
Thermal Plane  
NC  
EN  
Input Ground  
Plane  
IN  
Thermal Pad  
GND  
NC  
Output Trace  
OUT  
Grounded  
Thermal Plane  
Output Ground  
Plane  
Output Capacitor  
Designates thermal vias.  
9-1. WSON Layout Example  
VOUT  
VIN  
5
1
CIN  
COUT  
2
3
4
EN  
GND PLANE  
Represents via used for  
application specific connections  
9-2. SOT-23 Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLV733P-Q1  
 
 
 
 
 
TLV733P-Q1  
ZHCSFD8F AUGUST 2016 REVISED OCTOBER 2020  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Device Support  
10.1.1 Development Support  
10.1.1.1 Evaluation Module  
An evaluation module (EVM) is available to assist in the initial circuit performance evaluation using the TLV733P-  
Q1. The TLV73312PEVM-643 evaluation module (and related user guide) can be requested at the Texas  
Instruments website through the product folders or purchased directly from the TI eStore.  
10.1.2 Device Nomenclature  
10-1. Device Nomenclature (1) (2)  
PRODUCT  
VOUT  
xx(x) is the nominal output voltage. For output voltages with a resolution of 100 mV, two digits are used  
in the ordering number; otherwise, three digits are used (for example, 28 = 2.8 V; 125 = 1.25 V).  
P indicates an active output discharge feature. All members of the TLV733P-Q1 family will actively  
discharge the output when the device is disabled.  
TLV733P-Q1xx(x)PyyyzQ1  
yyy is the package designator.  
z is the package quantity. R is for reel (3000 pieces), T is for tape (250 pieces).  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the  
device product folder on www.ti.com.  
(2) Output voltages from 1.0 V to 3.3 V in 50-mV increments are available. Contact the factory for details and availability.  
10.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
10.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
10.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLV733P-Q1  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV73310PQDBVRQ1  
TLV73310PQDRVRQ1  
TLV73311PQDBVRQ1  
TLV73311PQDRVRQ1  
TLV73312PQDBVRQ1  
TLV73312PQDRVRQ1  
TLV73315PQDBVRQ1  
TLV73315PQDRVRQ1  
TLV73318PQDBVRQ1  
TLV73318PQDRVRQ1  
TLV73325PQDBVRQ1  
TLV73325PQDRVRQ1  
TLV73328PQDBVRQ1  
TLV73328PQDRVRQ1  
TLV73330PQDBVRQ1  
TLV73333PQDBVRQ1  
TLV73333PQDRVRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
WSON  
SOT-23  
WSON  
SOT-23  
WSON  
SOT-23  
WSON  
SOT-23  
WSON  
SOT-23  
WSON  
SOT-23  
WSON  
SOT-23  
SOT-23  
WSON  
DBV  
DRV  
DBV  
DRV  
DBV  
DRV  
DBV  
DRV  
DBV  
DRV  
DBV  
DRV  
DBV  
DRV  
DBV  
DBV  
DRV  
5
6
5
6
5
6
5
6
5
6
5
6
5
6
5
5
6
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 150  
-40 to 125  
-40 to 150  
-40 to 125  
-40 to 150  
-40 to 125  
-40 to 150  
-40 to 125  
-40 to 150  
-40 to 125  
-40 to 150  
-40 to 125  
-40 to 150  
-40 to 125  
-40 to 125  
-40 to 150  
1P5F  
12P  
NIPDAUAG  
NIPDAU  
1P6F  
12Q  
NIPDAUAG  
NIPDAU  
1P7F  
12R  
NIPDAUAG  
NIPDAU  
1P8F  
12S  
NIPDAUAG  
NIPDAU  
1P9F  
12T  
NIPDAUAG  
NIPDAU  
1PAF  
12U  
NIPDAUAG  
NIPDAU  
1PBF  
12V  
NIPDAUAG  
NIPDAU  
1PCF  
1PDF  
12W  
NIPDAU  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Mar-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV73310PQDBVRQ1 SOT-23  
TLV73310PQDRVRQ1 WSON  
TLV73311PQDBVRQ1 SOT-23  
TLV73311PQDRVRQ1 WSON  
TLV73312PQDBVRQ1 SOT-23  
TLV73312PQDRVRQ1 WSON  
TLV73315PQDBVRQ1 SOT-23  
TLV73315PQDRVRQ1 WSON  
TLV73318PQDBVRQ1 SOT-23  
TLV73318PQDRVRQ1 WSON  
TLV73325PQDBVRQ1 SOT-23  
TLV73325PQDRVRQ1 WSON  
TLV73328PQDBVRQ1 SOT-23  
TLV73328PQDRVRQ1 WSON  
DBV  
DRV  
DBV  
DRV  
DBV  
DRV  
DBV  
DRV  
DBV  
DRV  
DBV  
DRV  
DBV  
DRV  
DBV  
DBV  
DRV  
5
6
5
6
5
6
5
6
5
6
5
6
5
6
5
5
6
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
179.0  
180.0  
179.0  
180.0  
179.0  
180.0  
179.0  
180.0  
179.0  
180.0  
179.0  
180.0  
179.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
3.2  
