TM16SR72JPU-10 [TI]

16MX72 SYNCHRONOUS DRAM MODULE, DMA168, DIMM-168;
TM16SR72JPU-10
型号: TM16SR72JPU-10
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

16MX72 SYNCHRONOUS DRAM MODULE, DMA168, DIMM-168

时钟 动态存储器 内存集成电路
文件: 总23页 (文件大小:354K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TM8SR64JPU, TM16SR64JPU  
TM8SR72JPU, TM16SR72JPU  
SYNCHRONOUS DYNAMIC RAM MODULES  
SMMS688B – AUGUST 1997 – REVISED FEBRUARY 1998  
Organization:  
Single 3.3-V Power Supply  
– TM8SR64JPU . . . 8 388 608 x 64 Bits  
– TM16SR64JPU . . . 16 777 216 x 64 Bits  
– TM8SR72JPU . . . 8 388 608 x 72 Bits  
– TM16SR72JPU . . . 16 777 216 x 72 Bits  
(±10% Tolerance)  
Byte-Read/Write Capability  
High-Speed, Low-Noise Low-Voltage TTL  
(LVTTL) Interface  
Designed for 66-MHz 4-Clock Systems  
Read Latencies 2 and 3 Supported  
JEDEC 168-Pin Dual-In-Line Memory  
Module (DIMM) Without Buffer for Use With  
Socket  
Supports Burst-Interleave and  
Burst-Interrupt Operations  
Burst Length Programmable to 1, 2, 4,  
and 8  
TM8SR64JPU — Uses Eight 64M-Bit  
Synchronous Dynamic RAMs (SDRAMs)  
(8M × 8-Bit) in Plastic Thin Small-Outline  
Packages (TSOPs)  
Four Banks for On-Chip Interleaving  
(Gapless Access)  
Ambient Temperature Range  
0°C to 70°C  
TM16SR64JPU — Uses Sixteen 64M-Bit  
SDRAMs (8M × 8-Bit) in Plastic TSOPs  
Gold-Plated Contacts  
Pipeline Architecture  
TM8SR72JPU — Uses Nine 64M-Bit  
SDRAMs (8M × 8-Bit) in Plastic TSOPs  
TM16SR72JPU — Uses Eighteen 64M-Bit  
SDRAMs (8M × 8-Bit) in Plastic TSOPs  
Serial Presence Detect (SPD) Using  
EEPROM  
Performance Ranges:  
SYNCHRONOUS  
CLOCK CYCLE  
TIME  
ACCESS TIME  
CLOCK TO  
OUTPUT  
REFRESH  
INTERVAL  
t
t
t
t
t
CK3  
10 ns  
CK2  
15 ns  
AC3  
8 ns  
AC2  
9 ns  
REF  
64 ms  
’xSRxxJPU-10  
description  
TheTM8SR64JPUisa64M-byte, 168-pindual-in-linememorymodule(DIMM). TheDIMMiscomposedofeight  
TMS664814DGE, 8388608 x 8-bit SDRAMs, each in a 400-mil, 54-pin plastic thin small-outline package  
(TSOP) mounted on a substrate with decoupling capacitors. See the TMS664814 data sheet (literature number  
SMOS690).  
The TM16SR64JPU is a 128M-byte, 168-pin DIMM. The DIMM is composed of sixteen TMS664814DGE,  
8388608 x 8-bit SDRAMs, each in a 400-mil, 54-pin plastic TSOP mounted on a substrate with decoupling  
capacitors. See the TMS664814 data sheet (literature number SMOS690).  
The TM8SR72JPU is a 64M-byte, 168-pin DIMM. The DIMM is composed of nine TMS664814DGE,  
8388608 x 8-bit SDRAMs, each in a 400-mil, 54-pin plastic thin small-outline package (TSOP) mounted on a  
substrate with decoupling capacitors. See the TMS664814 data sheet (literature number SMOS690).  
The TM16SR72JPU is a 128M-byte, 168-pin DIMM. The DIMM is composed of eighteen TMS664814DGE,  
8388608 x 8-bit SDRAMs, each in a 400-mil, 54-pin plastic TSOP mounted on a substrate with decoupling  
capacitors. See the TMS664814 data sheet (literature number SMOS690).  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1998, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TM8SR64JPU, TM16SR64JPU  
TM8SR72JPU, TM16SR72JPU  
SYNCHRONOUS DYNAMIC RAM MODULES  
SMMS688B – AUGUST 1997 – REVISED FEBRUARY 1998  
operation  
The TM8SR64JPU operates as eight TMS664814DGE devices that are connected as shown in the  
TM8SR64JPU functional block diagram. The TM16SR64JPU operates as 16 TMS664814DGE devices  
connected as shown in the TM16SR64JPU functional block diagram. The TM8SR72JPU operates as nine  
TMS664814DGE devices that are connected as shown in the TM8SR72JPU functional block diagram. The  
TM16SR72JPU operates as 18 TMS664814DGE devices connected as shown in the TM16SR72JPU  
functional block diagram.  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TM8SR64JPU, TM16SR64JPU  
TM8SR72JPU, TM16SR72JPU  
SYNCHRONOUS DYNAMIC RAM MODULES  
SMMS688B – AUGUST 1997 – REVISED FEBRUARY 1998  
DUAL-IN-LINE MEMORY MODULE  
(TOP VIEW)  
TM8SR64JPU TM16SR64JPU  
(SIDE VIEW) (SIDE VIEW)  
PIN NOMENCLATURE  
A[0:11]  
A[0:8]  
Row-Address Inputs  
Column-Address Inputs  
Bank-Select Zero  
Bank-Select One  
Column-Address Strobe  
Check Bit In/Check Bit Out  
Clock Enable  
A13/BA0  
A12/BA1  
CAS  
CB[0:7]  
CKE[0:1]  
CK[0:3]  
DQ[0:63]  
DQMB[0:7]  
1
System Clock  
10  
11  
Data-In/Data-Out  
Data-In/Data-Out  
Mask Enable  
NC  
No Connect  
RAS  
S[0:3]  
SA[0:2]  
Row-Address Strobe  
Chip-Select  
Serial Presence Detect (SPD)  
Device Address Input  
SPD Clock  
SPD Address/Data  
3.3-V Supply  
Ground  
SCL  
SDA  
V
V
WE  
DD  
SS  
Write Enable  
40  
41  
84  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TM8SR64JPU, TM16SR64JPU  
TM8SR72JPU, TM16SR72JPU  
SYNCHRONOUS DYNAMIC RAM MODULES  
SMMS688B – AUGUST 1997 – REVISED FEBRUARY 1998  
Pin Assignments  
PIN  
PIN  
NAME  
PIN  
NAME  
PIN  
NAME  
NO.  
1
NAME  
NO.  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
NO.  
85  
NO.  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
V
SS  
V
SS  
V
SS  
V
SS  
2
DQ0  
DQ1  
DQ2  
DQ3  
NC  
S2  
86  
DQ32  
DQ33  
DQ34  
DQ35  
CKE0  
S3  
3
87  
4
DQMB2  
DQMB3  
NC  
88  
DQMB6  
DQMB7  
NC  
5
89  
6
V
DD  
90  
V
DD  
7
DQ4  
DQ5  
DQ6  
DQ7  
DQ8  
V
DD  
91  
DQ36  
DQ37  
DQ38  
DQ39  
DQ40  
V
DD  
8
NC  
NC  
92  
NC  
NC  
9
93  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
CB2  
CB3  
94  
CB6  
CB7  
95  
V
SS  
V
SS  
96  
V
SS  
V
SS  
DQ9  
DQ10  
DQ11  
DQ12  
DQ13  
DQ16  
DQ17  
DQ18  
DQ19  
97  
DQ41  
DQ42  
DQ43  
DQ44  
DQ45  
DQ48  
DQ49  
DQ50  
DQ51  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
V
DD  
V
DD  
V
DD  
DQ20  
NC  
V
DD  
DQ52  
NC  
DQ14  
DQ15  
CB0  
DQ46  
DQ47  
CB4  
NC  
NC  
CKE1  
NC  
CB1  
V
SS  
CB5  
V
SS  
V
SS  
DQ21  
DQ22  
DQ23  
V
SS  
DQ53  
DQ54  
DQ55  
NC  
NC  
NC  
NC  
V
DD  
V
SS  
V
DD  
V
SS  
WE  
DQ24  
DQ25  
DQ26  
DQ27  
CAS  
DQ56  
DQ57  
DQ58  
DQ59  
DQMB0  
DQMB1  
S0  
DQMB4  
DQMB5  
S1  
NC  
V
DD  
RAS  
V
DD  
V
SS  
DQ28  
DQ29  
DQ30  
DQ31  
V
SS  
DQ60  
DQ61  
DQ62  
DQ63  
A0  
A2  
A1  
A3  
A4  
A5  
A6  
V
SS  
A7  
V
SS  
A8  
CK2  
NC  
A9  
CK3  
NC  
A10  
A12/BA1  
A13/BA0  
A11  
NC  
SA0  
SA1  
SA2  
V
V
SDA  
SCL  
V
DD  
DD  
CK1  
NC  
DD  
CK0  
V
DD  
V
DD  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TM8SR64JPU, TM16SR64JPU  
TM8SR72JPU, TM16SR72JPU  
SYNCHRONOUS DYNAMIC RAM MODULES  
SMMS688B – AUGUST 1997 – REVISED FEBRUARY 1998  
dual-in-line memory module and components  
The dual-in-line memory module and components include:  
PC substrate: 1,27 ± 0,1 mm (0.05 inch) nominal thickness; 0.005 inch/inch maximum warpage  
Bypass capacitors: Multilayer ceramic  
Contact area: Nickel plate and gold plate over copper  
functional block diagram for the TM8SR64JPU  
S0  
R
R
C
C
CK: U0, U4  
CK: U1, U5  
CS  
CS  
CK0  
R
R
C
C
U0  
U4  
DQMB0  
DQ[0:7]  
DQM  
DQMB4  
DQM  
CK: U2, U6  
CK: U3, U7  
R
R
CK1  
CK2  
8
8
DQ[0:7]  
DQ[32:39]  
DQ[0:7]  
R
R
C
C
C
C
CS  
CS  
CK3  
U1  
U5  
DQMB1  
DQM  
DQMB5  
DQM  
R
R
8
8
DQ[8:15]  
DQ[0:7]  
DQ[40:47]  
DQ[0:7]  
R = 10  
R
= 10 Ω  
C
C = 10 pF  
S2  
CS  
CS  
V
DD  
U[0:7]  
U2  
U6  
DQMB2  
DQM  
DQMB6  
DQM  
Two 0.33 µF  
per SDRAM  
R
R
8
8
DQ[16:23]  
DQ[0:7]  
DQ[48:55]  
V
SS  
U[0:7]  
DQ[0:7]  
CS  
CS  
SPD EEPROM  
U3  
U7  
DQMB3  
DQM  
DQMB7  
DQM  
SCL  
SDA  
R
R
8
8
DQ[24:31]  
DQ[0:7]  
DQ[56:63]  
DQ[0:7]  
A0  
A1  
A2  
SA0 SA1 SA2  
RAS  
CAS  
WE  
RAS: SDRAM U[0:7]  
CAS: SDRAM U[0:7]  
WE: SDRAM U[0:7]  
CKE: SDRAM U[0:7]  
A[0:13]: SDRAM U[0:7]  
CKE0  
A[0:13]  
Legend:  
CS = Chip select  
SPD = Serial presence detect  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TM8SR64JPU, TM16SR64JPU  
TM8SR72JPU, TM16SR72JPU  
SYNCHRONOUS DYNAMIC RAM MODULES  
SMMS688B – AUGUST 1997 – REVISED FEBRUARY 1998  
functional block diagram for the TM16SR64JPU  
S1  
S0  
V
U[0:7], UB[0:7]  
Two 0.33 µF  
per SDRAM  
U[0:7], UB[0:7]  
DD  
CS  
CS  
CS  
CS  
V
SS  
U0  
UB0  
U4  
UB4  
R = 10 Ω  
Rc = 10 Ω  
DQMB0  
DQ[0:7]  
DQM  
DQM  
DQMB4  
DQM  
DQM  
R
R
8
8
DQ[0:7]  
DQ[0:7]  
DQ[32:39]  
DQ[0:7]  
DQ[0:7]  
V
DD  
CS  
CS  
CS  
CS  
10 K Ω  
CKE1  
CKE0  
CKE: UB[0:7]  
CKE: U[0:7]  
U1  
UB1  
U5  
UB5  
DQMB1  
DQM  
DQM  
DQMB5  
DQM  
DQM  
R
R
8
8
RAS  
CAS  
RAS: U[0:7], UB[0:7]  
CAS: U[0:7], UB[0:7]  
DQ[8:15]  
DQ[0:7]  
DQ[0:7]  
DQ[40:47]  
DQ[0:7]  
DQ[0:7]  
WE  
WE: U[0:7], UB[0:7]  
A[0:13]  
A[0:13]: U[0:7], UB[0:7]  
R
C
S3  
S2  
CK: U0, U4  
CK: U1, U5  
R
R
R
CK0  
CK1  
C
C
C
CS  
CS  
CS  
CS  
CK: UB0, UB4  
CK: UB1, UB5  
U2  
UB2  
U6  
UB6  
R
R
R
R
C
C
C
C
CK: U2, U6  
CK: U3, U7  
DQMB2  
DQM  
DQM  
DQMB6  
DQM  
DQM  
CK2  
CK3  
R
R
8
8
DQ[16:23]  
DQ[0:7]  
DQ[0:7]  
DQ[48:55]  
DQ[0:7]  
DQ[0:7]  
CK: UB2, UB6  
CK: UB3, UB7  
CS  
CS  
CS  
CS  
U3  
U7  
UB3  
UB7  
SPD EEPROM  
DQMB3  
DQM  
DQMB7  
DQM  
DQM  
DQM  
SCL  
SDA  
R
R
8
8
DQ[24:31]  
DQ[0:7]  
DQ[56:63]  
DQ[0:7]  
DQ[0:7]  
DQ[0:7]  
A0  
A1  
A2  
SA0 SA1 SA2  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TM8SR64JPU, TM16SR64JPU  
TM8SR72JPU, TM16SR72JPU  
SYNCHRONOUS DYNAMIC RAM MODULES  
SMMS688B – AUGUST 1997 – REVISED FEBRUARY 1998  
functional block diagram for the TM8SR72JPU  
S0  
R
R
B
B
U0, U4  
CK0  
CS  
U0  
CS  
U1, U5, U8  
U4  
U5  
R
R
DQMB0  
DQ[0:7]  
DQM  
DQMB4  
DQM  
C
C
R
R
R
U2, U6  
U3, U7  
8
8
8
DQ[0:7]  
DQ[32:39]  
DQ[0:7]  
CK1  
CK2  
R
R
C
C
CS  
CS  
C
C
U1  
U8  
DQMB1  
DQM  
DQMB5  
DQM  
R
R
DQ[8:15]  
8
8
DQ[0:7]  
DQ[40:47]  
DQ[0:7]  
CK3  
R = 10 Ω  
CS  
R
R
= 5 Ω  
= 10Ω  
B
C
DQMB1  
CB[0:7]  
DQM  
C = 10 pF  
DQ[0:7]  
S2  
V
DD  
U[0:8]  
Two 0.33 µF  
per SDRAM  
CS  
CS  
U2  
U3  
U6  
U7  
DQMB2  
DQM  
DQMB6  
DQM  
V
SS  
U[0:8]  
R
R
R
R
8
8
8
8
DQ[16:23]  
DQ[0:7]  
DQ[48:55]  
DQ[0:7]  
CS  
CS  
DQMB3  
DQM  
DQMB7  
DQM  
DQ[24:31]  
DQ[0:7]  
DQ[56:63]  
DQ[0:7]  
RAS  
CAS  
RAS: SDRAM U[0:8]  
CAS: SDRAM U[0:8]  
WE: SDRAM U[0:8]  
CKE: SDRAM U[0:8]  
A[0:13]: SDRAM U[0:8]  
SPD EEPROM  
SCL  
SDA  
A0  
A1  
A2  
WE  
SA0 SA1 SA2  
CKE0  
A[0:13]  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TM8SR64JPU, TM16SR64JPU  
TM8SR72JPU, TM16SR72JPU  
SYNCHRONOUS DYNAMIC RAM MODULES  
SMMS688B – AUGUST 1997 – REVISED FEBRUARY 1998  
functional block diagram for the TM16SR72JPU  
S1  
S0  
V
U[0:8], UB[0:8]  
Two 0.33 µF  
per SDRAM  
U[0:8], UB[0:8]  
DD  
CS  
CS  
CS  
CS  
V
SS  
U0  
UB0  
U4  
UB4  
R = 10 Ω  
DQMB0  
DQ[0:7]  
DQM  
DQM  
DQMB4  
DQM  
DQM  
R
R
= 10Ω  
= 5Ω  
C
B
R
R
R
R
8
8
8
8
DQ[0:7]  
DQ[0:7]  
DQ[32:39]  
DQ[0:7]  
DQ[0:7]  
R
R
B
CK: U0, U4  
CS  
CS  
CS  
CS  
CK0  
CK1  
B
CK: U1, U5, U8  
R
R
B
U1  
UB1  
U5  
UB5  
CK: UB0, UB4  
DQMB1  
DQM  
DQM  
DQMB5  
DQM  
DQM  
B
CK: UB1, UB5, UB8  
R
8
DQ[8:15]  
DQ[0:7]  
DQ[0:7]  
DQ[40:47]  
DQ[0:7]  
DQ[0:7]  
R
R
R
R
C
C
C
C
CK: U2, U6  
CK: U3, U7  
CS  
CS  
CK2  
CK3  
U8  
UB8  
CK: UB2, UB6  
CK: UB3, UB7  
DQMB1  
CB[0:7]  
DQM  
DQM  
DQ[0:7]  
DQ[0:7]  
V
DD  
S3  
S2  
10 K Ω  
CKE: UB[0:8]  
CKE1  
CKE0  
RAS  
CKE: U[0:8]  
CS  
CS  
CS  
CS  
RAS: U[0:8], UB[0:8]  
CAS: U[0:8], UB[0:8]  
WE: U[0:8], UB[0:8]  
A[0:13]: U[0:8], UB[0:8]  
U2  
UB2  
U6  
UB6  
CAS  
DQMB2  
DQM  
DQM  
DQMB6  
DQM  
DQM  
WE  
R
R
8
8
DQ[16:23]  
DQ[0:7]  
DQ[0:7]  
DQ[48:55]  
DQ[0:7]  
DQ[0:7]  
A[0:13]  
CS  
CS  
CS  
CS  
SPD EEPROM  
U3  
U7  
UB3  
UB7  
SDA  
SCL  
A0  
A1  
A2  
DQMB3  
DQM  
DQMB7  
DQM  
DQM  
DQM  
R
R
8
8
SA0 SA1 SA2  
DQ[24:31]  
DQ[0:7]  
DQ[56:63]  
DQ[0:7]  
DQ[0:7]  
DQ[0:7]  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TM8SR64JPU, TM16SR64JPU  
TM8SR72JPU, TM16SR72JPU  
SYNCHRONOUS DYNAMIC RAM MODULES  
SMMS688B – AUGUST 1997 – REVISED FEBRUARY 1998  
absolute maximum ratings over ambient temperature range (unless otherwise noted)  
Supply voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4.6 V  
DD  
Voltage range on any pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.5 V to 4.6 V  
Short-circuit output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
Power dissipation: TM8SR64JPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 W  
TM16SR64JPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 W  
TM8SR72JPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 W  
TM16SR72JPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 W  
Ambient temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
stg  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to V  
.
SS  
recommended operating conditions  
MIN NOM  
MAX  
UNIT  
V
V
V
V
V
V
Supply voltage  
3
3.3  
0
3.6  
DD  
Supply voltage  
V
SS  
High-level input voltage  
High-level input voltage for SPD device  
Low-level input voltage  
Ambient temperature  
2
2
V
DD  
+ 0.3  
V
IH  
5.5  
0.8  
70  
V
IH-SPD  
IL  
–0.3  
0
V
T
A
°C  
capacitance over recommended ranges of supply voltage and ambient temperature,  
f = 1 MHz (see Note 2)  
TMxSRxxJPU  
PARAMETER  
UNIT  
MIN  
MAX  
C
C
C
C
C
C
C
C
)
)
Input capacitance, CK input  
5
5
5
7
5
5
9
7
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
i(CK  
Input capacitance, address and control inputs: A0A13, RAS, CAS, WE  
Input capacitance, CKE input  
i(AC  
)
i(CKE  
Output capacitance  
o
)
Input capacitance, DQMBx input  
i(DQMBx  
)
Input capacitance, Sx input  
i(Sx  
)
SDA Input/output capacitance  
i/o(SDA  
)
Input capacitance, SA0, SA1, SA2, SCL inputs  
i(SPD  
Specifications in this table represent a single SDRAM device.  
NOTE 2: = 3.3 V ± 0.3 V. Bias on pins under test is 0 V.  
V
DD  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TM8SR64JPU, TM16SR64JPU  
TM8SR72JPU, TM16SR72JPU  
SYNCHRONOUS DYNAMIC RAM MODULES  
SMMS688B – AUGUST 1997 – REVISED FEBRUARY 1998  
electrical characteristics over recommended ranges of supply voltage and ambient temperature  
(unless otherwise noted) (see Note 3)  
’xSRxxJPU-10  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
V
V
High-level output voltage  
Low-level output voltage  
I
I
= – 2 mA  
= 2 mA  
2.4  
V
V
OH  
OH  
0.4  
10  
OL  
OL  
0 V < V < V  
All other pins = 0 V to V  
+ 0.3 V,  
I
DD  
I
I
Input current (leakage)  
Output current (leakage)  
µA  
DD  
+0.3 V,  
DD  
0 V < V < V  
Output disabled  
O
I
O
10  
105  
135  
µA  
mA  
mA  
Burst length = 1,  
CAS latency = 2  
CAS latency = 3  
t
t MIN  
RC RC  
I
Operating current  
CC1  
I
/I = 0 mA,  
OH OL  
(see Notes 4, 5, and 6)  
I
I
I
I
I
CKE V MAX, t  
= 15 ns (see Note 7)  
2
2
mA  
mA  
mA  
mA  
mA  
CC2P  
IL  
CK  
Precharge standby current in power-down mode  
CKE and CK V MAX, t  
= (see Note 8)  
CK  
CC2PS  
CC2N  
CC2NS  
CC3P  
IL  
CKE V MIN, t  
IH  
= 15 ns (see Note 7)  
40  
3
Precharge standby current in non-power-down  
mode  
CK  
t
= (see Note 8)  
CK  
CKE V MAX, t  
= 15 ns (see Notes 4 and 7)  
15  
IL  
CK  
Active standby current in power-down mode  
Active standby current in non-power-down mode  
CKE and CK V MAX, t  
(see Notes 4 and 8)  
= ∞  
CK  
IL  
I
I
I
15  
70  
20  
mA  
mA  
mA  
CC3PS  
CC3N  
CKE V MIN, t  
IH  
= 15 ns (see Notes 4 and 7)  
CK  
CKE V MIN, CK V MAX, t  
= ∞  
IH  
IL  
CK  
CC3NS  
(see Notes 4 and 8)  
Page burst, I  
/I  
= 0 mA  
OH OL  
CAS latency = 2  
CAS latency = 3  
130  
185  
mA  
mA  
All banks activated,  
= one cycle  
I
Burst current  
CC4  
n
CCD  
(see Notes 9 and 10)  
CAS latency = 2  
CAS latency = 3  
165  
195  
2
mA  
mA  
mA  
t
t  
MIN  
RC RC  
I
I
Auto-refresh current  
Self-refresh current  
CC5  
(see Notes 5 and 8)  
CKE V MAX  
IL  
CC6  
Specifications in this table represent a single SDRAM device.  
NOTES: 3. All specifications apply to the device after power-up initialization. All control and address inputs must be stable and valid.  
4. Only one bank is activated.  
5.  
t t MIN  
RC RC  
6. Control and address inputs change state twice during t  
.
RC  
7. Control and address inputs change state once every 30 ns.  
8. Control and address inputs do not change state (stable).  
9. Control and address inputs change once every cycle.  
10. Continuous burst access, n  
CCD  
= 1 cycle  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TM8SR64JPU, TM16SR64JPU  
TM8SR72JPU, TM16SR72JPU  
SYNCHRONOUS DYNAMIC RAM MODULES  
SMMS688B – AUGUST 1997 – REVISED FEBRUARY 1998  
ac timing requirements  
’xxSRxxJPU-10  
UNIT  
MIN  
15  
10  
3
MAX  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Cycle time, CK  
CAS latency = 2  
CAS latency = 3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CK2  
CK3  
CH  
Cycle time, CK  
Pulse duration, CK high  
Pulse duraction, CK low  
3
CL  
Access time, CK high to data out (see Note 11)  
Access time, CK high to data out (see Note 11)  
Hold time, CK high to data out  
CAS latency = 2  
CAS latency = 3  
9
8
AC2  
AC3  
OH  
LZ  
3
1
Delay time, CK high to DQ in low–impedance state (see Note 12)  
Delay time, CK high to DQ in high–impedance state (see Note 13)  
Setup time, address, control, and data input  
8
HZ  
3
1
IS  
Hold time, address, control, and data input  
IH  
Power down/self–refresh exit time  
10  
50  
80  
CESP  
RAS  
RC  
Delay time, ACTV command to DEAC or DCAB command  
10000  
Delay time, ACTV, MRS, REFR, or SLFR to ACTV, MRS, REFR, or SLFR command  
Delay time, ACTV command to READ, READ–P, WRT, or WRT–P command  
(see Note 14)  
t
30  
ns  
RCD  
t
t
t
t
t
t
t
Delay time, DEAC or DCAB command to ACTV, MRS, REFR, or SLFR command  
Delay time, ACTV command in one bank to ACTV command in the other bank  
Delay time, MRS command to ACTV, MRS, REFR, or SLFR command  
Final data out of READ–P operation to ACTV, MRS, SLFR, or REFR command  
Final data in of WRT–P operation to ACTV, MRS, SLFR, or REFR command  
Delay time, final data in of WRT operation to DEAC or DCAB command  
Transition time  
30  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
RP  
RRD  
RSA  
APR  
APW  
WR  
T
t
– (CL–1) t  
* CK  
RP  
t
+ 1 t  
RP  
10  
CK  
1
5
All references are made to the rising transition of CK unless otherwise noted.  
NOTES: 11. t is referenced from the rising transition of CK that precedes the data-out cycle. For example, the first data out t  
is referenced  
A
C
A
C
from the rising transition of CK that is read latency (one cycle after the READ command). Access time is measured at output  
reference level 1.4 V.  
12.  
13.  
t
is measured from the rising transition of CK that is read latency (one cycle after the READ command).  
(max) defines the time at which the outputs are no longer driven and is not referenced to output voltage levels.  
LZ  
t
HZ  
14. For read or write operations with automatic deactivate, t  
must be set to satisfy minimum t .  
RAS  
RCD  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TM8SR64JPU, TM16SR64JPU  
TM8SR72JPU, TM16SR72JPU  
SYNCHRONOUS DYNAMIC RAM MODULES  
SMMS688B – AUGUST 1997 – REVISED FEBRUARY 1998  
clock timing requirements  
’xxSRxxJPU-10  
UNIT  
MIN  
MAX  
t
Refresh interval  
64  
ms  
REF  
n
n
n
n
n
n
Delay time, READ or WRT command to an interrupting command  
Delay time, CS low or high to input enabled or inhibited  
1
0
1
1
0
2
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
CCD  
CDD  
CLE  
CWL  
DID  
0
1
Delay time, CKE high or low to CLK enabled or disabled  
Delay time, final data in of WRT operation to READ, READ-P, WRT, or WRT-P  
Delay time, ENBL or MASK command to enabled or masked data in  
Delay time, ENBL or MASK command to enabled or masked data out  
Delay time, DEAC or DCAB, command to DQ in  
0
2
DOD  
n
2
cycles  
HZP2  
high–impedance state  
CAS latency = 2  
Delay time, DEAC or DCAB, command to DQ in  
high–impedance state  
n
n
CAS latency = 3  
3
0
cycles  
cycles  
HZP3  
Delay time, WRT command to first data in  
0
WCD  
All references are made to the rising transition of CK unless otherwise noted.  
A CK cycle can be considered as contributing to a timing requirement for those parameters defined in cycle units only when not gated by CKE  
(those CK cycles occurring during the time when CKE is asserted low).  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TM8SR64JPU, TM16SR64JPU  
TM8SR72JPU, TM16SR72JPU  
SYNCHRONOUS DYNAMIC RAM MODULES  
SMMS688B – AUGUST 1997 – REVISED FEBRUARY 1998  
serial presence detect  
The serial presence detect (SPD) is contained in a 2K-bit serial EEPROM located on the module. The SPD  
nonvolatile EEPROM contains various data such as module configuration, SDRAM organization, and timing  
parameters (see tables below). Only the first 128 bytes are programmed by Texas Instruments, while the  
remaining 128 bytes are available for customer use. Programming is done through an IIC bus using the clock  
(SCL) and data (SDA) signals. All Texas Instruments modules comply with the current JEDEC SPD Standard.  
See the Texas Instruments Serial Presence Detect Technical Reference (literature number SMMU001) for  
further details.  
Tables in this section list the SPD contents as follows:  
Table 1TM8SR64JPU  
Table 3TM8SR72JPU  
Table 2TM16SR64JPU  
Table 4TM16SR72JPU  
Table 1. Serial Presence Detect Data for the TM8SR64JPU  
TM8SR64JPU-10  
ITEM  
BYTE  
NO.  
DESCRIPTION OF FUNCTION  
DATA  
80h  
08h  
04h  
0Ch  
09h  
01h  
40h  
00h  
01h  
A0h  
80h  
00h  
0
1
Defines number of bytes written into serial memory during module manufacturing  
128 bytes  
256 bytes  
SDRAM  
12  
Total number of bytes of SPD memory device  
Fundamental memory type (FPM, EDO, SDRAM, . . .)  
Number of row addresses on this assembly  
Number of column addresses on this assembly  
Number of module rows on this assembly  
2
3
4
9
5
1 bank  
64 bits  
6
Data width of this assembly  
7
Data width continuation  
8
Voltage interface standard of this assembly  
SDRAM cycle time at maximum supported CAS latency (CL), CL = X  
SDRAM access from clock at CL = X  
LVTTL  
9
t
= 10 ns  
= 8 ns  
CK  
10  
11  
t
AC  
DIMM configuration type (non-parity, parity, error correcting code [ECC])  
Non-Parity  
15.6 µs/  
self-refresh  
12  
Refresh rate/type  
80h  
13  
14  
15  
16  
17  
18  
19  
20  
SDRAM width, primary DRAM  
Error-checking SDRAM data width  
Minimum clock delay, back-to-back random column addresses  
Burst lengths supported  
x8  
N/A  
08h  
00h  
01h  
0Fh  
04h  
06h  
01h  
01h  
1 CK cycle  
1, 2, 4, 8  
4 banks  
2, 3  
Number of banks on each SDRAM device  
CAS latencies supported  
CS latency  
0
Write latency  
0
Non-buffered/  
Non-registered  
21  
SDRAM module attributes  
00h  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TM8SR64JPU, TM16SR64JPU  
TM8SR72JPU, TM16SR72JPU  
SYNCHRONOUS DYNAMIC RAM MODULES  
SMMS688B – AUGUST 1997 – REVISED FEBRUARY 1998  
serial presence detect (continued)  
Table 1. Serial Presence Detect Data for the TM8SR64JPU (Continued)  
TM8SR64JPU-10  
ITEM DATA  
BYTE  
NO.  
DESCRIPTION OF FUNCTION  
V
DD  
(
tolerance =  
10%),  
Burst read/write,  
precharge all,  
22  
SDRAM device attributes: general  
0Eh  
auto precharge  
23  
24  
Minimum clock cycle time at CL = X – 1  
Maximum data-access time from clock at CL = X – 1  
Minimum clock cycle time at CL = X – 2  
Maximum data-access time from clock at CL = X – 2  
Minimum row precharge time  
t
= 15 ns  
= 9 ns  
F0h  
90h  
00h  
00h  
1Eh  
14h  
1Eh  
32h  
10h  
30h  
10h  
30h  
10h  
CK  
t
AC  
25  
N/A  
26  
N/A  
27  
t
= 30 ns  
RP  
28  
Minimum row-active to row-active delay  
Minimum RAS-to-CAS delay  
t
t
= 20 ns  
= 30 ns  
= 50 ns  
RRD  
29  
RCD  
30  
Minimum RAS pulse width  
t
RAS  
31  
Density of each bank on module  
64M Bytes  
32  
Command and address signal input setup time  
Command and address signal input hold time  
Data signal input setup time  
t
IS  
= 3 ns  
= 1 ns  
= 3 ns  
= 1 ns  
33  
t
IH  
34  
t
IS  
35  
Data signal input hold time  
t
IH  
3661  
62  
Superset features (may be used in the future)  
SPD revision  
Rev. 2  
02h  
49h  
63  
Checksum for byte 062  
73  
6471  
72  
Manufacturer’s JEDEC ID code per JEP106E  
97h  
9700...00h  
Manufacturing location  
Manufacturer’s part number  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
7390  
91  
Die revision code  
PCB revision code  
92  
9394  
9598  
Manufacturing date  
Assembly serial number  
99125 Manufacturer specific data  
126127 Vendor specific data  
128–166 System integrator’s specific data  
167–255 Open  
TBD indicates values are determined at manufacturing time and are module-dependent.  
These TBD values are determined and programmed by the customer (optional).  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TM8SR64JPU, TM16SR64JPU  
TM8SR72JPU, TM16SR72JPU  
SYNCHRONOUS DYNAMIC RAM MODULES  
SMMS688B – AUGUST 1997 – REVISED FEBRUARY 1998  
serial presence detect (continued)  
Table 2. Serial Presence Detect Data for the TM16SR64JPU  
TM16SR64JPU-10  
BYTE  
NO.  
DESCRIPTION OF FUNCTION  
ITEM  
128 bytes  
256 bytes  
SDRAM  
12  
DATA  
0
1
Defines number of bytes written into serial memory during module manufacturing  
Total number of bytes of SPD memory device  
Fundamental memory type (FPM, EDO, SDRAM, . . .)  
Number of row addresses on this assembly  
80h  
08h  
04h  
0Ch  
09h  
02h  
40h  
00h  
01h  
A0h  
80h  
00h  
2
3
4
Number of column addresses on this assembly  
Number of module rows on this assembly  
9
5
2 banks  
64 bits  
6
Data width of this assembly  
7
Data width continuation  
8
Voltage interface standard of this assembly  
LVTTL  
9
SDRAM cycle time at maximum supported CAS latency (CL), CL = X  
SDRAM access from clock at CL = X  
t
= 10 ns  
= 8 ns  
CK  
10  
11  
t
AC  
DIMM configuration type (non-parity, parity, error correcting code [ECC])  
Non-Parity  
15.6 µs/  
self-refresh  
12  
Refresh rate/type  
80h  
13  
14  
15  
16  
17  
18  
19  
20  
SDRAM width, primary DRAM  
Error-checking SDRAM data width  
Minimum clock delay, back-to-back random column addresses  
Burst lengths supported  
x8  
N/A  
08h  
00h  
01h  
0Fh  
04h  
06h  
01h  
01h  
1 CK cycle  
1, 2, 4, 8  
4 banks  
2, 3  
Number of banks on each SDRAM device  
CAS latencies supported  
CS latency  
0
Write latency  
0
Non-buffered/  
Non-registered  
21  
SDRAM module attributes  
00h  
V
DD  
(
tolerance =  
10%).  
Burst read/write,  
precharge all,  
22  
SDRAM device attributes: general  
0Eh  
auto precharge  
23  
24  
25  
26  
Minimum clock cycle time at CL = X – 1  
t
= 15 ns  
= 9 ns  
F0h  
90h  
00h  
00h  
CK  
Maximum data-access time from clock at CL = X – 1  
Minimum clock cycle time at CL = X – 2  
t
AC  
N/A  
N/A  
Maximum data-access time from clock at CL = X – 2  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TM8SR64JPU, TM16SR64JPU  
TM8SR72JPU, TM16SR72JPU  
SYNCHRONOUS DYNAMIC RAM MODULES  
SMMS688B – AUGUST 1997 – REVISED FEBRUARY 1998  
serial presence detect (continued)  
Table 2. Serial Presence Detect Data for the TM16SR64JPU (Continued)  
TM16SR64JPU-10  
ITEM DATA  
= 30 ns  
BYTE  
NO.  
DESCRIPTION OF FUNCTION  
27  
28  
Minimum row precharge time  
t
1Eh  
14h  
1Eh  
32h  
10h  
30h  
10h  
30h  
10h  
RP  
Minimum row-active to row-active delay  
Minimum RAS-to-CAS delay  
t
t
= 20 ns  
= 30 ns  
= 50 ns  
RRD  
RCD  
29  
30  
Minimum RAS pulse width  
t
RAS  
31  
Density of each bank on module  
Command and address signal input setup time  
Command and address signal input hold time  
Data signal input setup time  
64M Bytes  
32  
t
= 3 ns  
= 1 ns  
= 3 ns  
= 1 ns  
IS  
33  
t
IH  
34  
t
IS  
35  
Data signal input hold time  
t
IH  
36–61  
62  
Superset features (may be used in the future)  
SPD revision  
Rev. 2  
02h  
4Ah  
63  
Checksum for byte 062  
74  
6471  
72  
Manufacturer’s JEDEC ID code per JEP106E  
97h  
9700...00h  
Manufacturing location  
Manufacturer’s part number  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
7390  
91  
Die revision code  
PCB revision code  
92  
9394  
9598  
Manufacturing date  
Assembly serial number  
99125 Manufacturer specific data  
126127 Vendor specific data  
128–166 System integrator’s specific data  
167–255 Open  
TBD indicates values are determined at manufacturing time and are module-dependent.  
These TBD values are determined and programmed by the customer (optional).  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TM8SR64JPU, TM16SR64JPU  
TM8SR72JPU, TM16SR72JPU  
SYNCHRONOUS DYNAMIC RAM MODULES  
SMMS688B – AUGUST 1997 – REVISED FEBRUARY 1998  
serial presence detect (continued)  
Table 3. Serial Presence Detect Data for the TM8SR72JPU  
TM8SR72JPU-10  
BYTE  
NO.  
DESCRIPTION OF FUNCTION  
DATA  
ITEM  
CONTENTS  
0
1
Defines number of bytes written into serial memory during module manufacturing  
Total number of bytes of SPD memory device  
Fundamental memory type (FPM, EDO, SDRAM, . . .)  
Number of row addresses on this assembly  
128 bytes  
256 bytes  
SDRAM  
12  
80h  
08h  
2
04h  
3
0Ch  
09h  
4
Number of column addresses on this assembly  
Number of module rows on this assembly  
9
5
1 bank  
72 bits  
01h  
6
Data width of this assembly  
48h  
7
Data width continuation  
00h  
8
Voltage interface standard of this assembly  
LVTTL  
01h  
9
SDRAM cycle time at maximum supported CAS latency (CL), CL = X  
SDRAM access from clock at CL = X  
t
= 10 ns  
= 8 ns  
A0h  
CK  
10  
11  
t
80h  
AC  
DIMM configuration type (non-parity, parity, error correcting code [ECC])  
ECC  
02h  
15.6 µs/  
self-refresh  
12  
Refresh rate/type  
80h  
13  
14  
15  
16  
17  
18  
19  
20  
SDRAM width, primary DRAM  
Error-checking SDRAM data width  
Minimum clock delay, back-to-back random column addresses  
Burst lengths supported  
x8  
x8  
08h  
08h  
01h  
0Fh  
04h  
06h  
01h  
01h  
1 CK cycle  
1, 2, 4, 8  
4 banks  
2, 3  
Number of banks on each SDRAM device  
CAS latencies supported  
CS latency  
0
Write latency  
0
Non-buffered/  
Non-registered  
21  
SDRAM module attributes  
00h  
V
DD  
(
tolerance =  
10%),  
Burst read/write,  
precharge all,  
22  
SDRAM device attributes: general  
0Eh  
auto precharge  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Minimum clock cycle time at CL = X – 1  
Maximum data-access time from clock at CL = X – 1  
Minimum clock cycle time at CL = X – 2  
Maximum data-access time from clock at CL = X – 2  
Minimum row precharge time  
t
= 15 ns  
= 9 ns  
F0h  
90h  
00h  
00h  
1Eh  
14h  
1Eh  
32h  
10h  
CK  
t
AC  
N/A  
N/A  
t
= 30 ns  
RP  
Minimum row-active to row-active delay  
Minimum RAS-to-CAS delay  
t
t
= 20 ns  
= 30 ns  
= 50 ns  
RRD  
RCD  
Minimum RAS pulse width  
t
RAS  
Density of each bank on module  
64M Bytes  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TM8SR64JPU, TM16SR64JPU  
TM8SR72JPU, TM16SR72JPU  
SYNCHRONOUS DYNAMIC RAM MODULES  
SMMS688B – AUGUST 1997 – REVISED FEBRUARY 1998  
serial presence detect (continued)  
Table 3. Serial Presence Detect Data for the TM8SR72JPU (Continued)  
TM8SR72JPU-10  
DATA  
BYTE  
NO.  
DESCRIPTION OF FUNCTION  
ITEM  
CONTENTS  
32  
33  
Command and address signal input setup time  
t
= 3 ns  
= 1 ns  
= 3 ns  
= 1 ns  
30h  
IS  
Command and address signal input hold time  
Data signal input setup time  
t
IH  
10h  
34  
t
IS  
30h  
35  
Data signal input hold time  
t
IH  
10h  
3661  
62  
Superset features (may be used in the future)  
SPD revision  
Rev. 2  
02h  
5Bh  
63  
Checksum for byte 062  
91  
6471  
72  
Manufacturer’s JEDEC ID code per JEP106E  
97h  
9700...00h  
Manufacturing location  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
7390  
91  
Manufacturer’s part number  
Die revision code  
PCB revision code  
92  
9394  
9598  
Manufacturing date  
Assembly serial number  
99125 Manufacturer specific data  
126127 Vendor specific data  
128–166 System integrator’s specific data  
167–255 Open  
TBD indicates values are determined at manufacturing time and are module-dependent.  
These TBD values are determined and programmed by the customer (optional).  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TM8SR64JPU, TM16SR64JPU  
TM8SR72JPU, TM16SR72JPU  
SYNCHRONOUS DYNAMIC RAM MODULES  
SMMS688B – AUGUST 1997 – REVISED FEBRUARY 1998  
serial presence detect (continued)  
Table 4. Serial Presence Detect Data for the TM16SR72JPU  
TM16SR72JPU-10  
BYTE  
NO.  
DESCRIPTION OF FUNCTION  
ITEM  
128 bytes  
256 bytes  
SDRAM  
12  
DATA  
0
1
Defines number of bytes written into serial memory during module manufacturing  
Total number of bytes of SPD memory device  
Fundamental memory type (FPM, EDO, SDRAM, . . .)  
Number of row addresses on this assembly  
80h  
08h  
04h  
0Ch  
09h  
02h  
48h  
00h  
01h  
A0h  
80h  
02h  
2
3
4
Number of column addresses on this assembly  
Number of module rows on this assembly  
9
5
2 banks  
72 bits  
6
Data width of this assembly  
7
Data width continuation  
8
Voltage interface standard of this assembly  
LVTTL  
9
SDRAM cycle time at maximum supported CAS latency (CL), CL = X  
SDRAM access from clock at CL = X  
t
= 10 ns  
= 8 ns  
CK  
10  
11  
t
AC  
DIMM configuration type (non-parity, parity, error correcting code [ECC])  
ECC  
15.6 µs/  
self-refresh  
12  
Refresh rate/type  
80h  
13  
14  
15  
16  
17  
18  
19  
20  
SDRAM width, primary DRAM  
Error-checking SDRAM data width  
Minimum clock delay, back-to-back random column addresses  
Burst lengths supported  
x8  
x8  
08h  
08h  
01h  
0Fh  
04h  
06h  
01h  
01h  
1 CK cycle  
1, 2, 4, 8  
4 banks  
2, 3  
Number of banks on each SDRAM device  
CAS latencies supported  
CS latency  
0
Write latency  
0
Non-buffered/  
Non-registered  
21  
SDRAM module attributes  
00h  
V
DD  
(
tolerance =  
10%).  
Burst read/write,  
precharge all,  
22  
SDRAM device attributes: general  
0Eh  
auto precharge  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Minimum clock cycle time at CL = X – 1  
Maximum data-access time from clock at CL = X – 1  
Minimum clock cycle time at CL = X – 2  
Maximum data-access time from clock at CL = X – 2  
Minimum row precharge time  
t
= 15 ns  
= 9 ns  
F0h  
90h  
00h  
00h  
1Eh  
14h  
1Eh  
32h  
10h  
CK  
t
AC  
N/A  
N/A  
t
= 30 ns  
RP  
Minimum row-active to row-active delay  
Minimum RAS-to-CAS delay  
t
t
= 20 ns  
= 30 ns  
= 50 ns  
RRD  
RCD  
Minimum RAS pulse width  
t
RAS  
Density of each bank on module  
64M Bytes  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TM8SR64JPU, TM16SR64JPU  
TM8SR72JPU, TM16SR72JPU  
SYNCHRONOUS DYNAMIC RAM MODULES  
SMMS688B – AUGUST 1997 – REVISED FEBRUARY 1998  
serial presence detect (continued)  
Table 4. Serial Presence Detect Data for the TM16SR72JPU (Continued)  
TM16SR72JPU-10  
ITEM DATA  
BYTE  
NO.  
DESCRIPTION OF FUNCTION  
Command and address signal input setup time  
32  
33  
t
= 3 ns  
= 1 ns  
= 3 ns  
= 1 ns  
30h  
10h  
30h  
10h  
IS  
Command and address signal input hold time  
Data signal input setup time  
t
IH  
34  
t
IS  
35  
Data signal input hold time  
t
IH  
36–61  
62  
Superset features (may be used in the future)  
SPD revision  
Rev. 2  
02h  
5Ch  
63  
Checksum for byte 062  
92  
6471  
72  
Manufacturer’s JEDEC ID code per JEP106E  
97h  
9700...00h  
Manufacturing location  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
7390  
91  
Manufacturer’s part number  
Die revision code  
PCB revision code  
92  
9394  
9598  
Manufacturing date  
Assembly serial number  
99125 Manufacturer specific data  
126127 Vendor specific data  
128–166 System integrator’s specific data  
167–255 Open  
TBD indicates values are determined at manufacturing time and are module-dependent.  
These TBD values are determined and programmed by the customer (optional).  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TM8SR64JPU, TM16SR64JPU  
TM8SR72JPU, TM16SR72JPU  
SYNCHRONOUS DYNAMIC RAM MODULES  
SMMS688B – AUGUST 1997 – REVISED FEBRUARY 1998  
device symbolization (TM8SR64JPU)  
TM8SR64JPU  
-SS  
3.3-V Voltage Key Position  
YY = Year Code  
YYMMT  
Unbuffered Key Position  
MM = Month Code  
T = Assembly Site Code  
-SS = Speed Code  
NOTE A: Location of symbolization may vary.  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TM8SR64JPU, TM16SR64JPU  
TM8SR72JPU, TM16SR72JPU  
SYNCHRONOUS DYNAMIC RAM MODULES  
SMMS688B – AUGUST 1997 – REVISED FEBRUARY 1998  
MECHANICAL DATA  
BU (R-PDIM-N168)  
DUAL IN-LINE MEMORY MODULE  
5.255 (133,48)  
5.245 (133,22)  
(Note D)  
0.054 (1,37)  
Notch 0.157 (4,00) x 0.122 (3,10) Deep  
2 Places  
Notch 0.079 (2,00) x 0.122 (3,10) Deep  
2 Places  
0.046 (1,17)  
0.050 (1,27)  
0.125 (3,18)  
0.039 (1,00) TYP  
0.125 (3,18)  
0.014 (0,35) MAX  
0.118 (3,00) TYP  
0.118 (3,00) DIA  
2 Places  
0.700 (17,78) TYP  
1.255 (31,88)  
1.245 (31,62)  
0.106 (2,70) MAX  
0.157 (4,00) MAX  
(For Double Sided DIMM Only)  
4088183/A 06/97  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MO-161  
D. Dimension includes de-panelization variations; applies between notch and tab edge.  
E. Outline may vary above notches to allow router/panelization irregularities.  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

TM16SR72JPU-12

16MX72 SYNCHRONOUS DRAM MODULE, DMA168, DIMM-168
TI

TM16TT64JPN-8

16MX64 SYNCHRONOUS DRAM MODULE, 6ns, DMA168, DIMM-168
TI

TM16TT64JPN-8A

16MX64 SYNCHRONOUS DRAM MODULE, 6ns, DMA168, DIMM-168
TI

TM16TT72JPN-8

16MX72 SYNCHRONOUS DRAM MODULE, 6ns, DMA168, DIMM-168
TI

TM16TT72JPN-8A

16MX72 SYNCHRONOUS DRAM MODULE, 6ns, DMA168, DIMM-168
TI

TM1721

LCD面板显示驱动IC 32seg*4com,128点阵,4*6按键,4路PWM输出
ETC

TM1722

LCD面板显示驱动IC 15seg*4com,60点阵
ETC

TM1723

LCD面板显示驱动IC 20seg*4com,80点阵,4*3按键,3路PWM输出
ETC

TM1725

LCD 驱动控制专用电路
ETC

TM1726

LCD面板显示驱动IC
ETC

TM1727

LCD面板显示驱动IC 32seg*8com,256点阵
ETC

TM1729

LCD显示驱动IC 18seg*8com,144点阵
ETC