TLV76033DBZR [TI]

100mA、30V 低压降稳压器 | DBZ | 3 | -40 to 125;
TLV76033DBZR
型号: TLV76033DBZR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

100mA、30V 低压降稳压器 | DBZ | 3 | -40 to 125

光电二极管 输出元件 稳压器 调节器
文件: 总23页 (文件大小:1302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV760  
ZHCSGW3A JUNE 2017REVISED OCTOBER 2017  
TLV760 100mA 30V 固定输出线性电压调整器  
1 特性  
3 说明  
1
高达 30V 的宽输入电压范围  
TLV760 是一款集成的线性电压调整器,能够以高达  
30V 的输入电压运行。在运行温度范围内,TLV760 可  
100mA 满负载下具有 1.2V 的最大压降。TLV760  
的标准封装是 3 引脚 SOT-23 封装。  
高达 100mA 的输出电流  
提供固定输出电压 3.3V5V12V 15V 版本  
运行结温范围为 40°C +125°C  
0.1µF及以上 的陶瓷电容器保持稳定工作  
有效的热保护和电流限制  
TLV760 提供 3.3V5V12V 15V 版本。TLV760  
系列的 SOT-23 封装允许器件用于空间受限的 应用。  
TLV760 LM78Lxx 系列和类似器件的小尺寸替代产  
品。  
2 应用  
用于开关直流/直流转换器的后置稳压器  
TLV760 用于对遭受高达 30V 的电源瞬态和尖峰的 应  
用 (例如电器和自动化应用)中的数字和模拟电路进  
行 偏置。该器件具有可靠的内部热保护功能,可以保  
护其自身免受由接地短路、环境温度升高、高负载或高  
压降事件等情况导致的潜在损害。  
用于数字和模拟电路的偏置电源  
家用电器  
电动工具  
工厂和楼宇自动化  
器件信息(1)  
器件型号  
TLV760  
封装  
SOT-23 (3)  
封装尺寸(标称值)  
2.92mm × 1.30mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
空白  
空白  
空白  
典型应用电路  
VIN = 5 V  
VOUT = 3.3 V  
IN  
OUT  
GND  
TLV760  
CIN  
0.1 µF  
COUT  
0.1 µF  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVSAV1  
 
 
 
TLV760  
ZHCSGW3A JUNE 2017REVISED OCTOBER 2017  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 10  
Application and Implementation ........................ 11  
8.1 Application Information............................................ 11  
8.2 Typical Application ................................................. 12  
Power Supply Recommendations...................... 14  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ......................................... 9  
7.3 Feature Description................................................... 9  
8
9
10 Layout................................................................... 14  
10.1 Layout Guidelines ................................................. 14  
10.2 Layout Example .................................................... 14  
11 器件和文档支持 ..................................................... 15  
11.1 器件支持................................................................ 15  
11.2 接收文档更新通知 ................................................. 15  
11.3 社区资源................................................................ 15  
11.4 ....................................................................... 15  
11.5 静电放电警告......................................................... 15  
11.6 Glossary................................................................ 15  
12 机械、封装和可订购信息....................................... 15  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (June 2017) to Revision A  
Page  
Changed description of pin 1 to "OUT" and pin 2 to "IN" to correct error ............................................................................. 3  
2
Copyright © 2017, Texas Instruments Incorporated  
 
TLV760  
www.ti.com.cn  
ZHCSGW3A JUNE 2017REVISED OCTOBER 2017  
5 Pin Configuration and Functions  
DBZ Package  
3-Pin SOT-23  
Top View  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
Output voltage, a ceramic capacitor greater than or equal to 0.1 μF is need for the stability of the  
1
OUT  
O
device.(1)  
2
3
IN  
I
Input voltage supply — TI recommends a capacitor of value greater than 0.1 µF at the input.(1)  
GND  
Common ground  
(1) See External Capacitors for more details.  
Copyright © 2017, Texas Instruments Incorporated  
3
TLV760  
ZHCSGW3A JUNE 2017REVISED OCTOBER 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
MAX  
UNIT  
V
Input voltage (IN to GND)  
Output Voltage (OUT)  
Output Current  
–0.3  
35  
VIN + 0.3  
Internally limited(2)  
150  
V
mA  
°C  
Junction temperature  
Storage temperature, Tstg  
–40  
65  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings(1) may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) See Recommended Operating Conditions section for more details.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
30  
UNIT  
V
Maximum input voltage (IN to GND)  
Output current (IOUT  
)
100  
mA  
µF  
Input and output capacitor (COUT  
)
0.1  
Junction temperature, TJ  
–40  
125  
°C  
6.4 Thermal Information  
TLV760  
THERMAL METRIC(1)  
DBZ (SOT-23)  
3 PINS  
275.2  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
92.8  
Junction-to-board thermal resistance  
56.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
2.9  
ψJB  
55.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2017, Texas Instruments Incorporated  
 
 
 
 
TLV760  
www.ti.com.cn  
ZHCSGW3A JUNE 2017REVISED OCTOBER 2017  
6.5 Electrical Characteristics  
Typical and other limits apply for TA = TJ = 25°C, VOUT(NOM) = 3.3 V, 5 V, 12 V, and 15 V, unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN = VOUT(NOM)+ 1.5 V,  
1 mA IOUT 100 mA  
–4%  
4%  
Output voltage  
accuracy  
VOUT  
V
VIN = VOUT(NOM) + 1.5 V,  
1 mA IOUT 100 mA,  
40°C TJ 125°C  
–5%  
5%  
VOUT(NOM) + 1.5 V VIN 30 V VOUT(NOM) = 3.3 V, 5 V  
10  
14  
20  
45  
30  
45  
45  
80  
ΔV(ΔVIN)  
Line regulation  
IOUT = 1 mA ,  
40°C TJ 125°C  
mV  
VOUT(NOM) = 12 V, 15 V  
VIN =VOUT(NOM) + 1.5 V ,  
10 mA IOUT 100 mA,  
40°C TJ 125°C  
VOUT(NOM) = 3.3 V, 5 V  
VOUT(NOM) = 12 V, 15 V  
ΔV(ΔIOUT) Load regulation  
mV  
mA  
VOUT(NOM) + 1.5 V VIN 30 V, no load,  
40°C TJ 125°C  
IGND  
VDO  
TSD  
Ground pin current  
Dropout voltage  
2
5
IOUT = 10 mA  
0.7  
0.9  
1
IOUT = 10 mA , 40°C TJ 125°C  
IOUT = 100 mA  
V
0.9  
1.1  
1.2  
IOUT = 100 mA, 40°C TJ 125°C  
Thermal shutdown  
temperature  
°C  
150  
Copyright © 2017, Texas Instruments Incorporated  
5
TLV760  
ZHCSGW3A JUNE 2017REVISED OCTOBER 2017  
www.ti.com.cn  
6.6 Typical Characteristics  
Unless indicated otherwise, VIN = VNOM + 1.5 V, CIN = 0.1 µF, COUT = 0.1 µF, and TA = 25°C.  
Figure 1. Dropout Voltage vs Load Current  
Figure 2. Dropout Voltage vs Junction Temperature  
Figure 3. Ground Pin Current vs Input Voltage  
Figure 4. Ground Pin Current vs Input Voltage  
Figure 5. Ground Pin Current vs Load Current  
Figure 6. Ground Pin Current vs Junction Temperature  
6
Copyright © 2017, Texas Instruments Incorporated  
TLV760  
www.ti.com.cn  
ZHCSGW3A JUNE 2017REVISED OCTOBER 2017  
Typical Characteristics (continued)  
Unless indicated otherwise, VIN = VNOM + 1.5 V, CIN = 0.1 µF, COUT = 0.1 µF, and TA = 25°C.  
Figure 7. Input Current vs Input Voltage  
Figure 8. Input Current vs Input Voltage  
Figure 9. Output Voltage vs Input Voltage  
Figure 10. Output Voltage vs Input Voltage  
Figure 11. Output Short-Circuit Current  
Figure 12. Output Short-Circuit Current  
Copyright © 2017, Texas Instruments Incorporated  
7
TLV760  
ZHCSGW3A JUNE 2017REVISED OCTOBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
Unless indicated otherwise, VIN = VNOM + 1.5 V, CIN = 0.1 µF, COUT = 0.1 µF, and TA = 25°C.  
Figure 14. Power Supply Rejection Ratio  
Figure 13. Power Supply Rejection Ratio  
120  
100  
80  
60  
40  
20  
0
3.5  
3
2.5  
2
1.5  
1
0.5  
0
5.8  
8.3  
10.8 13.3 15.8 18.3 20.8 23.3 25.7  
VIN (V)  
D001  
VOUT(Red) = 3.3 V  
IOUT(Black) = 100 mA  
Figure 16. Output Current vs Input Voltage  
Figure 15. DC Load Regulation  
2
1
0.1  
3.3 V 0 mA  
3.3 V 10 mA  
3.3 V 100 mA  
0.01  
0.005  
10  
100  
1K  
10K 100K  
Frequency (Hz)  
1M  
10M  
D002  
CIN = 1 µF  
COUT = 0.1 µF  
VOUT = 3.3 V  
Figure 17. Output Spectral Noise Density vs Frequency  
8
Copyright © 2017, Texas Instruments Incorporated  
TLV760  
www.ti.com.cn  
ZHCSGW3A JUNE 2017REVISED OCTOBER 2017  
7 Detailed Description  
7.1 Overview  
The TLV760 is an integrated linear-voltage regulator with inputs that can be as high as 30 V. The TLV760  
features quasi LDO architecture, which allows the usage of low ESR capacitors at the output. A ceramic  
capacitor with a capacitance value greater than or equal to 0.1 µF is adequate to keep the linear regulator in  
stable operation. The device has a rugged active junction thermal protection mechanism.  
7.2 Functional Block Diagram  
IN  
OUT  
Current  
Limit and  
Thermal  
Protection  
Bandgap  
Reference  
GND  
Copyright © 2017, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Thermal Protection  
The TLV760 contains an active thermal protection mechanism, which limits the junction temperature to 150°C.  
This protection comes into action when the thermal junction temperature of the device tries to exceed 150°C.  
The output current of the device is limited or folded back to maintain the junction temperature.  
The thermal protection follows Equation 1  
P = (TJ - TA ) / RqJA  
D
where  
PD = (VIN – VOUT )IOUT  
TJ is the junction temperature  
RθJA is the junction-to-ambient thermal resistance  
(1)  
When a high drop out condition occurs resulting in higher power dissipation across the device the output current  
is limited to maintain a constant junction temperature of 150°C. This rugged feature protects the device from  
higher power dissipation applications as well as the short to ground at the output.  
This internal protection circuitry of TLV760 is intended to protect the devices against thermal overload conditions.  
The circuitry is not intended to replace proper heat sinking. Continuously running the TLV760 into thermal  
protection degrades device reliability.  
For reliable operation, limit junction temperature to a maximum of 125°C. To estimate the thermal margin in a  
given layout, increase the ambient temperature until the thermal protection is triggered using worst case load and  
highest input voltage conditions.  
Copyright © 2017, Texas Instruments Incorporated  
9
 
TLV760  
ZHCSGW3A JUNE 2017REVISED OCTOBER 2017  
www.ti.com.cn  
Feature Description (continued)  
7.3.2 Dropout Voltage  
The TLV760 is a bipolar device with quasi LDO architecture. Being a bipolar device the dropout voltage of the  
device does not change significantly with output load current. The device has a maximum dropout across  
temperature of 1.2 V at 100-mA load current, which is a significant improvement over the traditional LM78Lxx  
devices.  
7.4 Device Functional Modes  
7.4.1 Normal Operation  
The TLV760 operates with an input up to 30 V. Its tiny SOT-23 package and quasi-LDO architecture makes it  
suitable for providing a very tiny 100-mA bias supply. The device regulates to the nominal output voltage when  
all of the following conditions are met.  
The input voltage is greater than the nominal output voltage plus the dropout voltage (VOUT(NOM) + VDO).  
The output current is less than or equal to 100 mA.  
The device junction temperature is less than the thermal protection temperature of 150°C.  
10  
Copyright © 2017, Texas Instruments Incorporated  
TLV760  
www.ti.com.cn  
ZHCSGW3A JUNE 2017REVISED OCTOBER 2017  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TLV760 is a fixed output device which need only input and output capacitors to function. This section  
discusses the key aspects to implement this linear regulator in typical applications.  
8.1.1 Fixed Output  
TLV760 comes in fixed output voltage options, 3.3 V, 5 V, 12 V and 15 V. To ensure the proper regulated output,  
the input voltage should be greater than VOUT(nom) + VDO  
.
8.1.2 External Capacitors  
8.1.2.1 Input and Output Capacitor Requirements  
A minimum input and output capacitance value of 0.1 µF is required for stability and adequate transient  
performance. There is no specific equivalent series resistance (ESR) limitation, although excessively high ESR  
compromises transient performance. There is no specific limitation on a maximum capacitance value on the input  
or the output. However while selecting a capacitor, derating factors on the capacitance value should be  
considered. Use C0G, X7R, or X5R-type ceramic capacitors because these capacitors have minimal variation in  
capacitance value and ESR over temperature.  
8.1.2.2 Load-Step Transient Response  
The load-step transient response is the output voltage response by the linear regulator to a step change in load  
current. The depth of charge depletion immediately after the load step is directly proportional to the amount of  
output capacitance. However, larger output capacitances decrease any voltage dip or peak occurring during a  
load step, the control-loop bandwidth is also decreased, thereby slowing the response time. TI recommends to  
optimally scale output capacitors for a specific application and test for the output load transients.  
8.1.3 Power Dissipation  
Proper consideration should be given to device power dissipation, location of the circuit on the printed circuit  
board (PCB), and correct sizing of the thermal plane to ensure the device reliability. The PCB area around the  
regulator must be as free as possible of other heat-generating devices that cause added thermal stresses. To  
first-order approximation, power dissipation in the regulator depends on the input-to-output voltage difference and  
load conditions. Power dissipation can be calculated using The thermal protection follows Equation 1:  
P = (TJ - TA ) / RqJA  
D
where  
PD = (VIN – VOUT )IOUT  
TJ is the junction temperature  
RθJA is the junction-to-ambient thermal resistance  
(2)  
Thus, at a given load current, input and output voltage, maximum power dissipation determines the maximum  
allowable ambient temperature (TA) for the device, and vice versa. Power dissipation and junction temperature  
are most often related by the junction-to-ambient thermal resistance (RθJA) of the combined PCB and device  
package and the temperature of the ambient air (TA).  
RθJA is highly dependent on the heat-spreading capability built into the particular PCB design, and therefore  
varies according to the total copper area, copper weight, and location of the planes. The RθJA recorded in  
Thermal Information is determined by the JEDEC standard, PCB, and copper-spreading area and is only used as  
a relative measure of package thermal performance.  
Copyright © 2017, Texas Instruments Incorporated  
11  
 
TLV760  
ZHCSGW3A JUNE 2017REVISED OCTOBER 2017  
www.ti.com.cn  
Application Information (continued)  
TLV760 integrates a rugged protection where the TJ is limited to 150°C. The maximum power dissipation  
depends on the ambient temperature and can be calculated using PD = (TJ – TA) / RθJA, for example, substituting  
the absolute maximum junction temperature, 150°C for TJ, 50°C for TA, and 275.2 °C/W for RθJA, the maximum  
power that can be dissipated is 363 mW. More power can be safely dissipated at lower ambient temperatures.  
Less power can be safely dissipated at higher ambient temperatures. The power dissipation can be increased by  
3.6 mW for each °C below 50°C ambient. It must be derated by 3.6 mW for each °C above 50°C ambient. Proper  
heat sinking enables the safe dissipation of more power.  
8.2 Typical Application  
VIN = 6.5 V  
VOUT = 5 V  
IN  
OUT  
GND  
TLV760  
CIN  
0.1 µF  
COUT  
0.1 µF  
Copyright © 2017, Texas Instruments Incorporated  
Figure 18. Typical Appication for the 5-V Option  
8.2.1 Design Requirements  
For typical TLV760 applications, use the parameters in Table 1.  
Table 1. Design Parameters  
DESIGN PARAMETER  
Input voltage  
EXAMPLE VALUE  
6.5 V  
5 V  
Output voltage  
Output current  
100 mA  
8.2.2 Detailed Design Procedure  
The output for TLV76050 is internally set to 5 V. Input and output capacitors can be selected in accordance with  
the External Capacitors. Ceramic capacitances of 0.1 µF for both input and output are selected.  
See the Layout section for an example of how to PCB layout the TLV760 to achieve best performance.  
12  
Copyright © 2017, Texas Instruments Incorporated  
 
TLV760  
www.ti.com.cn  
ZHCSGW3A JUNE 2017REVISED OCTOBER 2017  
8.2.3 Application Curves  
Unless indicated otherwise, VIN = 6.5 V, VOUT = 5 V, COUT = 0.1 µF, and TA = 25°C.  
Figure 19. Line Transient Response  
Figure 21. Load Transient Response  
Figure 23. Load Transient Response  
Figure 20. Line Transient Response  
Figure 22. Load Transient Response  
Figure 24. Load Transient Response  
Copyright © 2017, Texas Instruments Incorporated  
13  
TLV760  
ZHCSGW3A JUNE 2017REVISED OCTOBER 2017  
www.ti.com.cn  
9 Power Supply Recommendations  
The TLV760 is designed to operate from input voltage up to 30 V. If the input power supply has ripples,  
additional input and output capacitors with low ESR can help improve the PSRR at higher frequencies.  
10 Layout  
10.1 Layout Guidelines  
General guidelines for linear regulator designs are to place all circuit components on the same side of the circuit  
board and as near as practical to the respective TLV760 pin connections. Place ground return connections to the  
input and output capacitors, and to the TLV760 ground pin as close as possible to each other, connected by a  
wide, component-side, copper surface. The use of vias and long traces to create TLV760 circuit connections is  
strongly discouraged and negatively affects system performance.  
Use a ground reference plane, either embedded in the PCB itself or located on the bottom side of the PCB  
opposite the components. This reference plane serves to assure accuracy of the output voltage and to shield  
noise; it behaves similarly to a thermal plane to spread heat from the linear regulator. In most applications, this  
ground plane is necessary to meet thermal requirements.  
10.2 Layout Example  
VOUT  
VIN  
1
2
/
Lb  
/
hÜÇ  
3
GND PLANE  
Figure 25. Layout Guideline for TLV760  
14  
版权 © 2017, Texas Instruments Incorporated  
TLV760  
www.ti.com.cn  
ZHCSGW3A JUNE 2017REVISED OCTOBER 2017  
11 器件和文档支持  
11.1 器件支持  
11.1.1 相关文档  
请参阅如下相关文档:  
AN-1148 线性稳压器:工作原理和补偿》  
11.1.2 Spice 模型  
分析模拟电路和系统的性能时,使用 SPICE 模型对电路性能进行计算机仿真非常有用。您可以通过 TLV760 产品  
文件夹在仿真模型下获取 TLV760 SPICE 模型。  
11.1.3 器件命名规则  
2. 订购信息(1)  
产品  
说明  
XX 是电压符号  
YYY 是封装符号。  
Z 为封装数量。  
TLV760XXYYYZ  
(1) 欲获得最新的封装和订货信息,请参阅本文档末尾的封装选项附录,或者访问 www.ti.com 查看器件产品文件夹。  
11.2 接收文档更新通知  
要接收文档更新通知,请转至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品信  
息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
版权 © 2017, Texas Instruments Incorporated  
15  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV76012DBZR  
TLV76012DBZT  
TLV76015DBZR  
TLV76015DBZT  
TLV76033DBZR  
TLV76033DBZT  
TLV76050DBZR  
TLV76050DBZT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
3
3
3
3
3
3
3
3
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
18G  
18G  
18C  
18C  
18H  
18H  
18I  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
18I  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV76012DBZR  
TLV76012DBZT  
TLV76015DBZR  
TLV76015DBZT  
TLV76033DBZR  
TLV76033DBZT  
TLV76050DBZR  
TLV76050DBZT  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
3
3
3
3
3
3
3
3
3000  
250  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
2.9  
2.9  
2.9  
2.9  
2.9  
2.9  
2.9  
2.9  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV76012DBZR  
TLV76012DBZT  
TLV76015DBZR  
TLV76015DBZT  
TLV76033DBZR  
TLV76033DBZT  
TLV76050DBZR  
TLV76050DBZT  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
3
3
3
3
3
3
3
3
3000  
250  
208.0  
208.0  
208.0  
208.0  
208.0  
208.0  
208.0  
208.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBZ0003A  
SOT-23 - 1.12 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
2.64  
2.10  
1.12 MAX  
1.4  
1.2  
B
A
0.1 C  
PIN 1  
INDEX AREA  
1
0.95  
(0.125)  
3.04  
2.80  
1.9  
3
(0.15)  
NOTE 4  
2
0.5  
0.3  
3X  
0.10  
0.01  
(0.95)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.20  
0.08  
TYP  
0.6  
0.2  
TYP  
SEATING PLANE  
0 -8 TYP  
4214838/D 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration TO-236, except minimum foot length.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X (0.95)  
2
(R0.05) TYP  
(2.1)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214838/D 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X(0.95)  
2
(R0.05) TYP  
(2.1)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214838/D 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV76033DBZT

100mA、30V 低压降稳压器 | DBZ | 3 | -40 to 125
TI

TLV76050DBZR

100mA、30V 低压降稳压器 | DBZ | 3 | -40 to 125
TI

TLV76050DBZT

100mA、30V 低压降稳压器 | DBZ | 3 | -40 to 125
TI

TLV761

1A、16V、高 PSRR 线性稳压器
TI

TLV76133DCYR

1A、16V、高 PSRR 线性稳压器 | DCY | 4 | -40 to 125
TI

TLV76150DCYR

1A、16V、高 PSRR 线性稳压器 | DCY | 4 | -40 to 125
TI

TLV766-Q1

TLV766-Q1 500-mA, 16-V Linear Voltage Regulator
TI

TLV76601QWDRBRQ1

TLV766-Q1 500-mA, 16-V Linear Voltage Regulator
TI

TLV76612QWDRBRQ1

TLV766-Q1 500-mA, 16-V Linear Voltage Regulator
TI

TLV76618QWDRBRQ1

TLV766-Q1 500-mA, 16-V Linear Voltage Regulator
TI

TLV76633QWDRBRQ1

TLV766-Q1 500-mA, 16-V Linear Voltage Regulator
TI

TLV76650QWDRBRQ1

TLV766-Q1 500-mA, 16-V Linear Voltage Regulator
TI