2.2  
3.2  
2.2  
3.2  
2.2  
3.2  
2.2  
3.2  
2.2  
3.2  
2.2  
3.2  
2.2  
3.2  
3.2  
2.2  
3.2  
2.2  
3.2  
2.2  
3.2  
2.2  
3.2  
2.2  
3.2  
2.2  
3.2  
2.2  
3.2  
2.2  
3.2  
3.2  
2.2  
1.4  
1.2  
1.4  
1.2  
1.4  
1.2  
1.4  
1.2  
1.4  
1.2  
1.4  
1.2  
1.4  
1.2  
1.4  
1.4  
1.2  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q2  
Q3  
Q2  
Q3  
Q2  
Q3  
Q2  
Q3  
Q2  
Q3  
Q2  
Q3  
Q2  
Q3  
Q3  
Q2  
TLV73330PQDBVRQ1 SOT-23  
TLV73333PQDBVRQ1 SOT-23  
TLV73333PQDRVRQ1  
WSON  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Mar-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV73310PQDBVRQ1  
TLV73310PQDRVRQ1  
TLV73311PQDBVRQ1  
TLV73311PQDRVRQ1  
TLV73312PQDBVRQ1  
TLV73312PQDRVRQ1  
TLV73315PQDBVRQ1  
TLV73315PQDRVRQ1  
TLV73318PQDBVRQ1  
TLV73318PQDRVRQ1  
TLV73325PQDBVRQ1  
TLV73325PQDRVRQ1  
TLV73328PQDBVRQ1  
TLV73328PQDRVRQ1  
TLV73330PQDBVRQ1  
TLV73333PQDBVRQ1  
TLV73333PQDRVRQ1  
SOT-23  
WSON  
SOT-23  
WSON  
SOT-23  
WSON  
SOT-23  
WSON  
SOT-23  
WSON  
SOT-23  
WSON  
SOT-23  
WSON  
SOT-23  
SOT-23  
WSON  
DBV  
DRV  
DBV  
DRV  
DBV  
DRV  
DBV  
DRV  
DBV  
DRV  
DBV  
DRV  
DBV  
DRV  
DBV  
DBV  
DRV  
5
6
5
6
5
6
5
6
5
6
5
6
5
6
5
5
6
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
210.0  
200.0  
210.0  
200.0  
210.0  
200.0  
210.0  
200.0  
210.0  
200.0  
210.0  
200.0  
210.0  
200.0  
210.0  
210.0  
200.0  
185.0  
183.0  
185.0  
183.0  
185.0  
183.0  
185.0  
183.0  
185.0  
183.0  
185.0  
183.0  
185.0  
183.0  
185.0  
185.0  
183.0  
35.0  
25.0  
35.0  
25.0  
35.0  
25.0  
35.0  
25.0  
35.0  
25.0  
35.0  
25.0  
35.0  
25.0  
35.0  
35.0  
25.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
DRV 6  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4206925/F  
PACKAGE OUTLINE  
DRV0006D  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
1
0.1  
EXPOSED  
THERMAL PAD  
3
4
6
2X  
7
1.3  
1.6 0.1  
1
4X 0.65  
0.35  
0.25  
6X  
PIN 1 ID  
(OPTIONAL)  
0.3  
0.2  
6X  
0.1  
C A B  
C
0.05  
4225563/A 12/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRV0006D  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
6X (0.45)  
6X (0.3)  
(1)  
1
7
6
SYMM  
(1.6)  
(1.1)  
4X (0.65)  
4
3
SYMM  
(1.95)  
(R0.05) TYP  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:25X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225563/A 12/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRV0006D  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
7
6X (0.45)  
METAL  
1
6
6X (0.3)  
(0.45)  
SYMM  
4X (0.65)  
(0.7)  
4
3
(R0.05) TYP  
(1)  
(1.95)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD #7  
88% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:30X  
4225563/A 12/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV73312PDBVR

具有使能功能的 300mA、低 IQ、低压降无电容稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV73312PDBVT

具有使能功能的 300mA、低 IQ、低压降无电容稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV73312PDQNR

具有使能功能的 300mA、低 IQ、低压降无电容稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV73312PDQNR3

具有使能功能的 300mA、低 IQ、低压降无电容稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV73312PDQNT

具有使能功能的 300mA、低 IQ、低压降无电容稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV73312PQDBVRQ1

具有使能功能的汽车类 300mA、低 IQ、低压降稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV73312PQDRVRQ1

具有使能功能的汽车类 300mA、低 IQ、低压降稳压器 | DRV | 6 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV73315PDBVR

具有使能功能的 300mA、低 IQ、低压降无电容稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV73315PDBVT

具有使能功能的 300mA、低 IQ、低压降无电容稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV73315PDQNR

具有使能功能的 300mA、低 IQ、低压降无电容稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV73315PDQNR3

具有使能功能的 300mA、低 IQ、低压降无电容稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV73315PDQNT

具有使能功能的 300mA、低 IQ、低压降无电容稳压器 | DQN | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI