TLV9001IDBVR [TI]

单通道、1MHz、轨到轨输入和输出 1.8V 至 5.5V 运算放大器 | DBV | 5 | -40 to 125;
TLV9001IDBVR
型号: TLV9001IDBVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

单通道、1MHz、轨到轨输入和输出 1.8V 至 5.5V 运算放大器 | DBV | 5 | -40 to 125

放大器 运算放大器
文件: 总86页 (文件大小:5462K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV9001, TLV9002, TLV9004  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
TLV900x Low-Power, RRIO, 1-MHz Operational Amplifier for Cost-Sensitive Systems  
The robust design of the TLV900x family simplifies  
circuit design. The op amps feature unity-gain  
stability, an integrated RFI and EMI rejection filter,  
and no-phase reversal in overdrive conditions.  
1 Features  
1
Scalable CMOS amplifier for low-cost applications  
Rail-to-rail input and output  
Low input offset voltage: ±0.4 mV  
Unity-gain bandwidth: 1 MHz  
The TLV900x devices include a shutdown mode  
(TLV9001S, TLV9002S and TLV9004S) that allow the  
amplifiers to switch off into standby mode with typical  
current consumption less than 1 µA.  
Low broadband noise: 27 nV/Hz  
Low input bias current: 5 pA  
Micro-size packages, such as SOT-553 and WSON,  
are offered for all channel variants (single, dual, and  
quad), along with industry-standard packages such  
as SOIC, MSOP, SOT-23, and TSSOP packages.  
Low quiescent current: 60 µA/Ch  
Unity-gain stable  
Internal RFI and EMI filter  
Operational at supply voltages as low as 1.8 V  
Device Information(1)  
Easier to stabilize with higher capacitive load due  
to resistive open-loop output impedance  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
1.60 mm × 2.90 mm  
1.25 mm × 2.00 mm  
1.65 mm × 1.20 mm  
0.80 mm × 0.80 mm  
1.60 mm × 2.90 mm  
1.25 mm × 2.00 mm  
3.91 mm × 4.90 mm  
2.00 mm × 2.00 mm  
3.00 mm × 3.00 mm  
1.60 mm × 2.90 mm  
3.00 mm × 4.40 mm  
3.00 mm × 3.00 mm  
1.50 mm × 2.00 mm  
8.65 mm × 3.91 mm  
4.40 mm × 5.00 mm  
3.00 mm × 3.00 mm  
2.00 mm × 2.00 mm  
3.00 mm × 3.00 mm  
SOT-23 (5)  
Extended temperature range: –40°C to 125°C  
SC70 (5)  
TLV9001  
SOT-553 (5)(2)  
X2SON (5)  
SOT-23 (6)  
SC70 (6)  
2 Applications  
Smoke detectors  
Motion detectors  
TLV9001S  
TLV9002  
Wearable devices  
SOIC (8)  
Large and small appliances  
EPOS  
WSON (8)  
VSSOP (8)  
SOT-23 (8)  
TSSOP (8)  
VSSOP (10)  
X2QFN (10)  
SOIC (14)  
TSSOP (14)  
WQFN (16)  
X2QFN (14)  
WQFN (16)  
Barcode scanners  
Sensor signal conditioning  
Power modules  
TLV9002S  
Personal electronics  
Active filters  
HVAC: heating, ventilating, and air conditioning  
Motor control: AC induction  
Low-side current sensing  
TLV9004  
TLV9004S  
3 Description  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
The TLV900x family includes single (TLV9001), dual  
(TLV9002), and quad-channel (TLV9004) low-voltage  
(1.8 V to 5.5 V) operational amplifiers (op amps) with  
rail-to-rail input and output swing capabilities. These  
op amps provide a cost-effective solution for space-  
constrained applications such as smoke detectors,  
wearable electronics, and small appliances where  
low-voltage operation and high capacitive-load drive  
are required. The capacitive-load drive of the  
TLV900x family is 500 pF, and the resistive open-  
loop output impedance makes stabilization easier  
with much higher capacitive loads. These op amps  
are designed specifically for low-voltage operation  
(1.8 V to 5.5 V) with performance specifications  
similar to the TLV600x devices.  
(2) Package is for preview only.  
Single-Pole, Low-Pass Filter  
RG  
RF  
R1  
VOUT  
VIN  
C1  
1
2pR1C1  
f
=
-3 dB  
VOUT  
VIN  
RF  
1
1 + sR1C1  
=
1 +  
(
(
(  
(
RG  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TLV9001, TLV9002, TLV9004  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
www.ti.com  
Table of Contents  
8.2 Functional Block Diagram ....................................... 25  
8.3 Feature Description................................................. 26  
8.4 Device Functional Modes........................................ 27  
Application and Implementation ........................ 28  
9.1 Application Information............................................ 28  
9.2 Typical Application .................................................. 28  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Device Comparison Table..................................... 6  
Pin Configuration and Functions......................... 7  
Specifications....................................................... 14  
7.1 Absolute Maximum Ratings .................................... 14  
7.2 ESD Ratings............................................................ 14  
7.3 Recommended Operating Conditions..................... 14  
7.4 Thermal Information: TLV9001 ............................... 15  
7.5 Thermal Information: TLV9001S............................. 15  
7.6 Thermal Information: TLV9002 ............................... 15  
7.7 Thermal Information: TLV9002S............................. 15  
7.8 Thermal Information: TLV9004 ............................... 16  
7.9 Thermal Information: TLV9004S............................. 16  
7.10 Electrical Characteristics....................................... 17  
7.11 Typical Characteristics.......................................... 19  
Detailed Description ............................................ 25  
8.1 Overview ................................................................. 25  
9
10 Power Supply Recommendations ..................... 33  
10.1 Input and ESD Protection ..................................... 33  
11 Layout................................................................... 34  
11.1 Layout Guidelines ................................................. 34  
11.2 Layout Example .................................................... 34  
12 Device and Documentation Support ................. 35  
12.1 Documentation Support ........................................ 35  
12.2 Related Links ........................................................ 35  
12.3 Receiving Notification of Documentation Updates 35  
12.4 Support Resources ............................................... 35  
12.5 Trademarks........................................................... 35  
12.6 Electrostatic Discharge Caution............................ 35  
12.7 Glossary................................................................ 35  
8
13 Mechanical, Packaging, and Orderable  
Information ........................................................... 35  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision N (January 2020) to Revision O  
Page  
Deleted PREVIEW designation on TLV9001S ...................................................................................................................... 1  
Deleted TLV9001SIDCK (6-pin SC70) package preview note .............................................................................................. 8  
Added DCK (SC70) data to the Thermal Information: TLV9001S table .............................................................................. 15  
Changes from Revision M (September 2019) to Revision N  
Page  
Added 6-pin SC70 package to Device Information table ....................................................................................................... 1  
Added 6-pin SC70 package to Device Comparison Table..................................................................................................... 6  
Added TLV9001SIDCK (6-Pin SC70) package pinout ........................................................................................................... 8  
Added TLV9001S 6-pin SC70 package to Pin Configuration and Functions section ............................................................ 8  
Added 6-pin SC70 pinout to Pin Functions: TLV9001S ......................................................................................................... 8  
Added TLV9001S 6-pin SC70 package to Thermal Information: TLV9001S table .............................................................. 15  
Changes from Revision L (May 2019) to Revision M  
Page  
Deleted preview notations for SOT-23-8 (DDF) package....................................................................................................... 6  
Added link to Shutdown section in all SHDN pin function rows ............................................................................................. 8  
Added EMI Rejection section to the Feature Description section ........................................................................................ 26  
Changed the Shutdown section to add more clarity regarding internal pull-up resistor....................................................... 27  
2
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9001 TLV9002 TLV9004  
 
TLV9001, TLV9002, TLV9004  
www.ti.com  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
Changes from Revision K (March 2019) to Revision L  
Page  
Added SOT-23 (8) information to Device Information table ................................................................................................... 1  
Added SOT-23 DDF package to Device Comparison Table ................................................................................................. 6  
Added SOT-23 (DDF) to Pin Configuration and Functions section........................................................................................ 9  
Added DDF (SOT-23) Thermal Information: TLV9002 table................................................................................................ 15  
Changes from Revision J (January 2019) to Revision K  
Page  
Changed TLV9002S ESD Ratings heading to include all TLV9002S packages.................................................................. 14  
Deleted preview notation from TLV9002SIRUG in Thermal Information table..................................................................... 15  
Changes from Revision I (November 2018) to Revision J  
Page  
Deleted preview notation for TLV9002SIRUGR ..................................................................................................................... 1  
Changed TLV9004 WQFN(14) package designator to X2QFN(14) package designator ...................................................... 1  
Added RUG package to Device Comparison Table .............................................................................................................. 6  
Added DGS package to Device Comparison Table .............................................................................................................. 6  
Added shutdown devices to Device Comparison Table ........................................................................................................ 6  
Changed TLV9001 DRL package pinout drawing.................................................................................................................. 7  
Changed TLV9001 DRL package pin functions ..................................................................................................................... 7  
Deleted package preview note from TLV9002SIRUGR (X2QFN) pinout drawing ............................................................... 10  
Added TLV9004IRUC Thermal Information.......................................................................................................................... 16  
Changed legend of Closed-Loop Gain vs Frequency plot ................................................................................................... 19  
Changes from Revision H (October 2018) to Revision I  
Page  
Added TLV9002SIDGS to ESD Ratings table...................................................................................................................... 14  
Changes from Revision G (September 2018) to Revision H  
Page  
Changed From: TLV9001 DCK Package To: TLV9001T DCK Package ............................................................................... 7  
Changes from Revision F (August 2018) to Revision G  
Page  
Added Device Comparison Table........................................................................................................................................... 6  
Changed pin names for all devices and all packages............................................................................................................ 7  
Changed pin names and I/O designation on some TLV9001 pins ........................................................................................ 7  
Changed the pin number for V+ in the SOIC, TSSOP column of the Pin Functions: TLV9004 table.................................. 12  
Changes from Revision E (July 2018) to Revision F  
Page  
Added Scalabe CMOS Amplifier for Low-Cost Applications feature ...................................................................................... 1  
Deleted PREVIEW designation on TLV9002 and TLV9004 devices with the TSSOP package. .......................................... 1  
Added TLV9001U DBV (SOT-23) pinout drawing to Pin Configuration and Functions section ............................................ 7  
Added SOT-23 U Pinout to Pin Functions section ................................................................................................................ 7  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: TLV9001 TLV9002 TLV9004  
TLV9001, TLV9002, TLV9004  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
www.ti.com  
Changes from Revision D (June 2018) to Revision E  
Page  
Corrected typo in Description section .................................................................................................................................... 1  
Added TLV9001 5-pin X2SON package to Device Information table .................................................................................... 1  
Added TLV9001S 6-pin SOT-23 package to Device Information table.................................................................................. 1  
Added TLV9004 14-pin and 16-pin WQFN packages to Device Information table ............................................................... 1  
Added TLV9001 DPW (X2SON) pinout drawing to Pin Configuration and Functions section............................................... 7  
Added TLV9001S 6-pin SOT-23 package to Pin Configuration and Functions section......................................................... 8  
Added TLV9004 RTE pinout information to Pin Configuration and Functions section ........................................................ 11  
Added DPW (X2SON) and DRL (SOT-553) packages to Thermal Information: TLV9001 table ......................................... 15  
Added Thermal Information: TLV9001S table to Specifications section .............................................................................. 15  
Added RUG (X2QFN) package to Thermal Information: TLV9002 table ............................................................................. 15  
Added RTE (WQFN) and RUC (WQFN) packages to Thermal Information: TLV9004 table............................................... 16  
Changes from Revision C (May 2018) to Revision D  
Page  
Added shutdown text to Description section .......................................................................................................................... 1  
Added TLV9002S and TLV9004S devices to Device Information table................................................................................. 1  
Added TLV9002S 10-pin X2QFN package to Device Information table ................................................................................ 1  
Added TLV9002S DGS package pinout information to Pin Configurations and Functions section ....................................... 9  
Added Thermal Information: TLV9001 table to Specifications section................................................................................. 15  
Added Thermal Information: TLV9004 table to Specifications section................................................................................. 16  
Added shutdown section to Electrical Characteristics: VS (Total Supply Voltage) = (V+) – (V–) = 1.8 V to 5.5 V table...... 17  
Added Shutdown section...................................................................................................................................................... 27  
Changes from Revision B (March 2018) to Revision C  
Page  
Added TLV9002 16-pin TSSOP package to Device Information table................................................................................... 1  
Added TLV9002 10-pin X2QFN package to Device Information table................................................................................... 1  
Added TLV9002S DGS package pinout drawing in Pin Configurations and Functions section........................................... 10  
Added TLV9004 pinout diagram and pin configuration table to Pin Configuration and Functions section ......................... 11  
Added TLV9004S pinout diagram and pin configuration table to Pin Configuration and Functions section ....................... 13  
Changed TLV9002 D (SOIC) junction-to-ambient thermal resistance value from 147.4°C/W to 207.9°C/W ...................... 15  
Changed TLV9002 D (SOIC) junction-to-case (top) thermal resistance from 94.3°C/W to 92.8°C/W................................. 15  
Changed TLV9002 D (SOIC) junction-to-board thermal resistance from 89.5°C/W to 129.7°C/W...................................... 15  
Changed TLV9002 D (SOIC) junction-to-top characterization parameter from 47.3°C/W to 26°C/W ................................. 15  
Changed TLV9002 D (SOIC) junction-to-board characterization parameter from 89°C/W to 127.9°C/W ........................... 15  
Added DGK (VSSOP) thermal information to Thermal Information: TLV9002 table ........................................................... 15  
Added TLV9002 PW (TSSOP) thermal information to Thermal Information: TLV9002 table .............................................. 15  
Added PW (TSSOP) thermal information to Thermal Information: TLV9002 table ............................................................. 16  
Changes from Revision A (December 2017) to Revision B  
Page  
Added package preview notes to TLV9001 packages, TLV9004 packages, and TLV9002 8-pin VSSOP package in  
Device Information table ........................................................................................................................................................ 1  
Added package preview notes to TLV9001, TLV9004 and TLV9002 VSSOP package pinout drawings in Pin  
Configuration and Functions section ..................................................................................................................................... 7  
Deleted package preview note from TLV9002 DSG (WSON) pinout drawing in Pin Configurations and Functions section. 9  
4
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9001 TLV9002 TLV9004  
TLV9001, TLV9002, TLV9004  
www.ti.com  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
Deleted package preview note from TLV9002 RUG (X2QFN) pinout drawing in Pin Configurations and Functions  
section .................................................................................................................................................................................. 10  
Added DSG (WSON) package thermal information to the Thermal Information: TLV9002 table ........................................ 15  
Deleted package preview note from DSG (WSON) package in Thermal Information: TLV9002 table................................ 15  
Added D (SOIC) package thermal information to the Thermal Information: TLV9004 table................................................ 16  
Changes from Original (October 2017) to Revision A  
Page  
Changed device status from Advance Information to Production Data/Mixed Status............................................................ 1  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TLV9001 TLV9002 TLV9004  
TLV9001, TLV9002, TLV9004  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
www.ti.com  
5 Device Comparison Table  
PACKAGE LEADS  
NO.  
DEVICE  
OF  
CH.  
SC70  
DCK  
SOIC  
D
SOT-23 SOT-553 TSSOP  
VSSOP  
DGK  
SOT-23  
DDF  
WQFN WSON X2QFN X2SON X2QFN  
VSSOP  
DGS  
DBV  
DRL  
PW  
8
RTE  
DSG  
RUC  
DPW  
RUG  
TLV9001  
TLV9001S  
TLV9002  
TLV9002S  
TLV9004  
TLV9004S  
5
8
5
5
8
5
10  
1
2
4
6
6
8
8
14  
14  
10  
16  
16  
14  
6
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9001 TLV9002 TLV9004  
TLV9001, TLV9002, TLV9004  
www.ti.com  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
6 Pin Configuration and Functions  
TLV9001 DBV, TLV9001T DCK Packages  
5-Pin SOT-23, SC70  
TLV9001 DCK Package, TLV9001 DRL Package, TLV9001U  
DBV Package  
5-Pin SC70, SOT-553, SOT-23  
Top View  
Top View  
OUT  
Vœ  
1
2
3
5
V+  
IN+  
Vœ  
1
2
3
5
V+  
IN+  
4
INœ  
INœ  
4
OUT  
Not to scale  
Not to scale  
TLV9001 DPW Package  
5-Pin X2SON  
Top View  
OUT  
1
5
V+  
3
Vœ  
INœ  
2
4
IN+  
Not to scale  
Pin Functions: TLV9001  
PIN  
SC70,  
SOT-23(U),  
SOT-553  
I/O  
DESCRIPTION  
SOT-23,  
SC70(T)  
NAME  
IN–  
X2SON  
4
3
1
2
5
3
1
4
2
5
2
4
1
3
5
I
I
Inverting input  
IN+  
OUT  
V–  
Noninverting input  
Output  
O
I or — Negative (low) supply or ground (for single-supply operation)  
Positive (high) supply  
V+  
I
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TLV9001 TLV9002 TLV9004  
TLV9001, TLV9002, TLV9004  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
www.ti.com  
TLV9001S DBV Package  
6-Pin SOT-23  
TLV9001S DCK Package  
6-Pin SC70  
Top View  
Top View  
OUT  
Vœ  
1
2
3
6
5
4
V+  
IN+  
Vœ  
1
2
3
6
5
4
V+  
SHDN  
INœ  
SHDN  
OUT  
IN+  
INœ  
Not to scale  
Not to scale  
Pin Functions: TLV9001S  
PIN  
I/O  
DESCRIPTION  
NAME  
IN–  
SOT-23  
SC70  
4
3
1
3
1
4
I
Inverting input  
Noninverting input  
Output  
IN+  
I
OUT  
O
Shutdown: low = amp disabled, high = amp enabled. See Shutdown section for  
more information.  
SHDN  
5
5
I
V–  
V+  
2
6
2
6
I or —  
I
Negative (low) supply or ground (for single-supply operation)  
Positive (high) supply  
8
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9001 TLV9002 TLV9004  
TLV9001, TLV9002, TLV9004  
www.ti.com  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
TLV9002 D, DGK, PW, DDF Packages  
8-Pin SOIC, VSSOP, TSSOP, SOT-23  
Top View  
TLV9002 DSG Package  
8-Pin WSON With Exposed Thermal Pad  
Top View  
OUT1  
1
2
3
4
8
7
6
5
V+  
IN1œ  
IN1+  
Vœ  
OUT2  
IN2œ  
IN2+  
OUT1  
IN1œ  
IN1+  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT2  
IN2œ  
IN2+  
Thermal  
Pad  
Not to scale  
Not to scale  
(1) Connect thermal pad to V–.  
Pin Functions: TLV9002  
PIN  
I/O  
DESCRIPTION  
NAME  
IN1–  
NO.  
2
I
I
Inverting input, channel 1  
Noninverting input, channel 1  
Inverting input, channel 2  
Noninverting input, channel 2  
Output, channel 1  
IN1+  
IN2–  
IN2+  
OUT1  
OUT2  
V–  
3
6
I
5
I
1
O
O
7
Output, channel 2  
4
I or — Negative (low) supply or ground (for single-supply operation)  
Positive (high) supply  
V+  
8
I
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TLV9001 TLV9002 TLV9004  
TLV9001, TLV9002, TLV9004  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
www.ti.com  
TLV9002S DGS Package  
10-Pin VSSOP  
TLV9002S RUG Package  
10-Pin X2QFN  
Top View  
Top View  
OUT1  
IN1œ  
1
2
3
4
5
10  
9
V+  
OUT2  
IN2œ  
IN2+  
SHDN2  
IN1+  
8
Vœ  
SHDN1  
SHDN2  
IN2+  
1
2
3
4
9
8
7
6
IN1œ  
OUT1  
V+  
Vœ  
7
SHDN1  
6
Not to scale  
OUT2  
Not to scale  
Pin Functions: TLV9002S  
PIN  
I/O  
DESCRIPTION  
NAME  
VSSOP  
X2QFN  
IN1–  
2
3
8
7
1
9
9
10  
5
I
I
Inverting input, channel 1  
Noninverting input, channel 1  
Inverting input, channel 2  
Noninverting input, channel 2  
Output, channel 1  
IN1+  
IN2–  
I
IN2+  
OUT1  
OUT2  
4
I
8
O
O
6
Output, channel 2  
Shutdown: low = amp disabled, high = amp enabled, channel 1. See Shutdown  
section for more information.  
SHDN1  
SHDN2  
5
6
2
3
I
I
Shutdown: low = amp disabled, high = amp enabled, channel 1. See Shutdown  
section for more information.  
V–  
V+  
4
1
7
I or —  
I
Negative (low) supply or ground (for single-supply operation)  
Positive (high) supply  
10  
10  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9001 TLV9002 TLV9004  
TLV9001, TLV9002, TLV9004  
www.ti.com  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
TLV9004 D, PW Packages  
14-Pin SOIC, TSSOP  
Top View  
TLV9004 RTE Package  
16-Pin WQFN With Exposed Thermal Pad  
Top View  
OUT1  
IN1œ  
IN1+  
V+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT4  
IN4œ  
IN4+  
Vœ  
IN1+  
V+  
1
2
3
4
12  
11  
10  
9
IN4+  
Vœ  
IN2+  
IN2œ  
OUT2  
IN3+  
IN3œ  
OUT3  
Thermal  
Pad  
IN2+  
IN2œ  
IN3+  
IN3œ  
8
Not to scale  
TLV9004 RUC Package  
14-Pin X2QFN  
Top View  
Not to scale  
(1) Connect thermal pad to V–.  
IN1œ  
IN1+  
V+  
1
2
3
4
5
12  
11  
10  
9
IN4œ  
IN4+  
Vœ  
IN2+  
IN2œ  
IN3+  
IN3œ  
8
Not to scale  
Pin Functions: TLV9004  
PIN  
I/O  
DESCRIPTION  
SOIC,  
TSSOP  
NAME  
WQFN  
X2QFN  
IN1–  
IN1+  
IN2–  
IN2+  
IN3–  
IN3+  
IN4–  
IN4+  
2
3
16  
1
1
2
I
I
I
I
I
I
I
I
Inverting input, channel 1  
Noninverting input, channel 1  
Inverting input, channel 2  
Noninverting input, channel 2  
Inverting input, channel 3  
Noninverting input, channel 3  
Inverting input, channel 4  
Noninverting input, channel 4  
6
4
5
5
3
4
9
9
8
10  
13  
12  
10  
13  
12  
9
12  
11  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TLV9001 TLV9002 TLV9004  
TLV9001, TLV9002, TLV9004  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
www.ti.com  
Pin Functions: TLV9004 (continued)  
PIN  
I/O  
DESCRIPTION  
SOIC,  
TSSOP  
NAME  
NC  
WQFN  
X2QFN  
1
6, 7  
15  
5
14  
6
O
O
O
O
No internal connection  
Output, channel 1  
Output, channel 2  
Output, channel 3  
Output, channel 4  
OUT1  
OUT2  
OUT3  
OUT4  
V–  
7
8
8
7
14  
11  
4
14  
11  
2
13  
10  
3
I or — Negative (low) supply or ground (for single-supply operation)  
Positive (high) supply  
V+  
I
12  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9001 TLV9002 TLV9004  
TLV9001, TLV9002, TLV9004  
www.ti.com  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
TLV9004S RTE Package  
16-Pin WQFN With Exposed Thermal Pad  
Top View  
IN1+  
V+  
1
2
3
4
12  
11  
10  
9
IN4+  
Vœ  
Thermal  
Pad  
IN2+  
IN2œ  
IN3+  
IN3œ  
Not to scale  
(1) Connect thermal pad to V–.  
Pin Functions: TLV9004S  
PIN  
I/O  
DESCRIPTION  
NAME  
IN1+  
NO.  
1
I
I
I
I
I
I
I
I
Noninverting input  
IN1–  
IN2+  
IN2–  
IN3+  
IN3–  
IN4+  
IN4–  
16  
3
Inverting input  
Noninverting input  
Inverting input  
4
10  
9
Noninverting input  
Inverting input  
12  
13  
Noninverting input  
Inverting input  
Shutdown: low = amp disabled, high = amp enabled, channel 1 & 2. See Shutdown section  
for more information.  
SHDN12  
SHDN34  
6
7
I
I
Shutdown: low = amp disabled, high = amp enabled, channel 3 & 4. See Shutdown section  
for more information.  
OUT1  
OUT2  
OUT3  
OUT4  
V–  
15  
5
O
Output  
O
Output  
8
O
Output  
14  
11  
2
O
I or —  
I
Output  
Negative (low) supply or ground (for single-supply operation)  
Positive (high) supply  
V+  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: TLV9001 TLV9002 TLV9004  
TLV9001, TLV9002, TLV9004  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
(V–) – 0.5  
–10  
MAX  
UNIT  
V
Supply voltage (V+) – (V–)  
6
Common-mode  
Differential  
(V+) + 0.5  
V
Voltage(2)  
Current(2)  
Signal input pins  
(V+) – (V–) + 0.2  
V
10  
mA  
Output short-circuit(3)  
Operating, TA  
Junction, TJ  
Continuous  
150  
–55  
°C  
°C  
°C  
150  
Storage, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input pins are diode-clamped to the power-supply rails. Input signals that may swing more than 0.5 V beyond the supply rails must be  
current limited to 10 mA or less.  
(3) Short-circuit to ground, one amplifier per package.  
7.2 ESD Ratings  
TLV9002S PACKAGE  
VALUE  
±1500  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
ALL OTHER PACKAGES  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
±2000  
±1000  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating temperature range (unless otherwise noted)  
MIN  
MAX  
5.5  
UNIT  
V
VS  
TA  
Supply voltage  
1.8  
Specified temperature  
–40  
125  
°C  
14  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9001 TLV9002 TLV9004  
 
TLV9001, TLV9002, TLV9004  
www.ti.com  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
7.4 Thermal Information: TLV9001  
TLV9001  
DPW (X2SON) DRL (SOT-553)(2) UNIT  
THERMAL METRIC(1)  
DBV (SOT-23)  
5 PINS  
232.9  
DCK (SC70)  
5 PINS  
239.6  
5 PINS  
470.0  
211.9  
334.8  
29.8  
5 PINS  
TBD  
TBD  
TBD  
TBD  
TBD  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
153.8  
148.5  
RθJB  
ψJT  
Junction-to-board thermal resistance  
100.9  
82.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
77.2  
54.5  
ψJB  
100.4  
81.8  
333.2  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) This package option for TLV9001 is preview only.  
7.5 Thermal Information: TLV9001S  
TLV9001S  
THERMAL METRIC(1)  
DBV (SOT-23)  
6 PINS  
232.9  
DCK (SC70)  
6 PINS  
215.6  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
153.8  
146.4  
100.9  
72.0  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
77.2  
55.0  
ψJB  
100.4  
71.7  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
7.6 Thermal Information: TLV9002  
TLV9002  
D
DGK  
(VSSOP)  
DGS  
(VSSOP)  
DSG  
(WSON)  
PW  
(TSSOP)  
DDF  
(SOT-23)  
THERMAL METRIC(1)  
UNIT  
(SOIC)  
8 PINS  
8 PINS  
10 PINS  
8 PINS  
8 PINS  
8 PINS  
Junction-to-ambient  
thermal resistance  
RθJA  
RθJC(top)  
207.9  
201.2  
169.5  
103.2  
200.7  
183.7  
°C/W  
°C/W  
°C/W  
Junction-to-case (top)  
thermal resistance  
92.8  
85.7  
84.1  
113  
120.1  
68.8  
95.4  
112.5  
98.2  
Junction-to-board thermal  
resistance  
RθJB  
129.7  
122.9  
128.6  
Junction-to-top  
characterization  
parameter  
ψJT  
26  
21.2  
15.8  
14.7  
68.5  
27.2  
18.8  
97.6  
°C/W  
°C/W  
Junction-to-board  
characterization  
parameter  
ψJB  
127.9  
121.4  
111.6  
127.2  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
7.7 Thermal Information: TLV9002S  
TLV9002S  
THERMAL METRIC(1)  
DGS (VSSOP)  
10 PINS  
169.5  
RUG (X2QFN)  
10 PINS  
194.2  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
84.1  
90.3  
113  
122.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
15.8  
3.5  
ψJB  
111.6  
118.8  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TLV9001 TLV9002 TLV9004  
TLV9001, TLV9002, TLV9004  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
www.ti.com  
7.8 Thermal Information: TLV9004  
TLV9004  
PW (TSSOP)  
THERMAL METRIC(1)  
D (SOIC)  
14 PINS  
RTE (WQFN)  
16 PINS  
RUC (X2QFN)  
14 PINS  
UNIT  
14 PINS  
Junction-to-ambient thermal  
resistance  
RθJA  
102.1  
148.3  
66.4  
205.5  
°C/W  
Junction-to-case (top) thermal  
resistance  
RθJC(top)  
56.8  
58.5  
20.5  
68.1  
92.7  
16.9  
69.3  
41.7  
5.7  
72.5  
150.2  
3.0  
°C/W  
°C/W  
°C/W  
RθJB  
Junction-to-board thermal resistance  
Junction-to-top characterization  
parameter  
ψJT  
Junction-to-board characterization  
parameter  
ψJB  
58.1  
91.8  
41.5  
149.6  
°C/W  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
7.9 Thermal Information: TLV9004S  
TLV9004S  
THERMAL METRIC(1)  
RTE (WQFN)  
16 PINS  
66.4  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
69.3  
41.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
5.7  
ψJB  
41.5  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
16  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9001 TLV9002 TLV9004  
TLV9001, TLV9002, TLV9004  
www.ti.com  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
7.10 Electrical Characteristics  
For VS = (V+) – (V–) = 1.8 V to 5.5 V (±0.9 V to ±2.75 V), TA = 25°C, RL = 10 kΩ connected to VS / 2, and VCM = VOUT  
=
VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VS = 5 V  
±0.4  
±1.6  
±2  
VOS  
Input offset voltage  
mV  
VS = 5 V, TA = –40°C to 125°C  
TA = –40°C to 125°C  
dVOS/dT VOS vs temperature  
±0.6  
105  
µV/°C  
dB  
PSRR  
Power-supply rejection ratio  
VS = 1.8 to 5.5 V, VCM = (V–)  
80  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage range  
No phase reversal, rail-to-rail input  
(V–) – 0.1  
(V+) + 0.1  
V
VS = 1.8 V, (V–) – 0.1 V < VCM < (V+) – 1.4 V,  
TA = –40°C to 125°C  
86  
95  
77  
68  
VS = 5.5 V, (V–) – 0.1 V < VCM < (V+) – 1.4 V,  
TA = –40°C to 125°C  
CMRR  
Common-mode rejection ratio  
dB  
VS = 5.5 V, (V–) – 0.1 V < VCM < (V+) + 0.1 V,  
TA = –40°C to 125°C  
63  
VS = 1.8 V, (V–) – 0.1 V < VCM < (V+) + 0.1 V,  
TA = –40°C to 125°C  
INPUT BIAS CURRENT  
IB  
Input bias current  
Input offset current  
VS = 5 V  
±5  
±2  
pA  
pA  
IOS  
NOISE  
Input voltage noise (peak-to-  
peak)  
En  
ƒ = 0.1 Hz to 10 Hz, VS = 5 V  
4.7  
µVPP  
ƒ = 1 kHz, VS = 5 V  
ƒ = 10 kHz, VS = 5 V  
ƒ = 1 kHz, VS = 5 V  
30  
27  
23  
en  
in  
Input voltage noise density  
nV/Hz  
fA/Hz  
Input current noise density  
INPUT CAPACITANCE  
CID  
CIC  
Differential  
1.5  
5
pF  
pF  
Common-mode  
OPEN-LOOP GAIN  
VS = 5.5 V, (V–) + 0.05 V < VO < (V+) – 0.05 V,  
RL = 10 kΩ  
104  
117  
100  
115  
130  
VS = 1.8 V, (V–) + 0.04 V < VO < (V+) – 0.04 V,  
RL = 10 kΩ  
AOL  
Open-loop voltage gain  
dB  
VS = 1.8 V, (V–) + 0.1 V < VO < (V+) – 0.1 V,  
RL = 2 kΩ  
VS = 5.5 V, (V–) + 0.15 V < VO < (V+) – 0.15 V,  
RL = 2 kΩ  
FREQUENCY RESPONSE  
GBW  
φm  
Gain-bandwidth product  
VS = 5 V  
1
78  
MHz  
°
Phase margin  
Slew rate  
VS = 5.5 V, G = 1  
SR  
VS = 5 V  
2
V/µs  
To 0.1%, VS = 5 V, 2-V step, G = +1, CL = 100 pF  
To 0.01%, VS = 5 V, 2-V step, G = +1, CL = 100 pF  
VS = 5 V, VIN × gain > VS  
2.5  
3
tS  
Settling time  
µs  
µs  
tOR  
Overload recovery time  
0.85  
Total harmonic distortion +  
noise  
VS = 5.5 V, VCM = 2.5 V, VO = 1 VRMS, G = +1,  
ƒ = 1 kHz, 80-kHz measurement BW  
THD+N  
OUTPUT  
0.004%  
VS = 5.5 V, RL = 10 kΩ  
VS = 5.5 V, RL = 2 kΩ  
VS = 5.5 V  
10  
35  
20  
55  
Voltage output swing from  
supply rails  
VO  
mV  
ISC  
ZO  
Short-circuit current  
±40  
1200  
mA  
Open-loop output impedance  
VS = 5 V, ƒ = 1 MHz  
Ω
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TLV9001 TLV9002 TLV9004  
TLV9001, TLV9002, TLV9004  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
www.ti.com  
Electrical Characteristics (continued)  
For VS = (V+) – (V–) = 1.8 V to 5.5 V (±0.9 V to ±2.75 V), TA = 25°C, RL = 10 kΩ connected to VS / 2, and VCM = VOUT  
=
VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VS  
Specified voltage range  
1.8 (±0.9)  
5.5 (±2.75)  
75  
V
TLV9002, TLV9002S TLV9004,  
TLV9004S  
IO = 0 mA, VS = 5.5 V  
IO = 0 mA, VS = 5.5 V  
60  
60  
IQ  
Quiescent current per amplifier  
µA  
TLV9001, TLV9001S  
77  
85  
IO = 0 mA, VS = 5.5 V, TA = –40°C to 125°C  
SHUTDOWN(1)  
IQSD  
Quiescent current per amplifier VS = 1.8 V to 5.5 V, all amplifiers disabled, SHDN = VS–  
0.5  
1.5  
µA  
Output impedance during  
VS = 1.8 V to 5.5 V, amplifier disabled  
shutdown  
ZSHDN  
10 || 2  
GΩ || pF  
High level voltage shutdown  
VS = 1.8 V to 5.5 V  
(V–) + 0.9  
(V–) + 1.1  
V
V
threshold (amplifier enabled)  
Low level voltage shutdown  
VS = 1.8 V to 5.5 V  
(V–) + 0.2 V (V–) + 0.7 V  
threshold (amplifier disabled)  
Amplifier enable time (full  
shutdown)(2)(3)  
VS = 1.8 V to 5.5 V, full shutdown; G = 1,  
VOUT = 0.9 × VS / 2, RL connected to V–  
70  
50  
4
tON  
µs  
Amplifier enable time (partial  
shutdown)(2)(3)  
VS = 1.8 V to 5.5 V, partial shutdown; G = 1,  
VOUT = 0.9 × VS / 2, RL connected to V–  
VS = 1.8 V to 5.5 V, G = 1, VOUT = 0.1 × VS / 2,  
RL connected to V–  
tOFF  
Amplifier disable time(2)  
µs  
VS = 1.8 V to 5.5 V, V+ SHDN (V+) – 0.8 V  
VS = 1.8 V to 5.5 V, V– SHDN V– + 0.8 V  
40  
SHDN pin input bias current  
(per pin)  
nA  
150  
(1) Specified by design and characterization; not production tested.  
(2) Disable time (tOFF) and enable time (tON) are defined as the time interval between the 50% point of the signal applied to the SHDN pin  
and the point at which the output voltage reaches the 10% (disable) or 90% (enable) level.  
(3) Full shutdown refers to the dual TLV9002S having both channels 1 and 2 disabled (SHDN1 = SHDN2 = V–) and the quad TLV9004S  
having all channels 1 to 4 disabled (SHDN12 = SHDN34 = V–). For partial shutdown, only one SHDN pin is exercised; in this mode, the  
internal biasing circuitry remains operational and the enable time is shorter.  
18  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9001 TLV9002 TLV9004  
TLV9001, TLV9002, TLV9004  
www.ti.com  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
7.11 Typical Characteristics  
at TA = 25°C, V+ = 2.75 V, V– = –2.75 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise  
noted)  
40  
25  
35  
20  
30  
25  
15  
20  
10  
15  
10  
5
5
0
0
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
-
1200 -900 -600 -300  
0
300 600 900 1200 1500 1800  
D001  
D002  
Offset Voltage Drift (μV/°C)  
Offset Voltage (μV)  
VS = 5 V, TA = –40°C to 125°C  
VS = 5 V  
Figure 2. Offset Voltage Drift Distribution Histogram  
Figure 1. Offset Voltage Distribution Histogram  
1000  
800  
2000  
1500  
1000  
500  
600  
400  
200  
0
0
-200  
-400  
-600  
-800  
-1000  
-500  
-1000  
-1500  
-2000  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-4  
-3  
-2  
-1  
0
1
Common-Mode Voltage (V)  
2
3
4
D003  
D004  
Figure 3. Input Offset Voltage vs Temperature  
Figure 4. Offset Voltage vs Common-Mode  
1000  
6
4
IB-  
IB+  
IOS  
800  
600  
2
400  
0
200  
-2  
-4  
-6  
-8  
-10  
0
-200  
-400  
-600  
-800  
-1000  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
1.5  
2
2.5  
3
3.5  
4
Supply Voltage (V)  
4.5  
5
5.5  
6
Temperature (èC)  
D006  
D005  
Figure 6. IB and IOS vs Temperature  
Figure 5. Offset Voltage vs Supply Voltage  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TLV9001 TLV9002 TLV9004  
 
TLV9001, TLV9002, TLV9004  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
www.ti.com  
Typical Characteristics (continued)  
at TA = 25°C, V+ = 2.75 V, V– = –2.75 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise  
noted)  
160  
140  
120  
100  
80  
3.5  
3
IB-  
IB+  
IOS  
2.5  
2
1.5  
1
0.5  
0
60  
-0.5  
-1  
40  
-1.5  
-2  
20  
VS = 5.5 V  
VS = 1.8 V  
-2.5  
0
-3  
-2  
-1  
Common-Mode Voltage (V)  
0
1
2
3
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
D007  
D008  
Figure 7. IB and IOS vs Common-Mode Voltage  
Figure 8. Open-Loop Gain vs Temperature  
100  
120  
160  
140  
120  
100  
80  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
60  
40  
20  
Gain  
Phase  
0
-20  
-3  
-2  
-1 0  
Output Voltage (V)  
1
2
3
1k  
10k  
100k  
Frequency (Hz)  
1M  
D010  
D009  
CL = 10 pF  
Figure 10. Open-Loop Gain vs Output Voltage  
Figure 9. Open-Loop Gain and Phase vs Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
3
2.5  
2
Gain = -1  
Gain = 1  
Gain = 100  
Gain = 1000  
Gain = 10  
1.5  
1
125°C  
85°C  
25°C  
-40°C  
0.5  
0
-0.5  
-1  
85°C  
25°C  
-40°C  
-1.5  
-2  
125°C  
-10  
-20  
-2.5  
-3  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
0
5
10  
15  
20  
25  
30  
Output Current (mA)  
35  
40  
45  
50  
D011  
D012  
CL = 10 pF  
Figure 11. Closed-Loop Gain vs Frequency  
Figure 12. Output Voltage vs Output Current (Claw)  
20  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9001 TLV9002 TLV9004  
TLV9001, TLV9002, TLV9004  
www.ti.com  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
Typical Characteristics (continued)  
at TA = 25°C, V+ = 2.75 V, V– = –2.75 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise  
noted)  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
PSRR+  
PSRR-  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
Temperature (èC)  
D014  
D013  
VS = 1.8 V to 5.5 V  
Figure 14. DC PSRR vs Temperature  
Figure 13. PSRR vs Frequency  
120  
100  
80  
60  
40  
20  
0
160  
140  
120  
100  
80  
60  
40  
20  
VS = 1.8 V  
VS = 5.5 V  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
Temperature (èC)  
D016  
D015  
VCM = (V–) – 0.1 V to (V+) – 1.4 V  
Figure 16. DC CMRR vs Temperature  
Figure 15. CMRR vs Frequency  
120  
100  
80  
60  
40  
20  
0
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
Time (1 s/div)  
D018  
D017  
Figure 18. Input Voltage Noise Spectral Density  
Figure 17. 0.1-Hz to 10-Hz Integrated Voltage Noise  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: TLV9001 TLV9002 TLV9004  
TLV9001, TLV9002, TLV9004  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
www.ti.com  
Typical Characteristics (continued)  
at TA = 25°C, V+ = 2.75 V, V– = –2.75 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise  
noted)  
-50  
-60  
0
-20  
G = +1, RL = 2 kW  
G = +1, RL = 10 kW  
G = -1, RL = 2 kW  
G = -1, RL = 10 kW  
-70  
-40  
-80  
-60  
-90  
-80  
RL = 2K  
RL = 10K  
-100  
-100  
100  
1k  
Frequency (Hz)  
10k  
0.001  
0.01  
0.1  
Amplitude (VRMS)  
1
2
D019  
D020  
VS = 5.5 V  
VCM = 2.5 V  
G = 1  
VS = 5.5 V  
G = 1  
VCM = 2.5 V  
BW = 80 kHz  
ƒ = 1 kHz  
BW = 80 kHz  
VOUT = 0.5 VRMS  
Figure 19. THD + N vs Frequency  
Figure 20. THD + N vs Amplitude  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
1.5  
2
2.5  
3
3.5  
4
Voltage Supply (V)  
4.5  
5
5.5  
Temperature (èC)  
D022  
D021  
Figure 22. Quiescent Current vs Temperature  
Figure 21. Quiescent Current vs Supply Voltage  
50  
2000  
45  
40  
35  
30  
25  
20  
15  
10  
5
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
Overshoot (+)  
Overshoot (–)  
0
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
0
200  
400 600  
Capacitance Load (pF)  
800  
1000  
D023  
D024  
G = 1  
VIN = 100 mVpp  
Figure 23. Open-Loop Output Impedance vs Frequency  
Figure 24. Small Signal Overshoot vs Capacitive Load  
22  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9001 TLV9002 TLV9004  
TLV9001, TLV9002, TLV9004  
www.ti.com  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
Typical Characteristics (continued)  
at TA = 25°C, V+ = 2.75 V, V– = –2.75 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise  
noted)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Overshoot (+)  
Overshoot (–)  
0
0
200  
400 600  
Capacitance Load (pF)  
800  
1000  
0
200  
400 600  
Capacitance Load (pF)  
800  
1000  
D025  
D026  
G = –1  
VIN = 100 mVpp  
Figure 25. Small Signal Overshoot vs Capacitive Load  
Figure 26. Phase Margin vs Capacitive Load  
VOUT  
VIN  
VOUT  
VIN  
Time (100 ms/div)  
Time (20 ms/div)  
D027  
D028  
G = 1  
VIN = 6.5 VPP  
G = –10  
VIN = 600 mVPP  
Figure 27. No Phase Reversal  
Figure 28. Overload Recovery  
VOUT  
VIN  
VOUT  
VIN  
Time (10 ms/div)  
Time (10 ms/div)  
D029  
D030  
G = 1  
VIN = 100 mVPP  
CL = 10 pF  
G = 1  
VIN = 4 VPP  
CL = 10 pF  
Figure 29. Small-Signal Step Response  
Figure 30. Large-Signal Step Response  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: TLV9001 TLV9002 TLV9004  
TLV9001, TLV9002, TLV9004  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
www.ti.com  
Typical Characteristics (continued)  
at TA = 25°C, V+ = 2.75 V, V– = –2.75 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise  
noted)  
Time (1 ms/div)  
Time (1 μs/div)  
D032  
D031  
G = 1  
CL = 100 pF  
2-V step  
G = 1  
CL = 100 pF  
2-V step  
Figure 32. Large-Signal Settling Time (Positive)  
Figure 31. Large-Signal Settling Time (Negative)  
80  
60  
6
5
4
3
2
1
0
VS = 5.5 V  
VS = 1.8 V  
40  
20  
0
-20  
-40  
-60  
-80  
Sinking  
Sourcing  
1
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M 100M  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
D034  
D033  
Figure 34. Maximum Output Voltage vs Frequency  
Figure 33. Short-Circuit Current vs Temperature  
140  
120  
100  
80  
0
-20  
-40  
-60  
60  
-80  
40  
-100  
-120  
-140  
20  
0
10M  
100M  
Frequency (Hz)  
1G  
10G  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
D035  
D036  
Figure 35. Electromagnetic Interference Rejection Ratio  
Referred to Noninverting Input (EMIRR+) vs Frequency  
Figure 36. Channel Separation  
24  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9001 TLV9002 TLV9004  
TLV9001, TLV9002, TLV9004  
www.ti.com  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
8 Detailed Description  
8.1 Overview  
The TLV900x is a family of low-power, rail-to-rail input and output op amps. These devices operate from 1.8 V to  
5.5 V, are unity-gain stable, and are designed for a wide range of general-purpose applications. The input  
common-mode voltage range includes both rails and allows the TLV900x family to be used in virtually any single-  
supply application. Rail-to-rail input and output swing significantly increases dynamic range, especially in low-  
supply applications, and makes them suitable for driving sampling analog-to-digital converters (ADCs).  
8.2 Functional Block Diagram  
V+  
Reference  
Current  
VIN+  
VIN-  
VBIAS1  
Class AB  
Control  
Circuitry  
VO  
VBIAS2  
V-  
(Ground)  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: TLV9001 TLV9002 TLV9004  
 
TLV9001, TLV9002, TLV9004  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
www.ti.com  
8.3 Feature Description  
8.3.1 Operating Voltage  
The TLV900x family of op amps are for operation from 1.8 V to 5.5 V. In addition, many specifications such as  
input offset voltage, quiescent current, offset current, and short circuit current apply from –40°C to 125°C.  
Parameters that vary significantly with operating voltages or temperature are shown in the Typical Characteristics  
section.  
8.3.2 Rail-to-Rail Input  
The input common-mode voltage range of the TLV900x family extends 100 mV beyond the supply rails for the  
full supply voltage range of 1.8 V to 5.5 V. This performance is achieved with a complementary input stage: an  
N-channel input differential pair in parallel with a P-channel differential pair, as shown in the Functional Block  
Diagram. The N-channel pair is active for input voltages close to the positive rail, typically (V+) – 1.4 V to 100 mV  
above the positive supply, whereas the P-channel pair is active for inputs from 100 mV below the negative  
supply to approximately (V+) – 1.4 V. There is a small transition region, typically (V+) – 1.2 V to (V+) – 1 V, in  
which both pairs are on. This 100-mV transition region can vary up to 100 mV with process variation. Thus, the  
transition region (with both stages on) can range from (V+) – 1.4 V to (V+) – 1.2 V on the low end, and up to  
(V+) – 1 V to (V+) – 0.8 V on the high end. Within this transition region, PSRR, CMRR, offset voltage, offset drift,  
and THD can degrade compared to device operation outside this region.  
8.3.3 Rail-to-Rail Output  
Designed as a low-power, low-voltage operational amplifier, the TLV900x family delivers a robust output drive  
capability. A class-AB output stage with common-source transistors achieves full rail-to-rail output swing  
capability. For resistive loads of 10 kΩ, the output swings to within 20 mV of either supply rail, regardless of the  
applied power-supply voltage. Different load conditions change the ability of the amplifier to swing close to the  
rails.  
8.3.4 EMI Rejection  
The TLV900x uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI from  
sources such as wireless communications and densely-populated boards with a mix of analog signal chain and  
digital components. EMI immunity can be improved with circuit design techniques; the TLV900x benefits from  
these design improvements. Texas Instruments has developed the ability to accurately measure and quantify the  
immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz.  
Figure 37 shows the results of this testing on the TLV900x. Table 1 shows the EMIRR IN+ values for the  
TLV900x at particular frequencies commonly encountered in real-world applications. The EMI Rejection Ratio of  
Operational Amplifiers application report contains detailed information on the topic of EMIRR performance as it  
relates to op amps and is available for download from www.ti.com.  
140  
120  
100  
80  
60  
40  
20  
0
10M  
100M  
Frequency (Hz)  
1G  
10G  
D035  
Figure 37. EMIRR Testing  
26  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9001 TLV9002 TLV9004  
 
TLV9001, TLV9002, TLV9004  
www.ti.com  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
Feature Description (continued)  
Table 1. TLV900x EMIRR IN+ For Frequencies of Interest  
FREQUENCY  
APPLICATION OR ALLOCATION  
EMIRR IN+  
Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF)  
applications  
400 MHz  
59.5 dB  
Global system for mobile communications (GSM) applications, radio communication, navigation,  
GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications  
900 MHz  
1.8 GHz  
2.4 GHz  
3.6 GHz  
68.9 dB  
77.8 dB  
78.0 dB  
88.8 dB  
GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and  
medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
8.3.5 Overload Recovery  
Overload recovery is defined as the time required for the operational amplifier output to recover from a saturated  
state to a linear state. The output devices of the operational amplifier enter a saturation region when the output  
voltage exceeds the rated operating voltage, because of the high input voltage or the high gain. After the device  
enters the saturation region, the charge carriers in the output devices require time to return to the linear state.  
After the charge carriers return to the linear state, the device begins to slew at the specified slew rate. Therefore,  
the propagation delay (in case of an overload condition) is the sum of the overload recovery time and the slew  
time. The overload recovery time for the TLV900x family is approximately 850 ns.  
8.3.6 Shutdown  
The TLV9001S, TLV9002S and TLV9004S devices feature SHDN pins that disable the op amp, placing it into a  
low-power standby mode. In this mode, the op amp typically consumes less than 1 µA. The SHDN pins are  
active low, meaning that shutdown mode is enabled when the input to the SHDN pin is a valid logic low.  
The SHDN pins are referenced to the negative supply voltage of the op amp. The threshold of the shutdown  
feature lies around 620 mV (typical) and does not change with respect to the supply voltage. Hysteresis has  
been included in the switching threshold to ensure smooth switching characteristics. To ensure optimal shutdown  
behavior, the SHDN pins should be driven with valid logic signals. A valid logic low is defined as a voltage  
between V– and V– + 0.2 V. A valid logic high is defined as a voltage between V– + 1.2 V and V+. The shutdown  
pin circuitry includes a pull-up resistor, which will inherently pull the voltage of the pin to the positive supply rail if  
not driven. Thus, to enable the amplifier, the SHDN pins should either be left floating or driven to a valid logic  
high. To disable the amplifier, the SHDN pins must be driven to a valid logic low. While we highly recommend  
that the shutdown pin be connected to a valid high or a low voltage or driven, we have included a pull-up resistor  
connected to VCC. The maximum voltage allowed at the SHDN pins is (V+) + 0.5 V. Exceeding this voltage level  
will damage the device.  
The SHDN pins are high-impedance CMOS inputs. Dual op amp versions are independently controlled and quad  
op amp versions are controlled in pairs with logic inputs. For battery-operated applications, this feature may be  
used to greatly reduce the average current and extend battery life. The enable time is 70 µs for full shutdown of  
all channels; disable time is 4 µs. When disabled, the output assumes a high-impedance state. This architecture  
allows the TLV9002S and TLV9004S to operate as a gated amplifier (or to have the device output multiplexed  
onto a common analog output bus). Shutdown time (tOFF) depends on loading conditions and increases as load  
resistance increases. To ensure shutdown (disable) within a specific shutdown time, the specified 10-kΩ load to  
midsupply (VS / 2) is required. If using the TLV9001S, TLV9002S or TLV9004S without a load, the resulting  
turnoff time significantly increases.  
8.4 Device Functional Modes  
The TLV900x family has a single functional mode. The devices are powered on as long as the power-supply  
voltage is between 1.8 V (±0.9 V) and 5.5 V (±2.75 V).  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: TLV9001 TLV9002 TLV9004  
TLV9001, TLV9002, TLV9004  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
www.ti.com  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TLV900x family of low-power, rail-to-rail input and output operational amplifiers is specifically designed for  
portable applications. The devices operate from 1.8 V to 5.5 V, are unity-gain stable, and are suitable for a wide  
range of general-purpose applications. The class AB output stage is capable of driving less than or equal to  
10kΩ loads connected to any point between V+ and V–. The input common-mode voltage range includes both  
rails, and allows the TLV900x devices to be used in any single-supply application.  
9.2 Typical Application  
9.2.1 TLV900x Low-Side, Current Sensing Application  
Figure 38 shows the TLV900x configured in a low-side current sensing application.  
VBUS  
ILOAD  
ZLOAD  
5 V  
+
TLV9002  
VOUT  
Þ
+
RSHUNT  
VSHUNT  
RF  
0.1 Ω  
57.6 kΩ  
Þ
RG  
1.2 kΩ  
Figure 38. TLV900x in a Low-Side, Current-Sensing Application  
28  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9001 TLV9002 TLV9004  
 
TLV9001, TLV9002, TLV9004  
www.ti.com  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
Typical Application (continued)  
9.2.1.1 Design Requirements  
The design requirements for this design are:  
Load current: 0 A to 1 A  
Output voltage: 4.9 V  
Maximum shunt voltage: 100 mV  
9.2.1.2 Detailed Design Procedure  
The transfer function of the circuit in Figure 38 is given in Equation 1.  
VOUT = ILOAD ìRSHUNT ìGain  
(1)  
The load current (ILOAD) produces a voltage drop across the shunt resistor (RSHUNT). The load current is set from  
0 A to 1 A. To keep the shunt voltage below 100 mV at maximum load current, the largest shunt resistor is  
shown using Equation 2.  
VSHUNT _MAX  
100mV  
1A  
RSHUNT  
=
=
=100mW  
ILOAD_MAX  
(2)  
Using Equation 2, RSHUNT is calculated to be 100 mΩ. The voltage drop produced by ILOAD and RSHUNT is  
amplified by the TLV900x to produce an output voltage of approximately 0 V to 4.9 V. The gain needed by the  
TLV900x to produce the necessary output voltage is calculated using Equation 3.  
V
OUT _MAX - VOUT _MIN  
(
)
Gain =  
VIN_MAX - V  
(
)
IN_MIN  
(3)  
Using Equation 3, the required gain is calculated to be 49 V/V, which is set with resistors RF and RG. Equation 4  
sizes the resistors RF and RG, to set the gain of the TLV900x to 49 V/V.  
R
(
(
)
)
F
Gain = 1+  
R
G
(4)  
Selecting RF as 57.6 kΩ and RG as 1.2 kΩ provides a combination that equals 49 V/V. Figure 39 shows the  
measured transfer function of the circuit shown in Figure 38. Notice that the gain is only a function of the  
feedback and gain resistors. This gain is adjusted by varying the ratio of the resistors and the actual resistors  
values are determined by the impedance levels that the designer wants to establish. The impedance level  
determines the current drain, the effect that stray capacitance has, and a few other behaviors. There is no  
optimal impedance selection that works for every system, you must choose an impedance that is ideal for your  
system parameters.  
9.2.1.3 Application Curve  
5
4
3
2
1
0
0
0.2  
0.4  
0.6  
0.8  
1
ILOAD (A)  
C219  
Figure 39. Low-Side, Current-Sense Transfer Function  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: TLV9001 TLV9002 TLV9004  
 
 
 
 
 
TLV9001, TLV9002, TLV9004  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
www.ti.com  
Typical Application (continued)  
9.2.2 Single-Supply Photodiode Amplifier  
Photodiodes are used in many applications to convert light signals to electrical signals. The current through the  
photodiode is proportional to the photon energy absorbed, and is commonly in the range of a few hundred  
picoamps to a few tens of microamps. An amplifier in a transimpedance configuration is typically used to convert  
the low-level photodiode current to a voltage signal for processing in an MCU. The circuit shown in Figure 40 is  
an example of a single-supply photodiode amplifier circuit using the TLV9002.  
+3.3V  
R1  
11.5 kΩ  
10 pF  
CF  
VREF  
R2  
357 Ω  
RF  
309 kΩ  
3.3 V  
œ
TLV9002  
VOUT  
+
VREF  
CPD  
IIN  
0-10 µA  
RL  
10 k  
47 pF  
Figure 40. Single-Supply Photodiode Amplifier Circuit  
30  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9001 TLV9002 TLV9004  
 
TLV9001, TLV9002, TLV9004  
www.ti.com  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
Typical Application (continued)  
9.2.2.1 Design Requirements  
The design requirements for this design are:  
Supply voltage: 3.3 V  
Input: 0 µA to 10 µA  
Output: 0.1 V to 3.2 V  
Bandwidth: 50 kHz  
9.2.2.2 Detailed Design Procedure  
The transfer function between the output voltage (VOUT), the input current, (IIN) and the reference voltage (VREF  
)
is defined in Equation 5.  
VOUT = IIN ìRF + VREF  
(5)  
Where:  
«
÷
R1 ìR2  
R1 + R2 ◊  
VREF = V ì  
+
(6)  
Set VREF to 100 mV to meet the minimum output voltage level by setting R1 and R2 to meet the required ratio  
calculated in Equation 7.  
VREF  
0.1 V  
=
= 0.0303  
V+  
3.3 V  
(7)  
The closest resistor ratio to meet this ratio sets R1 to 11.5 kΩ and R2 to 357 Ω.  
The required feedback resistance can be calculated based on the input current and desired output voltage.  
VOUT - VREF  
3.2 V - 0.1 V  
10 mA  
kV  
RF =  
=
= 310  
ö 309 kW  
I
A
IN  
(8)  
Calculate the value for the feedback capacitor based on RF and the desired –3-dB bandwidth, (f–3dB) using  
Equation 9.  
1
1
CF =  
=
= 10.3 pF ö 10 pF  
2ì pìRF ì f-3dB 2ì pì309 kWì50 kHz  
(9)  
The minimum op amp bandwidth required for this application is based on the value of RF, CF, and the  
capacitance on the INx– pin of the TLV9002 which is equal to the sum of the photodiode shunt capacitance,  
(CPD) the common-mode input capacitance, (CCM) and the differential input capacitance (CD) as Equation 10  
shows.  
C
= CPD + CCM + CD = 47 pF+ 5 pF +1pF = 53 pF  
IN  
(10)  
The minimum op amp bandwidth is calculated in Equation 11.  
CIN + CF  
f=BGW  
í
í 324 kHz  
2
2ì pìRF ì CF  
(11)  
The 1-MHz bandwidth of the TLV900x meets the minimum bandwidth requirement and remains stable in this  
application configuration.  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: TLV9001 TLV9002 TLV9004  
 
 
 
 
 
TLV9001, TLV9002, TLV9004  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
www.ti.com  
Typical Application (continued)  
9.2.2.3 Application Curves  
The measured current-to-voltage transfer function for the photodiode amplifier circuit is shown in Figure 41. The  
measured performance of the photodiode amplifier circuit is shown in Figure 42.  
3
2.5  
2
120  
100  
80  
1.5  
1
60  
0.5  
0
40  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
0
2E-6  
4E-6 6E-6  
Input Current (A)  
8E-6  
1E-5  
D001  
D002  
Figure 41. Photodiode Amplifier Circuit AC Gain Results  
Figure 42. Photodiode Amplifier Circuit DC Results  
32  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9001 TLV9002 TLV9004  
 
TLV9001, TLV9002, TLV9004  
www.ti.com  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
10 Power Supply Recommendations  
The TLV900x family is specified for operation from 1.8 V to 5.5 V (±0.9 V to ±2.75 V); many specifications apply  
from –40°C to 125°C. The Typical Characteristics section presents parameters that may exhibit significant  
variance with regard to operating voltage or temperature.  
CAUTION  
Supply voltages larger than 6 V may permanently damage the device; see the  
Absolute Maximum Ratings table.  
Place 0.1-µF bypass capacitors close to the power-supply pins to reduce coupling errors from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see the Layout  
Guidelines section.  
10.1 Input and ESD Protection  
The TLV900x family incorporates internal ESD protection circuits on all pins. For input and output pins, this  
protection primarily consists of current-steering diodes connected between the input and power-supply pins.  
These ESD protection diodes provide in-circuit, input overdrive protection, as long as the current is limited to  
10 mA. Figure 43 shows how a series input resistor can be added to the driven input to limit the input current.  
The added resistor contributes thermal noise at the amplifier input and the value must be kept to a minimum in  
noise-sensitive applications.  
V+  
IOVERLOAD  
10-mA maximum  
VOUT  
Device  
VIN  
5 kW  
Figure 43. Input Current Protection  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: TLV9001 TLV9002 TLV9004  
 
TLV9001, TLV9002, TLV9004  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:  
Noise can propagate into analog circuitry through the power connections of the board and propagate to  
the power pins of the op amp itself. Bypass capacitors are used to reduce the coupled noise by providing  
a low-impedance path to ground.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is adequate for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground  
planes. A ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise  
pickup. Take care to physically separate digital and analog grounds, paying attention to the flow of the  
ground current.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If these traces cannot be kept separate, crossing the sensitive trace at a 90 degree angle is  
much better as opposed to running the traces in parallel with the noisy trace.  
Place the external components as close to the device as possible, as shown in Figure 45. Keeping RF  
and RG close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring may significantly  
reduce leakage currents from nearby traces that are at different potentials.  
Cleaning the PCB following board assembly is recommended for best performance.  
Any precision integrated circuit can experience performance shifts resulting from moisture ingress into the  
plastic package. Following any aqueous PCB cleaning process, baking the PCB assembly is  
recommended to remove moisture introduced into the device packaging during the cleaning process. A  
low-temperature, post-cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.  
11.2 Layout Example  
VIN 1  
VIN 2  
+
+
VOUT 1  
VOUT 2  
RG  
RG  
RF  
RF  
Figure 44. Schematic Representation for Figure 45  
Place components  
close to device and to  
each other to reduce  
parasitic errors.  
OUT 1  
Use low-ESR,  
ceramic bypass  
capacitor . Place as  
close to the device  
as possible .  
VS+  
GND  
OUT1  
V+  
RF  
RG  
OUT 2  
GND  
IN1œ  
IN1+  
Vœ  
OUT2  
IN2œ  
IN2+  
RF  
VIN 1  
GND  
RG  
VIN 2  
Keep input traces short  
and run the input traces  
as far away from  
the supply lines  
Use low-ESR,  
GND  
ceramic bypass  
capacitor . Place as  
close to the device  
as possible .  
VSœ  
Ground (GND) plane on another layer  
as possible .  
Figure 45. Layout Example  
34  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: TLV9001 TLV9002 TLV9004  
 
TLV9001, TLV9002, TLV9004  
www.ti.com  
SBOS833O OCTOBER 2017REVISED APRIL 2020  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, EMI Rejection Ratio of Operational Amplifiers  
12.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
Table 2. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
TLV9001  
TLV9002  
TLV9004  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.4 Support Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 Trademarks  
E2E is a trademark of Texas Instruments.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
All other trademarks are the property of their respective owners.  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most-  
current data available for the designated devices. This data is subject to change without notice and without  
revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: TLV9001 TLV9002 TLV9004  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Feb-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTLV9002SIYCKR  
ACTIVE  
DSBGA  
YCK  
9
3000 RoHS (In work)  
& Non-Green  
Call TI  
Call TI  
-40 to 125  
TLV9001IDBVR  
TLV9001IDCKR  
TLV9001IDPWR  
TLV9001SIDBVR  
TLV9001SIDCKR  
TLV9001TIDCKR  
TLV9001UIDBVR  
TLV9002IDDFR  
TLV9002IDGKR  
TLV9002IDGKT  
TLV9002IDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SC70  
DBV  
DCK  
DPW  
DBV  
DCK  
DCK  
DBV  
DDF  
DGK  
DGK  
D
5
5
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
SN  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1OGF  
1BZ  
X2SON  
SOT-23  
SC70  
5
NIPDAUAG  
NIPDAU  
SN  
DF  
6
1OJF  
1F8  
6
SC70  
5
SN  
1D6  
SOT-23  
5
NIPDAU  
NIPDAU  
NIPDAUAG  
NIPDAUAG  
SN  
1ODF  
T902  
1GNX  
1GNX  
ACTIVE SOT-23-THIN  
8
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
SOIC  
8
8
250  
RoHS & Green  
8
2500 RoHS & Green  
3000 RoHS & Green  
TL9002  
1GMH  
1GMH  
9002  
TLV9002IDSGR  
TLV9002IDSGT  
TLV9002IPWR  
WSON  
WSON  
TSSOP  
VSSOP  
X2QFN  
DSG  
DSG  
PW  
8
NIPDAU  
NIPDAU  
NIPDAU | SN  
NIPDAUAG  
NIPDAUAG  
8
250  
RoHS & Green  
8
2000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
TLV9002SIDGSR  
TLV9002SIRUGR  
DGS  
RUG  
10  
10  
1GDX  
ENF  
TLV9002SIYCKR  
TLV9004IDR  
PREVIEW  
ACTIVE  
DSBGA  
SOIC  
YCK  
D
9
3000 RoHS & Green  
2500 RoHS & Green  
SNAGCU  
NIPDAU  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
JK  
14  
TLV9004  
TLV9004IPWR  
ACTIVE  
TSSOP  
PW  
14  
2000 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
-40 to 125  
TLV9004  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Feb-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV9004IRTER  
TLV9004IRUCR  
TLV9004SIRTER  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
QFN  
RTE  
RUC  
RTE  
16  
14  
16  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
T9004  
NIPDAU  
NIPDAU  
1DC  
WQFN  
T9004S  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Feb-2021  
OTHER QUALIFIED VERSIONS OF TLV9002, TLV9004 :  
Automotive: TLV9002-Q1, TLV9004-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Dec-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV9001IDBVR  
TLV9001IDCKR  
TLV9001IDPWR  
TLV9001SIDBVR  
TLV9001SIDCKR  
TLV9001TIDCKR  
TLV9001UIDBVR  
TLV9002IDDFR  
SOT-23  
SC70  
DBV  
DCK  
DPW  
DBV  
DCK  
DCK  
DBV  
DDF  
5
5
5
6
6
5
5
8
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
178.0  
178.0  
180.0  
178.0  
178.0  
180.0  
180.0  
8.4  
9.0  
8.4  
8.4  
9.0  
9.0  
8.4  
8.4  
3.2  
2.4  
0.91  
3.2  
2.4  
2.4  
3.2  
3.2  
3.2  
2.5  
0.91  
3.2  
2.5  
2.5  
3.2  
3.2  
1.4  
1.2  
0.5  
1.4  
1.2  
1.2  
1.4  
1.4  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q2  
Q3  
Q3  
Q3  
Q3  
Q3  
X2SON  
SOT-23  
SC70  
SC70  
SOT-23  
SOT-  
23-THIN  
TLV9002IDGKR  
TLV9002IDGKT  
TLV9002IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
2500  
250  
330.0  
330.0  
330.0  
180.0  
180.0  
330.0  
330.0  
178.0  
330.0  
12.4  
12.4  
15.4  
8.4  
5.3  
5.3  
6.4  
2.3  
2.3  
7.0  
5.3  
1.75  
6.4  
3.4  
3.4  
5.2  
2.3  
2.3  
3.6  
3.4  
2.25  
5.2  
1.4  
1.4  
8.0  
8.0  
8.0  
4.0  
4.0  
8.0  
8.0  
4.0  
8.0  
12.0  
12.0  
12.0  
8.0  
Q1  
Q1  
Q1  
Q2  
Q2  
Q1  
Q1  
Q1  
Q1  
8
2500  
3000  
250  
2.1  
TLV9002IDSGR  
TLV9002IDSGT  
TLV9002IPWR  
TLV9002SIDGSR  
TLV9002SIRUGR  
TLV9004IDR  
WSON  
WSON  
TSSOP  
VSSOP  
X2QFN  
SOIC  
DSG  
DSG  
PW  
8
1.15  
1.15  
1.6  
8
8.4  
8.0  
8
2000  
2500  
3000  
2500  
12.4  
12.4  
8.4  
12.0  
12.0  
8.0  
DGS  
RUG  
D
10  
10  
14  
1.4  
0.56  
2.1  
15.4  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Dec-2020  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV9004IDR  
TLV9004IPWR  
TLV9004IRTER  
TLV9004IRUCR  
TLV9004SIRTER  
SOIC  
TSSOP  
WQFN  
QFN  
D
14  
14  
16  
14  
16  
2500  
2000  
3000  
3000  
3000  
330.0  
330.0  
330.0  
180.0  
330.0  
16.4  
12.4  
12.4  
9.5  
6.5  
6.9  
9.0  
5.6  
2.1  
1.6  
1.1  
0.5  
1.1  
8.0  
8.0  
8.0  
4.0  
8.0  
16.0  
12.0  
12.0  
8.0  
Q1  
Q1  
Q2  
Q2  
Q2  
PW  
RTE  
RUC  
RTE  
3.3  
3.3  
2.16  
3.3  
2.16  
3.3  
WQFN  
12.4  
12.0  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV9001IDBVR  
TLV9001IDCKR  
TLV9001IDPWR  
TLV9001SIDBVR  
TLV9001SIDCKR  
TLV9001TIDCKR  
TLV9001UIDBVR  
TLV9002IDDFR  
TLV9002IDGKR  
TLV9002IDGKT  
TLV9002IDR  
SOT-23  
SC70  
DBV  
DCK  
DPW  
DBV  
DCK  
DCK  
DBV  
DDF  
DGK  
DGK  
D
5
5
5
6
6
5
5
8
8
8
8
8
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
2500  
250  
210.0  
190.0  
205.0  
210.0  
180.0  
190.0  
210.0  
210.0  
366.0  
366.0  
336.6  
210.0  
185.0  
190.0  
200.0  
185.0  
180.0  
190.0  
185.0  
185.0  
364.0  
364.0  
336.6  
185.0  
35.0  
30.0  
33.0  
35.0  
18.0  
30.0  
35.0  
35.0  
50.0  
50.0  
41.3  
35.0  
X2SON  
SOT-23  
SC70  
SC70  
SOT-23  
SOT-23-THIN  
VSSOP  
VSSOP  
SOIC  
2500  
3000  
TLV9002IDSGR  
WSON  
DSG  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Dec-2020  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV9002IDSGT  
TLV9002IPWR  
TLV9002SIDGSR  
TLV9002SIRUGR  
TLV9004IDR  
WSON  
TSSOP  
VSSOP  
X2QFN  
SOIC  
DSG  
PW  
DGS  
RUG  
D
8
250  
210.0  
366.0  
366.0  
205.0  
336.6  
853.0  
366.0  
367.0  
205.0  
367.0  
185.0  
364.0  
364.0  
200.0  
336.6  
449.0  
364.0  
367.0  
200.0  
367.0  
35.0  
50.0  
50.0  
33.0  
41.3  
35.0  
50.0  
35.0  
30.0  
35.0  
8
2000  
2500  
3000  
2500  
2500  
2000  
3000  
3000  
3000  
10  
10  
14  
14  
14  
16  
14  
16  
TLV9004IDR  
SOIC  
D
TLV9004IPWR  
TLV9004IRTER  
TLV9004IRUCR  
TLV9004SIRTER  
TSSOP  
WQFN  
QFN  
PW  
RTE  
RUC  
RTE  
WQFN  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
2X 0.95  
1.9  
3.05  
2.75  
1.9  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/E 09/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/E 09/2019  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/E 09/2019  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/B 03/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/B 03/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/B 03/2018  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DGS0010A  
VSSOP - 1.1 mm max height  
S
C
A
L
E
3
.
2
0
0
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
5.05  
4.75  
TYP  
PIN 1 ID  
AREA  
A
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.1  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.7  
0.4  
0 - 8  
DETAIL A  
TYPICAL  
4221984/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
(R0.05)  
TYP  
SYMM  
10X (0.3)  
1
5
10  
SYMM  
6
8X (0.5)  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221984/A 05/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
SYMM  
(R0.05) TYP  
10X (0.3)  
8X (0.5)  
1
5
10  
SYMM  
6
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221984/A 05/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
PIN 1 INDEX AREA  
2.1  
1.9  
0.32  
0.18  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
8X  
0.4  
0.2  
PIN 1 ID  
8X  
0.1  
C A B  
C
0.05  
4218900/D 04/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/D 04/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/D 04/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
PW0008A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
8
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
A
0.1 C  
6X 0.65  
8
5
1
3.1  
2.9  
NOTE 3  
2X  
1.95  
4
0.30  
0.19  
8X  
4.5  
4.3  
1.2 MAX  
B
0.1  
C A  
B
NOTE 4  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
0 - 8  
DETAIL A  
TYPICAL  
4221848/A 02/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0008A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
8X (1.5)  
SYMM  
8X (0.45)  
(R0.05)  
1
4
TYP  
8
SYMM  
6X (0.65)  
5
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221848/A 02/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0008A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
8X (1.5)  
SYMM  
(R0.05) TYP  
8X (0.45)  
1
4
8
SYMM  
6X (0.65)  
5
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221848/A 02/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DDF0008A  
SOT-23 - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC SMALL OUTLINE  
C
2.95  
2.65  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
6X 0.65  
8
1
2.95  
2.85  
NOTE 3  
2X  
1.95  
4
5
0.4  
0.2  
8X  
0.1  
C A  
B
1.65  
1.55  
B
1.1 MAX  
0.20  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.1  
0.0  
0 - 8  
0.6  
0.3  
DETAIL A  
TYPICAL  
4222047/B 11/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
1
8
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(R0.05)  
TYP  
(2.6)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222047/B 11/2015  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
(R0.05) TYP  
8
1
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4222047/B 11/2015  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
X2QFN - 0.4 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RUC0014A  
A
2.1  
1.9  
B
2.1  
1.9  
PIN 1 INDEX AREA  
0.4 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
(0.15) TYP  
2X 0.4  
6
7
8X 0.4  
5
8
SYMM  
1.6  
12  
1
0.25  
0.15  
14  
13  
14X  
0.5  
PIN 1 ID  
SYMM  
(45oX0.1)  
0.1  
C A B  
C
14X  
0.3  
0.05  
4220584/A 05/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
X2QFN - 0.4 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RUC0014A  
SYMM  
14X (0.6)  
14X (0.2)  
8X (0.4)  
SYMM  
(1.6) (1.8)  
(R0.05)  
2X (0.4)  
(1.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 23X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
EXPOSED METAL  
EXPOSED METAL  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4220584/A 05/2019  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
X2QFN - 0.4 mm max height  
RUC0014A  
PLASTIC QUAD FLAT PACK- NO LEAD  
SYMM  
14X (0.6)  
14X (0.2)  
8X (0.4)  
SYMM  
(1.6) (1.8)  
(R0.05)  
2X (0.4)  
(1.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.100mm THICK STENCIL  
SCALE: 23X  
4220584/A 05/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DPW0005A  
X2SON - 0.4 mm max height  
S
C
A
L
E
1
2
.
0
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
0.85  
0.75  
A
B
PIN 1 INDEX AREA  
0.85  
0.75  
0.4 MAX  
C
SEATING PLANE  
NOTE 3  
(0.1)  
0.05  
0.00  
(0.25)  
4X (0.05)  
0.25 0.1  
2
1
4
5
NOTE 3  
2X  
0.48  
3
2X (0.26)  
0.27  
0.17  
4X  
0.27  
0.17  
0.1 C A B  
0.05 C  
(0.06)  
3X  
0.32  
0.23  
4223102/B 09/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The size and shape of this feature may vary.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DPW0005A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.78)  
(
0.1)  
SYMM  
4X (0.42)  
VIA  
0.05 MIN  
ALL AROUND  
TYP  
1
5
4X (0.22)  
SYMM  
4X (0.26)  
(0.48)  
3
2
4
(R0.05) TYP  
SOLDER MASK  
OPENING, TYP  
4X (0.06)  
(
0.25)  
(0.21) TYP  
EXPOSED METAL  
CLEARANCE  
METAL UNDER  
SOLDER MASK  
TYP  
LAND PATTERN EXAMPLE  
SOLDER MASK DEFINED  
SCALE:60X  
4223102/B 09/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DPW0005A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
4X (0.42)  
4X (0.06)  
5
1
4X (0.22)  
SYMM  
(
0.24)  
4X (0.26)  
(0.21)  
(0.48)  
TYP  
SOLDER MASK  
EDGE  
3
2
4
(R0.05) TYP  
SYMM  
(0.78)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
92% PRINTED SOLDER COVERAGE BY AREA  
SCALE:100X  
4223102/B 09/2017  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TLV9001IDCKR

单通道、1MHz、轨到轨输入和输出 1.8V 至 5.5V 运算放大器 | DCK | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9001IDPWR

单通道、1MHz、轨到轨输入和输出 1.8V 至 5.5V 运算放大器 | DPW | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9001QDBVRQ1

汽车类、单通道、5.5V、1MHz 轨到轨输入和输出运算放大器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9001QDCKRQ1

汽车类、单通道、5.5V、1MHz 轨到轨输入和输出运算放大器 | DCK | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9001SIDBVR

单通道、1MHz、轨到轨输入和输出 1.8V 至 5.5V 运算放大器 | DBV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9001SIDCKR

TLV900x Low-Power, RRIO, 1-MHz Operational Amplifier for Cost-Sensitive Systems

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9001TIDCKR

单通道、1MHz、轨到轨输入和输出 1.8V 至 5.5V 运算放大器 | DCK | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9001UIDBVR

单通道、1MHz、轨到轨输入和输出 1.8V 至 5.5V 运算放大器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9001ZIDPWR

单通道、1MHz、轨到轨输入和输出 1.8V 至 5.5V 运算放大器 | DPW | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9001_V02

TLV900x Low-Power, RRIO, 1-MHz Operational Amplifier for Cost-Sensitive Systems

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9001_V03

TLV900x Low-Power, RRIO, 1-MHz Operational Amplifier for Cost-Sensitive Systems

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV9002

适用于成本优化型应用的双路、5.5V、1MHz、RRIO 运算放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI