TLV74133PDBVR [TI]

具有主动输出放电和使能功能的 150mA、低压降稳压器 | DBV | 5 | -40 to 125;
TLV74133PDBVR
型号: TLV74133PDBVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有主动输出放电和使能功能的 150mA、低压降稳压器 | DBV | 5 | -40 to 125

光电二极管 输出元件 稳压器 调节器
文件: 总33页 (文件大小:1525K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV741P  
ZHCSGF1A JULY 2017REVISED SEPTEMBER 2018  
具有折返式电流限制的 TLV741P 150mA 低压差稳压器  
1 特性  
3 说明  
1
输入电压范围:1.4V 5.5V  
TLV741P 低压降线性稳压器 (LDO) 是一款低静态电流  
器件,具有出色的线路和负载瞬态性能,适用于功耗敏  
使用 1µF 陶瓷电容器实现稳定工作  
折返过流保护  
感型 应用。此器件提供了 1% 的典型精度。  
封装:  
TLV741P 旨在使用小型的 1µF 输出电容器实现稳定工  
作。  
5 引脚 SOT-23  
4 引脚 X2SON  
TLV741P 可在器件加电和使能期间提供浪涌电流控  
制。TLV741P 将输入电流限制为定义的电流限值,从  
而防止从输入电源流出的电流过大。该功能对于电池供  
电型器件尤为重要。  
超低压降:150mA 时为 230mV  
准确度:1%  
IQ50µA  
可提供固定输出电压:  
1V 3.3V  
TLV741P 采用标准 DBV (SOT-23) DQN (X2SON)  
封装。TLV741P 提供了有源下拉电路,用于对输出负  
载进行快速放电。  
PSRR1kHz 时为 65dB  
有源输出放电(仅限 P 版本)  
器件信息(1)  
2 应用  
器件名称  
TLV741P  
封装  
SOT-23 (5)  
X2SON (4)  
封装尺寸  
掌上电脑 (PDA) 和电池供电便携式设备  
2.90mm × 1.60mm  
1.00mm x 1.00mm  
MP3 播放器和其它手持产品  
无线局域网 (WLAN) 及其他 PC 附加卡  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
典型应用电路  
压降电压与输出电流间的关系  
350  
VOUT = 1.8 V  
VOUT = 3.3 V  
IN  
OUT  
300  
TLV741P  
COUT  
CIN  
250  
200  
150  
100  
50  
EN  
GND  
ON  
OFF  
0
0
15  
30  
45  
60  
Output Current (mA)  
75  
90 105 120 135 150  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBVS309  
 
 
 
 
TLV741P  
ZHCSGF1A JULY 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 11  
7.3 Feature Description................................................. 12  
7.4 Device Functional Modes........................................ 13  
8
9
Application and Implementation ........................ 14  
8.1 Application Information............................................ 14  
8.2 Typical Application .................................................. 15  
8.3 What to Do and What Not to Do ............................. 16  
Power Supply Recommendations...................... 17  
10 Layout................................................................... 17  
10.1 Layout Guidelines ................................................. 17  
10.2 Layout Examples................................................... 17  
10.3 Power Dissipation ................................................. 18  
11 器件和文档支持 ..................................................... 19  
11.1 文档支持................................................................ 19  
11.2 接收文档更新通知 ................................................. 19  
11.3 社区资源................................................................ 19  
11.4 ....................................................................... 19  
11.5 静电放电警告......................................................... 19  
11.6 术语表 ................................................................... 19  
12 机械、封装和可订购信息....................................... 19  
7
4 修订历史记录  
Changes from Original (July 2017) to Revision A  
Page  
已添加 在数据表中添加 DQN (X2SON) 封装.......................................................................................................................... 1  
2
Copyright © 2017–2018, Texas Instruments Incorporated  
 
TLV741P  
www.ti.com.cn  
ZHCSGF1A JULY 2017REVISED SEPTEMBER 2018  
5 Pin Configuration and Functions  
DBV Package  
5-Pin SOT-23  
Top View  
DQN Package  
4-Pin X2SON With Exposed Thermal Pad  
Top View  
OUT  
GND  
1
4
3
IN  
IN  
GND  
EN  
1
2
3
5
OUT  
NC  
Thermal Pad  
4
2
EN  
Not to scale  
Not to scale  
Pin Functions  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
SOT-23  
X2SON  
Enable pin. Driving EN over 0.9 V turns on the regulator.  
Driving EN below 0.4 V puts the regulator into shutdown mode.  
EN  
GND  
IN  
3
2
1
4
3
2
I
I
Ground pin  
Input pin. Use a small capacitor from this pin to ground. See the Input and Output Capacitor  
Considerations section for more details.  
4
NC  
No internal connection  
Regulated output voltage pin. For best transient response, use a small 1-µF ceramic capacitor  
from this pin to ground. See the Input and Output Capacitor Considerations section for more  
details.  
OUT  
5
1
O
Thermal  
pad  
The thermal pad is electrically connected to the GND node. Connect the thermal pad to the  
ground plane for improved thermal performance.  
Copyright © 2017–2018, Texas Instruments Incorporated  
3
TLV741P  
ZHCSGF1A JULY 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted). All voltages are with respect to GND.(1)  
MIN  
MAX  
UNIT  
Input, VIN  
–0.3  
–0.3  
–0.3  
6
Voltage  
Enable, VEN  
VIN + 0.3  
3.6  
V
Output, VOUT  
Current  
Maximum output, IOUT(max)  
Internally limited  
Indefinite  
Output short-circuit duration  
Total power dissipation  
Continuous, PD(tot)  
Junction, TJ  
See Thermal Information  
–55  
–55  
125  
150  
Temperature  
°C  
Storage, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101,  
all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
MIN  
1.4  
0
NOM  
MAX  
5.5  
UNIT  
VIN  
Input voltage  
V
V
VEN  
IOUT  
CIN  
Enable range  
VIN  
Output current  
0
150  
mA  
µF  
µF  
°C  
Input capacitor  
0
1
COUT  
TJ  
Output capacitor  
Operating junction temperature  
1
100  
125  
–40  
6.4 Thermal Information  
TLV741P  
THERMAL METRIC(1)  
DQN (X2SON)  
DBV (SOT-23)  
5 PINS  
249  
UNIT  
4 PINS  
228.5  
210.4  
174.7  
21.2  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
172.7  
76.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
49.7  
ψJB  
174.5  
140.6  
75.8  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
 
TLV741P  
www.ti.com.cn  
ZHCSGF1A JULY 2017REVISED SEPTEMBER 2018  
6.5 Electrical Characteristics  
over operating temperature range TJ = –40°C to +125°C, VIN(nom) = VOUT(nom) + 0.5 V or VIN(nom) = 2 V (whichever is greater),  
IOUT = 1 mA, VEN = VIN, and COUT = 1 µF (unless otherwise noted). Typical values are at TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Output voltage  
range  
VOUT  
1
3.3  
V
V
OUT 1.8 V  
–1%  
–20  
1%  
20  
TJ = 25°C  
VOUT < 1.8 V  
TJ = 25°C  
mV  
mV  
DC output accuracy  
V
OUT 1.2 V  
–1.5%  
–50  
1.5%  
50  
–40°C TJ 125°C  
VOUT < 1.2 V  
–40°C TJ 125°C  
Maximum {VOUT(nom) + 0.5 V  
VIN = 2 V} VIN 5.5 V  
ΔVOUT(ΔVIN)  
Line regulation  
Load regulation  
1
10  
5
30  
mV  
mV  
ΔVOUT(ΔIOUT)  
0 mA IOUT 150 mA  
1 V VOUT < 1.8 V  
IOUT = 150 mA  
600  
900  
VOUT = 1.1 V  
IOUT = 100 mA  
470  
70  
600  
575  
481  
445  
1.8 V VOUT < 2.1 V  
IOUT = 30 mA  
1.8 V VOUT < 2.1 V  
IOUT = 150 mA  
350  
90  
2.1 V VOUT < 2.5 V  
IOUT = 30 mA  
VOUT = 0.98 × VOUT(nom)  
,
TJ = –40°C to 85°C  
2.1 V VOUT < 2.5 V  
IOUT = 150 mA  
290  
50  
2.5 V VOUT < 3 V  
IOUT = 30 mA  
2.5 V VOUT < 3 V  
IOUT = 150 mA  
246  
46  
VDO  
Dropout voltage  
mV  
3 V VOUT < 3.6 V  
IOUT = 30 mA  
3 V VOUT < 3.6 V  
IOUT = 150 mA  
230  
600  
470  
350  
290  
246  
420  
1020  
720  
1 V VOUT < 1.8 V  
IOUT = 150 mA  
VOUT = 1.1 V  
IOUT = 100 mA  
1.8 V VOUT < 2.1 V  
IOUT = 150 mA  
695  
VOUT = 0.98 × VOUT(nom)  
TJ = –40°C to 125°C  
2.1 V VOUT < 2.5 V  
IOUT = 150 mA  
601  
2.5 V VOUT < 3 V  
IOUT = 150 mA  
565  
3 V VOUT < 3.6 V  
IOUT = 150 mA  
230  
50  
540  
75  
1
IGND  
Ground pin current  
Shutdown current  
IOUT = 0 mA  
µA  
µA  
V
EN 0.4 V, 2 V VIN 5.5 V  
ISHUTDOWN  
0.1  
TJ = 25°C  
f = 100 Hz  
f = 10 kHz  
f = 1 MHz  
70  
55  
55  
VIN = 3.3 V  
VOUT = 2.8 V  
IOUT = 30 mA  
Power-supply  
rejection ratio  
PSRR  
dB  
BW = 100 Hz to 100 kHz  
VIN = 2.3 V  
VOUT = 1.8 V  
Vn  
Output noise voltage  
Start-up time(1)  
73  
µVRMS  
IOUT = 10 mA  
COUT = 1 μF  
IOUT = 150 mA  
tSTR  
100  
µs  
(1) Start-up time is the time from EN assertion to (0.98 × VOUT(nom)).  
Copyright © 2017–2018, Texas Instruments Incorporated  
5
TLV741P  
ZHCSGF1A JULY 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating temperature range TJ = –40°C to +125°C, VIN(nom) = VOUT(nom) + 0.5 V or VIN(nom) = 2 V (whichever is greater),  
IOUT = 1 mA, VEN = VIN, and COUT = 1 µF (unless otherwise noted). Typical values are at TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Enable high  
(enabled)  
VHI  
0.9  
VIN  
V
Enable low  
(disabled)  
VLO  
0
0.4  
V
IEN  
EN pin current  
EN = 5.5 V  
VIN = 4 V  
0.01  
120  
µA  
RPULLDOWN  
Pulldown resistor  
Ω
VIN = 3.8 V  
VOUT = 3.3 V  
TJ = –40 to 85°C  
180  
180  
180  
VIN = 2.25 V  
VOUT = 1.8 V  
TJ = –40 to 85°C  
ILIM  
Output current limit  
mA  
VIN = 2 V  
VOUT = 1.2 V  
TJ = –40 to 85°C  
ISC  
Short-circuit current VOUT = 0 V  
Shutdown, temperature increasing  
Reset, temperature decreasing  
40  
158  
140  
mA  
°C  
TSD  
Thermal shutdown  
6
版权 © 2017–2018, Texas Instruments Incorporated  
TLV741P  
www.ti.com.cn  
ZHCSGF1A JULY 2017REVISED SEPTEMBER 2018  
6.6 Typical Characteristics  
over operating temperature range TJ = –40°C to +125°C, VIN = VOUT(nom) + 0.5 V or 2 V (whichever is greater), IOUT = 10 mA,  
VEN = VIN, COUT = 1 µF, and VOUT(nom) = 1.8 V (unless otherwise noted). Typical values are at TJ = 25°C.  
1.802  
1.801  
1.8  
1.8  
1.798  
1.796  
1.794  
1.792  
1.79  
TJ = -40èC  
TJ = 0èC  
TJ = 25èC  
TJ = 85èC  
TJ = 125èC  
TJ = -40èC  
TJ = 0èC  
TJ = 25èC  
TJ = 85èC  
TJ = 125èC  
1.799  
1.798  
1.797  
1.796  
1.795  
1.794  
1.793  
1.788  
1.786  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0
20  
40  
60  
80  
100  
120  
140  
160  
Input Voltage (V)  
Output Current (mA)  
1. 1.8-V Line Regulation vs VIN and Temperature  
2. 1.8-V Load Regulation vs IOUT and Temperature  
1.798  
500  
TJ = -40èC  
TJ = 0èC  
TJ = 25èC  
TJ = 85èC  
TJ = 125èC  
1.7975  
1.797  
400  
300  
200  
100  
0
1.7965  
1.796  
1.7955  
1.795  
1.7945  
1.794  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
Output Current (mA)  
3. 1.8-V Output Voltage Over Temperature  
4. 1.8-V Dropout Voltage vs IOUT and Temperature  
400  
350  
300  
250  
200  
150  
100  
50  
65  
TJ = -40èC  
TJ = 0èC  
TJ = 25èC  
TJ = 85èC  
TJ = 125èC  
TJ = -40èC  
TJ = 0èC  
TJ = 25èC  
TJ = 85èC  
TJ = 125èC  
62.5  
60  
57.5  
55  
52.5  
50  
47.5  
45  
42.5  
40  
37.5  
35  
32.5  
30  
0
0
25  
50  
75  
100  
125  
150  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Output Current (mA)  
Input Voltage (V)  
5. 3.3-V Dropout Voltage vs IOUT and Temperature  
6. Ground Pin Current vs VIN and Temperature  
版权 © 2017–2018, Texas Instruments Incorporated  
7
TLV741P  
ZHCSGF1A JULY 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
over operating temperature range TJ = –40°C to +125°C, VIN = VOUT(nom) + 0.5 V or 2 V (whichever is greater), IOUT = 10 mA,  
VEN = VIN, COUT = 1 µF, and VOUT(nom) = 1.8 V (unless otherwise noted). Typical values are at TJ = 25°C.  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
500  
300  
200  
100  
50  
30  
20  
10  
5
TJ = -40èC  
TJ = 0èC  
TJ = 25èC  
TJ = 85èC  
TJ = 125èC  
TJ = -40èC  
TJ = 0èC  
TJ = 25èC  
TJ = 85èC  
TJ = 125èC  
3
2
1
0
20  
40  
60  
80  
100  
120  
140  
160  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Output Current (mA)  
Input Voltage (V)  
7. Ground Pin Current vs IOUT and Temperature  
8. Shutdown Current vs VIN and Temperature  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT = 10 mA  
IOUT = 50 mA  
IOUT = 100 mA  
IOUT = 150 mA  
COUT = 1 µF, IOUT = 150 mA  
COUT = 1 µF, IOUT = 30 mA  
-10  
1E+1  
1E+2  
1E+3 1E+4 1E+5  
Frequency (Hz)  
1E+6  
1E+7  
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+7  
Frequency (Hz)  
9. Power-Supply Rejection Ratio Over COUT  
10. Power-Supply Rejection Ratio Over IOUT  
5
6
5
4
3
2
1
0
0.024  
COUT = 1 µF  
3
2
0.016  
0.008  
0
1
0.5  
0.3  
0.2  
0.1  
-0.008  
-0.016  
-0.024  
0.05  
0.03  
0.02  
VIN = 4.5-5.5 V  
VOUT = 3.3 V  
0.01  
0.005  
-0.003 -0.0015  
0
0.0015  
Time (s)  
0.003  
0.0045  
0.006  
1E+1  
1E+2  
1E+3 1E+4 1E+5  
Frequency (Hz)  
1E+6  
1E+7  
D011  
COUT = 1 µF  
IOUT = 0 mA  
11. Output Spectral Noise Density  
12. Line Transient  
8
版权 © 2017–2018, Texas Instruments Incorporated  
TLV741P  
www.ti.com.cn  
ZHCSGF1A JULY 2017REVISED SEPTEMBER 2018  
Typical Characteristics (接下页)  
over operating temperature range TJ = –40°C to +125°C, VIN = VOUT(nom) + 0.5 V or 2 V (whichever is greater), IOUT = 10 mA,  
VEN = VIN, COUT = 1 µF, and VOUT(nom) = 1.8 V (unless otherwise noted). Typical values are at TJ = 25°C.  
6
5
4
3
2
1
0.06  
0.045  
0.03  
0.015  
0
6.4  
5.6  
4.8  
4
0.06  
VIN  
VOUT  
0.045  
0.03  
0.015  
0
3.2  
2.4  
1.6  
0.8  
-0.015  
-0.03  
-0.045  
-0.06  
-0.015  
VIN = 4.5-5.5 V  
VOUT = 3.3 V  
0
-0.03  
0.006  
0
-0.003 -0.0015  
0
0.0015  
Time (s)  
0.003  
0.0045  
-0.0014  
-0.001  
-0.0006  
-0.0002  
0.0002  
0.0006  
Time (s)  
D012  
IOUT = 150 mA  
14. Line Transient  
IOUT = 1 mA  
13. Line Transient  
0.24  
0.045  
0.03  
0.015  
0
0.52  
0.47  
0.42  
0.37  
0.32  
0.27  
0.22  
0.17  
0.12  
0.07  
0.02  
-0.03  
0.05  
0.04  
0.03  
0.02  
0.01  
0
IOUT = 0 mA - 20 mA  
VOUT = 3.3 V  
IOUT = 0 mA - 100 mA  
VOUT = 3.3 V  
0.19  
0.14  
0.09  
0.04  
-0.01  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-0.015  
-0.03  
1.5  
-0.5 -0.25  
0
0.25  
0.5  
0.75  
1
1.25  
-0.5 -0.25  
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
Time (s)  
Time (s)  
D015  
D0146  
IOUT = 0 mA - 20 mA  
VOUT = 3.3 V  
15. Load Transient  
16. Load Transient  
0.52  
0.05  
0.04  
0.03  
0.02  
0.01  
0
3.5  
3
IOUT = 10 mA - 150 mA  
VOUT = 3.3 V  
0.47  
0.42  
0.37  
0.32  
0.27  
0.22  
0.17  
0.12  
0.07  
0.02  
-0.03  
2.5  
2
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
1.5  
1
0.5  
0
0
50  
100  
150  
Output Current (mA)  
200  
250  
300  
-0.5 -0.25  
0
0.25  
0.5  
Time (s)  
0.75  
1
1.25  
1.5  
D016  
TLV74133P  
IOUT = 10 mA - 150 mA  
VOUT = 3.3 V  
17. Load Transient  
18. 3.3-V Output Voltage vs Output Current  
(Foldback Current Limit)  
版权 © 2017–2018, Texas Instruments Incorporated  
9
TLV741P  
ZHCSGF1A JULY 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
over operating temperature range TJ = –40°C to +125°C, VIN = VOUT(nom) + 0.5 V or 2 V (whichever is greater), IOUT = 10 mA,  
VEN = VIN, COUT = 1 µF, and VOUT(nom) = 1.8 V (unless otherwise noted). Typical values are at TJ = 25°C.  
2
1.75  
1.5  
1.25  
1
4
3
2
1
0
VIN  
VOUT  
0.75  
0.5  
0.25  
0
0
50  
100  
150 200  
Output Current (mA)  
250  
300  
350  
0
0.5  
1
Time (s)  
1.5  
2
TLV74118P  
TLV74118P  
IOUT = 150 mA  
19. 1.8-V Output Voltage vs Output Current  
20. VIN Power-Up and Power-Down  
(Foldback Current Limit)  
Channel 1  
2 V/div  
Channel 1  
100 mV/div  
VIN  
VIN  
EN  
Channel 2  
2 V/div  
Channel 2  
1 V/div  
EN  
VOUT  
Channel 3  
1 V/div  
VOUT  
Channel 4  
50 mA/div  
Channel 3  
1 V/div  
Channel 4  
100 mA/div  
ILOAD  
IOUT  
Time (50 ms/div)  
Time (100 ms/div)  
VIN = 3 V  
VOUT = 1.8 V  
No load  
CIN = COUT = 1 µF  
VIN = 2.3 V  
COUT = 10 µF  
VOUT = 1.8 V  
IOUT = 90 mA  
CIN = 1 µF  
TPS74118P  
TLV74118P  
from design  
22. Shutdown Response With Enable  
21. Start-Up With EN  
10  
版权 © 2017–2018, Texas Instruments Incorporated  
TLV741P  
www.ti.com.cn  
ZHCSGF1A JULY 2017REVISED SEPTEMBER 2018  
7 Detailed Description  
7.1 Overview  
The TLV741P belongs to a new family of next-generation value low-dropout (LDO) regulators. The TLV741P  
consumes low quiescent current and delivers excellent line and load transient performance. These  
characteristics, combined with low noise, very good PSRR with little (VIN – VOUT) headroom makes the device  
suitable for RF portable applications.  
This regulator offers current limit and thermal protection. Device operating junction temperature is –40°C to  
+125°C.  
7.2 Functional Block Diagram  
IN  
OUT  
Current  
Limit  
Thermal  
Shutdown  
UVLO  
120 W  
Bandgap  
EN  
Logic  
TLV741P  
GND  
版权 © 2017–2018, Texas Instruments Incorporated  
11  
TLV741P  
ZHCSGF1A JULY 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Undervoltage Lockout (UVLO)  
The TLV741P uses a UVLO circuit that disables the output until the input voltage is greater than the rising UVLO  
voltage. The circuit makes sure that the device does not exhibit any unpredictable behavior when the supply  
voltage is lower than the operational range of the internal circuitry, VIN(min). During UVLO disable, the output of  
the TLV741P version is connected to ground with a 120-Ω pulldown resistor.  
7.3.2 Shutdown  
The enable pin (EN) is active high. Enable the device by forcing the EN pin to exceed VEN(high) (0.9 V, minimum).  
Turn off the device by forcing the EN pin to drop below 0.4 V. If shutdown capability is not required, connect EN  
to IN.  
The TLV741P has an internal pulldown MOSFET that connects a 120-Ω resistor to ground when the device is  
disabled. The discharge time after disabling depends on the output capacitance (COUT) and the load resistance  
(RL) in parallel with the 120-Ω pulldown resistor. The time constant is calculated in 公式 1.  
120 · RL  
t =  
· COUT  
120 + RL  
(1)  
7.3.3 Foldback Current Limit  
The TLV741P has an internal foldback current limit that helps protect the regulator during fault conditions. The  
current supplied by the device is gradually reduced while the output voltage decreases. When the output shorts,  
the LDO supplies a typical current of 40 mA. Output voltage is not regulated when the device is in current limit,  
and is calculated by 公式 2:  
VOUT = ILIMIT ´ RLOAD  
(2)  
The PMOS pass transistor dissipates [(VIN – VOUT) × ILIMIT] until thermal shutdown is triggered and the device  
turns off. The internal thermal shutdown circuit turns on the device during cool down. If the fault condition  
continues, the device cycles between current limit and thermal shutdown. See Thermal Protection for more  
details.  
The TLV741P PMOS pass element has a built-in body diode that conducts current when the voltage at OUT  
exceeds the voltage at IN. This current is not limited, so if extended reverse voltage operation is anticipated, TI  
recommends externally limiting the rated output current to 5%.  
7.3.4 Thermal Protection  
Thermal protection disables the output when the junction temperature rises to approximately 158°C, allowing the  
device to cool. When the junction temperature cools to approximately 140°C, the output circuitry is again  
enabled. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection  
circuit may cycle on and off. This cycling limits regulator dissipation, which protects the device from damage as a  
result of overheating.  
Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate  
heat sink. For reliable operation, junction temperature must be limited to 125°C maximum. To estimate the  
margin of safety in a complete design (including heat sink), increase the ambient temperature until the thermal  
protection is triggered; use worst-case loads and signal conditions.  
The TLV741P internal protection circuitry is designed to protect against overload conditions. This circuitry is not  
intended to replace proper heat sinking. Continuously running the TLV741P into thermal shutdown degrades  
device reliability.  
12  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
TLV741P  
www.ti.com.cn  
ZHCSGF1A JULY 2017REVISED SEPTEMBER 2018  
7.4 Device Functional Modes  
7.4.1 Normal Operation  
The device regulates to the nominal output voltage under the following conditions:  
The input voltage is at least as high as VIN(min).  
The input voltage is greater than the nominal output voltage added to the dropout voltage.  
The enable voltage has previously exceeded the enable rising threshold voltage and has not decreased  
below the enable falling threshold.  
The output current is less than the current limit.  
The device junction temperature is less than the maximum specified junction temperature.  
7.4.2 Dropout Operation  
If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other  
conditions are met for normal operation, the device operates in dropout mode. In this mode of operation, the  
output voltage is the same as the input voltage minus the dropout voltage. The transient performance of the  
device is significantly degraded because the pass device is in the linear region and no longer controls the current  
through the LDO. Line or load transients in dropout can result in large output voltage deviations.  
7.4.3 Disabled  
The device is disabled under the following conditions:  
The enable voltage is less than the enable falling threshold voltage or has not yet exceeded the enable rising  
threshold.  
The device junction temperature is greater than the thermal shutdown temperature.  
1 lists conditions that result in different operating modes.  
1. Device Functional Mode Comparison  
PARAMETER  
VEN  
OPERATING MODE  
Normal mode  
VIN  
IOUT  
IOUT < ILIM  
TJ  
VIN > VOUT(nom) + VDO and  
VIN > VIN(min)  
VEN > VEN(high)  
VEN > VEN(high)  
TJ < 125°C  
TJ < 125°C  
Dropout mode  
VIN(min) < VIN < VOUT(nom) + VDO  
Disabled mode  
(any true condition disables the  
device)  
VEN < VEN(low)  
TJ > 158°C  
版权 © 2017–2018, Texas Instruments Incorporated  
13  
 
TLV741P  
ZHCSGF1A JULY 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Input and Output Capacitor Considerations  
The TLV741P uses an advanced internal control loop to obtain stable operation by using an input or output  
capacitor. An output capacitance of 1 μF or larger generally provides good dynamic response. TI recommends  
using X5R- and X7R-type ceramic capacitors because these capacitors have minimal variation in value and  
equivalent series resistance (ESR) over temperature.  
Although an input capacitor is not required for stability, it is good analog design practice to connect a 0.1-µF to  
1-µF capacitor from IN to GND. This capacitor counteracts reactive input sources and improves transient  
response, input ripple, and PSRR. TI recommends using an input capacitor if the source impedance is more than  
0.5 Ω. A higher-value capacitor may be necessary if large, fast, rise-time load transients are anticipated or if the  
device is located several inches from the input power source.  
8.1.2 Dropout Voltage  
The TLV741P uses a PMOS pass transistor to achieve low dropout. When (VIN – VOUT) is less than the dropout  
voltage (VDO), the PMOS pass device is in the linear region of operation and the input-to-output resistance is the  
RDS(on) of the PMOS pass element. VDO scales approximately with output current because the PMOS device  
behaves like a resistor in dropout. As with any linear regulator, PSRR and transient response are degraded as  
(VIN – VOUT) approaches dropout.  
8.1.3 Transient Response  
As with any regulator, increasing the size of the output capacitor reduces over- and undershoot magnitude but  
increases the duration of the transient response.  
14  
版权 © 2017–2018, Texas Instruments Incorporated  
TLV741P  
www.ti.com.cn  
ZHCSGF1A JULY 2017REVISED SEPTEMBER 2018  
8.2 Typical Application  
Several versions of the TLV741P are suitable for powering the MSP430 microcontroller.  
23 shows a diagram of the TLV741P powering an MSP430 microcontroller. 2 lists potential applications of  
some voltage versions.  
VO  
(1.8 V to 3.6 V)  
VI  
MSP430  
OUT  
IN  
1 µF  
0.1 µF  
EN  
GND  
23. TLV741P Powering a Microcontroller  
2. Typical MSP430 Applications  
VOUT  
(TYPICAL)  
DEVICE  
APPLICATION  
TLV741P18P  
TLV741P25P  
1.8 V  
Allows for lowest power consumption with many MSP430s  
2.5 V  
2.2-V supply required by many MSP430s for flash programming and erasing  
8.2.1 Design Requirements  
3 lists the design requirements.  
3. Design Parameters  
PARAMETER  
Input voltage  
DESIGN REQUIREMENT  
4.2 V to 3 V (Lithium Ion battery)  
Output voltage  
DC output current  
1.8 V, ±1%  
10 mA  
Peak output current  
75 mA  
Maximum ambient temperature  
65°C  
8.2.2 Detailed Design Procedure  
An input capacitor is not required for this design because of the low impedance connection directly to the battery.  
A small output capacitor allows for the minimal possible inrush current during start-up, and makes sure that the  
180-mA maximum input current limit is not exceeded.  
See 29 to verify that the maximum junction temperature is not exceeded.  
版权 © 2017–2018, Texas Instruments Incorporated  
15  
 
 
 
TLV741P  
ZHCSGF1A JULY 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
8.2.3 Application Curves  
4
3
2
1
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
COUT = 1 µF, IOUT = 150 mA  
COUT = 1 µF, IOUT = 30 mA  
0
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
-10  
1E+1  
1E+2  
1E+3 1E+4  
Frequency (Hz)  
1E+5  
1E+6  
1E+7  
VOUT = 1.8 V  
IOUT = 10 mA  
24. Power-Supply Rejection Ratio vs Frequency  
25. Output Spectral Noise Density  
4
VIN  
VOUT  
3
2
1
0
0
0.5  
1
Time (s)  
1.5  
2
IOUT = 150 mA  
26. VINPower Up and Power Down  
8.3 What to Do and What Not to Do  
Place at least one 1-µF ceramic capacitor as close as possible to the OUT pin of the regulator for best transient  
performance.  
Place at least one 1-µF capacitor as close as possible to the IN pin for best transient performance.  
Do not place the output capacitor more than 10 mm away from the regulator.  
Do not exceed the absolute maximum ratings.  
Do not continuously operate the device in current limit or near thermal shutdown.  
16  
版权 © 2017–2018, Texas Instruments Incorporated  
TLV741P  
www.ti.com.cn  
ZHCSGF1A JULY 2017REVISED SEPTEMBER 2018  
9 Power Supply Recommendations  
This device is designed to operate from an input voltage supply range from 1.4 V to 5.5 V. The input voltage  
range must provide adequate headroom for the device to have a regulated output. This input supply must be  
well-regulated and stable. If the input supply is noisy, additional input capacitors with low ESR can help improve  
the output noise performance.  
10 Layout  
10.1 Layout Guidelines  
10.1.1 Board Layout Recommendations to Improve PSRR and Noise Performance  
Input and output capacitors must be placed as close to the device pins as possible. To improve AC performance  
(such as PSRR, output noise, and transient response), TI recommends that the board be designed with separate  
ground planes for VIN and VOUT, with the ground plane connected only at the device GND pin. In addition, the  
output capacitor ground connection must be connected directly to the device GND pin. High-ESR capacitors may  
degrade PSRR performance.  
10.2 Layout Examples  
VOUT  
VIN  
TLV741P  
IN  
OUT  
(1)  
COUT  
(1)  
CIN  
EN  
GND  
GND PLANE  
Represents via used for  
application-specific connections  
(1) Not required.  
27. X2SON Layout Example  
VOUT  
VIN  
OUT  
IN  
CIN  
COUT  
GND  
EN  
NC  
GND PLANE  
Represents via used for  
application-specific connections  
28. SOT-23 Layout Example  
版权 © 2017–2018, Texas Instruments Incorporated  
17  
TLV741P  
ZHCSGF1A JULY 2017REVISED SEPTEMBER 2018  
www.ti.com.cn  
10.3 Power Dissipation  
The ability to remove heat from the die is different for each package type, presenting different considerations in  
the printed-circuit-board (PCB) layout. The PCB area around the device that is free of other components moves  
the heat from the device to the ambient air. Performance data for JEDEC low- and high-K boards are given in  
Thermal Information. Using heavier copper increases the effectiveness in removing heat from the device. The  
addition of plated through-holes to heat-dissipating layers also improves the heat sink effectiveness.  
Power dissipation depends on input voltage and load conditions. Power dissipation (PD) can be approximated by  
the product of the output current times the voltage drop across the output pass element (VIN to VOUT), as shown  
in 公式 3:  
P = V - VOUT ´ I  
OUT  
(
)
D
IN  
(3)  
29 shows the maximum ambient temperature versus the power dissipation of the TLV741P. This figure  
assumes the device is soldered on a JEDEC standard, high-K layout with no airflow over the board. Actual board  
thermal impedances vary widely. If the application requires high power dissipation, having a thorough  
understanding of the board temperature and thermal impedances is helpful to make sure the TLV741P does not  
operate above a junction temperature of 125°C.  
130  
TLV741P DQN, High-K Layout  
TLV741P DBV, High-K Layout  
120  
110  
100  
90  
80  
70  
60  
50  
0
0.05  
0.1  
0.15  
0.2  
Power Dissipation (W)  
0.25  
0.3  
0.35  
29. Maximum Ambient Temperature vs Device Power Dissipation  
Estimate junction temperature by using the ΨJT and ΨJB thermal metrics, shown inThermal Information. These  
metrics are a more accurate representation of the heat transfer characteristics of the die and the package than  
RθJA. The junction temperature can be estimated with 公式 4:  
YJT: TJ = TT + YJT · PD  
YJB: TJ = TB + YJB · PD  
where  
PD is the power dissipation shown by 公式 3,  
TT is the temperature at the center-top of the device package,  
TB is the PCB temperature measured 1 mm away from the device package on the PCB surface.  
(4)  
Both TT and TB can be measured on actual application boards using a thermogun (an  
infrared thermometer).  
For more information about measuring TT and TB, see Using New Thermal Metrics , available for download at  
www.ti.com.  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
TLV741P  
www.ti.com.cn  
ZHCSGF1A JULY 2017REVISED SEPTEMBER 2018  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
通用低压降 (LDO) 线性稳压器 EVM 用户指南  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV741105PDBVR  
TLV74110PDBVR  
TLV74110PDQNR  
TLV74111PDBVR  
TLV74111PDQNR  
TLV74112PDBVR  
TLV74112PDQNR  
TLV74115PDBVR  
TLV74115PDQNR  
TLV74118PDBVR  
TLV74118PDQNR  
TLV74125PDBVR  
TLV74125PDQNR  
TLV741285PDBVR  
TLV741285PDQNR  
TLV74128PDBVR  
TLV74128PDQNR  
TLV74130PDBVR  
TLV74130PDQNR  
TLV74133PDBVR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
X2SON  
SOT-23  
X2SON  
SOT-23  
X2SON  
SOT-23  
X2SON  
SOT-23  
X2SON  
SOT-23  
X2SON  
SOT-23  
X2SON  
SOT-23  
X2SON  
SOT-23  
X2SON  
SOT-23  
DBV  
DBV  
DQN  
DBV  
DQN  
DBV  
DQN  
DBV  
DQN  
DBV  
DQN  
DBV  
DQN  
DBV  
DQN  
DBV  
DQN  
DBV  
DQN  
DBV  
5
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1NFT  
1C9T  
8T  
SN  
NIPDAU  
SN  
1DHT  
8R  
NIPDAU  
SN  
1DIT  
8Q  
NIPDAU  
SN  
1DJT  
8P  
NIPDAU  
SN  
1DKT  
8O  
NIPDAU  
SN  
1DLT  
8N  
NIPDAU  
SN  
1DMT  
8M  
NIPDAU  
SN  
1DNT  
8L  
NIPDAU  
SN  
1DOT  
8K  
NIPDAU  
SN  
1CAT  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV74133PDQNR  
ACTIVE  
X2SON  
DQN  
4
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
8J  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV741105PDBVR  
TLV74110PDBVR  
TLV74110PDQNR  
TLV74111PDBVR  
TLV74111PDQNR  
TLV74112PDBVR  
TLV74112PDQNR  
TLV74115PDBVR  
TLV74115PDQNR  
TLV74118PDBVR  
TLV74118PDQNR  
TLV74125PDBVR  
TLV74125PDQNR  
TLV741285PDBVR  
TLV741285PDQNR  
TLV74128PDBVR  
SOT-23  
SOT-23  
X2SON  
SOT-23  
X2SON  
SOT-23  
X2SON  
SOT-23  
X2SON  
SOT-23  
X2SON  
SOT-23  
X2SON  
SOT-23  
X2SON  
SOT-23  
DBV  
DBV  
DQN  
DBV  
DQN  
DBV  
DQN  
DBV  
DQN  
DBV  
DQN  
DBV  
DQN  
DBV  
DQN  
DBV  
5
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
0.5  
1.4  
0.5  
1.4  
0.5  
1.4  
0.5  
1.4  
0.5  
1.4  
0.5  
1.4  
0.5  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q2  
Q3  
Q2  
Q3  
Q2  
Q3  
Q2  
Q3  
Q2  
Q3  
Q2  
Q3  
Q2  
Q3  
1.16  
3.2  
1.16  
3.2  
1.16  
3.2  
1.16  
3.2  
1.16  
3.2  
1.16  
3.2  
1.16  
3.2  
1.16  
3.2  
1.16  
3.2  
1.16  
3.2  
1.16  
3.2  
1.16  
3.2  
1.16  
3.2  
1.16  
3.2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Jun-2023  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV74128PDQNR  
TLV74130PDBVR  
TLV74130PDQNR  
TLV74133PDBVR  
TLV74133PDQNR  
X2SON  
SOT-23  
X2SON  
SOT-23  
X2SON  
DQN  
DBV  
DQN  
DBV  
DQN  
4
5
4
5
4
3000  
3000  
3000  
3000  
3000  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
1.16  
3.2  
1.16  
3.2  
0.5  
1.4  
0.5  
1.4  
0.5  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q3  
Q2  
Q3  
Q2  
1.16  
3.2  
1.16  
3.2  
1.16  
1.16  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV741105PDBVR  
TLV74110PDBVR  
TLV74110PDQNR  
TLV74111PDBVR  
TLV74111PDQNR  
TLV74112PDBVR  
TLV74112PDQNR  
TLV74115PDBVR  
TLV74115PDQNR  
TLV74118PDBVR  
TLV74118PDQNR  
TLV74125PDBVR  
TLV74125PDQNR  
TLV741285PDBVR  
TLV741285PDQNR  
TLV74128PDBVR  
TLV74128PDQNR  
TLV74130PDBVR  
SOT-23  
SOT-23  
X2SON  
SOT-23  
X2SON  
SOT-23  
X2SON  
SOT-23  
X2SON  
SOT-23  
X2SON  
SOT-23  
X2SON  
SOT-23  
X2SON  
SOT-23  
X2SON  
SOT-23  
DBV  
DBV  
DQN  
DBV  
DQN  
DBV  
DQN  
DBV  
DQN  
DBV  
DQN  
DBV  
DQN  
DBV  
DQN  
DBV  
DQN  
DBV  
5
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Jun-2023  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV74130PDQNR  
TLV74133PDBVR  
TLV74133PDQNR  
X2SON  
SOT-23  
X2SON  
DQN  
DBV  
DQN  
4
5
4
3000  
3000  
3000  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
Pack Materials-Page 4  
PACKAGE OUTLINE  
X2SON - 0.4 mm max height  
DQN0004A  
PLASTIC SMALL OUTLINE - NO LEAD  
1.05  
0.95  
A
B
1
1.05  
0.95  
PIN 1  
INDEX AREA  
C
0.4 MAX  
SEATING PLANE  
0.08  
NOTE 6  
+0.12  
-0.1  
0.05  
0.00  
0.48  
(0.05) TYP  
NOTE 6  
2
1
3
EXPOSED  
THERMAL PAD  
5
2X 0.65  
(0.07) TYP  
NOTE 5  
4
0.28  
PIN 1 ID  
(OPTIONAL)  
NOTE 4  
4X  
0.15  
(0.11)  
0.3  
0.2  
0.1  
C A B  
0.05  
C
0.30  
0.15  
3X  
4215302/E 12/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
4. Features may not exist. Recommend use of pin 1 marking on top of package for orientation purposes.  
5. Shape of exposed side leads may differ.  
6. Number and location of exposed tie bars may vary.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
X2SON - 0.4 mm max height  
DQN0004A  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.86)  
SYMM  
SEE DETAIL  
4X  
4X (0.36)  
(0.03)  
4
4X (0.21)  
1
5
SYMM  
(0.65)  
4X (0.18)  
2
3
(
0.48)  
(0.22) TYP  
EXPOSED METAL  
CLEARANCE  
LAND PATTERN EXAMPLE  
SCALE: 40X  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAIL  
4215302/E 12/2016  
NOTES: (continued)  
7. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271)  
.
8. If any vias are implemented, it is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
X2SON - 0.4 mm max height  
DQN0004A  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
SYMM  
4X (0.4)  
4X (0.03)  
4
1
4X (0.21)  
5
SYMM  
(0.65)  
SOLDER MASK  
EDGE  
4X (0.22)  
2
3
(
0.45)  
4X (0.235)  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 - 0.1mm THICK STENCIL  
EXPOSED PAD  
88% PRINTED SOLDER COVERAGE BY AREA  
SCALE: 60X  
4215302/E 12/2016  
NOTES: (continued)  
9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV74133PDQNR

具有主动输出放电和使能功能的 150mA、低压降稳压器 | DQN | 4 | -40 to 125
TI

TLV741P

具有主动输出放电和使能功能的 150mA、低压降稳压器
TI

TLV74211PDQNR

200mA、低 IQ、低压降稳压器 | DQN | 4 | -40 to 125
TI

TLV74212PDQNR

200mA、低 IQ、低压降稳压器 | DQN | 4 | -40 to 125
TI

TLV74215PDQNR

200mA、低 IQ、低压降稳压器 | DQN | 4 | -40 to 125
TI

TLV74218PDQNR

200mA、低 IQ、低压降稳压器 | DQN | 4 | -40 to 125
TI

TLV74225PDQNR

200mA、低 IQ、低压降稳压器 | DQN | 4 | -40 to 125
TI

TLV74227PDQNR

200mA、低 IQ、低压降稳压器 | DQN | 4 | -40 to 125
TI

TLV74228PDQNR

200mA、低 IQ、低压降稳压器 | DQN | 4 | -40 to 125
TI

TLV74229PDQNR

200mA、低 IQ、低压降稳压器 | DQN | 4 | -40 to 125
TI

TLV74230PDQNR

200mA、低 IQ、低压降稳压器 | DQN | 4 | -40 to 125
TI

TLV74233PDQNR

200mA、低 IQ、低压降稳压器 | DQN | 4 | -40 to 125
TI