TLV76790QWDRBRQ1 [TI]

提供可调节输出和固定输出的汽车类 1A、16V 正电压低压降线性稳压器 | DRB | 8 | -40 to 150;
TLV76790QWDRBRQ1
型号: TLV76790QWDRBRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

提供可调节输出和固定输出的汽车类 1A、16V 正电压低压降线性稳压器 | DRB | 8 | -40 to 150

稳压器
文件: 总34页 (文件大小:3737K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
TLV767-Q1 1-A, 16-V Linear Voltage Regulator  
1 Features  
3 Description  
AEC-Q100 qualified for automotive applications:  
The TLV767-Q1 is a wide input linear voltage  
regulator supporting an input voltage range from 2.5 V  
to 16 V and up to 1 A of load current. The output  
range is from 0.8 V to 12 V or up to 14.6 V with the  
adjustable version.  
Temperature grade 1: –40°C to +125°C, TA  
– Junction temperature: –40°C to +150°C, TJ  
Input voltage range: 2.5 V to 16 V (18 V max)  
Output voltage range:  
The wide input voltage range makes the device a  
good choice for operating from transformer secondary  
windings and regulated rails such as 10 V or 12 V.  
Additionally, the wide output voltage range allows the  
device to generate the bias voltage for silicon carbide  
(SiC) gate drivers and microphones as well as power  
microcontrollers (MCUs) and processors.  
– 0.8 V to 14.6 V (adjustable)  
– 1.2 V to 12 V (fixed)  
1% output accuracy over load and temperature  
Low quiescent current (IQ):  
– 50 µA (typ) with no load  
– 4 µA (max) when disabled  
High PSRR: 70 dB at 1 kHz, 46 dB at 1 MHz  
Internal soft-start time: 500 µs (typical)  
Fold-back current limiting and thermal protection  
Stable with a 1-µF or larger capacitor  
Package: 8-pin, 3-mm × 3-mm WSON with  
wettable flanks  
The TLV767-Q1 has a 1% output accuracy that is  
required for powering digital loads with tight supply  
requirements.  
The internal soft-start circuit reduces inrush current  
during startup, thus allowing for smaller input  
capacitance.  
– Low thermal resistance (RθJA): 51.9°C/W  
Wide bandwidth PSRR performance is greater than  
70 dB at 1 kHz and 46 dB at 1 MHz, which helps  
attenuate the switching frequency of an upstream  
DC/DC converter and minimizes post regulator  
filtering. The high ripple rejection from 20 Hz to  
20 kHz make the device a good choice for powering  
audio components.  
2 Applications  
DC/DC converters  
Inverter and motor controls  
On-board (OBC) and wireless chargers  
Automotive head units  
The TLV767-Q1 is available in a 8-pin, 3-mm × 3-mm  
VSON (DRB) package with wettable flanks and low  
thermal resistance.  
Device Information (1)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
TLV767-Q1  
VSON (8)  
3.00 mm × 3.00 mm  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
OUT  
FB  
IN  
TLV767-Q1  
CIN  
R1 CFF COUT  
EN  
GND  
R2  
IOUT  
100 mA  
0
10  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
Typical Application Circuit  
PSRR Performance  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................5  
6.4 Thermal Information ...................................................5  
6.5 Electrical Characteristics ............................................6  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................13  
7.1 Overview...................................................................13  
7.2 Functional Block Diagrams....................................... 13  
7.3 Feature Description...................................................14  
7.4 Device Functional Modes..........................................17  
8 Application and Implementation..................................18  
8.1 Application Information............................................. 18  
8.2 Typical Application.................................................... 21  
9 Power Supply Recommendations................................22  
10 Layout...........................................................................23  
10.1 Layout Guidelines .................................................. 23  
10.2 Layout Examples.................................................... 23  
11 Device and Documentation Support..........................24  
11.1 Device Support........................................................24  
11.2 Documentation Support.......................................... 24  
11.3 Receiving Notification of Documentation Updates..24  
11.4 Support Resources................................................. 24  
11.5 Trademarks............................................................. 24  
11.6 Electrostatic Discharge Caution..............................24  
11.7 Glossary..................................................................24  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 25  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision * (April 2020) to Revision A (December 2020)  
Page  
Changed document status from advance information to production data.......................................................... 1  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLV767-Q1  
 
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
www.ti.com  
5 Pin Configuration and Functions  
OUT  
NC  
1
2
3
4
8
7
6
5
IN  
OUT  
NC  
1
2
3
4
8
7
6
5
IN  
NC  
GND  
EN  
NC  
GND  
EN  
Thermal  
Pad  
Thermal  
Pad  
FB  
SNS  
GND  
GND  
Not to scale  
Not to scale  
Figure 5-1. DRB Package (Adjustable Version),  
8-Pin WSON, Top View  
Figure 5-2. DRB Package (Fixed Version),  
8-Pin WSON, Top View  
Table 5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
DRB  
DRB  
NAME  
(Adjustable)  
(Fixed)  
Enable pin. Driving the enable pin high enables the device. Driving this pin low  
disables the device. High and low thresholds are listed in the Electrical  
Characteristics table. This pin has an internal pullup resistor and can be left  
floating to enable the device or the pin can be connected to the input pin.  
EN  
5
3
5
Input  
Input  
Feedback pin. Input to the control-loop error amplifier. This pin is used to set the  
output voltage of the device with the use of external resistors. Do not float this  
pin. For adjustable-voltage version devices only.  
FB  
GND  
NC  
4, 6  
2, 7  
4, 6  
2, 7  
Ground pin. All ground pins must be grounded.  
NC pin. Not internally connected. This pin can be either floated or connected to  
GND for best thermal performance.  
Input pin. Use the recommended capacitor value as listed in the Recommended  
Operating Conditions table. Place the input capacitor as close to the IN and GND  
pins of the device as possible.  
IN  
8
1
8
1
3
Input  
Output  
Input  
Output pin. Use the recommended capacitor value as listed in the  
Recommended Operating Conditions table. Place the output capacitor as close  
to the OUT and GND pins of the device as possible.  
OUT  
Output sense pin. Connect the SNS pin to the OUT pin, or to remotely sense the  
output voltage at the load, connect the SNS pin to the load. Do not float this pin.  
For fixed-voltage version devices only.  
SNS  
Exposed pad of the package. Connect this pad to ground or leave floating.  
Connect the thermal pad to a large-area ground plane for best thermal  
performance.  
Thermal pad  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLV767-Q1  
 
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
MAX  
18  
UNIT  
Input pin, IN  
Output pin, OUT(3)  
–0.3  
VIN + 0.3  
VIN + 0.3  
3
Voltage(2)  
Sense pin, SNS(3)  
Feedback pin, FB  
Enable pin, EN  
–0.3  
V
–0.3  
–0.3  
18  
Current  
Maximum output current  
Ambient (TA)  
Internally limited  
–40  
A
125  
150  
150  
Temperature  
Operating junction (TJ)  
–50  
°C  
Storage (TSTG  
)
–65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltages with respect to GND.  
(3) VIN + 0.3 V or 18 V (whichever is smaller).  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
All pins  
V
Charged-device model (CDM),  
per AEC Q100-011  
Corner pins  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLV767-Q1  
 
 
 
 
 
 
 
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
www.ti.com  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.5  
0
NOM  
MAX  
16  
UNIT  
V
VIN  
Input voltage  
VEN  
Enable voltage  
16  
V
VOUT  
IOUT  
Output voltage  
0.8  
0
14.6  
1
V
Output current  
A
COUT  
COUT ESR  
CIN  
Output capacitor(1)  
1
2.2  
220  
500  
µF  
mΩ  
µF  
pF  
µA  
°C  
°C  
Output capacitor ESR  
2
Input capacitor  
1
CFF  
Feed-forward capacitor (optional(2), for adjustable device only)  
Feedback divider current(2) (adjustable device only)  
Ambient temperature range  
Junction temperature range  
10  
IFB_DIVIDER  
TA  
5
–40  
–40  
125  
150  
TJ  
(1) Effective output capacitance of 0.5 µF minimum required for stability.  
(2) CFF required for stability if the feedback divider current < 5 µA. Feedback divider current = VOUT / (R1 + R2). See the Feed-Forward  
Capacitor (CFF) section for details.  
6.4 Thermal Information  
TLV767-Q1  
THERMAL METRIC(1)  
DRB (VSON)  
8 PINS  
51.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
66.2  
24.4  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.7  
ΨJB  
24.3  
RθJC(bot)  
6.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLV767-Q1  
 
 
 
 
 
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
www.ti.com  
6.5 Electrical Characteristics  
specified at TJ = –40°C to 150°C, VIN = VOUT(nom) + 1.5 V or VIN = 2.5 V (whichever is greater), FB/SNS tied to OUT, IOUT = 10  
mA, VEN = 2 V, CIN = 1.0 µF, and COUT = 1.0 µF (unless otherwise noted); typical values are at TJ= 25ºC  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX UNIT  
TJ = 25°C  
–0.5  
–1  
0.5  
1
%
%
VIN ≥ 3.0 V, 1 mA ≤ IOUT ≤ 1 A  
VOUT  
Output accuracy  
TJ = –40°C to  
150°C  
2.5 V ≤ VIN < 3.0 V, 1 mA ≤ IOUT  
800 mA  
–1  
1
%
V
VFB  
VREF  
IFB  
Feedback voltage  
0.8  
1
TJ = 25°C  
–0.5  
–1  
0.5  
1
Internal reference (adjustable device)  
%
TJ = –40°C to 150°C  
Feedback pin current  
VFB = 1 V  
–20  
50  
nA  
ΔVOUT(ΔVIN) Line regulation(1)  
VOUT(NOM) +1.5 V ≤ VIN ≤ 16 V, IOUT = 10 mA  
1 mA ≤ IOUT ≤ 1 A, VIN ≥ 3.0 V  
1 mA ≤ IOUT ≤ 800 mA, 2.5 V ≤ VIN < 3.0 V  
VIN(NOM) ≥ 3.0V, IOUT = 1 A  
2.5 V ≤ VIN(NOM) < 3.0 V, IOUT = 800 mA  
VOUT = 0.9 x VOUT(NOM) , VIN ≥ 3.0V  
VOUT = 0.9 x VOUT(NOM), 2.5 V ≤ VIN < 3.0 V  
VOUT = 0 V  
0.02 %/V  
0.1  
0.1  
0.5  
%/A  
0.5  
ΔVOUT(ΔIOUT) Load regulation  
0.63 0.94  
0.48 0.8  
1.5  
V
1.4  
VDO  
Dropout voltage(2)  
1.1 1.37  
1.6  
A
1.6  
ICL  
ISC  
IQ  
Output current limit  
Short-circuit current limit  
Quiescent current  
0.81 1.28  
150  
25  
250  
50  
350  
80  
mA  
µA  
Adjustable output device, IOUT = 0 mA  
Fixed output devices, IOUT = 0 mA  
IOUT = 1 A, VIN ≥ 3.0 V  
25  
60  
95  
IGND  
Ground current  
1.5  
1.6  
mA  
µA  
V
ISHUTDOWN  
VEN(HIGH)  
VEN(LOW)  
IEN  
Shutdown current  
VEN ≤ 0.4 V, VIN = 16 V  
0.1  
1.2  
4
Enable pin logic high  
Enable pin logic low  
Enable pullup current  
Output pulldown current  
Power-supply rejection ratio  
2.5 V ≤ VIN ≤ 16 V  
2.5 V ≤ VIN ≤ 16 V  
0.4  
800  
1.6  
V
VEN = 0 V  
200  
0.9  
400  
1.4  
70  
nA  
mA  
dB  
IPULLDOWN  
PSRR  
VIN = 16 V, VOUT = 2.5 V, VEN = 0 V  
VIN = 3.3 V, VOUT = 1.8 V, IOUT = 300 mA, f = 120 Hz  
BW = 10 Hz to 100 kHz, VIN = 3.3 V, VOUT = 0.8 V,  
IOUT = 100 mA  
Vn  
Output noise voltage  
60  
µVRMS  
VUVLO+  
UVLO threshold rising  
UVLO threshold falling  
UVLO hysteresis  
VIN rising  
VIN falling  
2
2.22  
2.4  
2.3  
V
V
VUVLO-  
1.9 2.09  
VUVLO(HYS)  
100  
130  
180  
160  
200  
mV  
ºC  
ºC  
TSD(shutdown) Thermal shutdown temperature  
TSD(reset) Thermal shutdown reset temperature  
Temperature increasing  
Temperature falling  
(1) Line regulation is measured with VIN = VOUT(NOM) + 1.5 V or 2.5 V (whichever is greater).  
(2) VDO is measured with VIN = 95% x VOUT(nom) for fixed output devices. VDO is not measured for fixed output devices when VOUT < 2.5 V.  
For the adjustable output device, VDO is measured with VFB = 95% x VFB(nom) .  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLV767-Q1  
 
 
 
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
www.ti.com  
6.6 Typical Characteristics  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 1.5 V or 2.5 V (whichever is greater), IOUT = 10 mA, VEN = 2.0 V, CIN  
=
1.0 µF, and COUT = 1.0 µF (unless otherwise noted)  
0.2  
0.2  
0.1  
0
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.1  
-0.2  
TJ  
TJ  
-0.3  
-0.4  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
0.6  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Output Current (A)  
0.7  
0.8  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
VIN = 2.5 V  
VIN = 3.0 V  
Figure 6-2. VOUT Accuracy vs IOUT  
Figure 6-1. VOUT Accuracy vs IOUT  
0.2  
0.1  
0
5
4
3
2
1
TJ  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
-0.1  
-0.2  
-0.3  
-0.4  
TJ  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
0
0
2.5  
4
5.5  
7
8.5  
Input Voltage (V)  
10 11.5 13 14.5 16  
2
4
6
8
10  
Input Voltage (V)  
12  
14  
16  
IOUT = 10 mA  
Figure 6-3. VOUT Accuracy vs VIN  
Figure 6-4. ISHUTDOWN vs VIN  
80  
70  
60  
50  
40  
30  
20  
90  
80  
70  
60  
50  
40  
30  
VOUT  
2.8 V  
3.3 V  
TJ  
0.8 V  
1.8 V  
5.0 V  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
-50  
-25  
0
25  
50  
75  
Temperature (°C)  
100  
125  
150  
2.5  
4.5  
6.5  
8.5 10.5  
Input Voltage (V)  
12.5  
14.5  
16  
IOUT = 0 mA, fixed-voltage version devices  
IOUT = 0 mA, adjustable-voltage version devices  
Figure 6-6. IQ vs Temperature  
Figure 6-5. IQ vs VIN  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLV767-Q1  
 
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
www.ti.com  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 1.5 V or 2.5 V (whichever is greater), IOUT = 10 mA, VEN = 2.0 V, CIN  
1.0 µF, and COUT = 1.0 µF (unless otherwise noted)  
=
2.5  
2.5  
TJ  
-50°C  
-40°C  
-0°C  
25°C  
85°C  
125°C  
150°C  
2
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
TJ  
-50°C  
-40°C  
-0°C  
25°C  
85°C  
125°C  
150°C  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Output Current (A)  
0.6  
0.7  
0.8  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
VIN = 2.5 V  
VIN = 3.0 V  
Figure 6-8. IGND vs IOUT  
Figure 6-7. IGND vs IOUT  
300  
200  
700  
600  
500  
400  
300  
200  
100  
0
150  
130  
110  
90  
TJ  
IOUT  
VOUT  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
100  
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
70  
50  
-100  
-200  
-300  
-400  
-500  
30  
10  
-10  
0
0.5  
1
1.5  
Input Voltage (V)  
2
2.5  
3
0
100 200 300 400 500 600 700 800 900 1000  
Time (µs)  
D021  
IOUT = 0 mA  
VIN = 5 V, VOUT = 3.3 V, CFF = 10 pF, ramp rate = 0.4 A/µs  
Figure 6-9. IQ Increase Below Minimum VIN  
Figure 6-10. IOUT Transient From 0 mA to 100 mA  
1500  
1000  
500  
700  
600  
500  
400  
300  
200  
100  
0
1000  
750  
700  
IOUT  
VOUT  
600  
500  
400  
300  
200  
100  
0
500  
0
250  
0
-500  
-250  
-500  
-750  
-1000  
-1250  
-1500  
-1750  
-2000  
-1000  
-1500  
-2000  
-2500  
-3000  
-3500  
-4000  
-4500  
-100  
-200  
-300  
-400  
-500  
-100  
-200  
-300  
-400  
-500  
IOUT  
VOUT  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (µs)  
0
50 100 150 200 250 300 350 400 450 500  
Time (µs)  
D035  
D034  
VIN = 5 V, VOUT = 3.3 V, ramp rate = 0.8 A/µs  
Figure 6-12. IOUT Transient From 250 mA to 850 mA  
VIN = 5 V, VOUT = 3.3 V, CFF = 10 pF, ramp rate = 0.5 A/µs  
Figure 6-11. IOUT Transient From 1 mA to 1 A  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLV767-Q1  
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
www.ti.com  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 1.5 V or 2.5 V (whichever is greater), IOUT = 10 mA, VEN = 2.0 V, CIN  
=
1.0 µF, and COUT = 1.0 µF (unless otherwise noted)  
800  
40  
35  
30  
25  
20  
15  
10  
5
30  
20  
40  
35  
30  
25  
20  
15  
10  
5
VOUT  
VIN  
VOUT  
VIN  
600  
400  
200  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-200  
-400  
-600  
-800  
0
0
100 200 300 400 500 600 700 800 900 1000  
Time (µs)  
0
100 200 300 400 500 600 700 800 900 1000  
Time (µs)  
0
D037  
D038  
VOUT = 3.3 V, IOUT = 1 A, VIN ramp rate = 0.6 V/µs  
VOUT = 3.3 V, IOUT = 33 µA, VIN ramp rate = 1.6 V/µs  
Figure 6-13. VIN Transient in Dropout From 4 V to 13 V  
Figure 6-14. VIN Transient From 5 V to 16 V  
1.4  
1.4  
TJ  
TJ  
1.3  
1.2  
1.1  
1
1.3  
1.2  
1.1  
1
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.9  
0.8  
0.7  
0.6  
0.5  
3
4.5  
6
7.5  
9
10.5  
Input Voltage (V)  
12  
13.5  
15 16  
2.5  
4
5.5  
7
8.5  
10  
Input Voltage (V)  
11.5  
13  
14.5  
16  
IOUT = 1.0 A  
IOUT = 0.8 A  
Figure 6-15. VDO vs VIN  
Figure 6-16. VDO vs VIN  
1.4  
1.2  
1
1.4  
1.2  
1
TJ  
TJ  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
Output Current (A)  
0.6  
0.7  
0.8  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
VIN = 2.5 V  
VIN = 3.0 V  
Figure 6-18. VDO vs IOUT  
Figure 6-17. VDO vs IOUT  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLV767-Q1  
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
www.ti.com  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 1.5 V or 2.5 V (whichever is greater), IOUT = 10 mA, VEN = 2.0 V, CIN  
1.0 µF, and COUT = 1.0 µF (unless otherwise noted)  
=
150  
125  
100  
75  
150  
125  
100  
75  
TJ  
TJ  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
50  
50  
25  
25  
0
0
0
0.2  
0.4  
0.6  
Output Current (A)  
0.8  
1
1.2  
1.4  
1.6  
0
0.2  
0.4  
0.6  
Output Current (A)  
0.8  
1
1.2  
1.4  
1.6  
VIN = 3.0 V  
VIN = 2.5 V  
Figure 6-19. Foldback Current Limit vs IOUT and Temperature  
Figure 6-20. Foldback Current Limit vs IOUT and Temperature  
5.5  
5.5  
VOUT  
VIN  
VEN  
VOUT  
VIN  
VEN  
5
5
4.5  
4
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-0.5  
-0.5  
0
0.5  
1
1.5  
2
2.5  
Time (ms)  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
Time (ms)  
3
3.5  
4
4.5  
5
D004  
D032  
EN pulled up internally, VOUT = 0.8 V  
VOUT = 3.3 V  
Figure 6-22. Startup With VEN Floating  
Figure 6-21. Startup With Separate VEN and VIN  
0.9  
0.85  
0.8  
0.9  
0.85  
0.8  
VEN(HIGH)  
VEN(LOW)  
0.75  
0.7  
0.75  
0.7  
0.65  
0.6  
0.65  
0.6  
VEN(HIGH)  
VEN(LOW)  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
Temperature (èC)  
VIN = 2.5 V  
Figure 6-23. VEN Thresholds vs Temperature  
VIN = 16 V  
Figure 6-24. VEN Thresholds vs Temperature  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLV767-Q1  
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
www.ti.com  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 1.5 V or 2.5 V (whichever is greater), IOUT = 10 mA, VEN = 2.0 V, CIN  
=
1.0 µF, and COUT = 1.0 µF (unless otherwise noted)  
2.3  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VUVLO+ (VIN rising)  
VUVLO- (VIN falling)  
2.25  
2.2  
2.15  
2.1  
IOUT  
60 mA  
300 mA  
550 mA  
1.0 A  
2.05  
2
-50  
-25  
0
25  
50  
75  
100  
125  
150  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
Temperature (èC)  
VOUT = 1.8 V, VIN = 3.3 V, CFF = 1 nF  
Figure 6-25. UVLO Thresholds vs Temperature  
Figure 6-26. PSRR vs Frequency and IOUT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN  
2.8 V  
3.0 V  
3.3 V  
3.5 V  
3.8 V  
4.0 V  
4.3 V  
CFF  
0 nF  
1.0 nF  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
D001  
VOUT = 1.8 V, IOUT = 0.55 A, CFF = 1 nF  
VOUT = 3.3 V, VIN = 4.8 V, IOUT = 0.33 A  
Figure 6-27. PSRR vs Frequency and VIN  
Figure 6-28. PSRR vs Frequency and CFF  
20  
10  
5
700  
600  
500  
400  
300  
200  
100  
2
1
0.5  
0.2  
0.1  
0.05  
VOUT  
0.8 V, RMS Noise = 66.4 mVRMS  
3.3 V, RMS Noise = 216.5 mVRMS  
0.02  
0.01  
TJ  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
0.005  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
2.5  
4.5  
6.5  
8.5 10.5  
Input Voltage (V)  
12.5  
14.5  
16  
CFF = 0 nF, IOUT = 0.1 A, RMS noise BW = 10 Hz to 100 kHz  
VEN = 0 V  
Figure 6-30. IEN vs VIN  
Figure 6-29. Output Noise (Vn) vs Frequency and VOUT  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLV767-Q1  
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
www.ti.com  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 1.5 V or 2.5 V (whichever is greater), IOUT = 10 mA, VEN = 2.0 V, CIN  
1.0 µF, and COUT = 1.0 µF (unless otherwise noted)  
=
1.5  
1.4  
1.3  
1.2  
1.1  
1
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN  
2.5 V  
7.5 V  
12.5 V  
16 V  
TJ  
-50°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
-10  
-50  
0.9  
2.5  
-25  
0
25  
50  
75  
Temperature (°C)  
100  
125  
150  
4.5  
6.5  
8.5 10.5  
Input Voltage (V)  
12.5  
14.5  
16  
VFB = 1.0 V  
Figure 6-32. IFB vs Temperature  
VOUT = 2.5 V  
Figure 6-31. IPULLDOWN vs VIN  
9
8
0.75  
0.5  
9
8
0.75  
0.5  
0.25  
0
7
0.25  
0
7
6
6
5
-0.25  
-0.5  
-0.75  
-1  
5
-0.25  
-0.5  
VOUT  
IIN  
VIN  
VOUT  
IIN  
VIN  
VEN  
4
4
3
3
-0.75  
-1  
VEN  
2
2
1
-1.25  
-1.5  
-1.75  
1
-1.25  
-1.5  
0
0
-1  
-1  
-1.75  
0
0.5  
1
1.5  
2
2.5  
Time (ms)  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
Time (ms)  
3
3.5  
4
4.5  
5
D003  
D031  
VOUT = 3.3 V, IOUT = 33 µA  
VOUT = 3.3 V, IOUT = 33 µA  
Figure 6-34. Startup Inrush Current With COUT = 47 µF  
Figure 6-33. Startup Inrush Current With COUT = 22 µF  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLV767-Q1  
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The TLV767-Q1 is a low quiescent current, high PSRR linear regulator capable of handling up to 1 A of load  
current. Unlike typical high current linear regulators, the TLV767-Q1 consumes significantly less quiescent  
current. This device is ideal for high current applications that require very sensitive power-supply rails.  
This device features an integrated foldback current limit, thermal shutdown, output enable, internal output  
pulldown, and undervoltage lockout (UVLO). This device delivers excellent line and load transient performance.  
This device is low noise and exhibits very good PSRR. The operating ambient temperature range of the device is  
–40°C to +125°C.  
7.2 Functional Block Diagrams  
Current Limit  
IN  
OUT  
Internal  
Controller  
UVLO  
FB  
0.8-V  
Reference  
EN  
Thermal  
Shutdown  
Output  
Pulldown  
GND  
Figure 7-1. Adjustable-Version Block Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLV767-Q1  
 
 
 
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
www.ti.com  
Current Limit  
IN  
OUT  
SNS  
R1  
2 pF  
Internal  
Controller  
UVLO  
R2  
0.8-V  
Reference  
EN  
Thermal  
Shutdown  
Output  
Pulldown  
Internal Resistors  
R1 531 kor 1.062 MΩ  
R2  
66.9 kΩ œ 8.5 MΩ  
GND  
Figure 7-2. Fixed-Version Block Diagram  
7.3 Feature Description  
7.3.1 Output Enable  
The enable pin for the device is an active-high pin. The output voltage is enabled when the voltage of the enable  
pin is greater than the high-level input voltage of the EN pin and disabled with the enable pin voltage is less than  
the low-level input voltage of the EN pin. If independent control of the output voltage is not needed, connect the  
enable pin to the input of the device.  
This device has an internal pullup current on the EN pin. The EN pin can be left floating to enable the device.  
The device has an internal pulldown circuit that activates when the device is disabled to actively discharge the  
output voltage.  
7.3.2 Dropout Voltage  
Dropout voltage (VDO) is defined as the input voltage minus the output voltage (VIN – VOUT) at the rated output  
current (IRATED), where the pass transistor is fully on. IRATED is the maximum IOUT listed in the Recommended  
Operating Conditions table. The pass transistor is in the ohmic or triode region of operation, and acts as a  
switch. The dropout voltage indirectly specifies a minimum input voltage greater than the nominal programmed  
output voltage at which the output voltage is expected to stay in regulation. If the input voltage falls to less than  
the nominal output regulation, then the output voltage falls as well.  
For a CMOS regulator, the dropout voltage is determined by the drain-source on-state resistance (RDS(ON)) of the  
pass transistor. Therefore, if the linear regulator operates at less than the rated current, the dropout voltage for  
that current scales accordingly. The following equation calculates the RDS(ON) of the device.  
VDO  
RDS(ON)  
=
IRATED  
(1)  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLV767-Q1  
 
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
www.ti.com  
7.3.3 Foldback Current Limit  
The device has an internal current limit circuit that protects the regulator during transient high-load current faults  
or shorting events. The current limit is a hybrid brickwall-foldback scheme. The current limit transitions from a  
brickwall scheme to a foldback scheme at the foldback voltage (VFOLDBACK). In a high-load current fault with the  
output voltage above VFOLDBACK, the brickwall scheme limits the output current to the current limit (ICL). When  
the voltage drops below VFOLDBACK, a foldback current limit activates that scales back the current as the output  
voltage approaches GND. When the output is shorted, the device supplies a typical current called the short-  
circuit current limit (ISC). ICL and ISC are listed in the Electrical Characteristics table.  
For this device, VFOLDBACK = 50% × VOUT(nom)  
.
The output voltage is not regulated when the device is in current limit. When a current limit event occurs, the  
device begins to heat up because of the increase in power dissipation. When the device is in brickwall current  
limit, the pass transistor dissipates power [(VIN – VOUT) × ICL]. When the device output is shorted and the output  
is below VFOLDBACK, the pass transistor dissipates power [(VIN – VOUT) × ISC]. If thermal shutdown is triggered,  
the device turns off. After the device cools down, the internal thermal shutdown circuit turns the device back on.  
If the output current fault condition continues, the device cycles between current limit and thermal shutdown. For  
more information on current limits, see the Know Your Limits application report.  
Figure 7-3 shows a diagram of the foldback current limit.  
VOUT  
Brickwall  
VOUT(NOM)  
VFOLDBACK  
Foldback  
0 V  
IOUT  
IRATED  
0 mA  
ISC  
ICL  
Figure 7-3. Foldback Current Limit  
7.3.4 Undervoltage Lockout (UVLO)  
The device has an independent undervoltage lockout (UVLO) circuit that monitors the input voltage, allowing a  
controlled and consistent turn on and off of the output voltage. To prevent the device from turning off if the input  
drops during turn on, the UVLO has hysteresis as specified in the Electrical Characteristics table.  
7.3.5 Output Pulldown  
The device has an output pulldown circuit. VOUT pulldown sink to ground capability is listed in the Electrical  
Characteristics table. The output pulldown activates under the following conditions:  
Device disabled  
1.0 V < VIN < VUVLO  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLV767-Q1  
 
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
www.ti.com  
The output pulldown current for this device is 1.2 mA typical, as listed in the Electrical Characteristics table of the  
Specifications section.  
Do not rely on the output pulldown circuit for discharging a large amount of output capacitance after the input  
supply has collapsed because reverse current can flow from the output to the input. This reverse current flow  
can cause damage to the device. See the Reverse Current section for more details.  
7.3.6 Thermal Shutdown  
The device contains a thermal shutdown protection circuit to disable the device when the junction temperature  
(TJ) of the pass transistor rises to TSD(shutdown) (typical). Thermal shutdown hysteresis assures that the device  
resets (turns on) when the temperature falls to TSD(reset) (typical).  
The thermal time-constant of the semiconductor die is fairly short, thus the device may cycle on and off when  
thermal shutdown is reached until power dissipation is reduced. Power dissipation during startup can be high  
from large VIN – VOUT voltage drops across the device or from high inrush currents charging large output  
capacitors. Under some conditions, the thermal shutdown protection disables the device before startup  
completes.  
For reliable operation, limit the junction temperature to the maximum listed in the Recommended Operating  
Conditions table. Operation above this maximum temperature causes the device to exceed its operational  
specifications. Although the internal protection circuitry of the device is designed to protect against thermal  
overall conditions, this circuitry is not intended to replace proper heat sinking. Continuously running the device  
into thermal shutdown or above the maximum recommended junction temperature reduces long-term reliability.  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLV767-Q1  
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
www.ti.com  
7.4 Device Functional Modes  
7.4.1 Device Functional Mode Comparison  
The Device Functional Mode Comparison table shows the conditions that lead to the different modes of  
operation. See the Electrical Characteristics table for parameter values.  
Table 7-1. Device Functional Mode Comparison  
PARAMETER  
OPERATING MODE  
VIN  
VEN  
IOUT  
TJ  
Normal operation  
Dropout operation  
VIN > VOUT(nom) + VDO and VIN > VIN(min)  
VIN(min) < VIN < VOUT(nom) + VDO  
VEN > VEN(HI)  
VEN > VEN(HI)  
IOUT < IOUT(max)  
IOUT < IOUT(max)  
TJ < TSD(shutdown)  
TJ < TSD(shutdown)  
Disabled  
(any true condition  
disables the device)  
VIN < VUVLO  
VEN < VEN(LOW)  
Not applicable  
TJ > TSD(shutdown)  
7.4.2 Normal Operation  
The device regulates to the nominal output voltage when the following conditions are met:  
The input voltage is greater than the set MID_OUT output voltage plus the VMID_OUT dropout voltage  
(VMID_OUT(nom) + VDO(MID_OUT)  
)
The current sourced from OUT or MID_OUT is less than the current limits (IOUT < ICL(OUT) or IMID_OUT  
ICL(MID_OUT)) respectively  
<
The device junction temperature is less than the thermal shutdown temperature (TJ < TSD)  
The enable voltage has previously exceeded the enable rising threshold voltage and has not yet decreased  
to less than the enable falling threshold or the EN pin is left floating  
7.4.3 Dropout Operation  
If the input voltage is lower than the set MID_OUT voltage plus the specified VDO(MID_OUT) dropout voltage, but  
all other conditions are met for normal operation, the device operates in VMID_OUT dropout mode. When the  
devcie operates in this mode while VMID_OUT voltage is still higher than VOUT(nom) + VDO(OUT), then VOUT is still in  
regulation however VMID_OUT voltage is in its dropout mode. In VMID_OUT dropout mode, VMID_OUT voltage tracks  
the input voltage and during this mode, the transient performance of VMID_OUT voltage becomes significantly  
degraded because the MID_OUT pass transistor is in the ohmic or triode region, and acts as a switch. Also  
VMID_OUT line or load transients can result in large VMID_OUT voltage deviations.  
The devcie enters VDO(OUT) dropout mode when the input voltage is lower than the set MID_OUT voltage and  
VMID_OUT is lower than VOUT(nom) + VDO(OUT). In VOUT dropout mode, VOUT voltage tracks VMID_OUT voltage which  
in return tracks the input voltage. During this mode, the transient performance of both VMID_OUT and VOUT  
voltages becomes significantly degraded because the pass transistors are in the ohmic or triode region and  
acting as switches. Also line or load transients can result in large VMID_OUT and VOUT voltages deviations.  
When the device is in a steady dropout state (defined as when the device is in dropout, VIN < VOUT(NOM) + VDO  
,
directly after being in a normal regulation state, but not during startup), the pass transistor is driven into the  
ohmic or triode region. When the input voltage returns to a value greater than or equal to the nominal output  
voltage plus the dropout voltage (VOUT(NOM) + VDO), the output voltage can overshoot for a short period of time  
while the device pulls the pass transistor back into the linear region.  
7.4.4 Disabled  
The output of the device can be shutdown by forcing the voltage of the enable pin to less than the maximum EN  
pin low-level input voltage (see the Electrical Characteristics table). When disabled, the pass transistor is turned  
off, internal circuits are shutdown, and the output voltage is actively discharged to ground by an internal  
discharge circuit from the output to ground.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLV767-Q1  
 
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
www.ti.com  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Adjustable Device Feedback Resistors  
The adjustable-version device requires external feedback divider resistors to set the output voltage. VOUT is set  
using the feedback divider resistors, R1 and R2, according to the following equation:  
VOUT = VFB × (1 + R1 / R2)  
(2)  
To ignore the FB pin current error term in the VOUT equation, set the feedback divider current to 100x the FB pin  
current listed in the Electrical Characteristics table. This setting provides the maximum feedback divider series  
resistance, as shown in the following equation:  
R1 + R2 ≤ VOUT / (IFB × 100)  
(3)  
8.1.2 Recommended Capacitor Types  
The device is designed to be stable using low equivalent series resistance (ESR) ceramic capacitors at the input  
and output. Multilayer ceramic capacitors have become the industry standard for these types of applications and  
are recommended, but must be used with good judgment. Ceramic capacitors that employ X7R-, X5R-, and  
C0G-rated dielectric materials provide relatively good capacitive stability across temperature, whereas the use of  
Y5V-rated capacitors is discouraged because of large variations in capacitance.  
Regardless of the ceramic capacitor type selected, the effective capacitance varies with operating voltage and  
temperature. As a rule of thumb, expect the effective capacitance to decrease by as much as 50%. The input  
and output capacitors recommended in the Recommended Operating Conditions table account for an effective  
capacitance of approximately 50% of the nominal value.  
8.1.3 Input and Output Capacitor Requirements  
Although an input capacitor is not required for stability, good analog design practice is to connect a capacitor  
from IN to GND. This capacitor counteracts reactive input sources and improves transient response, input ripple,  
and PSRR. An input capacitor is recommended if the source impedance is more than 0.5 Ω. A higher value  
capacitor may be necessary if large, fast rise-time load or line transients are anticipated or if the device is  
located several inches from the input power source.  
Dynamic performance of the device is improved with the use of an output capacitor. Use an output capacitor  
within the range specified in the Recommended Operating Conditions table for stability.  
8.1.4 Reverse Current  
Excessive reverse current can damage this device. Reverse current flows through the intrinsic body diode of the  
pass transistor instead of the normal conducting channel. At high magnitudes, this current flow degrades the  
long-term reliability of the device.  
Conditions where reverse current can occur are outlined in this section, all of which can exceed the absolute  
maximum rating of VOUT ≤ VIN + 0.3 V.  
If the device has a large COUT and the input supply collapses with little or no load current  
The output is biased when the input supply is not established  
The output is biased above the input supply  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLV767-Q1  
 
 
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
www.ti.com  
If reverse current flow is expected in the application, external protection is recommended to protect the device.  
Reverse current is not limited in the device, so external limiting is required if extended reverse voltage operation  
is anticipated.  
Figure 8-1 shows one approach for protecting the device.  
Schottky Diode  
Internal Body Diode  
IN  
OUT  
Device  
COUT  
CIN  
GND  
Figure 8-1. Example Circuit for Reverse Current Protection Using a Schottky Diode  
8.1.5 Feed-Forward Capacitor (CFF)  
For the adjustable-voltage version device, a feed-forward capacitor (CFF) can be connected from the OUT pin to  
the FB pin. CFF improves transient, noise, and PSRR performance, but is not required for regulator stability.  
Recommended CFF values are listed in the Recommended Operating Conditions table. A higher capacitance  
CFF can be used; however, the startup time increases. For a detailed description of CFF tradeoffs, see the Pros  
and Cons of Using a Feedforward Capacitor with a Low-Dropout Regulator application report.  
CFF and R1 form a zero in the loop gain at frequency fZ, while CFF, R1, and R2 form a pole in the loop gain at  
frequency fP. CFF zero and pole frequencies can be calculated from the following equations:  
fZ = 1 / (2 × π × CFF × R1)  
(4)  
(5)  
fP = 1 / (2 × π × CFF × (R1 || R2))  
CFF ≥ 10 pF is required for stability if the feedback divider current is less than 5 µA. Equation 6 calculates the  
feedback divider current.  
IFB_Divider = VOUT / (R1 + R2)  
(6)  
To avoid startup time increases from CFF, limit the product CFF × R1 < 50 µs.  
For an output voltage of 0.8 V with the FB pin tied to the OUT pin, no CFF is used.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLV767-Q1  
 
 
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.1.6 Power Dissipation (PD)  
Circuit reliability requires consideration of the device power dissipation, location of the circuit on the printed  
circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator must have few  
or no other heat-generating devices that cause added thermal stress.  
To first-order approximation, power dissipation in the regulator depends on the input-to-output voltage difference  
and load conditions. The following equation calculates power dissipation (PD).  
PD = (VIN – VOUT) × IOUT  
(7)  
Note  
Power dissipation can be minimized, and therefore greater efficiency can be achieved, by correct  
selection of the system voltage rails. For the lowest power dissipation use the minimum input voltage  
required for correct output regulation.  
For devices with a thermal pad, the primary heat conduction path for the device package is through the thermal  
pad to the PCB. Solder the thermal pad to a copper pad area under the device. This pad area must contain an  
array of plated vias that conduct heat to additional copper planes for increased heat dissipation.  
The maximum power dissipation determines the maximum allowable ambient temperature (TA) for the device.  
According to the following equation, power dissipation and junction temperature are most often related by the  
junction-to-ambient thermal resistance (RθJA) of the combined PCB and device package and the temperature of  
the ambient air (TA).  
TJ = TA + (RθJA × PD)  
(8)  
Thermal resistance (RθJA) is highly dependent on the heat-spreading capability built into the particular PCB  
design, and therefore varies according to the total copper area, copper weight, and location of the planes. The  
junction-to-ambient thermal resistance listed in the Thermal Information table is determined by the JEDEC  
standard PCB and copper-spreading area, and is used as a relative measure of package thermal performance.  
8.1.7 Estimating Junction Temperature  
The JEDEC standard now recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures  
of the linear regulator when in-circuit on a typical PCB board application. These metrics are not thermal  
resistance parameters and instead offer a practical and relative way to estimate junction temperature. These psi  
metrics are determined to be significantly independent of the copper area available for heat-spreading. The  
Thermal Information table lists the primary thermal metrics, which are the junction-to-top characterization  
parameter (ψJT) and junction-to-board characterization parameter (ψJB). These parameters provide two methods  
for calculating the junction temperature (TJ), as described in the following equations. Use the junction-to-top  
characterization parameter (ψJT) with the temperature at the center-top of device package (TT) to calculate the  
junction temperature. Use the junction-to-board characterization parameter (ψJB) with the PCB surface  
temperature 1 mm from the device package (TB) to calculate the junction temperature.  
TJ = TT + ψJT × PD  
(9)  
where:  
PD is the dissipated power  
TT is the temperature at the center-top of the device package  
TJ = TB + ψJB × PD  
(10)  
where:  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLV767-Q1  
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
www.ti.com  
For detailed information on the thermal metrics and how to use them, see the Semiconductor and IC Package  
Thermal Metrics application report  
8.2 Typical Application  
This section discusses implementing this device for a typical application. Figure 8-2 shows the application circuit.  
OUT  
FB  
IN  
TLV767-Q1  
CIN  
R1 CFF COUT  
EN  
GND  
R2  
Figure 8-2. Typical Application Circuit  
8.2.1 Design Requirements  
Table 8-1 summarizes the design requirements for this application.  
Table 8-1. Design Parameters  
PARAMETER  
Input voltage  
Output voltage  
Output current  
DESIGN REQUIREMENT  
5 V  
3.3 V  
100 mA  
8.2.2 Detailed Design Procedure  
8.2.2.1 Transient Response  
As with any regulator, increasing the size of the output capacitor reduces overshoot and undershoot magnitude.  
If load transients are expected with ramp rates greater than 0.5 A/µs, use a 2.2-µF or larger output capacitor.  
8.2.2.2 Choose Feedback Resistors  
For this design example, VOUT is set to 3.3 V. The following equations set the feedback divider resistors for the  
desired output voltage:  
VOUT = VFB × (1 + R1 / R2)  
R1 + R2 ≤ VOUT / (IFB × 100)  
(11)  
(12)  
For improved output accuracy, use Equation 12 and IFB = 50 nA as listed in the Electrical Characteristics table in  
the Specifications section to calculate the upper limit for series feedback resistance (R1 + R2 ≤ 660 kΩ).  
The control-loop error amplifier drives the FB pin to the same voltage as the internal reference (VFB = 0.8 V, as  
listed in the Electrical Characteristics table). Use Equation 11 to determine the ratio of R1 / R2 = 3.125. Use this  
ratio and solve Equation 12 for R2. Now calculate the upper limit for R2 ≤ 160 kΩ. Select a standard value  
resistor for R2 = 160 kΩ.  
Reference Equation 11 and solve for R1:  
R1 = (VOUT / VFB – 1) × R2  
(13)  
From Equation 13, R1 = 500 kΩ can be determined. Select a standard value resistor for R1 = 499 kΩ. VOUT  
3.3 V (as determined by Equation 11).  
=
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLV767-Q1  
 
 
 
 
 
 
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.2.3 Application Curves  
300  
200  
700  
600  
500  
400  
300  
200  
100  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT  
VOUT  
100  
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-100  
-200  
-300  
-400  
-500  
IOUT  
100 mA  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
0
100 200 300 400 500 600 700 800 900 1000  
Time (µs)  
D021  
VIN = 5 V, VOUT = 3.3 V, COUT = 1 µF, CFF = 0 pF  
VIN = 5 V, VOUT = 3.3 V, COUT = 1 µF, CFF = 10 pF  
Figure 8-4. PSRR Performance  
Figure 8-3. Load Transient Response, IOUT 0 mA to  
100 mA  
9 Power Supply Recommendations  
This device is designed to operate from an input supply voltage range of 2.5 V to 16 V. To ensure that the output  
voltage is well regulated and dynamic performance is optimum, the input supply must be at least VOUT(nom)  
+
1.5 V or 2.5 V, whichever is greater. For a 1-A output current operation, the input supply must be 3 V or greater.  
Connect a low output impedance power supply directly to the input pin of the TLV767-Q1.  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLV767-Q1  
 
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
www.ti.com  
10 Layout  
10.1 Layout Guidelines  
Place input and output capacitors as close to the device as possible  
Use copper planes for device connections to IN, OUT, and GND pins to optimize thermal performance  
Place thermal vias around the device to distribute heat  
10.2 Layout Examples  
OUT  
NC  
IN  
NC  
FB  
GND  
EN  
GND  
Denotes a via  
Figure 10-1. Layout Example for the Adjustable Version  
OUT  
NC  
IN  
NC  
SNS  
GND  
GND  
EN  
Denotes a via  
Figure 10-2. Layout Example for the Fixed Version  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLV767-Q1  
 
 
 
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
www.ti.com  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Device Nomenclature  
Table 11-1. Available Options (1)  
PRODUCT  
VOUT  
xx(x) is the nominal output voltage. For output voltages with a resolution of 100 mV, two  
digits are used in the ordering number; otherwise, three digits are used (for example, 33  
= 3.3 V; 125 = 1.25 V). 01 indicates the adjustable output version.  
W indicates a wettable flanks package.  
TLV767xx(x)QWyyyRQ1  
yyy is the package designator.  
R is the package quantity. R is for the large quantity reel.  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the  
device product folder at www.ti.com.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, TLV767EVM-014 Evaluation Module user's guide  
Texas Instruments, Pros and Cons of Using a Feedforward Capacitor with a Low-Dropout Regulator  
application report  
Texas Instruments, Know Your Limits application report  
Texas Instruments, Universal Low-Dropout (LDO) Linear Voltage Regulator MultiPkgLDOEVM-823 Evaluation  
Module user's guide  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
11.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLV767-Q1  
 
 
 
 
 
 
 
 
 
TLV767-Q1  
SBVS381A – APRIL 2020 – REVISED DECEMBER 2020  
www.ti.com  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TLV767-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Feb-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV76701QWDRBRQ1  
TLV76733QWDRBRQ1  
TLV76750QWDRBRQ1  
TLV76760QWDRBRQ1  
TLV76780QWDRBRQ1  
TLV76790QWDRBRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SON  
SON  
SON  
SON  
SON  
SON  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
8
8
8
8
8
8
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
V76701  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
V76733  
V76750  
V76760  
V76780  
V76790  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Feb-2021  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV767-Q1 :  
Catalog: TLV767  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Feb-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV76701QWDRBRQ1  
TLV76733QWDRBRQ1  
TLV76750QWDRBRQ1  
TLV76760QWDRBRQ1  
TLV76780QWDRBRQ1  
TLV76790QWDRBRQ1  
SON  
SON  
SON  
SON  
SON  
SON  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
8
8
8
8
8
8
3000  
3000  
3000  
3000  
3000  
3000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Feb-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV76701QWDRBRQ1  
TLV76733QWDRBRQ1  
TLV76750QWDRBRQ1  
TLV76760QWDRBRQ1  
TLV76780QWDRBRQ1  
TLV76790QWDRBRQ1  
SON  
SON  
SON  
SON  
SON  
SON  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
8
8
8
8
8
8
3000  
3000  
3000  
3000  
3000  
3000  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
VSON - 1 mm max height  
DRB0008J  
PLASTIC QUAD FLAT PACK- NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
0.1 MIN  
(0.13)  
SECTION A-A  
TYPICAL  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.75  
1.55  
(0.2) TYP  
6X 0.65  
(0.19)  
4
5
SYMM  
9
2.5  
2.3  
1.95  
1
8
0.36  
0.26  
8X  
PIN 1 ID  
(OPTIONAL)  
0.1  
0.05  
C A B  
C
SYMM  
0.5  
0.3  
8X  
4225036/A 06/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VSON - 1 mm max height  
DRB0008J  
PLASTIC QUAD FLAT PACK- NO LEAD  
(2.8)  
(1.65)  
8X (0.6)  
8X (0.31)  
SYMM  
1
8
6X (0.65)  
SYMM  
9
(1.95) (2.4)  
(0.95)  
(R0.05) TYP  
4
5
(Ø 0.2) VIA  
TYP  
(0.575)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
NON- SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225036/A 06/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VSON - 1 mm max height  
DRB0008J  
PLASTIC QUAD FLAT PACK- NO LEAD  
(2.8)  
2X  
(1.51)  
8X (0.6)  
8X (0.31)  
SYMM  
1
8
2X  
(1.06)  
6X (0.65)  
SYMM  
(1.95)  
(0.63)  
9
(R0.05) TYP  
4
5
METAL  
TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
81% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4225036/A 06/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TLV767_V02

TLV767 1-A, 16-V Precision Linear Voltage Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV767_V03

TLV767 1-A, 16-V Precision Linear Voltage Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV803

具有低电平有效及开漏复位功能的 3 引脚电压监控器(复位 IC)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV803E

低电平有效漏极开路输出型低功耗电压监控器(复位 IC)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV803EA17DPWR

TLV803E, TLV809E, TLV810E Low Power 250-nA IQ and Small Size Supply Voltage Supervisors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV803EA18DPWR

TLV803E, TLV809E, TLV810E Low Power 250-nA IQ and Small Size Supply Voltage Supervisors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV803EA22DBZR

TLV803E, TLV809E, TLV810E Low Power 250-nA IQ and Small Size Supply Voltage Supervisors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV803EA22DCKR

低电平有效漏极开路输出型低功耗电压监控器(复位 IC) | DCK | 3 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV803EA24DCKR

TLV803E, TLV809E, TLV810E Low Power 250-nA IQ and Small Size Supply Voltage Supervisors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV803EA26DBZR

低电平有效漏极开路输出型低功耗电压监控器(复位 IC) | DBZ | 3 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV803EA26DCKR

低电平有效漏极开路输出型低功耗电压监控器(复位 IC) | DCK | 3 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV803EA26DPWR

TLV803E, TLV809E, TLV810E Low Power 250-nA IQ and Small Size Supply Voltage Supervisors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI