TMDS1204 [TI]

12Gbps HDMI 2.1 接收器转接驱动器;
TMDS1204
型号: TMDS1204
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

12Gbps HDMI 2.1 接收器转接驱动器

驱动 驱动器
文件: 总75页 (文件大小:2634K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMDS1204  
ZHCSQV9 AUGUST 2022  
TMDS1204 12Gbps 直流或交流耦合TMDS® FRL HDMI混合转接驱动器  
1 特性  
3 说明  
• 支持高12Gbps HDMI 2.1 数据速率的交流耦合或  
直流耦合输入和输出  
TMDS1204 是一款 HDMI 2.1 转接驱动器支持高达  
12Gbps 的数据速率向后兼容 HDMI 1.4b HDMI  
2.0b。高速差分输入和输出可以是交流耦合或直流耦  
支持将 TMDS1204 用作 DP++ HDMI 电平转换  
器或 HDMI 转接驱动器。TMDS1204 可支持 36、  
810 12Gbps 的三通道和四通HDMI 2.1 FRL。  
– 向后兼HDMI 1.4b HDMI 2.0b  
HDMI 2.1 固定速率链(FRL) 36810  
12Gbps  
– 支HDMI 2.1 三通道和四通FRL  
• 已针HDMI 接收器应用进行优化  
6GHz 时高12dB 的自适应和固定均衡器  
I2C 或引脚搭接可编程  
• 集成HPD 电平转换器同时支1.8V 3.3V  
LVCMOS 电平  
• 主通道上全通道交换  
• 集成扇出缓冲器适用于需要单独时钟和数据路径  
的应用  
• 信号检测输出指示器  
• 用于链路配置的数字显示控(DDC) 监控功能  
• 低功耗:  
TMDS1204 是一款混合转接驱动器同时支持源端和  
接收端应用。混合转接驱动器可用作线性转接驱动器,  
也可用作限幅转接驱动器。配置为限幅转接驱动器时,  
TMDS1204 的差分输出电压电平独立于图形处理单元  
(GPU) 的输出电平从而确保插座的 HDMI 电平符合  
要求。限幅转接驱动器模式推荐用于 HDMI 源端应  
用。配置为线性转接驱动器时TMDS1204 的差分输  
出电平是 GPU 出电平的线性函数而支持将  
TMDS1204 用于透明呈现链路训练或用作通道缩短  
器。建议将线性转接驱动器模式用于 HDMI 接收端应  
用。  
12G FRL 四通道有源限制575mW  
12G FRL 四通道有源线性220mW  
– 断电0.6mW  
TMDS1204 有一个集成HPD 电平转换器该转换器  
可将 5V HPD 信号转换为 1.8V 3.3V。电平转换器  
输出还可配置为推挽式或开漏式。集成电平转换器后,  
无需分立式解决方案因此节省了系统成本。  
• 可用于商业级和工业级温度范围  
3.3V 单电源  
40 0.4mm 4mm × 6mm WQFN 封装  
TMDS1204 3.3V VCC 单电源轨可用于商业级温  
度 范 围  
(TMDS1204)  
和 工 业 级 温 度 范 围  
2 应用  
(TMDS1204I)。  
笔记本电脑和台式机  
电视  
封装信息(1)  
家庭影院和娱乐系统  
游戏系统  
扩展坞  
封装尺寸标称值)  
器件型号  
封装  
WQFN (40)  
TMDS1204  
4.00mm × 6.00mm  
专业音频、视频和标牌  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
1.14 to 3.6V  
3.3V  
RCLKOUTn  
RCLKOUTp  
IN_CLKn  
IN_CLKp  
OUT_CLKn  
OUT_CLKp  
OUT_D0n  
OUT_D0p  
IN_D0n  
IN_D0p  
OUT_D1n  
OUT_D1p  
IN_D1n  
IN_D1p  
HDMI SINK  
(scaler)  
OUT_D2n  
OUT_D2p  
IN_D2n  
IN_D2p  
Op onal  
HPD_IN  
HDMI_5V  
DDC  
Level  
shier  
EDID &  
SCDC  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSF57  
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
Table of Contents  
8.5 Register Maps...........................................................43  
9 Application and Implementation..................................56  
9.1 Application Information............................................. 56  
9.2 Typical Source-Side Application............................... 56  
9.3 Typical Sink-Side Application....................................61  
10 Power Supply Recommendations..............................65  
10.1 Supply Decoupling..................................................65  
11 Layout...........................................................................65  
11.1 Layout Guidelines................................................... 65  
11.2 Layout Example...................................................... 66  
12 Device and Documentation Support..........................67  
12.1 Documentation Support.......................................... 67  
12.2 接收文档更新通知................................................... 67  
12.3 支持资源..................................................................67  
12.4 Trademarks.............................................................67  
12.5 Electrostatic Discharge Caution..............................67  
12.6 术语表..................................................................... 67  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD and Latch-Up Ratings.........................................6  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information....................................................7  
6.5 Electrical Characteristics.............................................7  
6.6 Timing Requirements................................................13  
6.7 Switching Characteristics..........................................14  
6.8 Typical Characteristics..............................................17  
7 Parameter Measurement Information..........................18  
8 Detailed Description......................................................23  
8.1 Functional Block Diagram ........................................23  
8.2 Feature Description...................................................24  
8.3 Device Functional Modes..........................................34  
8.4 Programming............................................................ 39  
Information.................................................................... 67  
4 Revision History  
DATE  
REVISION  
NOTES  
August 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMDS1204  
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
VCC  
RCLKOUTp  
RCLKOUTn  
1
28  
27  
26  
25  
24  
23  
22  
21  
VCC  
DCGAIN  
2
3
SIGDET_OUT  
LV_DDC_SDA  
LV_DDC_SCL  
AC_EN  
CTLEMAP_SEL  
LINEAR_EN  
4
5
6
7
8
Thermal  
Pad  
VCC  
EN  
SDA/CFG1  
SCL/CFG0  
EQ1  
Not to scale  
5-1. RNQ Package, 40-Pin WQFN (Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
VCC  
1
P
3.3-V power supply  
HDMI 1.4/2.0 clock differential positive output when not operating in HDMI 2.1 FRL mode  
with Fan-out buffer feature enabled. External AC coupling required. If not used, then this  
pin can be left unconnected.  
RCLKOUTp  
RCLKOUTn  
2
3
O
O
HDMI 1.4/2.0 clock differential negative output when not operating in HDM I2.1 FRL  
mode with Fan-out buffer feature enabled. External AC coupling required. If not used,  
then this pin can be left unconnected.  
CTLE Map select. When TMDS1204 is configured in pin-strap mode, this pin selects the  
CTLE Map used. 8-8 provides more details. Also in pin-strap this pin will control  
whether or not AEQ is enabled. 8-9 provides more details. In I2C mode, CTLE Map  
and AEQ enable is determined by registers.  
I
CTLEMAP_SEL  
4
4 Level  
(PU/PD)  
I
In pin-strap mode, selects whether TMDS1204 operates in linear or limited redriver mode.  
8-5 provides more details.  
LINEAR_EN  
VCC  
5
6
4-Level  
(PU/PD)  
P
3.3-V power supply  
When low, TMDS1204 will be held in reset. The IN_D[2:0], IN_CLK, OUT_D[2:0] and  
OUT_CLK pins will be held in high impedance while EN is low. On rising edge of EN,  
2-Level (PU) device will sample four-level inputs and function based on the sampled state of the pins.  
This pin has a internal 250 k pull-up to VIO.  
I
EN  
7
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMDS1204  
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
EQ1 Pin Setting when TMDS1204 is configured for pin strap mode; Works in conjunction  
with EQ0; 8-6 provides the settings. In I2C mode, EQ settings are controlled through  
registers.  
I
EQ1  
8
4 Level  
(PU/PD)  
IN_CLKn  
IN_CLKp  
HPD_OUT  
IN_D0n  
IN_D0p  
VIO  
9
I
I
Clock differential negative input.  
10  
11  
12  
13  
14  
15  
16  
Clock differential positive input.  
O
I
Hot plug detect output to source side. If not used, then this pin can be left floating.  
Channel 0 differential negative input.  
I
Channel 0 differential positive input.  
P
I
Voltage supply for I/Os. 8-2 provides more information.  
Channel 1 differential negative input.  
IN_D1n  
IN_D1p  
I
Channel 1 differential positive input.  
I
Mode control pin. Selects between pin-strap and I2C mode. For more information, refer to  
8.3.1.  
MODE  
17  
4 Level  
(PU/PD)  
IN_D2n  
IN_D2p  
VCC  
18  
19  
20  
I
I
Channel 2 differential negative input.  
Channel 2 differential positive input.  
3.3-V power supply.  
P
I2C Clock/CFG0: when TMDS1204 is configured for I2C mode, this pin will function as the  
SCL/CFG0  
SDA/CFG1  
21  
22  
I
I2C clock. Otherwise, this pin will function as CFG0. 8-18 provides more details.  
I2C Data / CFG1: When TMDS1204 is configured for I2C mode, this pin will function as  
the I2C clock. Otherwise, this pin will function as CFG1. 8-19 provides more details.  
I/O  
In pin-strap mode, selects whether high speed transmitters are externally AC or DC  
coupled.  
2-Level (PD) 0: DC-coupled  
1: AC-coupled  
I
AC_EN  
23  
LV_DDC_SCL  
LV_DDC_SDA  
24  
25  
I/O  
I/O  
Low voltage side DDC clock line. Internally pulled-up to VIO.  
Low voltage side DDC data line. Internally pulled-up to VIO.  
SIGDET_OUT. Open drain output asserted low when signal is detected on IN_CLK or  
IN_D2 when HPD_IN is high. Otherwise signal is de-asserted. When used requires 10k  
or greater pull-up resistor.  
SIGDET_OUT  
26  
O
DC Gain.  
"0": 3 dB  
"R": 3 dB  
"F": 0 dB  
"1": +1 dB  
I
DCGAIN  
27  
4 Level  
(PU/PD)  
VCC  
28  
29  
P
3.3-V power supply  
TX pre-emphasis control: in pin-strap mode with limited enabled, this pin controls TX EQ.  
In pin-strap with linear and AEQ enabled, this pin will adjust the adapted value. 8-15  
provides the available TXPRE settings when operating in pin strap mode. In I2C mode, Tx  
pre-emphasis is controlled through registers.  
I
TXPRE  
4 Level  
(PU/PD)  
OUT_D2p  
OUT_D2n  
30  
31  
O
O
I
TMDS data 2 differential positive output  
TMDS data 2 differential negative output  
Hot plug detect input from sink side. This pin has an internal pull-down resistor and is fail-  
HPD_IN  
32  
2-Level (PD) safe.  
OUT_D1p  
OUT_D1n  
33  
34  
O
O
TMDS data 1 differential positive output  
TMDS data 1 differential negative output  
Address bit for I2C programming when TMDS1204 is configured for I2C mode. 8-22  
provides more details.  
I
ADDR/EQ0  
35  
4 Level  
(PU/PD)  
EQ0 pin setting when TMDS1204 is configured for pin strap mode; works in conjunction  
with EQ1; 8-6 lists the settings. In I2C mode, EQ settings are controlled through  
registers.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMDS1204  
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
36  
OUT_D0p  
OUT_D0n  
O
O
TMDS data 0 differential positive output  
TMDS data 0 differential negative output  
37  
I
TX output swing control: 4 settings. This pin is only used in pin strap mode. 8-17  
provides the available TX swing settings. In I2C mode, TX output swing is controlled  
through registers.  
TXSWG  
38  
4 Level  
(PU/PD)  
OUT_CLKp  
OUT_CLKn  
Thermal Pad  
39  
40  
O
O
TMDS data clock differential positive output  
TMDS data clock differential negative output  
Thermal pad. Connect to a solid ground plane.  
(1) I = input, O = output, P = power, G = ground  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMDS1204  
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
-0.5  
MAX  
UNIT  
Supply Voltage VCC and VIO  
4
4
4
4
V
V
V
V
Input Voltage  
Differential Inputs (IN_D[2:0], IN_CLK)  
-0.3  
Output voltage RCLKOUTp/n, HPD_OUT, SIGDET_OUT outputs  
Output voltage Differential outputs (OUT_D[2:0], OUT_CLK)  
0.3  
0.3  
LV_DDC_SDA, LV_DDC_SCL, SCL/CFG0, SDA/CFG1, MODE,  
CLTEMAP_SEL, TXSWG, TXPRE, EQ1, ADDR/EQ0, EN, AC_EN,  
LINEAR_EN, DCGAIN  
4
V
0.5  
0.5  
Control pins  
HPD_IN  
6
105  
125  
150  
V
TJ  
TMDS1204 Junction temperature  
TMDS1204I Junction temperature  
Storage temperature  
°C  
°C  
°C  
TJ  
Tstg  
65  
(1) Operation outside the Absolute Maximum Rating may cause permanent damage to the device. Absolute maximum ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Condition.  
If briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality,  
performance, and shorten the device lifetime.  
6.2 ESD and Latch-Up Ratings  
VALUE  
±4000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JS-002(2)  
Supply test, per JESD78F class II(3)  
V(ESD)  
Electrostatic discharge  
V
±1500  
V(Supply)  
I(signal+)  
Supply Test  
1.5 x VCC  
+100  
V
Positive signal pin latch-up  
Signal pin test, per JESD78F class II, immunity level A (all signal pins)(3)  
mA  
Signal pin test, per JESD78F class II, immunity level A (all signal pins except pin 2  
and pin 3)(3)  
mA  
mA  
100  
100  
I(signal )  
Negative signal pin latch-up  
Signal pin test, per JESD78F class II, immunity level B, annex A flow 1F (pin 2  
and pin 3 are connected through 10 nF capacitors)(3)(4)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. .  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
(3) JESD78F at maximum ambient temperature  
(4) Per annex A flow 1F, negative pulse immunity on pin 2 and pin 3 is 15 mA without 10 nF series capacitors. Care should be given  
during ICT to limit test current to less than 15 mA.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
Supply voltage when high-speed RX pins (IN_D[2:0] and IN_CLK) is AC-  
coupled to a DP++ TX  
VCC  
VCC  
3.0  
3.3  
3.6  
V
Supply voltage when high-speed RX pins (IN_D[2:0] and IN_CLK) is DC-  
coupled to a HDMI TX  
3.135  
3.3  
3.465  
V
VIO  
VIO supply when 1.2-V LVCMOS level used.  
1.14  
1.7  
3
1.2  
1.8  
3.3  
1.26  
1.9  
V
V
VIO  
VIO supply when 1.8-V LVCMOS level used.  
VIO  
VIO supply when 3.3-V LVCMOS level used.  
3.6  
V
VPSN  
Peak to peak Power supply noise on VCC pins (less than 4 MHz).  
100  
mV  
DC input voltage for SCL/CFG0, SDA/CFG1, MODE, AC_EN, LINEAR_EN,  
EN, CTLEMAP_SEL, TXSWG, TXPRE, EQ1, ADDR1/EQ0, DCGAIN,  
LV_DDC_SCL, LV_DDC_SDA  
VCTL3  
3.6  
V
0.3  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMDS1204  
 
 
 
 
 
 
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
6.3 Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0.3  
85  
NOM  
MAX  
5.5  
UNIT  
V
VCTL5  
DC input voltage for HPD_IN pins  
CACRX  
Optional external AC-coupling capacitor on IN_Dx and IN_CLK.  
253  
nF  
External AC-coupling capacitor on OUT_Dx and OUT_CLK when AC_EN =  
H.  
CACTX  
85  
253  
nF  
TA  
TA  
TMDS1204 Ambient temperature  
TMDS1204I Ambient temperature  
0
70  
85  
°C  
°C  
40  
6.4 Thermal Information  
TMDS1204  
THERMAL METRIC(1)  
RNQ (WQFN)  
40 PINS  
30.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
21.2  
11.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ΨJT  
11.7  
ΨJB  
RθJC(bot)  
3.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
190  
215  
540  
840  
575  
220  
MAX  
265  
305  
775  
1220  
785  
310  
UNIT  
mW  
mW  
mW  
mW  
mW  
mW  
POWER  
Pin Strap mode; DR = 3.4 Gbps; HPD_IN  
PACTIVE-  
Power dissipation in HDMI 1.4 3.4 Gbps = H; No de-emphasis/pre-emphasis;  
active operation  
H14-LT-  
Limited redriver mode; DC-coupled TX;  
AC-coupled RX; 3 Gbps CTLE;  
ARX-DTX  
Pin Strap mode; DR = 6 Gbps; HPD_IN =  
H; No de-emphasis/pre-emphasis;  
Limited redriver mode; DC-coupled TX;  
AC-coupled RX; 6 Gbps CTLE;  
PACTIVE-  
Power dissipation in HDMI 2.0 6 Gbps  
active operation  
H20-LT-  
ARX-DTX  
Pin Strap mode; DR = 12 Gbps; HPD_IN  
= H; TXFFE0; Limited redriver mode; DC-  
coupled TX; DC-coupled RX to 3.3 V  
Vicm; 12 Gbps CTLE;  
PACTIVE- Power dissipation in FRL 12 Gbps active  
operation when TX is DC-coupled  
(AC_EN = L) and RX is DC-coupled;  
FRL-LT-  
DRX-DTX  
Pin Strap mode; DR = 12 Gbps; HPD_IN  
= H; TXFFE0; Limited redriver mode; AC-  
coupled TX; AC-coupled RX;12 Gbps  
CTLE;  
PACTIVE- Power dissipation in FRL 12 Gbps active  
operation when TX is AC-coupled  
(AC_EN = H)  
FRL-LT-  
ARX-ATX  
Pin Strap mode; DR = 12 Gbps; HPD_IN  
= H; TXFFE0; Limited redriver mode; DC-  
coupled TX; AC-coupled RX; 12 Gbps  
CTLE;  
PACTIVE- Power dissipation in FRL 12 Gbps active  
operation when TX is DC-coupled  
(AC_EN = L)  
FRL-LT-  
ARX-DTX  
Pin Strap mode; DR = 12 Gbps; HPD_IN  
= H; Highest linearity setting; Linear  
redriver mode; DC-coupled TX; AC-  
coupled RX; 12 Gbps CTLE;  
PACTIVE- Power dissipation in FRL 12 Gbps active  
operation when TX is DC-coupled  
(AC_EN = L)  
FRL-LR-  
ARX-DTX  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMDS1204  
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pin Strap mode; DR = 12 Gbps; HPD_IN  
= H; Highest linearity setting; Linear  
redriver mode; AC-coupled TX; AC-  
coupled RX; 12 Gbps CTLE  
PACTIVE- Power dissipation in FRL 12 Gbps active  
operation when TX is AC-coupled  
660  
990  
2
mW  
FRL-LR-  
(AC_EN = H)  
ARX-ATX  
Pin Strap mode; HPD_IN = L; EN = L or  
H; High-speed outputs are disconnected;  
PPD  
Power in power-down (HPD_IN = L)  
0.6  
1.0  
mW  
mW  
Pin Strap mode; HPD_IN = H; No  
Power in standby (HPD_IN = H) but no  
incoming signal  
incoming signal; EN = H; DC-coupled TX;  
AC-coupled RX; Limited redriver mode;  
High-speed outputs are connected;  
PSD  
1.85  
HPD_IN = H;VCC = VIO = 3.6 V;  
LV_DDC_SDA/SCL = H;  
IVIOQ  
IVIOA  
VIO quiescent current  
16  
1
µA  
VIO active instantaneous current  
VCC = VIO = 3.6 V; HPD_IN = H;  
mA  
2-LEVEL CONTROL PINS (EN, SCL/CFG0, SDA/CFG1, AC_EN)  
VIO_TRSH Threshold for selecting between 1.2-V  
1.5  
2.5  
V
V
V
V
V
V
LVCMOS / 1.8-V LVCMOS  
D
VIO_TRSH Threshold for selecting between 1.8-V  
LVCMOS / 3.3-V LVCMOS  
D
Low-level input voltage for SCL/CFG0,  
SDA/CFG1  
VIL_1p2V  
VIH_1p2V  
VIL_1p8V  
VIH_1p8V  
VIL_3p3V  
VIO = 1.26 V; VCC = 3.0 V;  
-0.3  
0.8  
0.360  
3.6  
High-level input voltage for SCL/CFG0,  
SDA/CFG1  
VIO = 1.14 V; VCC = 3.6 V;  
VIO = 1.9 V; VCC = 3.0 V;  
VIO = 1.7 V; VCC = 3.6 V;  
Low-level input voltage for SCL/CFG0,  
SDA/CFG1  
-0.3  
1.19  
0.57  
3.6  
High-level input voltage for SCL/CFG0,  
SDA/CFG1  
Low-level input voltage for SCL/CFG0,  
SDA/CFG1  
VIO = 3.6 V; VCC = 3.0 V;  
VIO = 3.6 V; VCC = 3.0 V;  
VIO = 3.0 V; VCC = 3.6 V;  
-0.3  
-0.3  
2.2  
0.8  
0.8  
3.6  
V
V
V
VIL_3p3V Low-level input voltage for AC_EN  
High-level input voltage for SCL/CFG0,  
SDA/CFG1  
VIH_3p3V  
VIH_3p3V High-level input voltage for AC_EN  
VOL_1p2V Low-level output voltage SDA/CFG1  
IOL_1p2V Low-level output current SDA/CFG1  
VIO = 3.0 V; VCC = 3.6 V;  
2.2  
-0.3  
2
3.6  
0.3  
V
V
VCC = 3.0 V; VIO = 1.2 V;  
VCC = 3.0 V; VIO = 1.2 V;  
mA  
V
VOL  
IOL  
Low-level output voltage SDA/CFG1  
Low-level output current SDA/CFG1  
VCC = 3.0 V; VIO = 1.8 V or 3.3 V;  
VCC = 3.0 V; VIO = 1.8 V or 3.3 V;  
-0.3  
4
0.4  
mA  
Low-level input current SCL/CFG0, SDA/  
CFG1  
IIL_I2C  
ILEAK  
VIN = 0 V; VIO = 1.8 V or 3.3 V;  
VIN = 3.6 V; VCC = 0 V;  
1
µA  
µA  
1  
Fail-safe input current for SCL/CFG0,  
SDA/CFG1  
25  
25  
VIL_EN  
VIH_EN  
Low-level input voltage for EN pin.  
High-level input voltage for EN pin.  
VIO = 1.14 V; VCC = 3.3 V;  
VIO = 3.6 V; VCC = 3.3 V;  
-0.3  
0.8  
0.4  
3.6  
V
V
VIN = 0 V; VIO = 1.8 V or 3.3 V; VCC =  
3.6 V  
IIL  
Low-level input current EN  
20  
µA  
20  
IIL  
Low-level input current AC_EN  
High-level input current for EN  
VIN = 0 V; VIO = 1.8 V or 3.3 V;  
VIN = 3.6 V; VIO = 1.8 V or 3.3 V;  
VIN = 3.6 V; VIO = 1.8 V or 3.3 V;  
1
1
µA  
µA  
µA  
kΩ  
1  
1  
IIH_EN  
IIH_ACEN High-level input current for AC_EN  
24  
24  
125  
RPU_EN  
Internal Pull-up resistance on EN.  
250  
250  
350  
RPD_ACE  
Internal Pull-down resistance on AC_EN  
125  
350  
kΩ  
N
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMDS1204  
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Capacitance for SCL/CFG0 and SDA/  
CFG1  
CI2C-PINS  
f = 100 kHz;  
5
pF  
C(I2C_FM+  
I2C bus capacitance for FM+ (1 MHz)  
I2C bus capacitance for FM (400 kHz)  
150  
150  
pF  
pF  
_BUS)  
C(I2C_FM_  
BUS)  
R(EXT_I2C External resistors on both SDA and SCL  
C(I2C_FM+_BUS) = 150 pF  
C(I2C_FM_BUS) = 150 pF  
620  
620  
820  
910  
when operating at FM+ (1 MHz)  
_FM+)  
R(EXT_I2C External resistors on both SDA and SCL  
1500  
2200  
when operating at FM (400 kHz)  
_FM)  
LV_DDC_SDA and LV_DDC_SCL  
VIL_1p2V Low-level input voltage  
VIH_1p2V High-level input voltage  
VIL_1p8V Low-level input voltage  
VIH_1p8V High-level input voltage  
VIL_3p3V Low-level input voltage  
VIH_3p3V High-level input voltage  
VCC = 3.0 V;  
VCC = 3.6 V;  
VCC = 3.0 V;  
VCC = 3.6 V;  
VCC = 3.0 V;  
VCC = 3.6 V;  
-0.3  
0.8  
0.360  
3.6  
V
V
V
V
V
V
-0.3  
1.19  
-0.3  
2.2  
0.57  
3.6  
0.8  
3.6  
RPULV  
Internal pull-up resistor to VIO  
7450  
10000  
50  
13000  
Δ
VLV_HYST Hysteresis on LV side for 3.3 V LVCMOS VIO = 3.3 V; VCC = 3.3 V  
mV  
_3p3V  
SIGDET_OUT  
VOL  
IOL  
Low level output voltage  
Low level output current  
VCC = 3.0 V;  
VCC = 3.0 V;  
-0.3  
4
0.4  
5
V
mA  
VCC = 3.6 V; Pulled up to 3.6 V through  
10kΩ  
IHIZ  
Leakage current when output disabled  
-5  
µA  
HPD_IN  
VIL-HPDIN Low-level input voltage for HPD_IN  
VIH-HPDIN High-level input voltage for HPD_IN  
VCC = 3.6 V;  
VCC = 3.6 V  
-0.3  
2.0  
0.8  
5.5  
V
V
Device powered; VIH = 5.5 V; Includes  
internal pull-down resistor  
IH-HPDIN High-level input current for HPD_IN  
-50  
-1  
50  
1
µA  
µA  
kΩ  
µA  
Device powered; VIL = 0 V; Includes  
internal pull-down resistor  
IL-HPDIN  
Low-level input current for HPD_IN  
RPD-  
Internal Pull-down resistance on HPD_IN VCC = 3.3 V; HPD_IN = 5.5 V  
110  
-50  
150  
210  
50  
HPDIN  
ILEAK-  
Fail-safe condition leakage current for  
VCC = 0 V; HPD_IN = 5.5 V  
HPD_IN  
HPDIN  
HPD_OUT  
High level output voltage when configured  
VCC = 3.0 V;  
VOH_3p3V  
2.4  
1.3  
3.465  
1.95  
0.4  
V
V
for 3.3 V LVCMOS push/pull.  
High level output voltage when configured  
VCC = 3.0 V;  
VOH_1p8V  
for 1.8 V LVCMOS push/pull.  
Low level output voltage when configured  
VCC = 3.0 V;  
VOL_PP  
-0.3  
-0.3  
V
for push/pull.  
Low level output voltage when configured  
VCC = 3.0 V; 0.5 kto 3.6 V load;  
for open drain.  
VOL_OD  
IOH_3p3V  
IOL_3p3V  
0.4  
V
High level output current for 3.3-V  
LVCMOS  
HPD_IN = VIH-HPDIN  
;
-4  
mA  
mA  
Low level output current for 3.3-V  
LVCMOS  
HPD_IN = VIL-HPDIN; I2C mode;  
4
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMDS1204  
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
High level output current for 1.8-V  
LVCMOS  
IOH_1p8V  
IOL_1p8V  
HPD_IN = VIH-HPDIN  
;
-1.1  
mA  
Low level output current for 1.8-V  
LVCMOS  
HPD_IN = VIL-HPDIN; I2C mode;  
1.2  
mA  
4-LEVEL CONTROL (MODE, LINEAR_EN, EQ1, ADDR/EQ0, TXSLEW, TXPRE, TXSWG, DCGAIN)  
VTH  
VTH  
VTH  
IIH  
Threshold "0" / "R"  
VCC = 3.3 V  
0.55  
1.65  
2.7  
V
V
Threshold "R" / "F"  
VCC = 3.3 V  
Threshold "F" / "1"  
VCC = 3.3 V  
V
High-level input current  
Low-level input current  
Internal pullup resistance  
Internal pull-down resistance  
VIH = 3.6 V; VCC = 3.6 V;  
VIL = 0 V; VCC = 3.6 V;  
20  
60  
µA  
µA  
IIL  
-40  
100  
R4PU  
R4PD  
48  
98  
kΩ  
kΩ  
HDMI HIGH SPEED INPUTS  
DR_RX_DA  
Data lanes data rate  
0.25  
0.25  
12 Gbps  
12 Gbps  
TA  
DR_RX_CL  
Clock lane data rate  
K
VID(DC)  
DC differential input swing  
At pins; LINEAR_EN = L;  
At pins;  
400  
75  
1200 mVpp  
mVpp  
VID(EYE) Differential input swing eye opening  
VRX_ASSE  
Signal detect assert level.  
PRBS7 pattern; 12 Gbps;  
180  
mVpp  
mVpp  
RT  
VRX_DEAS  
Signal detect deassert level.  
PRBS7 pattern; 12 Gbps;  
At pins;  
110  
3.3  
SERT  
VICM-DC Input DC common mode voltage bias  
2.5  
VCC  
V
At 6 GHz; 12 Gbps CTLE; EQ15; DC  
Gain = 0 dB; Limited Mode; At output of  
RX;  
EEQ_12Gb  
Maximum Fixed EQ gain (AC - DC)  
12  
1.0  
dB  
s_MAX_LT  
EEQ_12Gb  
At 6 GHz; 12 Gbps CTLE; EQ0; DC Gain  
= 0 dB; Limited Mode; At output of RX;  
Minimum Fixed EQ gain (AC - DC)  
dB  
dB  
ps_MIN_LT  
EEQ_12Gb  
Maximum Fixed EQ Gain when EQ is  
bypassed. (AC - DC)  
At 6 GHz; 12 Gbps CTLE; DC Gain = 0  
dB; Limited Mode; At output of RX;  
-1.5  
ps_BYPASS  
_LT  
EEQ_6Gbs  
At 3 GHz; 6 Gbps CTLE; EQ15; DC Gain  
= 0 dB; Limited Mode; At output of RX;  
Maximum Fixed EQ gain (AC - DC)  
12.0  
0.6  
dB  
dB  
_MAX_LT  
EEQ_6Gbp  
At 3 GHz; 6 Gbps CTLE; EQ0; DC Gain =  
0 dB; Limited Mode; At output of RX;  
Minimum Fixed EQ gain (AC - DC)  
s_MIN_LT  
At 1.5 GHz; 3 Gbps CTLE; EQ15; DC  
Gain = 0 dB; Limited Mode; At output of  
RX;  
EEQ_3Gbs  
Maximum Fixed EQ gain (AC - DC)  
12  
dB  
_MAX_LT  
EEQ_3Gbp  
At 1.5 GHz; 3 Gbps CTLE; EQ0; DC Gain  
= 0 dB; Limited Mode; At output of RX;  
Minimum Fixed EQ gain (AC - DC)  
0.8  
100  
100  
dB  
Ω
Ω
s_MIN_LT  
Input differential impedance when  
termination is enabled  
RINT  
90  
85  
110  
115  
At TTP2; HPD_IN = H; 0TA 70℃  
Input differential impedance when  
termination is enabled  
At TTP2; HPD_IN = H; 20TA ≤  
85℃  
RINT  
HDMI HIGH SPEED OUTPUTS (Limited Mode)  
DR = 270 Mbps; HPD_IN = H; AC_EN =  
L (DC-coupled); TXSWG = "F" (1000  
mV); TXPRE = "F" (0dB); TX termination  
open; VCC_EXT = 3.3 V; 25TA ≤  
85;  
Single-ended low-level output voltage for  
VOL_open  
2.7  
2.9  
V
DR 1.65 Gbps data rate  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMDS1204  
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DR = 3.4 Gbps; HPD_IN = H; AC_EN = L  
(DC-coupled); TXSWG = "F" (1000 mV);  
TXPRE = "F" (0 dB); TX termination 300-  
ohms; VCC_EXT = 3.3 V; 25TA ≤  
85;  
Single-ended low-level output voltage  
1.65 Gbps < DR 3.4 Gbps.  
VOL_300  
2.6  
2.9  
V
DR = 5.94 Gbps; HPD_IN = H; AC_EN =  
L (DC-coupled); TXSWG = "F" (1000  
mV); TXPRE = "F" (0 dB); VCC_EXT =  
3.3 V; 25TA 85;  
Data lane single-ended low-level output  
voltage 3.4 Gbps < DR 6 Gbps.  
VOL_DAT2  
2.3  
400  
400  
400  
400  
300  
2.9  
600  
600  
600  
600  
600  
V
0
DR = 1.5 Gbps; HPD_IN = H; AC_EN = L  
(DC-coupled); TXSWG = "F" (1000 mV);  
TXPRE = "F" (0 dB); VCC_EXT = 3.3  
V; 25TA 85;  
VSWING_D Single-ended output voltage swing on  
500  
500  
500  
500  
400  
mV  
mV  
mV  
mV  
mV  
data lanes with TX term set to open.  
A_14  
DR = 3.4 Gbps;HPD_IN = H; AC_EN = L  
(DC-coupled); TXSWG = "F" (1000 mV);  
TXPRE = "F" (0 dB); VCC_EXT = 3.3  
V; 25TA 85;  
VSWING_D Single-ended output voltage swing on  
data lanes with TX term set to 300-ohms.  
A_14  
DR = 5.94 Gbps;HPD_IN = H; AC_EN = L  
(DC-coupled); TXSWG = "F" (1000 mV);  
TXPRE = "F" (0 dB); VCC_EXT = 3.3  
V; 25TA 85;  
VSWING_D Single-ended output voltage swing on  
data lanes for HDMI2.0 operation.  
A_20  
HPD_IN = H; AC_EN = L (DC-coupled);  
TXSWG = "F" (1000 mV); TXPRE = "F" (0  
dB); VCC_EXT = 3.3 V; 25TA ≤  
85; TERM set to open;  
VSWING_C  
Single-ended output voltage swing on  
clock lane for DR 3.4 Gbps datarate  
LK_14_OPE  
N
HPD_IN = H; AC_EN = L (DC-coupled);  
TXSWG = "F" (1000 mV); TXPRE = "F" (0  
dB); VCC_EXT = 3.3 V; 25TA ≤  
85;  
VSWING_C Single-ended output voltage swing on  
clock lane for HDMI 2.0  
LK_20  
At TTP4; AC_EN = L or H; LTP5, 6, 7 or  
8; TXFFE0; 25TA 85;  
VOCM-DC- FRL DC common mode voltage when  
2.335  
2.335  
3.495  
3.495  
V
V
actively transmitting  
ON  
At TTP4; FRL 3 lane mode; AC_EN = L  
or H; 25TA 85;  
VOCM-DC- FRL DC common mode voltage when  
lane 3 is disabled  
OFF  
At TTP4; 2.97 Gbps; HPD_IN = H;  
AC_EN = L or H; TXSWG = "F" (1000  
mV); TXPRE = "F" (0 dB); 25TA ≤  
85;  
VOD_3G  
Data lanes Differential output swing  
Data lanes Differential output swing  
400  
1560  
mV  
At TTP4_EQ; 5.94 Gbps; HPD_IN = H;  
AC_EN = L or H; TXSWG = "F" (1000  
mV); TXPRE = "F" (0 dB); 25TA ≤  
85;  
VOD_6G  
150  
100  
1560  
1560  
mV  
mV  
At TTP4_EQ; 12 Gbps; HPD_IN = H;  
AC_EN = L or H; TXSWG = "F" (1000  
mV); TXFFE0; 25TA 85;  
VOD_12G_ Data lanes Differential output swing at 12  
G FRL.  
FRL  
VCC = 0 V; DC-coupled; TMDS output  
pulled to 3.465 V with 50 resistors  
ILEAK  
IOS  
Failsafe condition leakage current  
Short circuit current limit  
35  
70  
µA  
OUT_CLK, OUT_D[2:0] outputs P or N  
shorted to GND  
mA  
TERM = 1h; AC_EN = L (DC-  
coupled);HPD_IN=H; Active state; 20℃  
TA 85;  
Internal termination for DR 3.4 Gbps  
when DC-coupled  
RTERM14  
235  
235  
295  
295  
375  
375  
Ω
Ω
TERM = 1h; AC_EN = H (AC-  
coupled); HPD_IN=H; Active state; –  
20TA 85;  
Internal termination for DR 3.4 Gbps  
when AC-coupled  
RTERM14  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMDS1204  
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TERM = 3h; AC_EN = L (DC-coupled);  
HPD_IN=H; Active state; 20TA ≤  
85;  
Internal termination for DR > 3.4 Gbps  
when DC-coupled.  
RTERM2+  
85  
100  
115  
115  
Ω
TERM = 3h; AC_EN = H (AC-  
coupled); HPD_IN=H; Active state; –  
20TA 85;  
Internal termination for DR > 3.4 Gbps  
when AC-coupled.  
RTERM2+  
85  
100  
0
Ω
TERM = 3h; HPD_IN = H; TX_AC_EN =  
0; CLK_TXFFE = 0h; CLK_VOD = 3h;  
VTXPRE0- Transmitter FFE pre-emphasis ratio for 0 D0_TXFFE = 0h; D0_VOD = 3h;  
dB  
dB.  
D1_TXFFE = 0h; D1_VOD = 3h;  
RATIO  
D2_TXFFE = 0h; D2_VOD = 3h; 20 * log  
(Vp/Vn); 128 zeros followed by 128 ones;  
At 5.94 Gbps HDMI 2.0; TERM = 3h;  
HPD_IN = H; TX_AC_EN = 0;  
CLK_TXFFE = 0h; CLK_VOD = 3h;  
D0_TXFFE = 1h; D0_VOD = 3h;  
D1_TXFFE = 1h; D1_VOD = 3h;  
D2_TXFFE = 1h; D2_VOD = 3h; 20 * log  
(Vp/Vn); 128 zeros followed by 128 ones;  
VTXPRE1- Transmitter FFE pre-emphasis ratio for  
4.0  
6.5  
dB  
dB  
dB  
dB  
dB  
dB  
3.5 dB for data lanes  
RATIO  
At 5.94 Gbps HDMI 2.0; TERM = 3h;  
HPD_IN = H; TX_AC_EN = 0;  
CLK_TXFFE = 0h; CLK_VOD = 3h;  
D0_TXFFE = 2h; D0_VOD = 3h;  
D1_TXFFE = 2h; D1_VOD = 3h;  
D2_TXFFE = 2h; D2_VOD = 3h; 20 * log  
(Vp/Vn); 128 zeros followed by 128 ones;  
VTXPRE2- Transmitter FFE pre-emphasis ratio for 6  
dB for data lanes  
RATIO  
At 12 Gbps FRL; TERM = 3h; HPD_IN =  
H; TX_AC_EN = 0; CLK_TXFFE = 4h;  
CLK_VOD = 3h; D0_TXFFE = 4h;  
D0_VOD = 3h; D1_TXFFE = 4h; D1_VOD  
= 3h; D2_TXFFE = 4h; D2_VOD = 3h; 20  
* log (Vp/Vn); 128 zeros followed by 128  
ones;  
VTXFFE0- Transmitter FRL TXFFE0 de-emphasis  
-2.5  
-3.2  
-3.5  
-4.5  
ratio  
RATIO  
At 12 Gbps FRL; TERM = 3h; HPD_IN =  
H; TX_AC_EN = 0; CLK_TXFFE = 5h;  
CLK_VOD = 3h; D0_TXFFE = 5h;  
D0_VOD = 3h; D1_TXFFE = 5h; D1_VOD  
= 3h; D2_TXFFE = 5h; D2_VOD = 3h; 20  
* log (Vp/Vn); 128 zeros followed by 128  
ones;  
VTXFFE1- Transmitter FRL TXFFE1 de-emphasis  
ratio  
RATIO  
At 12 Gbps FRL; TERM = 3h; HPD_IN =  
H; TX_AC_EN = 0; CLK_TXFFE = 6h;  
CLK_VOD = 3h; D0_TXFFE = 6h;  
D0_VOD = 3h; D1_TXFFE = 6h; D1_VOD  
= 3h; D2_TXFFE = 6h; D2_VOD = 3h; 20  
* log (Vp/Vn); 128 zeros followed by 128  
ones;  
VTXFFE2- Transmitter FRL TXFFE2 de-emphasis  
ratio.  
RATIO  
At 12 Gbps FRL; TERM = 3h; HPD_IN =  
H; TX_AC_EN = 0; CLK_TXFFE = 7h;  
CLK_VOD = 3h; D0_TXFFE = 7h;  
D0_VOD = 3h; D1_TXFFE = 7h; D1_VOD  
= 3h; D2_TXFFE = 7h; D2_VOD = 3h; 20  
* log (Vp/Vn); 128 zeros followed by 128  
ones;  
VTXFFE3- Transmitter FRL TXFFE3 de-emphasis  
ratio  
RATIO  
HDMI HIGH SPEED OUTPUTS (Linear Mode)  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMDS1204  
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
At 10 MHz; 200 mVpp < VID < 1200  
mVpp; EQ0; DCGAIN = 0 dB; 12Gbps  
CTLE; CTLEBYP_EN = 0; BERT TX 100  
MHz clock starting at 200 mV to 1200  
mV in 50 mV steps;TX DC coupled to  
VCC_EXT;  
CPLF-  
Low-frequency 1-dB compression point  
Dx_VOD = 0.  
900  
mVpp  
TXSWG-0  
At 6 GHz; 200 mVpp < VID < 1200 mVpp;  
EQ0; DCGAIN = 0 dB; 12 Gbps CTLE;  
CTLEBYP_EN = 0; TX DC coupled to  
VCC_EXT;  
CPHF-  
High-frequency 1-dB compression point  
Dx_VOD = 0.  
750  
1000  
800  
mVpp  
mVpp  
mVpp  
mVpp  
mVpp  
mVpp  
mVpp  
TXSWG-0  
At 10 MHz; 200 mVpp < VID < 1200  
mVpp; EQ0; DCGAIN = 0 dB; 12 Gbps  
CTLE; CTLEBYP_EN = 0; BERT TX 100  
MHz clock starting at 200 mV to 1200  
mV in 50 mV steps; TX DC coupled to  
VCC_EXT;  
CPLF-  
Low-frequency 1-dB compression point  
Dx_VOD = 1.  
TXSWG-R  
At 6 GHz; 200 mVpp < VID < 1200 mVpp;  
EQ0; DCGAIN = 0 dB; 12Gbps CTLE;  
CTLEBYP_EN = 0;TX DC coupled to  
VCC_EXT;  
CPHF-  
High-frequency 1-dB compression point  
Dx_VOD = 1.  
TXSWG-R  
At 10 MHz; 200 mVpp < VID < 1200  
mVpp; EQ0; DCGAIN = 0 dB; 12 Gbps  
CTLE; CTLEBYP_EN = 0; BERT TX 100  
MHz clock starting at 200 mV to 1200  
mV in 50 mV steps; TX DC coupled to  
VCC_EXT;  
CPLF-  
Low-frequency 1-dB compression point  
Dx_VOD = 2.  
1100  
875  
TXSWG-F  
At 6 GHz; 200 mVpp < VID < 1200 mVpp;  
EQ0; DCGAIN = 0 dB; 12 Gbps CTLE;  
CTLEBYP_EN = 0; TX DC coupled to  
VCC_EXT;  
CPHF-  
High-frequency 1-dB compression point  
Dx_VOD = 2.  
TXSWG-F  
At 10 MHz; 200 mVpp < VID < 1200  
mVpp; EQ0; DCGAIN = 0 dB; 12 Gbps  
CTLE; CTLEBYP_EN = 0; BERT TX 100  
MHz clock starting at 200 mV to 1200  
mV in 50 mV steps; TX DC coupled to  
VCC_EXT;  
CPLF-  
Low-frequency 1-dB compression point  
Dx_VOD = 3.  
1200  
950  
TXSWG-1  
At 6 GHz; 200 mVpp < VID < 1200 mVpp;  
EQ0; DCGAIN = 0 dB; 12 Gbps CTLE;  
CTLEBYP_EN = 0; TX DC coupled to  
VCC_EXT;  
CPHF-  
High-frequency 1-dB compression point  
Dx_VOD = 3.  
TXSWG-1  
RCLKOUT  
VTX-CM  
VODPP  
RTERM  
tRF  
Output common mode voltage  
Peak-to-peak output voltage swing  
Differential output impedance  
Rise and fall time  
2.4  
600  
70  
2.8  
700  
100  
3.465  
1100  
120  
370  
12  
V
mV  
ps  
nF  
20% to 80%  
100  
8
CTX_AC  
Required external AC capacitor  
10  
6.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
Local I2C (SCL/CFG0, SDA/CFG1). Refer to 7-9.  
fSCL  
tBUF  
I2C clock frequency  
1
MHz  
µs  
Bus free time between START and STOP conditions  
0.5  
Hold time after repeated START condition. After this period, the first clock  
pulse is generated  
tHD_STA  
0.26  
µs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMDS1204  
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
6.6 Timing Requirements (continued)  
MIN  
0.5  
0.26  
0.26  
0
NOM  
MAX  
UNIT  
µs  
tLOW  
Low period of the I2C clock  
High period of the I2C clock  
Setup time for a repeated START condition  
Data hold time  
tHIGH  
tSU_STA  
tHD_DAT  
tSU_DAT  
tR  
µs  
µs  
μs  
ns  
Data setup time  
50  
Rise time of both SDA and SCL signals  
Fall time of both SDA and SCL signals  
Setup time for STOP condition  
120  
120  
ns  
tF  
4
ns  
tSU_STO  
0.26  
μs  
DDC Snoop I2C Timings. Refer to 7-9.  
fSCL  
tBUF  
I2C DDC clock frequency  
100  
kHz  
µs  
Bus free time between START and STOP conditions  
4.7  
4
Hold time after repeated START condition. After this period, the first clock  
pulse is generated  
tHD_STA  
µs  
tLOW  
Low period of the I2C clock  
4.7  
4
µs  
µs  
tHIGH  
tSU_STA  
tHD_DAT  
tSUDAT  
tR  
High period of the I2C clock  
Setup time for a repeated START condition  
Data hold time  
4.7  
0
µs  
μs  
ns  
Data setup time  
250  
Rise time of both SDA and SCL signals. Measured from 30% to 70%.  
Fall time of both SDA and SCL signals Measured from 70% to 30%.  
Setup time for STOP condition  
1000  
300  
ns  
tF  
ns  
tSU_STO  
Cb_LV  
4
μs  
pF  
Capacitive load for each bus line on LV side  
50  
Power-On. Refer to 7-1.  
tVCC_RAMP VCC supply ramp. Measured from 10% to 90%.  
0.10  
50  
5
ms  
ms  
µs  
µs  
µs  
tD_PG  
Internal POR de-assertion delay  
tVIO_SU  
tCFG_SU  
tCFG_HD  
VIO supply stable before reset(2) high.  
Configuration pins(1) setup before reset(2) high.  
Configuration pins(1) hold after reset(2)high.  
100  
0
500  
(1) Follow comprise the configuration pins: MODE, ADDR/EQ0, EQ1, TXSWG, TXSLEW, TXPRE, AC_EN, HPDOUT_SEL, DCGAIN  
(2) Reset is the logical AND of internal POR and EN pin.  
6.7 Switching Characteristics  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Redriver  
Maximum HDMI 1.4 clock frequency at  
which TX termination is assured to be  
open  
HDMI1.4; 25 MHz IN_CLK 340  
MHz; TXTERM_AUTO_HDMI14 = 0h;  
TERM = 2h; TX is DC-coupled;  
fHDMI14_o  
165  
MHz  
pen  
Minimum HDMI 1.4 clock frequency at  
which TX termination is assured to be  
300-ohms  
HDMI1.4; 25 MHz IN_CLK 340  
MHz; TXTERM_AUTO_HDMI14 = 0h;  
TERM = 2h; TX is DC-coupled;  
fHDMI14_3  
250  
0.7  
MHz  
ms  
00  
tAEQ_DON Time from start of FRL link training to  
AEQ complete for 3 Gbps.  
E
Time from start of FRL link training to  
tAEQ_DON  
AEQ complete for 6 Gbps, 8 Gbps, 10  
0.5  
ms  
ps  
E
Gbps, and 12 Gbps  
tPD  
Propagation delay time  
At TTP4;  
90  
220  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMDS1204  
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
6.7 Switching Characteristics (continued)  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
At TTP4; With 0.15 UI skew at input; At 6  
Gbps with 150 MHz clock; TX termination  
100-; Linear mode;  
Clock lane Intra-pair output skew with  
worse case skew at inputs  
tSK1(T)  
tSK1(T)  
tSK1(T)  
tSK1(T)  
0.15  
UI  
At TTP4; With 0.15 UI skew at input; At  
12 Gbps; LTP5, 6, 7, or 8; TXFFE0; TX  
termination 100-; Linear mode;  
Data lane Intra-pair output skew with  
worse case skew at inputs  
0.15  
0.15  
0.11  
UI  
UI  
UI  
At TTP4; No intra-pair skew at input; 6  
Gbps with 150 MHz clock; TX termination  
100-; Limited mode;  
Clock lane Intra-pair output skew with  
zero intra-pair skew at inputs  
0.10  
At TTP4; No intra-pair skew at input; At  
12 Gbps; LTP5, 6, 7, or 8; TXFFE0; TX  
termination 100-; Limited mode;  
Data lane Intra-pair output skew with zero  
intra-pair skew at inputs  
0.053  
At TTP4; At 12 Gbps; LTP5, 6, 7, or 8;  
TXFFE0;  
tSK2(T)  
Inter-pair output skew  
30  
600  
600  
ps  
ps  
ps  
Transition time (rise and fall time) for  
clock lane when operating at HDMI1.4  
At TTP4; 20% to 80%; Clock Frequency =  
300 MHz;  
tRF-CLK-14  
75  
75  
Transition time (rise and fall time) for  
clock lane when operating at HDMI 2.0  
At TTP4; 20% to 80%; Clock Frequency =  
150 MHz;  
tRF-CLK-20  
At TTP4; 20% to 80%; DR = 3 Gbps;  
SLEW_HDMI14 = default; PRBS7  
pattern; Clock Frequency = 300 MHz;  
Transition time (rise and fall time) for data  
lanes when operating at HDMI 1.4  
tRF_14  
75  
195  
115  
ps  
ps  
At TTP4; 20% to 80%; DR = 6 Gbps;  
SLEW_HDMI20 = default; PRBS7  
pattern; Clock Frequency = 150 MHz;  
Transition time (rise and fall time) for data  
lanes when operating at HDMI 2.0  
tRFDAT_20  
42.5  
At TTP4; Slope at 50% level; All FRL DR  
up to 12 Gbps; SLEW_HDMI21 = Default;  
clock pattern of 128 zeros and 128 ones;  
Single-ended TX slew rate for data lanes  
when operating at HDMI 2.1 FRL  
tSLEW_FRL  
16 mV/ps  
Transistion bit duration when de-  
emphasis/pre-emphasis is enabled  
At TTP4; DR = 3 Gbps; Clock pattern of  
128 zeros followed by 128 ones;  
tTRANS_3G  
tTRANS_6G  
tTRANS_8G  
0.4  
0.4  
0.4  
0.5  
0.6  
1
1
UI  
UI  
UI  
UI  
UI  
Transistion bit duration when de-  
emphasis/pre-emphasis is enabled  
At TTP4; DR = 6 Gbps; Clock pattern of  
128 zeros followed by 128 ones;  
Transistion bit duration when de-  
emphasis/pre-emphasis is enabled  
At TTP4; DR = 8 Gbps; Clock pattern of  
128 zeros followed by 128 ones;  
1
tTRANS_10 Transistion bit duration when de-  
At TTP4; DR = 10 Gbps; Clock pattern of  
128 zeros followed by 128 ones;  
1.1  
1.3  
emphasis/pre-emphasis is enabled  
G
tTRANS_12 Transistion bit duration when de-  
At TTP4; DR = 12 Gbps; Clock pattern of  
128 zeros followed by 128 ones;  
emphasis/pre-emphasis is enabled  
G
HPD  
tHPD_PD HPD_IN to HPD_OUT propagation delay  
100  
4
µs  
Refer to 7-7  
Refer to 7-7  
HPD_IN debounce time before declaring  
tHPD_PWR  
Powerdown. Enter Powerdown if  
HPD_IN is low after debounce time.  
2
2
ms  
DOWN  
HPD_IN debounce time required for  
tHPD_STAN exiting Powerdown to Standby. Exit  
4
ms  
Refer to 7-8  
Powerdown if HPD_IN is high after  
DBY  
debounce time.  
Standby  
tSTANDBY_ Detection of electrical idle to entry into  
HPD_IN = H;  
HPD_IN = H;  
300  
25  
µs  
µs  
Standby.  
ENTRY  
Maximum differential signal glitch time  
tSIGDET_D  
rejected during debounce before  
transitioning from standby to active  
B
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMDS1204  
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
6.7 Switching Characteristics (continued)  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
HPD_IN = H;  
MIN  
TYP  
MAX  
UNIT  
Maximum differential signal glitch time  
rejected during debounce before  
transitioning from active to standby  
tSIGDET_D  
50  
ns  
B
Detection of differential signal to exit from  
Standby to Active state when  
SIGDET_OUT low.  
tSTANDBY_  
HPD_IN = H; Does not include AEQ time  
if AEQ_TX_DELAY_EN = 1;  
200  
µs  
EXIT  
fSCL  
DDC buffer frequency  
100  
kHz  
ns  
Propagation delay time. Low-to-high-level LV to HV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 1.2 V LVCMOS levels. DDC_LV_DCC_EN = 1'b1;  
1400  
Propagation delay time. Low-to-high-level LV to HV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 1.8 V LVCMOS levels. DDC_LV_DCC_EN = 1'b1;  
tPLH1  
1400  
1400  
410  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Propagation delay time. Low-to-high-level LV to HV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 3.3 V LVCMOS levels. DDC_LV_DCC_EN = 1'b1;  
Propagation delay time. Low-to-high-level HV to LV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 1.2 V LVCMOS levels. DDC_LV_DCC_EN = 1'b1;  
Propagation delay time. Low-to-high-level HV to LV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 1.8 V LVCMOS levels. DDC_LV_DCC_EN = 1'b1;  
tPLH2  
tPHL1  
tPHL2  
410  
Propagation delay time. Low-to-high-level HV to LV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 3.3 V LVCMOS levels. DDC_LV_DCC_EN = 1'b1;  
410  
Propagation delay time. High to low-level LV to HV; CLV_BUS = CHV_BUS = 50 pF;  
1200  
1200  
1200  
535  
output. VIO set to 1.2 V LVCMOS.  
Propagation delay time. High to low-level LV to HV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 1.8 V LVCMOS. DDC_LV_DCC_EN = 1'b1;  
Propagation delay time. High to low-level LV to HV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 3.3 V LVCMOS. DDC_LV_DCC_EN = 1'b1;  
Propagation delay time. High to low-level HV to LV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 1.2 V LVCMOS. DDC_LV_DCC_EN = 1'b1;  
Propagation delay time. High to low-level HV to LV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 1.8 V LVCMOS. DDC_LV_DCC_EN = 1'b1;  
Propagation delay time. High to low-level HV to LV; CLV_BUS = CHV_BUS = 50 pF;  
DDC_LV_DCC_EN = 1'b1;  
535  
535  
output. VIO set to 3.3 V LVCMOS.  
DDC_LV_DCC_EN = 1'b1;  
LV side fall time for 1.2-V LVCMOS  
70% to 30%; CLV_BUS = CHV_BUS = 50 pF;  
70% to 30%; CLV_BUS = CHV_BUS = 50 pF;  
70% to 30%; CLV_BUS = CHV_BUS = 50 pF;  
70% to 30%; CLV_BUS = CHV_BUS = 50 pF;  
30% to 70%; CLV_BUS = CHV_BUS = 50 pF;  
75  
75  
75  
75  
260  
260  
260  
260  
ns  
ns  
ns  
ns  
tLV_FALL LV side fall time for 1.8-V LVCMOS  
LV side fall time for 3.3-V LVCMOS  
tHV_FALL HV side fall time  
LV side rise time for 1.2-V LVCMOS  
tLV_RISE LV side rise time for 1.8-V LVCMOS  
LV side rise time for 3.3-V LVCMOS  
300  
300  
300  
670  
670  
670  
ns  
ns  
ns  
Pulled up to VIO using RPULV  
30% to 70%; CLV_BUS = CHV_BUS = 50 pF;  
Pulled up to VIO using RPULV  
30% to 70%; CLV_BUS = CHV_BUS = 50 pF;  
Pulled up to VIO using RPULV  
;
;
;
30% to 70%; CLV_BUS = CHV_BUS = 50 pF;  
VCC = 3.0 V; HDMI5V = 5.3V; Pulled up  
tHV_RISE_  
HV side rise time (50 pF load)  
225  
ns  
ns  
50pF  
to HDMI5V using RPUHV  
;
30% to 70%; CLV_BUS = 50 pF; CHV_BUS  
750 pF; VCC = 3.0 V; HDMI5V = 5.3 V;  
=
tHV_RISE_  
HV side rise time (750 pF load)  
1250  
750pF  
Pulled up to HDMI5V using RPUHV  
;
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMDS1204  
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
6.8 Typical Characteristics  
6-1. 3 Gbps CTLE EQ Curves with  
6-2. 6 Gbps CTLE EQ Curves with  
GLOBAL_DCG = 0x2 in Limited Mode  
GLOBAL_DCG = 0x2 in Limited Mode  
6-4. Input Differential Return Loss (SDD11)  
6-3. 12 Gbps CTLE EQ Curves with  
GLOBAL_DCG =0x2 in Limited Mode  
6-5. Output Differential Return Loss (SDD22)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMDS1204  
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
VIO(min)  
VIO  
tVIO_SU  
2.8 V  
tD_PG  
VCC  
Internal POR  
tCFG_SU  
Reset  
(POR && EN pin)  
VIH  
EN pin  
tCFG_HD  
CFG pins  
7-1. Power-On Timing Requirements  
VCC  
3.3 V  
50  
50  
50  
50  
0.5 pF  
D+  
D-  
Y
Z
Receiver  
Driver  
VID  
VD+  
VY  
VID = VD+ - VD-  
VOD = VY - VZ  
VD-  
VZ  
VICM = (VD+ + VD-  
2
)
VOCM = (VY + VZ)  
2
7-2. TMDS Main Link Test Circuit  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMDS1204  
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
4.0 V  
2.6 V  
Vcc  
VID+  
VID  
VID(pp)  
0 V  
VID-  
tPHL  
tPLH  
80%  
80%  
VOD(pp)  
VOD  
0 V  
20%  
20%  
tr  
tf  
7-3. Input or Output Timing Measurements  
VOD(SS)  
PRE = L  
7-4. Output Differential Waveform  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMDS1204  
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
TXPRE = —F“  
TXPRE = 0“ or —1“  
VOD(PP)  
VOD(SS)  
7-5. Output Differential Waveform with De-Emphasis  
Avcc(4)  
RT  
(5)  
RT  
SMA  
SMA  
SMA  
REF  
Cable  
EQ  
Coax  
Coax  
Coax  
Coax  
Data +  
Data -  
RX  
+EQ  
OUT  
SMA  
Parallel (6)  
BERT  
Jitter Test  
Instrument (2,3)  
FR4 PCB trace(1)  
AC coupling Caps  
&
Device  
FR4 PCB trace  
AVcc  
RT  
[No Pre-  
emphasis]  
RT  
REF  
Cable  
EQ  
SMA  
SMA  
SMA  
SMA  
Coax  
Coax  
Coax  
Coax  
Clk+  
Clk-  
RX  
+EQ  
OUT  
Jitter Test  
Instrument (2,3)  
TTP4_EQ  
Copyright © 2016, Texas Instruments Incorporated  
TTP4  
TTP1  
TTP2  
TTP3  
TTP2_EQ  
(1) The FR4 trace between TTP1 and TTP2 is designed to emulate 1-12of FR4, AC-coupling cap, connector and another 2of FR4.  
Trace width 4 mils. 100 Ωdifferential impedance.  
(2) All Jitter is measured at a BER of 109. HDMI 2.1 jitter measured at BER 10-10  
.
(3) Residual jitter reflects the total jitter measured at TTP4 minus the jitter measured at TTP  
(4) AVCC = 3.3 V.  
(5) RT = 50 Ω.  
(6) For HDMI 1.4 or 2.0, the input signal from parallel Bert does not have any pre-emphasis or de-emphasis. For HDMI 2.1 FRL, the  
input signal from BERT will have 2.18 dB pre-shoot and 3.1 dB de-emphasis. Refer to Recommended Operating Conditions.  
7-6. HDMI Output Jitter Measurement  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMDS1204  
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
HPD_IN  
VIL  
tHPD_PWRDOWN  
tHPD_PD  
HPD_OUT  
VOL  
Device Active or Standby  
Power Down  
7-7. HPD Logic Shutdown and Propagation Timing  
VIH  
HPD_IN  
tHPD_STANDBY  
tHPD_PD  
VOH  
HPD_OUT  
Standby  
Device In Power Down  
7-8. HPD Logic Standby and Propagation Timing  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMDS1204  
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
t
t
r
t
SU_DAT  
f
70 %  
30 %  
70 %  
30 %  
SDA  
SCL  
cont.  
t
t
HD_DAT  
VD_DAT  
t
f
t
HIGH  
t
r
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
cont.  
t
HD_STA  
t
LOW  
th  
9
clock  
1 / f  
S
SCL  
st  
1
clock cycle  
t
BUF  
SDA  
SCL  
t
VD_ACK  
t
t
t
t
SU_STO  
SU_STA  
HD_STA  
SP  
70 %  
30 %  
Sr  
P
S
th  
9
clock  
7-9. I2C SCL and SDA Timing  
VID(DC)  
VID(EYE)  
7-10. VID(DC) and VID(EYE)  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMDS1204  
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Functional Block Diagram  
SigDet  
OUT_D2p  
OUT_D2n  
IN_D2p  
Driver  
Driver  
AEQ  
IN_D2n  
OUT_D1p  
OUT_D1n  
IN_D1p  
AEQ  
IN_D1n  
OUT_D0p  
IN_D0p  
Driver  
Driver  
Driver  
AEQ  
OUT_D0n  
OUT_CLKp  
IN_D0n  
IN_CLKp  
AEQ  
OUT_CLKn  
RCLKOUTp  
RCLKOUTn  
IN_CLKn  
SigDet  
VIO  
SIGDET_OUT  
CTLEMAP_SEL  
TXPRE  
EN  
SCL/CFG0  
I2C  
Target  
SDA/CFG1  
ADDR/EQ0  
TXSWG  
EQ1  
DCGAIN  
HPD_IN  
AC_EN  
MODE  
DDC  
Snoop  
HPD_OUT  
LINEAR_EN  
VIO  
RPULV  
LV_DDC_SDA  
LV_DDC_SCL  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMDS1204  
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
8.2 Feature Description  
8.2.1 4-Level Inputs  
The TMDS1204 has 4-level inputs pins that control the receiver equalization gain, transmitter voltage swing, and  
pre-emphasis, and place TMDS1204 into different modes of operation. These 4-level inputs utilize a resistor  
divider to help set the 4 valid levels and provide a wider range of control settings. There are internal pull-up and  
a pull-down resistors. These resistors are combined with the external resistor connection to achieve the desired  
voltage level.  
8-1. 4-Level Control Pin Settings  
LEVEL  
SETTINGS  
0
R
F
1
Tie 1-k5% to GND.  
Tie 20-k5% to GND.  
Float (leave pin open)  
Tie 1-k5% to VCC  
.
备注  
7-1 shows how all 4-level inputs are latched after the rising edge of the EN pin. After these pins are  
sampled, the internal pull-up and pull-down resistors will be isolated to save power.  
8.2.2 I/O Voltage Level Selection  
The TMDS1204 supports 1.2-V, 1.8-V, and 3.3-V LVCMOS levels. The VIO pin is used to select which voltage  
level is used for the following 2-level control pins: LV_DDC_SDA, LV_DDC_SCL, SCL/CFG0, and SDA/CFG1.  
The AC_EN pin threshold is fixed at 3.3-V LVCMOS levels. EN pin threshold is fixed at 1.2-V LVCMOS  
threshold.  
8-2. Selection of LVCMOS Signaling Level  
VIO pin  
LVCMOS Signaling Level  
VALUE < 1.5-V  
1.2-V  
1.8-V  
3.3-V  
1.5-V < VALUE < 2.5-V  
VALUE > 2.5-V  
8.2.3 HPD_OUT  
The TMDS1204 will level shift the 5-V signaling level present on the HPD_IN pin to a lower voltage such as 1.8-  
V or 3.3-V levels on the HPD_OUT pin. The HPD_OUT supports both push-pull and open drain. The default  
operation is push-pull. Selection between push-pull and open drain is done through the HPDOUT_SEL register.  
8-2 lists how the VIO determines the output level of HPD_OUT when HPD_OUT is configured for push-pull  
operation. Please note push-pull operation is not supported for VIO less than 1.7-V.  
备注  
Open-drain operation is only supported when TMDS1204 is configured for I2C mode.  
When EN pin is low, the HPD_OUT pin will be in a high impedance state. It is recommended to have a  
weak pull-down resistor (such as 220k) on HPD_OUT.  
8.2.4 Lane Control  
The TMDS1204 has various lane control features. Pin strapping globally controls features like receiver  
equalization, DC Gain, VOD swing, slew rate, and pre-emphasis or de-emphasis. Through I2C receiver  
equalization, transmitter swing, and pre-emphasis for each lane can be independently controlled.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMDS1204  
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
8.2.5 Swap  
8-1 shows how TMDS1204 incorporates a swap function which can swap the lanes. The RX EQ, pre-  
emphasis, termination, and slew configurations will follow the new mapping. This function is supported in pin  
strap mode as well as when TMDS1204 is configured for I2C mode. A register controls the swap function in I2C  
mode.  
8-3. Swap Functions  
Normal Operation  
CFG1 = H or LANE_SWAP Register is 1h  
CFG1 pin = L or LANE_SWAP Register is 0h  
IN_D2 OUT_D2  
IN_D1 OUT_D1  
IN_D0 OUT_D0  
IN_CLK OUT_CLK  
IN_CLK OUT_CLK  
IN_D0 OUT_D0  
IN_D1 OUT_D1  
IN_D2 OUT_D2  
IN_D2p  
IN_D2n  
IN_D2p  
OUT_D2p  
OUT_D2n  
OUT_D2p  
OUT_D2n  
DATA LANE2  
DATA LANE1  
DATA LANE0  
CLOCK LANE  
IN_D2n  
IN_D1p  
IN_D1n  
OUT_D1p  
OUT_D1n  
IN_D1p  
IN_D1n  
OUT_D1p  
OUT_D1n  
DATA LANE0  
DATA LANE1  
IN_D0p  
IN_D0n  
IN_D0p  
IN_D0n  
OUT_D0p  
OUT_D0n  
OUT_D0p  
OUT_D0n  
IN_CLKp  
IN_CLKn  
OUT_CLKp  
OUT_CLKn  
IN_CLKp  
IN_CLKn  
OUT_CLKp  
OUT_CLKn  
DATA LANE2  
CLOCK LANE  
In Normal Working  
Lane Swap  
Copyright © 2018, Texas Instruments Incorporated  
8-1. TMDS1204 Swap Function  
8.2.6 Linear and Limited Redriver  
The TMDS1204 supports both linear and limited redriver. Selection between linear and limited can be done from  
the LINEAR_EN pin in pin-strap mode or through GLOBAL_LINR_EN register in I2C mode.  
The limited redriver mode will decouple TMDS1204 transmitter's voltage swing, pre-emphasis or de-emphasis,  
and slew rate from the GPUs transmitter. This allows the GPU to use a lower power TX setting and depends on  
the TMDS1204 transmitter to meet TX compliance requirements. For source applications, it is recommended to  
configure TMDS1204 as a limited redriver. It is not recommended to use limited redriver mode in sink  
applications.  
Unlike limited redriver mode, in linear redriver mode the TMDS1204 transmitter's output is not decoupled from  
the GPU's transmitter. In linear redriver mode, the TMDS1204 transmitter's output is a linear function of its input.  
The linear redriver mode offers transparency to link training which makes it perfect for HDMI 2.1 applications.  
For HDMI sink applications, it is recommended to configure TMDS1204 as a linear redriver.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMDS1204  
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
8-4 lists the requirements that the GPU transmitter must meet if linear redriver mode is used in an HDMI 2.1  
source application. Linear redriver mode should only be used for HDMI 2.1 data rates. For HDMI 1.4 and 2.0, the  
TMDS1204 should be configured for limited mode (LINEAR_EN = "0" or "1").  
8-4. Linear Redriver Mode: GPU TX Requirements for HDMI Source Applications  
GPU TX Parameter  
Min  
Max  
Units  
Single-ended TX swing for HDMI  
2.1  
400  
500  
mV  
TX rise/fall time for 3, 6, 8, 10,  
and 12-Gbps FRL  
16  
mV/ps  
The TMDS1204 in pin-strap mode provides the option to dynamically switch between limited and linear based on  
the HDMI mode of operation. The feature is enabled by setting LINEAR_EN pin = "1".  
8-5. Pin-Strap Mode LINEAR_EN Pin Function  
LINEAR_EN Pin Level  
HDMI 1.4, 2.0, or DP  
HDMI 2.1 FRL  
1
F
Limited Enabled  
Linear Enabled  
Linear Enabled  
Recommended for DP and HDMI sink  
application.  
Linear Enabled  
Recommended for DP and HDMI sink  
application.  
R
0
Reserved  
Reserved  
Limited Enabled.  
Limited Enabled  
Recommended for HDMI source application Recommended for HDMI source application  
8.2.7 Main Link Inputs  
Each main link input (IN_D[2:0] and IN_CLK) is internally biased to 3.3-V through approximately 100-(50-Ω  
single-ended). When using TMDS1204 in DisplayPort++ applications, external AC-coupling capacitances should  
be used. When using TMDS1204 in an HDMI application such as in an HDMI monitor, the main link inputs can  
be DC-coupled to a compliant HDMI transmitter. Each input data channel contains an equalizer to compensate  
for cable or board losses.  
8.2.8 Receiver Equalizer  
The equalizer is used to clean up inter-symbol interference (ISI) jitter or loss from the bandwidth-limited board  
traces or cables. TMDS1204 supports fixed receiver equalizer by setting the EQ0 and EQ1 pins or through the  
I2C register. 8-6 lists the pin strap settings and EQ values.  
The TMDS1204 has three sets of CTLE curves (3-Gbps CTLE, 6-Gbps CTLE, and 12-Gbps CTLE) with each  
curve having 16 AC gain settings and 3 DC gain settings. 8-6 provides details about the 16 AC gain settings  
with GLOBAL_DCG = 0x2.  
The TMDS1204 in pin-strap mode has three CTLE HDMI Datarate Maps: Map A, Map B, and Map C. 8-7  
provides details about these maps. The expectation is Map A and C should be used if TMDS1204 is used in a  
source application and Map B for a sink application.  
8-8 lists how the sampled state of the CTLEMAP_SEL pin determines the default CTLE HDMI Datarate map  
when the TMDS1204 is configured for pin-strap mode.  
In I2C mode, the default CTLE (3-Gbps, 6-Gbps, or 12-Gbps) used for each HDMI mode can be controlled from  
a register.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMDS1204  
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
EQ Setting(1)  
8-6. Receiver EQ Settings When GLOBAL_DCG = 0x2  
RX EQ Level for 3-  
Gbps CTLE  
(Gain at 1.5-GHz –  
Gain at 10-MHz)  
RX EQ Level for 6-  
Gbps CTLE  
(Gain at 3-GHz Gain (Gain at 6-GHz Gain  
RX EQ Level for 12-  
Gbps CTLE  
EQ1 PIN  
EQ0 PIN  
at 10-MHz)  
at 10-MHz)  
0(2)  
1
1.0  
2.0  
0.5  
0
0
0
0
R
F
1
1.0  
0.8  
2
3.2  
2.4  
1.8  
0
3
4.2  
3.3  
2.7  
0
4
5.3  
4.4  
3.7  
F
F
F
F
R
R
R
R
1
0
5
6.0  
5.2  
4.4  
R
F
1
6
7.0  
6.0  
5.0  
7
7.7  
6.8  
5.8  
8
9.0  
7.5  
6.5  
0
9
9.5  
8.2  
7.5  
R
F
1
10  
11  
12  
13  
14  
15  
10.0  
10.5  
11.0  
11.5  
12.0  
12.3  
8.8  
8.3  
9.3  
9.1  
10.0  
10.5  
11.0  
11.8  
9.8  
0
10.3  
11.0  
11.6  
1
R
F
1
1
1
(1) CLK_EQ, D0_EQ, D1_EQ, and D2_EQ registers determine the receiver EQ setting in I2C mode.  
(2) When CTLEBYP_EN = 1 and DCGAIN = 0-dB, EQ settings 0 will be 0-dB due to the CTLE is bypassed.  
8-7. CTLE HDMI Datarate Map A, B, and C  
HDMI Mode  
Map A  
Map B  
Map C  
1.4  
12 Gbps CTLE  
3 Gbps CTLE  
6 Gbps CTLE  
2.0  
12 Gbps CTLE  
12 Gbps CTLE  
12 Gbps CTLE  
12 Gbps CTLE  
12 Gbps CTLE  
12 Gbps CTLE  
6 Gbps CTLE  
3 Gbps CTLE  
6 Gbps CTLE  
12 Gbps CTLE  
12 Gbps CTLE  
12 Gbps CTLE  
6 Gbps CTLE  
6 Gbps CTLE  
6 Gbps CTLE  
12 Gbps CTLE  
12 Gbps CTLE  
12 Gbps CTLE  
3 Gbps FRL  
6 Gbps FRL  
8 Gbps FRL  
10 Gbps FRL  
12 Gbps FRL  
8-8. Pin-strap Mode CTLE HDMI Datarate Mapping  
Sampled State of CTLEMAP_SEL pin  
"0"  
"R"  
"F"  
"1"  
CTLE HDMI Datarate Map  
Map B  
Map C  
Map B  
Map A  
备注  
The clock lane EQ when operating in HDMI 1.4 or 2.0 will use the 3-Gbps CTLE and will be set to the  
zero EQ setting.  
8.2.9 CTLE Bypass  
The TMDS1204 will operate as a buffer when CTLE bypass is enabled. In pin-strap mode, this feature is  
disabled. In I2C mode, this feature is enabled when CTLEBYP_EN = 1h and GLOBAL_DCG = 2h. Any lane that  
has EQ setting of 0h will operate in CTLE bypass.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMDS1204  
 
 
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
8.2.10 Adaptive Equalization in HDMI 2.1 FRL  
The TMDS1204 supports adaptive equalization (AEQ) for HDMI 2.1 FRL. It does not support AEQ for HDMI 1.4  
or 2.0. In HDMI 1.4 and HDMI 2.0 modes, TMDS1204 will use the sampled state of the EQ[1:0] pins or value  
programmed into the register. The AEQ is supported in some pin-strap modes as well as in I2C mode. In I2C  
mode, AEQ can be enabled by setting the AEQ_EN register. The TMDS1204 adaptation algorithm scans  
through available equalization settings searching for a setting for which the incoming high-speed signal is not  
over equalized.  
The TMDS1204 will perform adaptive equalization when FRL link training begins. It will also readapt each time  
the data rate changes. The adaption will only occur during the TXFFE0 portion of FRL link training when LTP5,  
LTP6, LTP7, or LTP8 is being received. The TMDS1204 adaption will complete within tAEQ_DONE from the time  
FRL link training begins. If the sink requests additional TXFFE levels (TXFFE1, 2, or 3), then the TMDS1204 will  
keep its equalizer settings fixed at the value adapted during TXFFE0. If for some reason the FRL link training  
fails and transitions to legacy mode (HDMI 1.4 or HDMI 2.0), then the EQ [1:0] pins sample the EQ settings that  
the TMDS1204 switches to if in pin-strap mode or programmed into the register (if in I2C mode).  
The TMDS1204 will keep OUT_D[2:0] and OUT_CLK disabled until after adaptation completes. After adaptation  
completes, the appropriate lanes will be enabled. In I2C mode, this behavior can be overridden by clearing the  
AEQ_TX_DELAY_EN field.  
8-9. Adaptive Equalization Enable and Disable  
CTLEMAP_SEL pin level  
MODE pin level  
0
R
F
1
0
R
F
1
AEQ disabled  
AEQ disabled  
I2C register  
AEQ disabled  
AEQ disable  
AEQ disabled  
I2C register  
AEQ disabled  
AEQ disabled  
AEQ enabled  
I2C register  
AEQ enabled  
AEQ disabled  
AEQ enabled  
I2C register  
AEQ enabled  
备注  
The AEQ operates only on IN_D0 pins (pins 12 and 13). The EQ value determined by AEQ will be  
applied to the other FRL data lanes.  
8.2.10.1 HDMI 2.1 TX Compliance Testing with AEQ Enabled  
Care must be taken when performing HDMI 2.1 TX compliance testing with AEQ enabled. Because the  
TMDS1204 will only adapt to LTP5 through 8 during the TXFFE0 part of link training, it is important the test  
equipment initiate a FRL link training before performing any TX measurements, especially TX eye and jitter  
measurement. After completion of FRL link training, the test equipment can then switch the current pattern  
(LTP5, LTP6, LTP7, or LTP8) to the desired test pattern (LTP1, LTP2, LTP3, or LTP4). If the test equipment  
request LTP1, LTP2, LTP3, or LTP4 before initiating link training, the TMDS1204 will use the sampled state of  
EQ[1:0] pins.  
The following HDMI 2.1 TX tests use LTP5, LTP6, LTP7, and LTP8 as the required pattern for the measurement:  
HFR1-1, HFR1-2, HFR1-4, HFR1-7, and HFR1-8. If the TMDS1204 AEQ adaption has not completed and  
instead uses sampled state of EQ[1:0] pins, then it is possible these tests may fail or inaccurately represent  
system performance.  
8.2.11 HDMI 2.1 Link Training Compatible Rx EQ  
This mode is recommended in source applications in which the GPU is unaware of the TMDS1204 presence and  
will adjust its transmitter levels (VOD, de-emphasis, and pre-shoot) during HDMI 2.1 FRL link training. This mode  
is only supported if the TMDS1204 is enabled for limited redriver. 8-10 lists the TXFFE levels that this mode  
assumes the GPU is using.  
This feature is supported in I2C mode and all pin-strap modes with the exception of MODE = "0".  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMDS1204  
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
In HDMI 2.1 with AEQ disabled, the TMDS1204 will initially set the RX EQ based on the EQ0 and EQ1 pins. The  
pins determine what value will be used when the TXFFE0 is snooped during FRL link training. 8-11 lists how  
TMDS1204 uses the EQ setting for each increase in TXFFE level (TXFFE1, 2, or 3) from the sampled state of  
the EQ [1:0] pins.  
When HDMI 2.1 with AEQ is enabed, the TMDS1204 will adapt during the TXFFE0 portion of FRL link training.  
8-11 lists how TMDS1204 uses the EQ setting for each increase in TXFFE level (TXFFE1, 2, or 3) from the  
adapted EQ value.  
8-10. Recommended GPU FRL TXFFE Levels  
GPU FRL TXFFE Levels  
TXFFE0  
Pre-Shoot (dB)  
De-Emphasis (dB)  
3.10  
2.18  
2.50  
2.92  
3.52  
TXFFE1  
4.43  
TXFFE2  
6.02  
TXFFE3  
7.96  
8-11. Link Training Compatible RX EQ Adjustments  
Initial EQ Setting from sampled  
state of EQ[1:0] pins or  
adapted EQ value  
EQ Setting Used for TXFFE1  
EQ Setting Used for TXFFE2  
EQ Setting Used for TXFFE3  
0
1
0
0
0
0
0
0
1
1
1
1
2
3
4
5
6
7
8
9
0
0
0
0
0
0
0
0
1
1
1
1
2
3
4
5
2
1
3
1
4
2
5
2
6
3
7
3
8
4
9
5
10  
11  
12  
13  
14  
15  
6
7
8
9
10  
11  
8.2.12 Input Signal Detect  
When standby is enabled and swap is disabled, the TMDS1204 looks for a signal on either IN_CLK (if HDMI 1.4  
or 2.0) or IN_D2 (if HDMI 2.1). When standby is enabled and swap is enabled, the TMDS1204 looks for a signal  
on either IN_CLK (if HDMI 2.1) or IN_D2 (if HDMI 1.4 or 2.0). The TMDS1204 is fully functional when a signal is  
detected. If no signal is detected, then the device reenters standby state waiting for a signal again. In the  
standby state, all of the TMDS outputs are in high-Z status. In both pin-strap mode and I2C mode, standby is  
enabled by default. In I2C mode, standby can be disabled by setting the STANDBY_DISABLE register.mod  
8.2.12.1 SIGDET_OUT Indicator  
When standby state is enabled, the TMDS1204 will assert the SIGDET_OUT pin low whenever the TMDS1204  
exits the standby state and will de-assert it when entering power down or standby state. If used, the  
SIGDET_OUT requires an external pull-up resistor of 10-kΩor greater.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMDS1204  
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
8.2.13 Main Link Outputs  
8.2.13.1 Transmitter Bias  
The TMDS1204 transmitter supports both external (DC-coupled) and internal bias (AC-coupled) to a receiver.  
Selection between DC and AC-coupled is done through use of the AC_EN pin in pin-strap mode and TX_AC_EN  
register in I2C mode. The AC_EN pin informs the TMDS1204 whether or not an external AC-coupling capacitor  
is present. When AC_EN is greater than VIH, then TMDS1204 transmitters are internally biased to  
approximately VCC. For DisplayPort, HDMI 2.1 FRL AC-coupled, or any other AC-coupled application, the  
AC_EN pin should be connected to greater than VIH and an external AC-coupling capacitor should be placed on  
each of the OUT_D[2:0] pins and the OUT_CLK pin. If the AC_EN pin is connected to less than VIL, then the  
AC_EN pin will inform TMDS1204 that AC_EN pin is DC-coupled (externally biased) to the far-end HDMI  
compliant receiver.  
备注  
8-3 shows that if using AC-coupled TX mode (AC_EN = high) in an HDMI source application, then  
an external 499 Ω pull-down to GND must be placed on each OUT pin (OUT_D2:0p/n and  
OUT_CLKp/n) between the AC-coupling capacitor and the HDMI receptacle. The purpose of the 499  
Ωresistor is to set the common mode voltage to HDMI compliant levels.  
OUT_D2p  
OUT_D2n  
OUT_D1p  
OUT_D1n  
OUT_D0p  
OUT_D0n  
OUT_CLKp  
OUT_CLKn  
8-2. DC-Coupled TX in HDMI Source Application (AC_EN = Low). External ESD is Not Shown.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMDS1204  
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
499  
CACTX  
OUT_D2p  
OUT_D2n  
OUT_D1p  
OUT_D1n  
OUT_D0p  
OUT_D0n  
OUT_CLKp  
OUT_CLKn  
System 3.3 V  
8-3. AC-Coupled TX in HDMI Source Application (AC_EN = High). External ESD is Not Shown.  
8.2.13.2 Transmitter Impedance Control  
HDMI 2.0 standards require a source termination impedance approximately 100-for data rates > 3.4-Gbps.  
HDMI 1.4b requires no source termination but has a provision for termination for higher data rates greater than  
1.65-Gbps. Enabling this termination is optional. 8-13 lists how the TMDS1204 terminations are controlled  
automatically when in pin strap mode. Depending on the MODE pin, the CFG0 pin can be used to select the  
HDMI 1.4 termination between open and 300-Ω.  
The TMDS1204 supports automatic selection between open and 300-Ω termination when operating in HDMI  
1.4. In pin-strap mode with CTL0 low, the TMDS1204 will enable open termination when HDMI clock frequency  
is less than fHDMI14_open and will enable 300-Ω termination when HDMI clock frequency is greater than  
fHDMI14_300. TXTERM_AUTO_HDMI14 register controls this feature in I2C mode.  
In I2C mode, termination is controlled through the registers as provided in 8-12.  
8-12. Source Termination Control in I2C mode  
TXTERM_AUTO_HDMI14  
Register  
TX_AC_EN Register  
TERM Register  
Source Termination  
0
0
00  
01  
X
X
None  
Parallel 300-Ωacross P and N  
Automatic. HDMI 2.0 or HDM 2.1. parallel 100-Ω  
0
0
0
10  
10  
10  
X
1
0
across P and N  
Automatic. HDMI 1.4. parallel 300-Ωacross P and N  
Automatic. HDMI 1.4. No termination if HDMI clock  
frequency is fHDMI14_open  
.
Automatic. HDMI 1.4. Parallel 300-Ωacross P and N  
0
10  
0
termination if HDMI clock frequency is fHDMI14_300  
Parallel 100-Ωacross P and N  
.
0
1
1
11  
00  
01  
X
X
X
150-Ωto supply (VCC) on both P and N  
150-Ωto supply (VCC) on both P and N  
Automatic. 150-Ωto supply (VCC) on both P and N  
for HDMI 1.4. Otherwise 50-Ωto supply (VCC) on  
both P and N.  
1
10  
X
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMDS1204  
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
8-12. Source Termination Control in I2C mode (continued)  
TXTERM_AUTO_HDMI14  
Register  
TX_AC_EN Register  
TERM Register  
Source Termination  
50-Ωto supply (VCC) on both P and N  
1
11  
X
8-13. Automatic Source Termination Control in Pin-Strap Mode  
HDMI Mode  
AC_EN pin  
Source Termination  
None or parallel 300-Ωacross P and N  
depending on state of SCL/CFG0 pin  
HDMI 1.4  
0
HDMI 2.0  
HDMI 1.4  
HDMI 2.0  
0
1
1
Parallel 100-Ωacross P and N  
150-Ωto supply (VCC) on both P and N  
50-Ωto supply (VCC) on both P and N  
8.2.13.3 TX Slew Rate Control  
The TMDS1204 has the ability to slow down the TMDS output edge rates. In pin-strap mode, the TX slew rate  
can not be controlled. In I2C mode, both clock and data lanes slew rate can be controlled from a register. 8-14  
lists the supported settings for each slew rate register based on HDMI data rate. The TMDS1204 must be  
configured in limited redriver mode to control the TX slew rate.  
8-14. I2C Mode TX Slew Register Supported Settings  
SLEW_8G10G12G  
HDMI Datarate  
SLEW_CLK Register  
SLEW_3G Register  
SLEW_6G Register  
Register  
HDMI 1.4  
3'b000 through 3'b011  
3'b010 through 3'b101  
N/A  
N/A  
HDMI 2.0  
3'b000 through 3'b011  
N/A  
3'b011 through 3'b110  
N/A  
HDMI 2.1 3 Gbps FRL  
HDMI 2.1 6 Gbps FRL  
HDMI 2.1 8Gbps FRL  
HDMI 2.1 10 Gbps FRL  
HDMI 2.1 12 Gbps FRL  
N/A  
N/A  
N/A  
N/A  
N/A  
3'b010 through 3'b101  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
3'b011 through 3'b110  
N/A  
N/A  
N/A  
3'b100 through 3'b111  
3'b110 through 3'b111  
3'b111  
8.2.13.4 TX Pre-Emphasis and De-Emphasis Control  
The TMDS1204 provides pre-emphasis and de-emphasis on the data lanes allowing the output signal pre-  
conditioning to offset interconnect losses between the TMDS1204 outputs and a TMDS receiver. Pre-emphasis  
and de-emphasis is not implemented on the clock lane unless the TMDS1204 is in HDMI 2.1 FRL mode and at  
which time the clock lane becomes a data lane. There are two methods to implement pre-emphasis, pin  
strapping or through I2C programming. TX pre-emphasis and de-emphasis control is only supported in limited  
mode.  
When using pin strap mode, the TXPRE pin controls four different global pre-emphasis and de-emphasis values  
for all data lanes when TMDS1204 is operating in HDMI 1.4 or HDMI 2.0. 8-15 lists these pre-emphasis and  
de-emphasis values. In HDMI 2.1 FRL mode, the de-emphasis value used is based on the DDC TXFFE snooped  
value. 8-16 lists how the TMDS1204 uses the de-emphasis level for each TX FFE level.  
8-15. Pin-Strap TXPRE Pin Function  
LINEAR_EN pin = "F"  
LINEAR_EN pin = "0"  
LINEAR_EN pin = "R"  
AEQ ADJUSTMENT  
or "1"  
HDMI 2.1 FRL  
TXFF0 Level  
TXPRE pin  
HDMI 1.4 or HDMI 2.0  
AEQ ADJUSTMENT  
AEQ ADJUSTMENT  
0
R
F
3.5 dB pre-emphasis  
-2.5 dB de-emphasis  
0 dB  
0
0
0
+1  
+4  
0
0
0
0
Refer to 8-16.  
Refer to 8-16.  
Refer to 8-16.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMDS1204  
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
8-15. Pin-Strap TXPRE Pin Function (continued)  
LINEAR_EN pin = "F"  
LINEAR_EN pin = "0"  
LINEAR_EN pin = "R"  
or "1"  
HDMI 2.1 FRL  
TXFF0 Level  
TXPRE pin  
HDMI 1.4 or HDMI 2.0  
AEQ ADJUSTMENT  
AEQ ADJUSTMENT  
AEQ ADJUSTMENT  
1
6.0 dB pre-emphasis  
0
+2  
0
Refer to 8-16  
8-16. HDMI 2.1 FRL TX FFE Levels  
De-Emphasis  
(dB)  
FRL TX FFE Snooped Level  
TXFFE0  
TXFFE1  
TXFFE2  
TXFFE3  
-2.5  
-3.5  
-3.7  
-4.6  
8.2.13.5 TX Swing Control  
The TMDS1204 transmitter swing level can be adjusted in both pin strap and I2C mode. In I2C mode, TX swing  
settings are controlled independently for each lane (both clock and data) through registers.  
In I2C mode, the TX swing used when operating in HDMI 1.4 and HDMI 2.0 can be indepedently controlled  
through HDMI14_VOD and HDMI20_VOD registers.  
8-17 lists how the TXSWG pin adjusts the default 1000 mV swing in pin strap mode with limited redeliver  
mode enabled. In HDMI 1.4 the TXSWG controls the swing for both the data and clock lanes. In HDMI 2.0, the  
TXSWG pin controls the data lanes while the clock lane will remain at the default value. In HDMI 2.1, the  
TXSWG pin controls data and clock lanes.  
In pin-strap mode with linear enabled, the linearity range is fixed at the highest level (1200 mVpp) and therefore  
TXSWG pin is not used. In I2C mode, the linearity range can be adjusted from a register.  
8-17. Pin Strap TXSWG Control  
TXSWG pin  
Limited Mode for HDMI 1.4  
Default (1000 mVpp)  
Default 5%  
Limited Mode for HDMI 2.0  
Default (1000 mVpp)  
Default 5%  
Limited Mode for HDMI 2.1  
Default + 10%  
Linear Mode  
1200 mVpp  
1200 mVpp  
1200 mVpp  
1200 mVpp  
0
R
F
1
Default 5%  
Default (1000 mVpp)  
Default (1000 mVpp)  
Default (1000 mVpp)  
Default + 5%  
Default (1000 mVpp)  
Default + 5%  
8.2.13.6 Fan-out Buffer  
In some applications the HDMI clock and data must be on separate paths. The TMDS1204 implements a fan-out  
buffer feature to support such applications. When the fan-out buffer feature is enabled, the TMDS1204 will  
output the HDMI clock on RCLKOUTp/n when operating in HDMI 1.4 or HDMI 2.0. The OUT_CLKp/n will be  
disabled. When operating in HDMI 2.1 FRL mode, the TMDS1204 will output FRL data3 on OUT_CLKp/n.  
RCLKOUTp/n will be disabled.  
The feature is enabled in pin-strap mode when MODE pin = "R" or it can be enable through FANOUT_EN  
register when TMDS1204 is configured for I2C mode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMDS1204  
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
RCLKOUTn  
IN_CLK  
RCLKOUTp  
OUT_CLKn  
CLK LANE  
(FRL_LANE3)  
IN_CLKn  
IN_CLKp  
FRL_LANE3  
OUT_CLKp  
DATA LANE0  
(FRL_LANE0)  
IN_D0n  
IN_D0p  
OUT_D0n  
OUT_D0p  
IN_D0 (FRL_LANE0)  
IN_D1 (FRL_LANE1)  
DATA LANE1  
(FRL_LANE1)  
IN_D1n  
IN_D1p  
OUT_D1n  
OUT_D1p  
DATA_LANE2  
(FRL_LANE2)  
IN_D2n  
IN_D2p  
OUT_D2n  
OUT_D2p  
IN_D2 (FRL_LANE2)  
Redriver  
FPGA  
8-4. Fan-Out Buffer  
备注  
Fan-out buffer feature will be disabled if SWAP is enabled.  
8.2.14 HDMI DDC Capacitance  
The HDMI specification limits the DDC bus capacitance to 50-pF for both an HDMI source and sink.  
Therefore, care must be taken to make sure the total capacitance of all components (TMDS1204, FR4 trace,  
ESD, source, and sink) is less than 50-pF.  
If implementing a DDC level shifter using pass gates, then the total capacitance will include all components  
between source or sink and the HDMI receptacle. These components include and are not limited to Source or  
Sink, the FR4 trace, ESD components, and TMDS1204.  
备注  
Trace capacitance can be in the range of 2 to 5-pF per inch. A general rule is a 50-FR4 trace will be  
around 3.3-pF per inch.  
8.3 Device Functional Modes  
8.3.1 MODE Control  
The MODE pin provides four modes of operation. There are three pin-strap modes and one I2C mode. In all  
three pin strap modes, DDC snooping feature is enabled. In I2C mode, DDC snoop feature is enabled by default  
but can be disabled by a register.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TMDS1204  
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
8.3.1.1 I2C Mode (MODE = "F")  
In I2C mode, all settings of the TMDS1204 can be controlled through the registers. The TMDS1204 7-bit I2C  
address is determined by the ADDR/EQ0 pin. All other 4-level and 2-level pins are not used in I2C mode since  
the functions exist in a register. The SCL/CFG0 pin will function as the I2C clock and the SDA/CFG1 pin will  
function as the I2C data.  
The TMDS1204 defaults to power down in I2C mode. Upon completion of initialization of the TMDS1204,  
software must clear the PD_EN field to exit the power down state. The HPD_OUT pin will be asserted low while  
the PD_EN register is set.  
The TMDS1204 supports 1.2-V, 1.8-V, and 3.3-V I2C signaling levels. Selection of 1.2-V, 1.8-V, or 3.3-V is  
determined by the VIO pin as provided in 8-2.  
8.3.1.2 Pin Strap Modes  
8-18 and 8-19 lists how the SCL/CFG0 and the SDA/CFG1 pins will be used to control the HDMI 1.4  
termination, lane SWAP function, and the DisplayPort mode in pin-strap mode.  
8-18. SCL/CFG0 Pin in Pin-Strap Mode  
SCL/CFG0 Pin  
AC_EN Pin  
TMDS1204 Function  
0
0
HDMI 1.4 termination is open if HDMI clock  
frequency fHDMI14_open  
0
0
HDMI 1.4 termination is 300-if HDMI  
clock frequency fHDMI14_300  
1
0
0
1
HDMI 1.4 termination is 300-Ω  
Normal HDMI. Function determined by  
MODE pin.  
DisplayPort mode. DDC snoop disabled. All  
four lanes enabled when HPD_IN is high. 12  
Gbps CTLE used.  
1
1
8-19. SDA/CFG1 Pin in Pin-Strap Mode  
SDA/CFG1 Pin  
TMDS1204 Function  
0
1
Normal Lane ordering  
Lane Swap enabled  
备注  
The SCL/CFG0 is the only two-level pin that is continuously sampled in pin-strap mode. AC_EN,  
HPDOUT_SEL, and SDA/CFG1 will not be continuously sampled in pin-strap mode unless indicated  
otherwise.  
The TMDS1204 must be configured as a linear redriver when operating in DisplayPort mode.  
8.3.1.2.1 Pin-Strap: HDMI 1.4 and HDMI 2.0 Functional Description  
The TMDS1204 will always use the sampled state of EQ[1:0] pins when operating in either HDMI 1.4 and HDMI  
2.0. The amount of EQ applied is determined by the CTLE Map used (for more information, refer to 8.2.8).  
If TMDS1204 is configured for limited redriver mode, then the OUT_D[2:0] and OUT_CLKP/N levels will be fixed  
based on the sampled state of TXSWG pin (8-17 provides more information) and TXPRE pin (8-15  
provides more information).  
If TMDS1204 is configured for linear redriver mode, then OUT_D[2:0] and OUT_CLK will be a linear function of  
the input signals.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TMDS1204  
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
备注  
In source application, it is recommended to use limited redriver mode for both HDMI 1.4 and HDMI  
2.0.  
8.3.1.2.2 Pin-Strap HDMI 2.1 Function (MODE = "0"): Fixed Rx EQ)  
In this mode, the TMDS1204 will operate with a fixed RX EQ based on the value set by EQ0 and EQ1 pins.  
As listed in 8-16, the outputs will be fixed to TXFFE0 in HDMI 2.1 FRL with limited redriver enabled. These  
outputs will not change based on the snooped value of TXFFE. This configuration is intended to be used in sink  
applications where the channel between sink and TMDS1204 is fixed.  
备注  
Adaptive EQ is not supported in this mode (for more information refer to 8.2.10). Link Training  
Compatible Rx EQ is not supported in this mode (for more information, refer to 8.2.11).  
8.3.1.2.3 Pin-Strap HDMI 2.1 Function (Mode = "1"): Flexible Rx EQ  
In this mode, the TMDS1204 supports both Adaptive EQ (AEQ) (for more information, refer to 8.2.10) and  
Link Training Compatible Rx EQ (for more information, refer to 8.2.11).  
If TMDS1204 is configured for limited redriver mode, the OUT_D[2:0] and OUT_CLK VOD level will be fixed  
based on the sampled state of TXSWG (8-17 provides more information). As provided in 8-16, the outputs  
will be fixed to TXFFE0 in HDMI 2.1 FRL. These outputs will not change based on the snooped value of TXFFE.  
8.3.1.2.4 Pin-Strap HDMI 2.1 Function (Mode = "R"): Flexible Rx EQ and Fan-Out Buffer  
This pin strap mode is the same as MODE ="1"except that the the Fan-Out buffer is supported.  
As shown in 8-4, the fan-out buffer feature is supported in this mode. The TMDS1204 will output HDMI clock  
on RCLKOUTp/n when operating in HDMI 1.4 and HDMI 2.0, and OUT_CLKp/n will be disabled in HDMI 1.4 and  
HDMI 2.0. In HDMI 2.1 FRL mode, the RCLKOUTp/n will be disabled and FRL data lane 3 will be the output  
through the TMDS1204 clock lane.  
备注  
Fan-out buffer feature will be disabled if SWAP is enabled. In this pin strap mode, it is recommended  
to configure TMDS1204 in linear redriver mode.  
8.3.2 DDC Snoop Feature  
As part of discovery the source reads the sink E-EDID information to understand the sinks capabilities. Part of  
this read is HDMI Forum Vendor Specific Data Block (HF-VSDB) located at target address 0xA8. From the  
LV_DDC_SDA and LV_DDC_SCL pins, the TMDS1204 DDC snoop function will monitor both reads and writes  
to specific offsets of the Status and Control Data Channel Structure (SCDCS) located within the HF-VSDB. The  
following SCDCS offsets are monitored: Update Flags at offset 10h, TMDS Configuration at offset 20h, Sink  
Configuration at offset 31h, Source Test Configuration at offset 35h, and Status Flags located at offsets 41h and  
42h. The DDC snoop function resides on the LV_DDC_SDA and LV_DDC_SCL pins.  
The TMDS1204 has similar SCDCS registers within its register space. Through TMDS1204 local I2C interface,  
external microprocessor can control TMDS1204 to perform all the necessary functions required for each HDMI  
type.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TMDS1204  
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
8.3.2.1 HDMI Type  
8-20 lists the TMDS1204 monitors offsets 20h and 31h to determine HDMI type as either HDMI 1.4, HDMI  
2.0, or HDMI 2.1 FRL.  
8-20. HDMI Type Selection  
TMDS_CLK_RATIO  
SCDCS Offset 20h[1]  
FRL_RATE  
SCDCS Offset 31h[3:0]  
HDMI Type  
HDMI 1.4 (TMDS x10)  
HDMI 2.0 (TMDS x40)  
HDMI 2.1 FRL  
0
1
0h  
0h  
X
Not 0h  
备注  
TMDS1204 will default to HDMI 1.4 following a power-on reset or whenever it enters the power down  
state. Upon exiting standby, the TMDS1204 will hold data rate value (HDMI 1.4, 2.0, or 2.1) prior to  
entering the standby.  
8.3.2.2 HDMI 2.1 FRL Snoop  
In HDMI 2.1 FRL mode, the TMDS1204 monitors offset 31h, 35h, 41h, and 42h. Each offset contains information  
that the TMDS1204 uses during FRL link training or during TX compliance testing.  
Offset 31h contains FRL lane count (3 or 4 lanes), data rate (3, 6, 8, 10, or 12 Gbps), and maximum TXFFE  
levels supported. TMDS1204 enables the appropriate number of lanes based on the lane count. The TMDS1204  
uses the data rate information to determine the duration of the TXFFE de-emphasis. The maximum number of  
supported TXFFE levels sets the number of TXFFE levels TMDS1204 uses during FRL link training. 8-16 lists  
the TMDS1204 does support all four possible TXFFE levels (TXFFE0 through TXFFE3).  
Values snooped from offset 35h is used by TMDS1204 during TX FFE compliance testing.  
8.3.3 Low Power States  
The TMDS1204 has two low power states: Power Down and Standby. 8-21 lists both lower power states.  
Power down is entered when HPD_IN is low for tHPD_PWRDOWN or in I2C if PD_EN bit is set. Power down is also  
entered when the EN pin is low. The TMDS1204 will exit power down to the standby state when HPD_IN is high  
for tHPD_STANDBY  
.
The TMDS1204 implements a two stage standby power process when HPD_IN is high.  
Stage 1: if there is no signal (electrical idle) on the IN_CLK lane, and if HDMI 1.4/2.0 or IN_D2 if HDMI 2.1, then  
the TMDS1204 will enter Standby State within tSTANDBY_ENTRY  
Stage 2: if a signal is detected which last longer than tSIGDET_DB, then TMDS1204 will declare a valid signal and  
exit standby within tSTANDY_EXIT  
.
.
If a signal is detected, then the TMDS1204 will go into normal active operation and signals present at IN_CLK  
and IN_D[2:0] inputs will be passed through to the OUT_CLK and OUT_D[2:0] outputs.  
If it is determined that no signal is present, then the TMDS1204 will reenter stage 1.  
The TMDS1204 will exit standby state and immediately enter active state if LTP1, LTP2, LTP3, or LTP4 is  
snooped while monitoring status flags at SCDCS offset 41h or 42h.  
The TMDS1204 will exit normal operation and return to the standby state within tSTANDBY_ENTRY anytime  
electrical idle is detected.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TMDS1204  
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
8-21. Power States  
INPUTS  
STATUS  
HDMI  
STANDBY_ HPD_PWRDW  
1.4/2.0:  
HPD_IN  
pin  
PD_EN  
register  
OUT_Dx  
OUT_CLK  
EN pin  
DISABLE  
register  
N_DISABLE  
register  
IN_CLK pin HPD_OUT pin IN_Dx pins SDA/SCL  
HDMI 2.1:  
DDC  
State  
IN_D2 pins  
Power  
Down State  
L
X
L
X
X
X
1
X
0
X
0
1
0
0
X
X
X
X
X
High-Z  
High-Z  
High-Z  
High-Z  
Disabled  
Active  
Active  
Active  
Active  
High-Z  
High-Z  
Disabled  
Disabled  
Disabled  
Active  
Power  
Down State  
H
H
H
H
L
Power  
Down State  
X
H
X
X
X
1
L
HPD_IN  
H
High-Z  
All RX  
Active  
Normal  
operation  
TX Active  
TX Active  
All RX  
Active  
Normal  
operation  
1
Active  
HDMI  
1.4/2.0:  
IN_CLK  
Active  
HDMI 2.1:  
IN_D2  
Standby  
State  
(Squelch  
waiting)  
H
H
H
H
H
H
X
X
0
0
0
0
X
X
1
1
0
0
0
0
No signal  
HPD_IN  
Active  
Active  
Active  
Active  
High-Z  
TX Active  
High-Z  
Active  
Active  
Active  
Active  
Active  
Valid signal  
detected  
All RX  
Active  
Normal  
operation  
HPD_IN  
HDMI  
1.4/2.0:  
IN_CLK  
Active  
HDMI 2.1:  
IN_D2  
Standby  
State  
(Squelch  
waiting)  
No signal  
H
H
Active  
Valid signal  
detected  
All RX  
Active  
Normal  
operation  
TX Active  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TMDS1204  
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
8.4 Programming  
8.4.1 Pseudocode Examples  
These are examples of configuring TMDS1204 when it is configured for I2C mode.  
8.4.1.1 HDMI 2.1 Source Example with DDC Snoop Disabled and DDC Buffer Disabled  
When using an external discrete DDC buffer with snooping disabled, this example can be used. In this example,  
adaptive EQ for HDMI 2.1 is disabled. Also, this example assumes the source only wants to support TXFFE0  
level when operating in HDMI 2.1 FRL mode.  
This example will initialize the following:  
Limited redriver mode with DC-coupled output  
TX slew rate for each data rate  
CTLE used for each data rate  
// (address, data)  
// Initial power-on configuration.  
(0x0A, 0x05), // Rate snoop disabled and TXFFE controlled by 35h, 41h, and 42h  
(0x0B, 0x23), // 3G and 6G tx slew rate control  
(0x0C, 0x70), // HDMI clock and 8G10G12G TX slew rate control  
(0x0E, 0x97), // HDMI 1.4, 2.0 and 2.1 CTLE selection  
(0x11, 0x00), // Disable all four lanes.  
(0x09, 0x00), // Take out of PD state. Should be done after initialization is complete.  
// Selection between HDMI modes (1.4, 2.0, and 2.1)  
switch (HDMI_MODE) {  
case 'HDMI14_165' : // HDMI 1.4 configuration for less than 1.65 Gbps  
(0x11, 0x00), // Disable all four lanes.  
(0x0D, 0x20), // Limited mode, DC-coupled TX, 0dB DCG, Term open, disable CTLE bypass  
(0x12, 0x03), // Clock lane VOD and TXFFE  
(0x13, 0x00), // Clock lane EQ.  
(0x14, 0x03), // D0 lane VOD and TXFFE.  
(0x15, 0x0Y), // D0 lane EQ. Set "Y" to desired value.  
(0x16, 0x03), // D1 lane VOD and TXFFE.  
(0x17, 0x0Y), // D1 lane EQ. Set "Y" to desired value.  
(0x18, 0x03), // D2 lane VOD and TXFFE.  
(0x19, 0x0Y), // D2 lane EQ. Set "Y" to desired value.  
(0x20, 0x00), // Clear TMDS_CLK_RATIO  
(0x31, 0x00), // Disable FRL  
(0x11, 0x0F), // Enable all four lanes.  
break;  
case 'HDMI14_340' : // HDMI 1.4 configuration for greater than 1.65 Gbps  
(0x11, 0x00), // Disable all four lanes.  
(0x0D, 0x21), // Limited mode, DC-coupled TX, 0dB DCG, Term 300, disable CTLE bypass  
(0x12, 0x03), // Clock lane VOD and TXFFE  
(0x13, 0x00), // Clock lane EQ.  
(0x14, 0x03), // D0 lane VOD and TXFFE.  
(0x15, 0x0Y), // D0 lane EQ. Set "Y" to desired value.  
(0x16, 0x03), // D1 lane VOD and TXFFE.  
(0x17, 0x0Y), // D1 lane EQ. Set "Y" to desired value.  
(0x18, 0x03), // D2 lane VOD and TXFFE.  
(0x19, 0x0Y), // D2 lane EQ. Set "Y" to desired value.  
(0x20, 0x00), // Clear TMDS_CLK_RATIO  
(0x31, 0x00), // Disable FRL  
(0x11, 0x0F), // Enable all four lanes.  
break;  
case 'HDMI20' : // HDMI 2.0 configuration  
(0x11, 0x00), // Disable all four lanes.  
(0x0D, 0x23), // Limited mode, DC-coupled TX, 0dB DCG, Term 100, disable CTLE bypass  
(0x12, 0x03), // Clock lane VOD and TXFFE  
(0x13, 0x00), // Clock lane EQ.  
(0x14, 0x03), // D0 lane VOD and TXFFE.  
(0x15, 0x0Y), // D0 lane EQ. Set "Y" to desired value.  
(0x16, 0x03), // D1 lane VOD and TXFFE.  
(0x17, 0x0Y), // D1 lane EQ. Set "Y" to desired value.  
(0x18, 0x03), // D2 lane VOD and TXFFE.  
(0x19, 0x0Y), // D2 lane EQ. Set "Y" to desired value.  
(0x20, 0x02), // Set TMDS_CLK_RATIO  
(0x31, 0x00), // Disable FRL  
(0x11, 0x0F), // Enable all four lanes.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TMDS1204  
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
break;  
case 'HDMI21_3G' : // HDMI 2.1 3 Gbps FRL  
(0x11, 0x00), // Disable all four lanes.  
(0x0D, 0x23), // Limited mode, DC-coupled TX, 0 dB DCG, Term 100, disable CTLE bypass  
(0x12, 0x03), // Clock lane VOD and TXFFE  
(0x13, 0x00), // Clock lane EQ.  
(0x14, 0x03), // D0 lane VOD and TXFFE.  
(0x15, 0x0Y), // D0 lane EQ. Set "Y" to desired value.  
(0x16, 0x03), // D1 lane VOD and TXFFE.  
(0x17, 0x0Y), // D1 lane EQ. Set "Y" to desired value.  
(0x18, 0x03), // D2 lane VOD and TXFFE.  
(0x19, 0x0Y), // D2 lane EQ. Set "Y" to desired value.  
(0x20, 0x00), // Clear TMDS_CLK_RATIO  
(0x31, 0x01), // Set to 3G FRL. Only TXFFE0 supported.  
(0x11, 0x0F), // Enable all four lanes.  
break;  
case 'HDMI21_6G_3lane' : // HDMI 2.1 6 Gbps FRL 3 lanes  
(0x11, 0x00), // Disable all four lanes.  
(0x0D, 0x23), // Limited mode, DC-coupled TX, 0 dB DCG, Term 100, disable CTLE bypass  
(0x12, 0x03), // Clock lane VOD and TXFFE  
(0x13, 0x00), // Clock lane EQ.  
(0x14, 0x03), // D0 lane VOD and TXFFE.  
(0x15, 0x0Y), // D0 lane EQ. Set "Y" to desired value.  
(0x16, 0x03), // D1 lane VOD and TXFFE.  
(0x17, 0x0Y), // D1 lane EQ. Set "Y" to desired value.  
(0x18, 0x03), // D2 lane VOD and TXFFE.  
(0x19, 0x0Y), // D2 lane EQ. Set "Y" to desired value.  
(0x20, 0x00), // Clear TMDS_CLK_RATIO  
(0x31, 0x02), // Set to 6G FRL and 3 lanes. Only TXFFE0 supported.  
(0x11, 0x0F), // Enable all four lanes.  
break;  
case 'HDMI21_6G_4lane' : // HDMI 2.1 6 Gbps FRL 4 lanes  
(0x11, 0x00), // Disable all four lanes.  
(0x0D, 0x23), // Limited mode, DC-coupled TX, 0 dB DCG, Term 100, disable CTLE bypass  
(0x12, 0x03), // Clock lane VOD and TXFFE  
(0x13, 0x0Y), // Clock lane EQ. Set to "Y" to desired value.  
(0x14, 0x03), // D0 lane VOD and TXFFE.  
(0x15, 0x0Y), // D0 lane EQ. Set "Y" to desired value.  
(0x16, 0x03), // D1 lane VOD and TXFFE.  
(0x17, 0x0Y), // D1 lane EQ. Set "Y" to desired value.  
(0x18, 0x03), // D2 lane VOD and TXFFE.  
(0x19, 0x0Y), // D2 lane EQ. Set "Y" to desired value.  
(0x20, 0x00), // Clear TMDS_CLK_RATIO  
(0x31, 0x03), // Set to 6G FRL and 4 lanes. Only TXFFE0 supported.  
(0x11, 0x0F), // Enable all four lanes.  
break;  
case 'HDMI21_8G' : //HDMI 2.1 8 Gbps FRL  
(0x11, 0x00), // Disable all four lanes.  
(0x0D, 0x23), // Limited mode, DC-coupled TX, 0 dB DCG, Term 100, disable CTLE bypass  
(0x12, 0x03), // Clock lane VOD and TXFFE  
(0x13, 0x0Y), // Clock lane EQ. Set "Y" to desired value.  
(0x14, 0x03), // D0 lane VOD and TXFFE.  
(0x15, 0x0Y), // D0 lane EQ. Set "Y" to desired value.  
(0x16, 0x03), // D1 lane VOD and TXFFE.  
(0x17, 0x0Y), // D1 lane EQ. Set "Y" to desired value.  
(0x18, 0x03), // D2 lane VOD and TXFFE.  
(0x19, 0x0Y), // D2 lane EQ. Set "Y" to desired value.  
(0x20, 0x00), // Clear TMDS_CLK_RATIO  
(0x31, 0x04), // Set to 8G FRL and 4 lanes. Only TXFFE0 supported.  
(0x11, 0x0F), // Enable all four lanes.  
break;  
case 'HDMI21_10G' : //HDMI 2.1 10 Gbps FRL  
(0x11, 0x00), // Disable all four lanes.  
(0x0D, 0x23), // Limited mode, DC-coupled TX, 0 dB DCG, Term 100, disable CTLE bypass  
(0x12, 0x03), // Clock lane VOD and TXFFE  
(0x13, 0x0Y), // Clock lane EQ. Set "Y" to desired value.  
(0x14, 0x03), // D0 lane VOD and TXFFE.  
(0x15, 0x0Y), // D0 lane EQ. Set "Y" to desired value.  
(0x16, 0x03), // D1 lane VOD and TXFFE.  
(0x17, 0x0Y), // D1 lane EQ. Set "Y" to desired value.  
(0x18, 0x03), // D2 lane VOD and TXFFE.  
(0x19, 0x0Y), // D2 lane EQ. Set "Y" to desired value.  
(0x20, 0x00), // Clear TMDS_CLK_RATIO  
(0x31, 0x05), // Set to 10G FRL and 4 lanes. Only TXFFE0 supported.  
(0x11, 0x0F), // Enable all four lanes.  
break;  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TMDS1204  
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
case 'HDMI21_12G' : //HDMI 2.1 12 Gbps FRL  
(0x11, 0x00), // Disable all four lanes.  
(0x0D, 0x23), // Limited mode, DC-coupled TX, 0 dB DCG, Term 100, disable CTLE bypass  
(0x12, 0x03), // Clock lane VOD and TXFFE  
(0x13, 0x0Y), // Clock lane EQ. Set "Y" to desired value.  
(0x14, 0x03), // D0 lane VOD and TXFFE.  
(0x15, 0x0Y), // D0 lane EQ. Set "Y" to desired value.  
(0x16, 0x03), // D1 lane VOD and TXFFE.  
(0x17, 0x0Y), // D1 lane EQ. Set "Y" to desired value.  
(0x18, 0x03), // D2 lane VOD and TXFFE.  
(0x19, 0x0Y), // D2 lane EQ. Set "Y" to desired value.  
(0x20, 0x00), // Clear TMDS_CLK_RATIO  
(0x31, 0x06), // Set to 12G FRL and 4 lanes. Only TXFFE0 supported.  
(0x11, 0x0F), // Enable all four lanes.  
break;  
}
8.4.1.2 Sink Example  
This example assumes TMDS1204 transmitters are DC-coupled to the HDMI sink. In this example, TMDS1204  
will be configured for linear mode with adaptive EQ enabled and TMDS1204 will automatically determine HDMI  
data rate by snooping DDC traffic between the HDMI source and sink.  
// (address, data)  
// Initial power-on configuration.  
(0x0A, 0x00), // Rate snoop and TXFFE snoop enabled.  
(0x0B, 0x23), // 3G and 6G slew rate control  
(0x0C, 0x00), // HDMI clock tx slew rate control  
(0x0D, 0xA3), // Linear mode, DC-coupled TX, 0dB DCG, Term fixed at 100-ohms, disable CTLE bypass  
(0x0E, 0x97), // HDMI14, 2.0 and 2.1 CTLE selection  
(0x12, 0x03), // Clock lane VOD and TXFFE  
(0x13, 0x00), // Clock lane EQ.  
(0x14, 0x03), // D0 lane VOD and TXFFE.  
(0x15, 0x0Y), // D0 lane EQ. Set "Y" to desired value.  
(0x16, 0x03), // D1 lane VOD and TXFFE.  
(0x17, 0x0Y), // D1 lane EQ. Set "Y" to desired value.  
(0x18, 0x03), // D2 lane VOD and TXFFE.  
(0x19, 0x0Y), // D2 lane EQ. Set "Y" to desired value.  
(0x1E, 0x40), // Enable AEQ  
(0x09, 0x00), // Take out of PD state. Should be done after initialization is complete.  
8.4.2 TMDS1204 I2C Address Options  
For further programmability, the TMDS1204 can be controlled using I2C. The SCL/CFG0 and SDA/CFG1  
terminals are used for I2C clock and I2C data respectively.  
8-22. TMDS1204 I2C Device Address Description  
ADDR/EQ0 pin  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (W/R)  
HEX  
BC/BD  
BA/BB  
B8/B9  
B6/B7  
0
R
F
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
1
0
1
0
1
0/1  
0/1  
0/1  
0/1  
8.4.3 I2C Target Behavior  
Register O set  
Target Address  
Data wri en  
P
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0
A
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
Start  
Stop  
Ack  
Write  
8-5. I2C Write with Data  
The following procedure should be followed to write data to TMDS1204 I2C registers (refer to 8-5):  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TMDS1204  
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
1. The controller initiates a write operation by generating a start condition (S), followed by the TMDS1204 7-bit  
address and a zero-value W/Rbit to indicate a write cycle.  
2. The TMDS1204 acknowledges the address cycle.  
3. The controller presents the register offset within TMDS1204 to be written, consisting of one byte of data,  
MSB-first.  
4. The TMDS1204 acknowledges the sub-address cycle.  
5. The controller presents the first byte of data to be written to the I2C register.  
6. The TMDS1204 acknowledges the byte transfer.  
7. The controller may continue presenting additional bytes of data to be written, with each byte transfer  
completing with an acknowledge from the TMDS1204.  
8. The controller terminates the write operation by generating a stop condition (P).  
Data from o set 0x00  
or  
last read address + 1  
Target Address  
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
1
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
P
Start  
Stop  
Ack  
Read  
8-6. I2C Read Without Repeated Start  
The following procedure should be followed to read the TMDS1204 I2C registers without a repeated Start (refer  
to 8-6).  
1. The controller initiates a read operation by generating a start condition (S), followed by the TMDS1204 7-bit  
address and a zero-value W/Rbit to indicate a read cycle.  
2. The TMDS1204 acknowledges the 7-bit address cycle.  
3. Following the acknowledge the controller continues sending clock.  
4. The TMDS1204 transmit the contents of the memory registers MSB-first starting at register 00h or last read  
register offset+1. If a write to the I2C register occurred prior to the read, then the TMDS1204 shall start at the  
register offset specified in the write.  
5. The TMDS1204 waits for either an acknowledge (ACK) or a not-acknowledge (NACK) from the controller  
after each byte transfer; the I2C controller acknowledges reception of each data byte transfer.  
6. If an ACK is received, then the TMDS1204 transmits the next byte of data as long as controller provides the  
clock. If a NAK is received, then the TMDS1204 stops providing data and waits for a stop condition (P).  
7. The controller terminates the write operation by generating a stop condition (P).  
Register O set Xh  
Target Address  
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0
A
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
A
Sr  
Start  
Ack  
Write  
Repeated Start  
Data from Register Xh  
Target Address  
Data from Register Xh + 1  
P
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
1
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
Stop  
Read  
8-7. I2C Read with Repeated Start  
The following procedure should be followed to read the TMDS1204 I2C registers with a repeated Start (refer to  
8-7).  
1. The controller initiates a read operation by generating a start condition (S), followed by the TMDS1204 7-bit  
address and a zero-value W/Rbit to indicate a write cycle.  
2. The TMDS1204 acknowledges the 7-bit address cycle.  
3. The controller presents the register offset within TMDS1204 to be written, consisting of one byte of data,  
MSB-first.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TMDS1204  
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
4. The TMDS1204 acknowledges the register offset cycle.  
5. The controller presents a repeated start condition (Sr).  
6. The controller initiates a read operation by generating a start condition (S), followed by the TMDS1204 7-bit  
address and a one-value W/Rbit to indicate a read cycle.  
7. The TMDS1204 acknowledges the 7-bit address cycle.  
8. The TMDS1204 transmit the contents of the memory registers MSB-first starting at the register offset.  
9. The TMDS1204 shall wait for either an acknowledge (ACK) or a not-acknowledge (NACK) from the controller  
after each byte transfer; the I2C controller acknowledges reception of each data byte transfer.  
10. If an ACK is received, then the TMDS1204 transmits the next byte of data as long as controller provides the  
clock. If a NAK is received, then the TMDS1204 stops providing data and waits for a stop condition (P).  
11. The controller terminates the read operation by generating a stop condition (P).  
Register O set  
Target Address  
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0
A
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
A
P
Start  
Ack  
Write  
Stop  
8-8. I2C Write Without Data  
The following procedure should be followed for setting a starting sub-address for I2C reads (refer to 8-8).  
1. The controller initiates a write operation by generating a start condition (S), followed by the TMDS1204 7-bit  
address and a zero-value W/Rbit to indicate a write cycle.  
2. The TMDS1204 acknowledges the address cycle.  
3. The controller presents the register offset within TMDS1204 to be written, consisting of one byte of data,  
MSB-first.  
4. The TMDS1204 acknowledges the register offset cycle.  
5. The controller terminates the write operation by generating a stop condition (P).  
备注  
8-6 that if no register offset is included for the read procedure after initial power-up, then reads start  
at register offset 00h and continue byte by byte through the registers until the I2C controller terminates  
the read operation. During a read operation, the TMDS1204 auto-increments the I2C internal register  
address of the last byte transferred independent of whether or not an ACK was received from the I2C  
controller.  
8.5 Register Maps  
8.5.1 TMDS1204 Registers  
8-23 lists the memory-mapped registers for the TMDS1204 registers. All register offset addresses not listed in  
8-23 should be considered as reserved locations and the register contents should not be modified.  
8-23. TMDS1204 Registers  
Offset Acronym  
Register Name  
Section  
8.5.1.1  
8.5.1.2  
8.5.1.3  
8.5.1.4  
8h  
9h  
Ah  
Bh  
REV_ID  
Revision ID  
PD_RST  
Power Down and Reset control  
Misc Control  
MISC_CONTROL  
GBL_SLEW_CTRL  
Global TX Slew control for data lanes in  
HDMI1.4 and 2.0  
Ch  
Dh  
GBL_SLEW_CTRL2  
GBL_CTRL1  
Global TX Slew control for data and clock  
Global control  
8.5.1.5  
8.5.1.6  
8.5.1.7  
8.5.1.8  
8.5.1.9  
Eh  
GBL_CTLE_CTRL  
LANE_ENABLE  
CLK_CONFIG1  
Global CTLE control  
11h  
12h  
Lane enables  
CLK lane TX swing and FFE control  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TMDS1204  
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
8-23. TMDS1204 Registers (continued)  
Register Name  
Offset Acronym  
Section  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Ch  
1Dh  
1Eh  
20h  
31h  
35h  
41h  
42h  
50h  
51h  
CLK_CONFIG2  
D0_CONFIG1  
CLK lane RX EQ control  
8.5.1.10  
8.5.1.11  
8.5.1.12  
8.5.1.13  
8.5.1.14  
8.5.1.15  
8.5.1.16  
8.5.1.17  
8.5.1.18  
8.5.1.19  
8.5.1.20  
8.5.1.21  
8.5.1.22  
8.5.1.23  
8.5.1.24  
8.5.1.25  
8.5.1.26  
8.5.1.27  
D0 lane TX swing and FFE control  
D0 lane RX EQ control  
D0_CONFIG2  
D1_CONFIG1  
D1 lane TX swing and FFE control  
D1 lane RX EQ control  
D1_CONFIG2  
D2_CONFIG1  
D2 lane TX swing and FFE control  
D2 lane RX EQ control  
D2_CONFIG2  
SIGDET_TH_CFG  
GBL_STATUS  
SIGDET voltage threshold control  
Global Powerdown and Standby Status  
Adaptive EQ control1  
AEQ_CONTROL1  
AEQ_CONTROL2  
SCDC_TMDS_CONFIG  
SCDC_SINK_CONFIG  
SCDC_SRC_TEST  
SCDC_STATUS10  
SCDC_STATUS32  
AEQ_STATUS  
Adaptive EQ control2  
SCDC TMDS Clock Ratio  
SCDC SNK FRL FFE and Rate  
SCDC Test  
Lanes 0 and 1 FRL Training Status  
Lanes 2 and 3 FRL Training Status  
Adaptive EQ Status  
AEQ_STATUS2  
Adaptive EQ Status  
Complex bit access types are encoded to fit into small table cells. 8-24 shows the codes that are used for  
access types in this section.  
8-24. TMDS1204 Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
RH  
R
H
Read  
Set or cleared by hardware  
Write Type  
W
W
Write  
W1S  
W
Write  
1S  
1 to set  
WtoPH  
W
Write  
toPH  
Pulse high  
Reset or Default Value  
-n  
Value after reset or the default  
value  
8.5.1.1 REV_ID Register (Offset = 8h) [Reset = 03h]  
REV_ID is shown in 8-25.  
Return to the 8-23.  
8-25. REV_ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
REV_ID  
RH  
3h  
Device revision.  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TMDS1204  
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
8.5.1.2 PD_RST Register (Offset = 9h) [Reset = 01h]  
PD_RST is shown in 8-26.  
Return to the 8-23.  
8-26. PD_RST Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
SOFT_RST  
SCDC_SOFT_RST  
WtoPH  
WtoPH  
0h  
Writing a 1 to this field resets all fields  
6
0h  
Writing a 1 to this field resets the fields in the SCDC registers 20h,  
31h, 35h, 41h and 42h.  
5
4
3
2
RESERVED  
RESERVED  
RESERVED  
R
0h  
0h  
0h  
0h  
Reserved  
Reserved  
Reserved  
R/W  
R
HPD_PWRDWN_DISABL R/W  
E
Mode to ignore HPD pin and always enter active state unless  
PD_EN is high  
0h = Automatically enter power down based on HPD_IN  
1h = Always remain in active state or Standby  
1
0
STANDBY_DISABLE  
R/W  
R/W  
0h  
1h  
When high, standby state is disabled and the device will immediately  
enter active state with all lanes enabled when not in power down.  
When low, the device will enter standby state when exiting power  
down and wait for incoming data before entering active state.  
0h = Standby state enabled  
1h = Standby state disabled  
PD_EN  
I2C power down. Software should clear this field after it has  
completed initialization. HPD_OUT will be asserted low when this  
field is set.  
0h = Normal operation  
1h = Forced power down by I2C  
8.5.1.3 MISC_CONTROL Register (Offset = Ah) [Reset = 08h]  
MISC_CONTROL is shown in 8-27.  
Return to the 8-23.  
8-27. MISC_CONTROL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LANE_SWAP  
R/W  
0h  
This field swaps the input and output lanes.  
0h = No lanes swapped  
1h = Both input and output lanes swapped  
6
FANOUT_EN  
R/W  
0h  
Selects whether or not fan-out buffer feature is enabled or not. When  
enabled, hardware will enable RCLKOUT when operating in  
HDMI1.4 and HDMI2.0. When operating in HDMI 2.1 mode,  
OUT_CLK will be enabled for FRL lane 3.  
0h = Fan-out buffer feature disabled.  
1h = Fan-out buffer feature enabled.  
5
4
3
RX_TERM_DISABLE  
HPD_OUT_SEL  
R/W  
R/W  
R/W  
0h  
0h  
1h  
When set will disable Rx termination.  
0h = Enabled when HPD_IN high.  
1h = Disable  
Selects whether HPD_OUT is push/pull or open-drain.  
0h = Push Pull  
1h = Open Drain  
EQ_SNOOP_CTRL  
Control whether Rx EQ is adjusted in response to snooped TXFFE  
when TXFFE snooping is enabled through registers 41h and 42h.  
0h = Rx EQ automatically adjusted for TXFFE  
1h = Rx EQ is fixed  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TMDS1204  
 
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
8-27. MISC_CONTROL Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2
RATE_SNOOP_CTRL  
R/W  
0h  
Control snooping of HDMI rates. When snooping is disabled, correct  
HDMI rate must be written through I2C to registers 20h and 31h.  
0h = Snooping enabled  
1h = Snooping disabled  
1-0  
TXFFE_SNOOP_CTRL  
R/W  
0h  
Control snooping of TXFFE  
0h = DDC snooping through registers 35h, 41h and 42h  
1h = DDC snooping disabled. TXFFE controlled through I2C writes to  
35h, 41h and 42h  
2h = DDC snooping disabled. TXFFE controlled through writes to  
CLK_TXFFE, D0_TXFFE, D1_TXFFE, and D2_TXFFE  
3h = DDC snooping disabled. TXFFE controlled through writes to  
CLK_TXFFE, D0_TXFFE, D1_TXFFE, and D2_TXFFE  
8.5.1.4 GBL_SLEW_CTRL Register (Offset = Bh) [Reset = 34h]  
GBL_SLEW_CTRL is shown in 8-28.  
Return to the 8-23.  
8-28. GBL_SLEW_CTRL Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
SLEW_3G  
R
0h  
Reserved  
6-4  
R/W  
3h  
Field controls slew rate for HDMI 1.4 data lane and HDMI 2.1 3Gbps  
FRL data lanes.  
0h = slowest edge rate  
7h = fastest edge rate  
3
RESERVED  
SLEW_6G  
R
0h  
4h  
Reserved  
2-0  
R/W  
Field controls slew rate for HDMI 2.0 data lanes and HDMI 2.1  
6Gbps FRL data lanes.  
0h = slowest edge rate  
7h = fastest edge rate  
8.5.1.5 GBL_SLEW_CTRL2 Register (Offset = Ch) [Reset = 71h]  
GBL_SLEW_CTRL2 is shown in 8-29.  
Return to the 8-23.  
8-29. GBL_SLEW_CTRL2 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
SLEW_8G10G12G  
R
0h  
Reserved  
6-4  
R/W  
7h  
Field controls slew rate for data lanes for 8Gbps, 10Gbps and  
12Gbps FRL datarates  
0h = slowest edge rate  
7h = fastest edge rate  
3
RESERVED  
SLEW_CLK  
R
0h  
1h  
Reserved  
2-0  
R/W  
Field control slew rate of clock lane in HDMI 1.4b and HDMI 2.0  
modes.  
0h = slowest edge rate  
7h = fastest edge rate  
8.5.1.6 GBL_CTRL1 Register (Offset = Dh) [Reset = 22h]  
GBL_CTRL1 is shown in 8-30.  
Return to the 8-23.  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TMDS1204  
 
 
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
8-30. GBL_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GLOBAL_LINR_EN  
R/W  
0h  
Global control for selecting between linear redriver or limited redriver.  
0h = Limited  
1h = Linear  
6
5-4  
3
TX_AC_EN  
R/W  
R/W  
0h  
2h  
0h  
Controls selection of ac-coupled or dc-coupled TX termination. When  
AC-coupled is enabled, 50 Ωtermination on both P and N to VCC  
will be enabled.  
0h = dc-coupled  
1h = ac-coupled  
GLOBAL_DCG  
CTLE DCGain for all lane.  
0h = -3 dB  
1h = -3 dB  
2h = 0 dB  
3h = +1 dB  
TXTERM_AUTO_HDMI14 R/W  
Selects between no termination and 300 Ωs when TERM = 2h and  
operating in HDMI1.4.  
0h = No termination for clock less than or equal to 165MHz and 300  
Ωfor clock greater than 225MHz  
1h = 300 Ω  
2
CTLEBYP_EN  
TERM  
R/W  
R/W  
0h  
2h  
Selects whether or not CTLE bypass is enabled or not when  
GLOBAL_DCG is set to 2h and EQ set to 0h.  
0h = CTLE bypass disabled  
1h = CTLE bypass enabled  
1-0  
TX terminaion control  
0h = No termination  
1h = 300 Ω  
2h = Automatic based HDMI mode  
3h = 100 Ω  
8.5.1.7 GBL_CTLE_CTRL Register (Offset = Eh) [Reset = 3Fh]  
GBL_CTLE_CTRL is shown in 8-31.  
Return to the 8-23.  
8-31. GBL_CTLE_CTRL Register Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
Reset  
Description  
GLOBAL_CTLEBW  
HDMI14_CTLE_SEL  
R/W  
0h  
CTLE bandwidth control. 0 is lowest and 3h is highest.  
R/W  
R/W  
R/W  
3h  
3h  
3h  
Selects the CTLE used when datarate is HDMI 1.4. Value  
programmed into this field will apply to data lanes only. Clock lane  
will always use 3Gbps CTLE.  
0h = 3 Gbps CTLE  
1h = 6 Gbps CTLE  
2h = Auto select based on snoop datarate  
3h = 12 Gbps CTLE  
3-2  
1-0  
HDMI20_CTLE_SEL  
HDMI21_CTLE_SEL  
Selects the CTLE used when datarate is HDMI 2.0. Value  
programmed into this field will apply to data lanes only. Clock lane  
will always use 3Gbps CTLE.  
0h = 3 Gbps CTLE  
1h = 6 Gbps CTLE  
2h = Auto select based on snoop datarate  
3h = 12 Gbps CTLE  
Selects the CTLE used when datarate is HDMI 2.1. Value  
programmed into this field will apply to all four lanes.  
0h = 3 Gbps CTLE  
1h = 6 Gbps CTLE  
2h = Auto select based on snoop datarate  
3h = 12 Gbps CTLE  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TMDS1204  
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
8.5.1.8 LANE_ENABLE Register (Offset = 11h) [Reset = 5Fh]  
LANE_ENABLE is shown in 8-32.  
Return to the 8-23.  
8-32. LANE_ENABLE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
HDMI20_VOD  
R/W  
1h  
VOD control for limited redriver in HDMI 2.0  
0h = Use values in CLK_VOD, D0_VOD, D1_VOD and D2_VOD  
1h = Default (1000 mV)  
2h = Default - 5%  
3h = Default + 5%  
5-4  
HDMI14_VOD  
R/W  
1h  
VOD control for limited redriver in HDMI 1.4  
0h = Use values in CLK_VOD, D0_VOD, D1_VOD and D2_VOD  
1h = Default (1000 mV)  
2h = Default - 5%  
3h = Default - 10%  
3
2
1
0
CLK_LANE_EN  
D0_LANE_EN  
D1_LANE_EN  
D2_LANE_EN  
R/W  
R/W  
R/W  
R/W  
1h  
1h  
1h  
1h  
Enable for CLK lane  
0h = Disabled  
1h = Enabled  
Enable for D0 lane  
0h = Disabled  
1h = Enabled  
Enable for D0 lane  
0h = Disabled  
1h = Enabled  
Enable for D0 lane  
0h = Disabled  
1h = Enabled  
8.5.1.9 CLK_CONFIG1 Register (Offset = 12h) [Reset = 03h]  
CLK_CONFIG1 is shown in 8-33.  
Return to the 8-23.  
8-33. CLK_CONFIG1 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
CLK_TXFFE  
R
0h  
Reserved  
6-4  
R/W  
0h  
TXFFE control for CLK lane. This field is only honored in HDMI 2.1.  
0h = 0.0 dB  
1h = 3.5 dB  
2h = 6.0 dB  
3h = Reserved  
4h = -1.5 dB  
5h = -2.5 dB  
6h = -3.5 dB  
7h = -4.8 dB  
3
RESERVED  
CLK_VOD  
R
0h  
3h  
Reserved  
2-0  
R/W  
Differential Swing control for CLK lane.  
0h = Limited -15% Linear 800mV  
1h = Limited -10% Linear 900mV  
2h = Limited - 5% Linear 1000mV  
3h = Limited 800mV Linear 1200mV  
4h = Limited +5% Linear Reserved  
5h = Limited +10% Linear Reserved  
6h = Limited +15% Linear Reserved  
7h = Limited +20% Linear Reserved  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TMDS1204  
 
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
8.5.1.10 CLK_CONFIG2 Register (Offset = 13h) [Reset = 00h]  
CLK_CONFIG2 is shown in 8-34.  
Return to the 8-23.  
8-34. CLK_CONFIG2 Register Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
Reset  
0h  
0h  
Description  
RESERVED  
CLK_EQ  
R
Reserved  
R/W  
EQ control for CLK lane. This field is only honored in HDMI 2.1.  
0h = Min EQ  
Fh = Max EQ  
8.5.1.11 D0_CONFIG1 Register (Offset = 14h) [Reset = 03h]  
D0_CONFIG1 is shown in 8-35.  
Return to the 8-23.  
8-35. D0_CONFIG1 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
D0_TXFFE  
R
0h  
Reserved  
6-4  
R/W  
0h  
TXFFE control for D0 lane.  
0h = 0.0 dB  
1h = 3.5 dB  
2h = 6.0 dB  
3h = Reserved  
4h = -1.5 dB  
5h = -2.5 dB  
6h = -3.5 dB  
7h = -4.8 dB  
3
RESERVED  
D0_VOD  
R
0h  
3h  
Reserved  
2-0  
R/W  
Differential Swing control for D0 lane.  
0h = Limited -15% Linear 800mV  
1h = Limited -10% Linear 900mV  
2h = Limited - 5% Linear 1000mV  
3h = Limited 1000mV Linear 1200mV  
4h = Limited +5% Linear Reserved  
5h = Limited +10% Linear Reserved  
6h = Limited +15% Linear Reserved  
7h = Limited +20% Linear Reserved  
8.5.1.12 D0_CONFIG2 Register (Offset = 15h) [Reset = 00h]  
D0_CONFIG2 is shown in 8-36.  
Return to the 8-23.  
8-36. D0_CONFIG2 Register Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
Reset  
Description  
RESERVED  
D0_EQ  
R
0h  
Reserved  
R/W  
0h  
EQ control for D0 lane.  
0h = Min EQ  
Fh = Max EQ  
8.5.1.13 D1_CONFIG1 Register (Offset = 16h) [Reset = 03h]  
D1_CONFIG1 is shown in 8-37.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TMDS1204  
 
 
 
 
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
Return to the 8-23.  
8-37. D1_CONFIG1 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
D1_TXFFE  
R
0h  
Reserved  
6-4  
R/W  
0h  
TXFFE control for D1 lane.  
0h = 0.0 dB  
1h = 3.5 dB  
2h = 6.0 dB  
3h = Reserved  
4h = -1.5 dB  
5h = -2.5 dB  
6h = -3.5 dB  
7h = -4.8 dB  
3
RESERVED  
D1_VOD  
R
0h  
3h  
Reserved  
2-0  
R/W  
Differential Swing control for D1 lane.  
0h = Limited -15% Linear 800mV  
1h = Limited -10% Linear 900mV  
2h = Limited - 5% Linear 1000mV  
3h = Limited 1000mV Linear 1200mV  
4h = Limited +5% Linear Reserved  
5h = Limited +10% Linear Reserved  
6h = Limited +15% Linear Reserved  
7h = Limited +20% Linear Reserved  
8.5.1.14 D1_CONFIG2 Register (Offset = 17h) [Reset = 00h]  
D1_CONFIG2 is shown in 8-38.  
Return to the 8-23.  
8-38. D1_CONFIG2 Register Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
Reset  
Description  
RESERVED  
D1_EQ  
R
0h  
Reserved  
R/W  
0h  
EQ control for D1 lane  
0h = Min EQ  
Fh = Max EQ  
8.5.1.15 D2_CONFIG1 Register (Offset = 18h) [Reset = 03h]  
D2_CONFIG1 is shown in 8-39.  
Return to the 8-23.  
8-39. D2_CONFIG1 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
D2_TXFFE  
R
0h  
Reserved  
6-4  
R/W  
0h  
TXFFE control for D2 lane  
0h = 0.0 dB  
1h = 3.5 dB  
2h = 6.0 dB  
3h = Reserved  
4h = -1.5 dB  
5h = -2.5 dB  
6h = -3.5 dB  
7h = -4.8 dB  
3
RESERVED  
R
0h  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TMDS1204  
 
 
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
8-39. D2_CONFIG1 Register Field Descriptions (continued)  
Bit  
Field  
D2_VOD  
Type  
Reset  
Description  
2-0  
R/W  
3h  
Differential Swing control for D2 lane.  
0h = Limited -15% Linear 800mV  
1h = Limited -10% Linear 900mV  
2h = Limited - 5% Linear 1000mV  
3h = Limited 1000mV Linear 1200mV  
4h = Limited +5% Linear Reserved  
5h = Limited +10% Linear Reserved  
6h = Limited +15% Linear Reserved  
7h = Limited +20% Linear Reserved  
8.5.1.16 D2_CONFIG2 Register (Offset = 19h) [Reset = 00h]  
D2_CONFIG2 is shown in 8-40.  
Return to the 8-23.  
8-40. D2_CONFIG2 Register Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
Reset  
Description  
RESERVED  
D2_EQ  
R
0h  
Reserved  
R/W  
0h  
EQ control for D2 lane.  
0h = Min EQ  
Fh = Max EQ  
8.5.1.17 SIGDET_TH_CFG Register (Offset = 1Ah) [Reset = 44h]  
SIGDET_TH_CFG is shown in 8-41.  
Return to the 8-23.  
8-41. SIGDET_TH_CFG Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
CFG_SIGDET_HYST  
R
0h  
Reserved  
6-4  
R/W  
4h  
Controls the SIGDET hysteresis. Value programmed into this field  
plus value programmed into CFG_SIGDET_VTH field defines the  
SIGDET assert threshold.  
0h = 0mV  
1h = 12mV  
2h = 25mV  
3h = 37mV  
4h = 55mV  
5h = 63mV  
6h = 75mV  
7h = 90mV  
3
RESERVED  
R
0h  
4h  
Reserved  
2-0  
CFG_SIGDET_VTH  
R/W  
Controls the SIGDET de-assert voltage threshold.  
0h = 58mV  
1h = 60mV  
2h = 72mV  
3h = 84mV  
4h = 95mV  
5h = 108mV  
6h = 120mV  
7h = 135mV  
8.5.1.18 GBL_STATUS Register (Offset = 1Ch) [Reset = 00h]  
GBL_STATUS is shown in 8-42.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TMDS1204  
 
 
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
Return to the 8-23.  
8-42. GBL_STATUS Register Field Descriptions  
Bit  
7
Field  
Type  
RH  
RH  
R
Reset  
Description  
PD_STATUS  
STANDBY_STATUS  
RESERVED  
0h  
Power Down status  
Standby Status  
Reserved  
6
0h  
5-0  
0h  
8.5.1.19 AEQ_CONTROL1 Register (Offset = 1Dh) [Reset = F3h]  
AEQ_CONTROL1 is shown in 8-43.  
Return to the 8-23.  
8-43. AEQ_CONTROL1 Register Field Descriptions  
Bit  
7-4  
3-2  
Field  
Type  
Reset  
Description  
FULLAEQ_UPPER_EQ  
AEQ_PATTERN_CTRL  
R/W  
Fh  
Maximum EQ value to check for full AEQ mode  
R/W  
0h  
Control how link training pattern snooping for EQ adaptation  
0h = Require a read of pattern register 41h/42h after a rate change.  
Allow eq adaptation for patterns 0, 5, 6, 7, and 8.  
1h = Require a read of pattern register 41h/42h after a rate change.  
Allow eq adaptation for patterns 5, 6, 7, and 8.  
2h = Allow eq adaptation for patterns 0, 5, 6, 7, and 8. No need for  
read after rate change  
3h = Allow eq adaptation for patterns 5, 6, 7, and 8. No need for read  
after rate change.  
1
0
AEQ_START_CTRL  
AEQ_TX_DELAY_EN  
R/W  
R/W  
1h  
1h  
Control whether starts based on signal detect or both signal detect  
and FLT_UPDATE cleared  
0h = Only require signal detect  
1h = Require signal detect and clearing of FLT_UPDATE  
Control whether TX remains disabled during EQ adaptation  
0h = TX active during adaptation  
1h = TX disabled during adaptation  
8.5.1.20 AEQ_CONTROL2 Register (Offset = 1Eh) [Reset = 00h]  
AEQ_CONTROL2 is shown in 8-44.  
Return to the 8-23.  
8-44. AEQ_CONTROL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
AEQ_MODE  
R/W  
0h  
Selects between two Adaption modes  
0h = AEQ with hits counted at mideye for every EQ.  
1h = AEQ with hits counted at mideye only for EQ equal 0.  
6
AEQ_EN  
R/W  
0h  
Controls whether or not adaptive EQ is enabled.  
0h = AEQ disabled  
1h = AEQ enabled  
5-4  
3
RESERVED  
R/W  
R/W  
0h  
0h  
Reserved  
OVER_EQ_SIGN  
Selects the sign for OVER_EQ_CTRL field.  
0h = positive  
1h = negative  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TMDS1204  
 
 
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
8-44. AEQ_CONTROL2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2-0  
OVER_EQ_CTRL  
R/W  
0h  
This field will increase or decrease the AEQ by value programmed  
into this field. For example, full AEQ value is 6 and this field is  
programmed to 2 and OVER_EQ_SIGN = 0, then EQ value used will  
be 8. This field is only used in Full AEQ mode.  
0h = 0 or -8  
1h = 1 or -7  
2h = 2 or -6  
3h = 3 or -5  
4h = 4 or -4  
5h = 5 or -3  
6h = 6 or -2  
7h = 7 or -1  
8.5.1.21 SCDC_TMDS_CONFIG Register (Offset = 20h) [Reset = 00h]  
SCDC_TMDS_CONFIG is shown in 8-45.  
Return to the 8-23.  
8-45. SCDC_TMDS_CONFIG Register Field Descriptions  
Bit  
7-2  
1
Field  
Type  
Reset  
Description  
RESERVED  
TMDS_CLK_RATIO  
R
0h  
Reserved  
RH/W  
0h  
TMDS Bit Period to TMDS Clock Period Ratio. Reads last value  
snooped through DDC read/write or I2C write.  
0h = 1/10 (HDMI 1.4b)  
1h = 1/40 (HDMI 2.0)  
0
RESERVED  
R
0h  
Reserved  
8.5.1.22 SCDC_SINK_CONFIG Register (Offset = 31h) [Reset = 00h]  
SCDC_SINK_CONFIG is shown in 8-46.  
Return to the 8-23.  
8-46. SCDC_SINK_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
FFE_LEVELS  
RH/W  
0h  
Indicates the maximum TXFFE level supported for the current FRL  
rate. Read last value snooped through DDC read/write or I2C write.  
0h = Only TXFFE0 supported  
1h = TXFFE0-1 supported  
2h = TXFFE0-2 supported  
3h = TXFFE0-3 supported  
3-0  
FRL_RATE  
RH/W  
0h  
Selects FRL rate and lane count. Read last value snooped through  
DDC read/write or I2C write.  
0h = Disable FRL  
1h = 3 Gbps on 3 lanes  
2h = 6 Gbps on 3 lanes  
3h = 6 Gbps on 4 lanes  
4h = 8 Gbps on 4 lanes  
5h = 10 Gbps on 4 lanes  
6h = 12 Gbps on 4 lanes  
8.5.1.23 SCDC_SRC_TEST Register (Offset = 35h) [Reset = 00h]  
SCDC_SRC_TEST is shown in 8-47.  
Return to the 8-23.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TMDS1204  
 
 
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
8-47. SCDC_SRC_TEST Register Field Descriptions  
Bit  
7-6  
5
Field  
Type  
Reset  
Description  
RESERVED  
FLT_NO_TIMEOUT  
R
0h  
Reserved  
RH/W  
0h  
Set by sink test equipment to have source not time out during FRL  
link training  
0h = Normal operation  
1h = Source does not timeout  
4
3
RESERVED  
TX_NO_FFE  
R
0h  
0h  
Reserved  
RH/W  
Test mode to disable FFE. Read last value snooped through DDC  
read/write or I2C write.  
0h = Normal TXFFE  
1h = TX sent with no FFE  
2
1
0
TX_DEEMPH_ONLY  
TX_PRESHOOT_ONLY  
RESERVED  
RH/W  
RH/W  
R
0h  
0h  
0h  
Test mode to enable de-emphasis only. Read last value snooped  
through DDC read/write or I2C write.  
0h = Normal TXFFE  
1h = TX sent de-emphasis only  
Test mode to enable pre-shoot only. Read last value snooped  
through DDC read/write or I2C write.  
0h = Normal TXFFE  
1h = TX sent with pre-shoot only  
Reserved  
8.5.1.24 SCDC_STATUS10 Register (Offset = 41h) [Reset = 00h]  
SCDC_STATUS10 is shown in 8-48.  
Return to the 8-23.  
8-48. SCDC_STATUS10 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LN1_LTP_REQ  
RH/W  
0h  
Link training pattern request for lane 1. Reads last value read  
through DDC or written through I2C. A DDC read/I2C write of Eh  
advances the current FFE level for this lane saturating at the value of  
FFE_LEVELS. A DDC read/I2C write of Fh clears for FFE level for all  
lanes to TXFFE0.  
3-0  
LN0_LTP_REQ  
RH/W  
0h  
Link training pattern request for lane 0. Reads last value read  
through DDC or written through I2C. A DDC read/I2C write of Eh  
advances the current FFE level for this lane saturating at the value of  
FFE_LEVELS. A DDC read/I2C write of Fh clears for FFE level for all  
lanes to TXFFE0.  
8.5.1.25 SCDC_STATUS32 Register (Offset = 42h) [Reset = 00h]  
SCDC_STATUS32 is shown in 8-49.  
Return to the 8-23.  
8-49. SCDC_STATUS32 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LN3_LTP_REQ  
RH/W  
0h  
Link training pattern request for lane 3. Reads last value read  
through DDC or written through I2C. A DDC read/I2C write of Eh  
advances the current FFE level for this lane saturating at the value of  
FFE_LEVELS. A DDC read/I2C write of Fh clears for FFE level for all  
lanes to TXFFE0.  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TMDS1204  
 
 
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
8-49. SCDC_STATUS32 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
LN2_LTP_REQ  
RH/W  
0h  
Link training pattern request for lane 2. Reads last value read  
through DDC or written through I2C. A DDC read/I2C write of Eh  
advances the current FFE level for this lane saturating at the value of  
FFE_LEVELS. A DDC read/I2C write of Fh clears for FFE level for all  
lanes to TXFFE0.  
8.5.1.26 AEQ_STATUS Register (Offset = 50h) [Reset = 80h]  
AEQ_STATUS is shown in 8-50.  
Return to the 8-23.  
8-50. AEQ_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
AEQDONE_STAT  
RH  
1h  
This field is low while AEQ is active and high when it is done. It is  
valid when FRL training and AEQ_EN = 1 or when  
FORCE_AEQ_EN = 1 and HW has reset FORCE_AEQ back to 0.  
0h = AEQ is running  
1h = AEQ is done  
6
5
AEQ_HC_OVERFLOW  
RESERVED  
RH  
R
0h  
0h  
0h  
0h  
13-bit AEQ hit counter overflow status  
Reserved  
4
RXD1_DONE_STAT  
RXD1_AEQ_STAT  
RH  
RH  
This flag is set after DAC wait timer expires.  
3-0  
Optimal EQ determined by FSM after the completion of Full AEQ.  
This field will include the value programmed into OVER_EQ_CTRL  
field.  
8.5.1.27 AEQ_STATUS2 Register (Offset = 51h) [Reset = 00h]  
AEQ_STATUS2 is shown in 8-51.  
Return to the 8-23.  
8-51. AEQ_STATUS2 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
R
0h  
Reserved  
6-4  
3-0  
VOD_RANGE_STAT  
AEQ_EYE_STAT  
RH  
RH  
0h  
0h  
VOD range selected by the last AEQ run  
EYE status from the last AEQ run. Relative to the max limit of 15.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TMDS1204  
 
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
TMDS1204 is designed to accept AC or DC-coupled HDMI input signals. The device provides signal conditioning  
and level shifting functions to drive a compliant HDMI source connector. The device can be used in an HDMI  
sink application such as monitor or TV. The TMDS1204 can also be used as an DP/HDMI redriver in an  
embedded application. In many major PC or gaming systems APU/GPU will provide AC-coupled HDMI signals.  
TMDS1204 is suitable for such platforms.  
9.1 Application Information  
The TMDS1204 features are optimized for sink applications such as TV or monitors, but TMDS1204 can also  
support source applications such as Blu-rayDVD player, gaming system, desktops, and notebooks. The  
following sections provide design considerations for the various types of applications.  
9.2 Typical Source-Side Application  
9-1 shows a schematic representation of what is considered a standard source implementation.  
B
D
C
A
LCD  
LAB  
Op onal  
CAC-RX  
Op onal  
Op onal  
CAC-TX  
RESD  
IN_D2p  
IN_D2n  
OUT_D2p  
OUT_D2n  
OUT_D1p  
OUT_D1n  
IN_D1p  
IN_D1n  
OUT_D0p  
OUT_D0n  
Redriver  
IN_D0p  
IN_D0n  
GPU  
OUT_CLKp  
OUT_CLKn  
IN_CLKp  
IN_CLKn  
LCAP-RX  
LCAP-TX  
LR_ESD  
LESD  
9-1. TMDS1204 in Source Side Application  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TMDS1204  
 
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
9.2.1 Design Requirements  
The TMDS1204 can be designed into many different applications. In all the applications there are certain  
requirements for the system to work properly. The EN pin must have a 0.1-µF capacitor to ground. The  
processor can drive the EN pin, but the EN pin needs to change states (low to high) after the voltage rails have  
stabilized. Using I2C is the best way to configure the device, but pin strapping is also provided as I2C and is not  
available in all cases. As sources may have many different naming conventions, it is necessary to confirm that  
the link between the source and the TMDS1204 are correctly mapped. A Swap function is provided for the input  
pins in case signaling is reversed between the source and receptacle. 9-1 lists information on expected  
values to perform properly.  
For this design example, the TMDS1204 is assumed to be configured for pin-strap mode. If I2C mode is desired,  
the MODE pin should be set to "F" and software must configure TMDS1204. For how to configure TMDS1204,  
refer to 8.4.1.  
9-1. Design Parameters  
Design Parameter  
VCC  
Value  
3.3-V  
VIO (1.2-V, 1.8-V, or 3.3-V LVCMOS levels)  
Maximum HDMI 2.1 FRL Datarate (3, 6, 8, 10, or 12-Gbps)  
Pin-strap or I2C mode (if I2C, then MODE = "F").  
Pin Strap Mode.(MODE = "0", "R" or "1").  
1.8-V  
12-Gbps  
Pin-strap  
Mode = "0" (Fixed EQ)  
DDC Snoop Feature. (Y/N). Required when in pin strap. Optional in  
I2C mode.  
Yes  
SWAP function (Y / N). In pin strap mode controlled by SDA/CFG1  
pin.  
Yes. SDA/CFG1 pin = H.  
HPD_IN to HPD_OUT Level Shifter Support (Y / N)  
Pre-Channel Length (9-2 provides the length restrictions)  
Post-Channel Length (9-2 provides the length restrictions)  
Limited or linear redriver mode?  
Yes, HPD_OUT is used. If no, then HPD_OUT can be left floating.  
Length = 8 inches (7.2-dB at 6-GHz insertion loss)  
Length = 2 inches (1.8-dB at 6-GHz insertion loss)  
Limited redriver (LINEAR_EN pin = "0").  
TX is DC or AC-coupled to HDMI receptacle?  
DC-coupled. AC_EN pin = Low.  
GPU Launch Voltage (500 mV to 1200 mV) if using limited redriver  
mode. If using linear redriver mode, then refer to the GPU  
requirements listed in 8-4.  
500-mV  
If MODE = "0" or "R", GPU's TX FFE pre-shoot and de-emphasis  
levels shall be set to 0-dB for all four TXFFE levels  
If MODE = "1", then GPU TXFFE pre-shoot and de-emphasis levels  
GPU HDMI 2.1 pre-shoot and de-emphasis levels used if using  
redriver in limited mode  
shall meet the requirements listed in 8-4.  
EQ1 pin: "R"  
ADDR/EQ0 pin: "R"  
(7.5-dB)  
RX EQ (16 possible values. Value chosen based on pre-channel  
length).  
TX Pre-emphasis. In pre-strap mode controlled by TXPRE pin.  
TX Swing. In pre-strap mode controlled by TXSWG pin.  
Default 0-dB of pre-emphasis. Float TXPRE pin.  
Default TX swing level. Float TXSWG pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TMDS1204  
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
9-2. Source Layout and Component Placement Constraints  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
External series resistor between ESD component and  
TMDS1204  
RESD  
0
2.5  
(1) (2)  
LAB  
PCB trace length from GPU to TMDS1204  
At 12-Gbps  
At 12-Gbps  
1
10  
5
inches  
mil  
LINTRA-AB Intra-pair skew from GPU to TMDS1204  
(1)  
LCD  
PCB trace length from TMDS1204 to receptacle  
0.75  
2
inches  
mil  
LINTRA-CD Intra-pair skew from TMDS1204 to receptacle  
5
PCB trace length from TMDS1204 to optional external  
CAC-RX capacitor  
LCAP-RX  
0.3  
0.3  
inches  
inches  
PCB trace length from TMDS1204 to optional external  
CAC-TX capacitor  
LCAP-TX  
LESD  
PCB trace length from ESD component to receptacle  
PCB trace length from RESD to ESD component  
0.5  
0.25  
1
inches  
inches  
inches  
LR_ESD  
LINTER-PAIR Inter-pair skew between all four channels (D0, D1, D2,  
(3)  
and CLK)  
dB / inch /  
GHz  
ILPCB  
PCB trace insertion loss  
0.1  
0.17  
ZPCB_AB  
ZPCB_CD  
VIAAB  
Differential impedance of LAB  
75  
90  
110  
110  
2
Differential impedance of LCD  
Number of vias between GPU and TMDS1204  
VIA  
VIACD  
Number of vias between HDMI connector and  
TMDS1204  
1
VIA  
Differential crosstalk between adjacent differential  
pairs on PCB.  
XTALK  
dB  
3 GHz  
24  
(1) Maximum distance assumes PCB trace insertion loss meets ILPCB requirement. If PCB trace insertion loss exceeds the maximum limit,  
then distance needs be reduced.  
(2) Minimum distance assumes PCB trace insertion loss meets ILPCB requirement. If PCB trace insertion loss is less than the minimum  
limit, then distance needs to be increased.  
(3) Calculation of channel length is the sum of LAB and LCD  
.
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TMDS1204  
 
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
VCC (3.3 V)  
VIO  
10 µF  
100 nF  
100 nF  
100 nF  
100 nF  
VCC (3.3 V)  
Common mode  
choke op onal  
100 nF  
GPU  
CAC-RX  
RESD  
OUT_D2p  
OUT_D2n  
OUT_D1p  
OUT_D1n  
OUT_D0p  
OUT_D0n  
OUT_CLKp  
OUT_CLKn  
HPD_IN  
D2+  
D2-  
IN_D2p  
D2p  
D2n  
IN_D2n  
D1+  
D1-  
IN_D1p  
D1p  
IN_D1n  
D1n  
D0+  
D0-  
IN_D0p  
D0p  
IN_D0n  
D0n  
CLK+  
CLK-  
HPD  
SCL  
IN_CLKp  
IN_CLKn  
HPD_OUT  
LV_DDC_SCL  
LV_DDC_SDA  
CLKp  
CLKn  
HPD  
DDC_SCL  
DDC_SDA  
LV_DDC_SCL  
LV_DDC_SDA  
RCLKOUTp  
RCLKOUTn  
DDC_SCL  
DDC_SDA  
SCL/GPIO  
SDA/GPIO  
GPIO  
SDA  
1.8-k  
MODE  
1.8-k  
MODE  
+5V  
TXPRE  
TXPRE  
+5V  
TXSWG  
CTLEMAP_SEL  
EQ1  
TXSWG  
CTLEMAP_SEL  
EQ1  
AC_EN  
AC_EN  
VCC (3.3 V)  
DNI  
VIO  
LINEAR_EN  
ADDR/EQ0  
SCL/CFG0  
SDA/CFG1  
EN  
LINEAR_EN  
DNI  
SCL/CFG0  
ADDR/EQ0  
SCL/CFG0  
SDA/CFG1  
EN  
MODE  
SIGDET_OUT  
DCGAIN  
1-k  
DCGAIN  
10-k  
VCC (3.3 V)  
DNI  
VIO  
100 nF  
Redriver  
10-k  
SDA/CFG1  
LV_DDC_SCL  
LV_DDC_SDA  
DDC_SCL  
DDC_SDA  
DDC  
Level  
TXPRE  
DNI  
DNI  
Shi er  
VCC (3.3 V)  
DNI  
VCC (3.3 V)  
DNI  
VCC (3.3 V)  
R1  
VCC (3.3 V)  
R3  
VCC (3.3 V)  
VCC (3.3 V)  
VCC (3.3 V)  
DNI  
DNI  
DNI  
DCGAIN  
CTLEMAP_SEL  
TXSWG  
EQ1  
ADDR/EQ0  
LINEAR_EN  
AC_EN  
DNI  
1-k  
DNI  
R2  
R4  
DNI  
DNI (Do Not Install)  
9-2. TMDS1204 in Source Application Schematics  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TMDS1204  
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
9.2.2.1 Pre-Channel (LAB  
)
The TMDS1204 can support up to 12-dB at 6-GHz of insertion loss. The loss profile between the GPU and the  
TMDS1204 input (referred to the pre-channel as shown in 9-1) should be less than the TMDS1204 maximum  
receiver equalization. 9-3 shows the loss profile of FR4 trace at different lengths. The TMDS1204 EQ0 and  
EQ1 pins should be configured to match the pre-channel insertion loss. 8-6 lists the EQ0 and EQ1  
configuration options.  
The GPU transmitter differential output voltage swing must be large enough so that the TMDS1204's VID(DC) and  
VID(EYE) requirements are met. The VID(EYE) is the eye height after the contribution of ISI jitter only. Because a  
redriver can only compensate for ISI jitter, all non-ISI sources of jitter (random, sinusoidal, and so forth) will be  
passed through TMDS1204. If the system designer requires the worse case channel length of 10 inches, then  
the GPU transmitter differential voltage swing without de-emphasis should be at least 1000 mVpp to meet the  
VID(DC) and VID(EYE) requirements of the TMDS1204. A GPU transmitter, which incorporates de-emphasis, can  
meet the requirement with less than 1000 mVpp.  
9.2.2.2 Post-Channel (LCD  
)
9-1 shows the post-channel, which should be 2 inches or less. If ESD devices are used, then it may be  
necessary to overcome the insertion loss of the ESD device by increasing the TMDS1204 transmitter voltage  
swing. 8-17 lists how this is done by configuring the TXSWG pin to the appropriate value.  
If post-channel is greater than 2 inches, then transmitter pre-emphasis may need to be employed. 8-15 lists  
how this is done by configuring the TMDS1204 TXPRE pin to the appropriate setting. Adjusting the TMDS1204  
transmitter voltage swing may also be necessary.  
9.2.2.3 Common Mode Choke  
It may be necessary to incorporate a common mode choke (CMC) to reduce EMI. The purpose of a CMC is to  
have a minimal impact to the differential signal while attentuating common mode noise thereby reducing radiated  
emissions. The CMC should be placed between the TMDS1204 and the ESD device.  
9-3. Recommended Common Mode Chokes  
Manufacturer  
Part Number  
Murata  
DLM0QSB120HY2  
DLM0NSB120HY2  
NFG0QHB542HS2  
Murata  
Murata  
9.2.2.4 ESD Protection  
It may be necessary to incorporate an ESD component to protect the TMDS1204 from electrostatic discharge  
(ESD). It is recommended that the ESD protection component has a breakdown voltage of 4.5 V and a clamp  
voltage of 4.3 V. A clamp voltage greater than 4.3 V will require a RESD on each high-speed differential pin.  
The ESD component should be placed near the HDMI connector.  
9-4. Recommended ESD Protection Component  
Manufacturer  
Part Number  
NXP  
PUSB3FR4  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TMDS1204  
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
9.2.3 Application Curves  
9-3. FR4 Trace Insertion Loss at 6 GHz  
9-4. Pre-Channel Insertion Loss at TTP2  
9-5. Post-Channel Insertion Loss at TTP4  
9-6. 12 Gbps Input Eye at TTP2 After Pre-  
channel  
9-8. 12 Gbps Output Eye at TTP4_EQ After Pre  
and Post Channels  
9-7. 12 Gbps Output Eye at TTP4 After Pre and  
Post Channels  
9.3 Typical Sink-Side Application  
9-9 shows a schematic representation of what is considered a standard sink implementation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TMDS1204  
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
A
B
C
D
LCD  
LAB  
RESD  
Optional  
CAC-TX  
IN_CLKn  
IN_CLKp  
OUT_CLKn  
OUT_CLKp  
OUT_D0n  
IN_D0n  
IN_D0p  
OUT_D0p  
OUT_D1n  
OUT_D1p  
IN_D1n  
IN_D1p  
SINK  
(Scaler)  
Redriver  
OUT_D2n  
OUT_D2p  
IN_D2n  
IN_D2p  
RCLKOUTn  
RCLKOUTp  
LR_ESD  
LESD  
LCAP-TX  
9-9. TMDS1204 in Sink Side Application  
9.3.1 Design Requirements  
9-5. Design Parameters  
Design Parameter  
Value  
3.3-V (±5%)  
3.3-V  
VCC  
VIO (1.2-V, 1.8-V, or 3.3-V LVCMOS levels)  
Maximum HDMI 2.1 FRL Datarate (6, 8, 10, or 12-Gbps)  
Pin-strap or I2C mode (if I2C, then MODE = "F").  
Pin Strap Mode.(MODE = "0", "R" or "1").  
12-Gbps  
Pin-strap  
Mode = "1" (Adaptive EQ)  
Yes  
DDC Snoop Feature. (Y/N). Required when in pin strap. Optional in  
I2C mode.  
SWAP function (Y / N). In pin strap mode controlled by SDA/CFG1  
pin.  
No. SDA/CFG1 pin = L.  
HPD_IN to HPD_OUT Level Shifter Support (Y / N)  
Pre-Channel Length (9-6 lists the length restrictions)  
Post-Channel Length (9-6 lists the length restrictions)  
No, then HPD_OUT can be left floating.  
Length = 1 inches; Width = 4 mil. (1-dB at 6-GHz insertion loss)  
Length = 6 inches; Width = 4 mil (6-dB at 6-GHz insertion loss)  
Linear redriver (LINEAR_EN pin = "F") recommended in sink  
application  
Limited or linear redriver mode?  
TX is DC or AC-coupled to HDMI receptacle?  
AC-coupled. AC_EN pin = High.  
EQ1 pin: "0"  
ADDR/EQ0 pin: "1"  
(2.7-dB)  
RX EQ (16 possible values. Value chosen based on pre-channel  
length).  
CTLE Map (Map A, Map B or Map C). In pre-strap controlled by  
CTLEMAP_SEL pin.  
For Sink application recommend Map B or C.  
TX pre-emphasis. In pre-strap mode controlled by TXPRE pin. TX  
pre-emphasis control not supported in linear redriver mode.  
Float TXPRE pin.  
TX Swing. In pre-strap mode controlled by TXSWG pin.  
Default TX swing level. Float TXSWG pin.  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TMDS1204  
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
9-5. Design Parameters (continued)  
Design Parameter  
Value  
Fan-out Buffer support (Y / N)  
Typically only used with a FPGA. If feature needed in pin-strap  
mode, then MODE must be set to "R".  
9-6. Sink Layout and Component Placement Constraints  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
External series resistor between ESD  
component and TMDS1204  
RESD  
0
2.5  
PCB trace length from receptacle to  
TMDS1204  
(1) (2)  
LAB  
0.75  
1
2
inches  
LINTRA-AB  
Intra-pair skew from receptacle to TMDS1204  
PCB trace length from TMDS1204 to sink  
Intra-pair skew from TMDS1204 to sink  
2
6
2
mil  
inches  
mil  
(1)  
LCD  
LINTRA-CD  
LCAP-TX  
PCB trace length from TMDS1204 to external  
CAC-TX capacitor  
0.3  
inches  
inches  
PCB trace length from ESD component to  
receptacle  
LESD  
0.5  
PCB trace length from RESD to ESD  
component  
LR_ESD  
0.25  
0.10  
inches  
inches  
(3)  
LINTER-PAIR  
Inter-pair skew between all four channels  
(D0, D1, D2, and CLK)  
dB / inch /  
GHz  
ILPCB  
PCB trace insertion loss  
0.1  
0.17  
ZPCB_AB  
ZPCB_CD  
VIAAB  
Differential impedance of LAB  
Differential impedance of LCD  
90  
90  
110  
110  
1
Number of vias between receptacle and  
TMDS1204  
VIA  
VIACD  
Number of vias between sink and TMDS1204  
2
VIA  
dB  
Differential crosstalk between adjacent  
differential pairs on PCB.  
XTALK  
3-GHz  
24  
(1) Maximum distance assumes PCB trace insertion loss meets ILPCB requirement. If PCB trace insertion loss exceeds the maximum limit,  
then distance needs to be reduced.  
(2) Minimum distance assumes PCB trace insertion loss meets ILPCB requirement. If PCB trace insertion loss is less than the minimum  
limit, then distance needs to be increased.  
(3) Calculation of channel length is the sum of LAB and LCD  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TMDS1204  
 
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
9.3.2 Detailed Design Procedures  
VCC (3.3 V)  
VIO  
VCC (3.3 V)  
Op onal  
100 nF  
10 µF  
100 nF  
100 nF  
100 nF  
100 nF  
HDMI SINK  
(ASIC/FGPA)  
CAC-TX  
RESD  
D2+/FRL_D2p  
D2-/FRL_D2n  
D1+/FRL_D1p  
D1-/FRL_D1n  
D0+/FRL_D0p  
D0-/FRL_D0n  
CLK+/FRL_D3p  
CLK-/FRL_D3p  
CLK+  
OUT_D2p  
OUT_D2n  
OUT_D1p  
OUT_D1n  
OUT_D0p  
OUT_D0n  
OUT_CLKp  
OUT_CLKn  
RCLKOUTp  
RCLKOUTn  
HPD_OUT  
D2+  
D2-  
IN_D2p  
IN_D2n  
ESD  
D1+  
D1-  
IN_D1p  
IN_D1n  
D0+  
D0-  
IN_D0p  
IN_D0n  
ESD  
CLK+  
CLK-  
SCL  
IN_CLKp  
IN_CLKn  
LV_DDC_SCL  
LV_DDC_SDA  
HPD_IN  
MODE  
DDC_SCL  
DDC Level  
Shi er  
DDC_SDA  
CLK-  
SDA  
ESD  
47-k  
HPDOUT  
MODE = “R”  
HPD  
+5V  
1-k  
MODE  
TXPRE  
TXPRE  
DDC_SCL  
DDC_SCL  
DDC_SDA  
GPIO  
SRC_PRNT  
TXSWG  
TXSWG  
CTLEMAP_SEL  
EQ1  
DDC_SDA  
CTLEMAP_SEL  
EQ1  
SIGDET_OUT  
SRC_PRNT  
VCC (3.3 V)  
1-k  
VIO  
GPIO  
AC_EN  
AC_EN  
LINEAR_EN  
DCGAIN  
ADDR/EQ0  
SCL/CFG0  
SDA/CFG1  
EN  
ADDR/EQ0  
SCL/CFG0  
SDA/CFG1  
EN  
DNI  
SCL/CFG0  
LINEAR_EN  
DCGAIN  
MODE  
DNI  
10-k  
SIGDET_OUT  
SIGDET_OUT  
VCC (3.3 V)  
DNI  
VIO  
100 nF  
DNI  
SDA/CFG1  
TMDS1204  
TXPRE  
DNI  
10-k  
1.14 V to  
3.6 V  
VCC (3.3 V)  
DNI  
VCC (3.3 V)  
DNI  
VCC (3.3 V)  
VCC (3.3 V)  
DNI  
VCC (3.3 V)  
DNI  
VCC (3.3 V)  
R1  
VCC (3.3 V)  
100-k  
10-k  
AC_EN  
R3  
CTLEMAP_SEL  
SIGDET_OUT  
LINEAR_EN  
DCGAIN  
TXSWG  
EQ1  
ADDR/EQ0  
DNI  
DNI  
DNI  
DNI  
R2  
R4  
DNI (Do Not Install)  
9-10. TMDS1204 in Sink Application Schematics  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TMDS1204  
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 Supply Decoupling  
Texas Instruments recommends a single bulk capacitor of 10-µF on the VCC supply. Along with the bulk  
capacitor, Texas Instruments recommends a 0.1-µF decoupling capacitor on each TMDS1204 VCC pin that is  
placed as close to the VCC pin as possible. 9-10 shows an example.  
11 Layout  
11.1 Layout Guidelines  
For the TMDS1204 on a high-K board, it is required to solder the PowerPADonto the thermal land to ground. A  
thermal land is the area of solder-tinned-copper underneath the PowerPAD package. On a high-K board, the  
TMDS1204 can operate over the full temperature range by soldering the PowerPAD onto the thermal land. For  
the device to operate across the temperature range on a low-K board, a 1-oz Cu trace connecting the GND pins  
to the thermal land must be used. A simulation shows RθJA = 30.9°C/W allowing 950-mW power dissipation at  
70°C ambient temperature. A general PCB design guide for PowerPAD packages is provided in the PowerPAD  
Thermally Enhanced Package application report. TI recommends using a four layer stack up at a minimum to  
accomplish a low-EMI PCB design. TI recommends four layers as the TMDS1204 is a single voltage rail device.  
Routing the high-speed TMDS traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects from the HDMI connectors to the Redriver inputs and  
outputs. It is important to match the electrical length of these high speed traces to minimize both inter-pair  
and intra-pair skew.  
Placing a solid ground plane next to the high-speed single layer establishes controlled impedance for  
transmission link interconnects and provides an excellent low-inductance path for the return current flow.  
Placing a power plane next to the ground plane creates an additional high-frequency bypass capacitance.  
Routing slower seed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to  
the stack to keep symmetry. This makes the stack mechanically stable and prevents it from warping. Also the  
power and ground plane of each power system can be placed closer together, thus increasing the high  
frequency bypass capacitance significantly.  
To minimize crosstalk between adjacent differential pairs, the distance between the differential pairs should  
be at least five times longer than the trace width (5W rule). For the clock differential pair, the distance should  
be increased to 8W or 10W.  
Layer 1: TMDS signal layer  
Layer 1: TMDS signal layer  
5 to 10  
mils  
Layer 2: Ground Plane  
Layer 2: Ground Plane  
Layer 3: VCC Power Plane  
20 to 40  
mils  
Layer 4: VDD Power Plane  
Layer 5: Ground Plane  
Layer 3: Power Plane  
5 to 10  
mils  
Layer 4: Control signal layer  
Layer 6: Control signal layer  
11-1. Recommended 4 or 6-Layer PCB Stack  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TMDS1204  
 
 
 
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
11.2 Layout Example  
RCLKOUTp/n  
GND  
1
9
40  
IN_CLKp/n  
OUT_CLKp/n  
HPD_OUT  
TXSWG  
IN_D0p/n  
OUT_D0p/n  
OUT_D1p/n  
OUT_D2p/n  
VIO  
ADDR/EQ0  
HPD_IN  
GND  
IN_D1p/n  
IN_D2p/n  
MODE  
GND  
TXPRE  
20  
29  
VCC  
GND  
LV_DDC_SCL  
LV_DDC_SDA  
The differential input lanes and differential output lanes should be separated as close to the TMDS1204 as feasible to minimize  
crosstalk. Adding a ground flood plain between each differential lane further reduces crosstalk and thus improves signal integrity at high  
speed data rates.  
11-2. Sink Example Layout  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TMDS1204  
 
TMDS1204  
ZHCSQV9 AUGUST 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, PowerPAD Thermally Enhanced Package application report  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
HDMIis a trademark of HDMI Licensing, LLC.  
Blu-rayis a trademark of Blu-ray Disc Association (BDA).  
PowerPADand TI E2Eare trademarks of Texas Instruments.  
TMDS® is a registered trademark of Silicon Image, Inc.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TMDS1204  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMDS1204IRNQR  
TMDS1204IRNQT  
TMDS1204RNQR  
TMDS1204RNQT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
RNQ  
RNQ  
RNQ  
RNQ  
40  
40  
40  
40  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
0 to 70  
TMD04  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
TMD04  
TMD04  
TMD04  
0 to 70  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMDS1204IRNQR  
TMDS1204IRNQT  
TMDS1204RNQR  
TMDS1204RNQT  
WQFN  
WQFN  
WQFN  
WQFN  
RNQ  
RNQ  
RNQ  
RNQ  
40  
40  
40  
40  
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
6.3  
6.3  
6.3  
6.3  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMDS1204IRNQR  
TMDS1204IRNQT  
TMDS1204RNQR  
TMDS1204RNQT  
WQFN  
WQFN  
WQFN  
WQFN  
RNQ  
RNQ  
RNQ  
RNQ  
40  
40  
40  
40  
3000  
250  
367.0  
210.0  
367.0  
210.0  
367.0  
185.0  
367.0  
185.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RNQ0040A  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
A
PIN 1 INDEX AREA  
4.1  
3.9  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
4.7±0.1  
2X 4.4  
(0.2) TYP  
9
20  
EXPOSED  
THERMAL PAD  
36X 0.4  
8
21  
2X  
2.8  
2.7±0.1  
1
28  
0.25  
40X  
0.15  
29  
40  
PIN 1 ID  
0.1  
C A  
B
0.5  
0.3  
(OPTIONAL)  
40X  
0.05  
4222125/B 01/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNQ0040A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(4.7)  
2X (2.1)  
6X (0.75)  
40  
29  
40X (0.6)  
1
28  
40X (0.2)  
SYMM  
4X  
(1.1)  
(3.8)  
(2.7)  
36X (0.4)  
8
21  
(R0.05) TYP  
9
20  
SYMM  
(5.8)  
(
0.2) TYP  
VIA  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222125/B 01/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNQ0040A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
4X (1.5)  
40  
29  
40X (0.6)  
1
28  
40X (0.2)  
SYMM  
6X  
(0.695)  
(3.8)  
6X  
(1.19)  
36X (0.4)  
8
21  
(R0.05) TYP  
METAL  
TYP  
9
20  
6X (1.3)  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
73% PRINTED SOLDER COVERAGE BY AREA  
SCALE:18X  
4222125/B 01/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TMDS1204IRNQR

12Gbps HDMI 2.1 接收器转接驱动器 | RNQ | 40 | -40 to 85
TI

TMDS1204IRNQT

12Gbps HDMI 2.1 接收器转接驱动器 | RNQ | 40 | -40 to 85
TI

TMDS1204RNQR

12Gbps HDMI 2.1 接收器转接驱动器 | RNQ | 40 | 0 to 70
TI

TMDS1204RNQT

12Gbps HDMI 2.1 接收器转接驱动器 | RNQ | 40 | 0 to 70
TI

TMDS141

HDMI HIDER
TI

TMDS141RHAR

HDMI HIDER
TI

TMDS141RHARG4

HDMI HIDER
TI

TMDS141_0706

HDMI HIDER
TI

TMDS171

3.4Gbps HDMI 1.4b TMDS 重定时器
TI

TMDS171IRGZR

3.4Gbps HDMI 1.4b TMDS 重定时器 | RGZ | 48 | -40 to 85
TI

TMDS171IRGZT

3.4Gbps HDMI 1.4b TMDS 重定时器 | RGZ | 48 | -40 to 85
TI

TMDS171RGZR

3.4Gbps HDMI 1.4b TMDS 重定时器 | RGZ | 48 | 0 to 70
TI