TMDS171IRGZT [TI]

3.4Gbps HDMI 1.4b TMDS 重定时器 | RGZ | 48 | -40 to 85;
TMDS171IRGZT
型号: TMDS171IRGZT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.4Gbps HDMI 1.4b TMDS 重定时器 | RGZ | 48 | -40 to 85

商用集成电路
文件: 总63页 (文件大小:3303K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
TMDS171/I 3.4Gbps TMDS 重定时器  
1 特性  
3 说明  
1
高清多媒体接口 (HDMI) 输入端口与输出端口间具  
TMDS171 是一款数字视频接口 (DVI) 或高清多媒体接  
有时钟和数据恢复 (CDR) 电路,支持高达  
3.4Gbps 的数据传输速率  
(HDMI) 重定时器。TMDS171 支持四条 TMDS 通  
道,音频返回通道 (SPDIF_IN/ARC_OUT)、热插拔检  
(HPD) 和数字显示控制 (DDC) 接口。TMDS171 支  
持高达 3.4Gbps 的信号传输速率,可实现最高分辨率  
4k2k30p 24 /像素和高达 WUXGA 12 位色深或  
1080p,并且具有较高的刷新率。TMDS171 在低于  
1Gbps 的数据速率下会自动配置为重驱动器,而在高  
于该速率时会自动配置为重定时器。  
兼容 HDMI1.4b 电气参数。  
支持 4k2k30p 和高达 WUXGA 12 位色深或  
1080p,具有更高的刷新率™  
对输入流重新定时以补偿随机抖动  
自适应接收器均衡器或可编程固定均衡器  
I2C 和引脚设置可编程  
5+ 位对内偏移补偿  
TMDS171 支持双电源轨(VDD 1.2VVCC 为  
3.3V),有助于降低功耗。该器件采用多种电源管理  
方法来降低整体功耗。TMDS171x 通过 I2C 或引脚设  
置支持固定的 EQ 增益或自适应 EQ 控制,以补偿不  
同长度的输入电缆或电路板走线。  
包括眼图的链路调试工具,位于 RX 均衡器之后  
支持单端模式 ARC  
48 引脚 7mm x 7mm 0.5mm 间距超薄型四方扁平  
无引线 (VQFN) 封装  
扩展商业温度范围为 0°C 85°C (TMDS171)  
工业温度范围为 -40℃ 至 85°C (TMDS171I)  
器件信息(1)  
器件型号  
TMDS171  
TMDS171I  
封装  
封装尺寸(标称值)  
2 应用  
(VQFN) 48 引脚  
7.00mm x 7.00mm  
数字电视  
数字投影仪  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
音频/视频设备  
蓝光 (Blu-Ray) DVD  
监视器  
台式机/一体化计算机  
有源线缆  
简化电路原理图  
I5aL  
weceiver  
I5aL/5ëL  
ꢀonnector  
Ça5{171  
5igital Çë  
Lb_52p/n  
hÜÇ_52p/n  
hÜÇ_51p/n  
hÜÇ_50p/n  
hÜÇ_ꢀ[Yp/n  
Lb_51p/n  
Lb_50p/n  
Lb_ꢀ[Yp/n  
Ça5{ wó  
3.3 ë t ꢁ ë  
3.3 ë t ꢁ ë  
{ꢀ[_{wꢀ  
{5!_{wꢀ  
Iꢂ5_{wꢀ  
{ꢀ[_{bY  
{5!_{bY  
Iꢂ5_{bY  
55ꢀ  
Iꢂ5  
!udiovisual  
Çꢁ5{  
171  
I5ꢁL  
{í/I5  
ꢀrocessing  
Ünit  
!wꢀ_hÜÇ  
{ꢂ5LC_Lb  
{ꢂ5LC  
3.3 ë  
h9  
ë{!5W  
{ꢀ[_ꢀÇ[  
{5!_ꢀÇ[  
L2ꢀ  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEN7  
 
 
 
 
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 28  
8.5 Register Maps ........................................................ 30  
Application and Implementation ........................ 43  
9.1 Application Information............................................ 43  
9.2 Source Side Application.......................................... 45  
9.3 System Examples ................................................... 49  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 7  
6.4 Thermal Information.................................................. 7  
6.5 Electrical Characteristics........................................... 8  
6.6 Switching Characteristics........................................ 10  
6.7 Typical Characteristics............................................ 12  
Parameter Measurement Information ................ 12  
Detailed Description ............................................ 20  
8.1 Overview ................................................................. 20  
8.2 Functional Block Diagram ....................................... 21  
8.3 Feature Description................................................. 21  
9
10 Power Supply Recommendations ..................... 50  
11 Layout................................................................... 52  
11.1 Layout Guidelines ................................................. 52  
11.2 Layout Example .................................................... 53  
12 器件和文档支持 ..................................................... 54  
12.1 相关文档ꢀ ........................................................... 54  
12.2 接收文档更新通知 ................................................. 54  
12.3 社区资源................................................................ 54  
12.4 ....................................................................... 54  
12.5 静电放电警告......................................................... 54  
12.6 Glossary................................................................ 54  
13 机械、封装和可订购信息....................................... 54  
7
8
4 修订历史记录  
Changes from Revision D (August 2016) to Revision E  
Page  
Added Note 3 to the Electrical Characteristics table .............................................................................................................. 8  
Deleted text "which is needed for certain HDMI CTS test." from the second paragraph in the Overview section .............. 20  
Changed section: Input Signal Detect Block ........................................................................................................................ 25  
Changed H to X in the first row of the HPD_SNK column in Table 36 ................................................................................ 51  
Changed the IN_Dx column in Table 36 .............................................................................................................................. 51  
Changes from Revision C (April 2016) to Revision D  
Page  
Recommended Operating Conditions, Changed the CONTROL PINS section ..................................................................... 7  
Electrical Characteristics Changed the DDC and I2C section................................................................................................ 9  
Changes from Revision B (February 2016) to Revision C  
Page  
Changed pin 36 Description From: TX_TERM_CTL = L: 150 - 300 Ω To: TX_TERM_CTL = L: Reserved in the Pin  
Functions table ...................................................................................................................................................................... 6  
Added OE to VIL "Low-level input voltage" in the Recommended Operating Conditions table ............................................. 7  
Added OE to VIH "High-level input voltage" in the Recommended Operating Conditions table ............................................ 7  
Changed Figure 23 .............................................................................................................................................................. 22  
Deleted the VDD_ramp and VCC_ramp MIN values in Table 1 ......................................................................................... 23  
Changed TX_TERM_CTL = L to Reserved in Table 3 ........................................................................................................ 25  
Changed text "address 22h through the I2C interface" To: "address 0Bh through the I2C interface" DDC Functional  
Description............................................................................................................................................................................ 29  
Added Note to 11–400-kbps in Table 8................................................................................................................................ 32  
Added Note to 11–400-kbps in Table 10.............................................................................................................................. 34  
2
版权 © 2015–2017, Texas Instruments Incorporated  
 
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
Changes from Revision A (December 2015) to Revision B  
Page  
Changed Pin 44 From: AUX_SRCn To: ARC_OUT Pin 45 From: AUX_SRCn To: SPDIF_IN in the Pin Configuration  
and Functions image ............................................................................................................................................................. 4  
Changes from Original (October 2015) to Revision A  
Page  
已将器件状态从产品预览更改为量产数据” .......................................................................................................................... 1  
Copyright © 2015–2017, Texas Instruments Incorporated  
3
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
5 Pin Configuration and Functions  
RGZ (QFN) Package  
48 Pins  
Top View  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
Çó_Çꢁwa_/Ç[  
{í!tꢂth[  
1
hÜÇ_ꢀ2p  
hÜÇ_ꢀ2n  
Itꢀ_{bY  
hÜÇ_ꢀ1p  
hÜÇ_ꢀ1n  
Dbꢀ  
2
3
Lb_ꢀ2p  
Lb_ꢀ2n  
4
Itꢀ_{w/  
Lb_ꢀ1p  
5
Lb_ꢀ1n  
Dbꢀ  
31  
30  
6
7
29  
28  
27  
26  
25  
Lb_ꢀ0p  
hÜÇ_ꢀ0p  
hÜÇ_ꢀ0n  
!1  
8
9
Lb_ꢀ0n  
L2/_ꢁbꢂtLb  
Lb_/[Yp  
10  
11  
12  
Dbꢀ  
hÜÇ_/[Yp  
hÜÇ_/[Yn  
Lb_/[Yn  
21  
24  
13  
14  
15  
16  
17  
18  
19  
20  
23  
22  
4
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
VCC  
NO.  
13, 43  
P
P
3.3 V Power Supply  
1.2 V Power Supply  
Ground  
VDD  
14, 23, 24, 37, 48  
7, 19, 41, 30  
GND  
G
G
Thermal Pad  
Ground  
MAIN LINK INPUT PINS (FAIL SAFE)  
IN_D2p/n  
IN_D1p/n  
IN_D0p/n  
IN_CLKp/n  
2, 3  
5, 6  
I
I
I
I
Channel 2 Differential Input  
Channel 1 Differential Input  
Channel 0 Differential Input  
Clock Differential Input  
8, 9  
11, 12  
MAIN LINK OUTPUT PINS (FAIL SAFE)  
OUT_D2n/p  
34, 35  
31, 32  
28, 29  
25, 26  
O
O
O
O
TMDS Data 2 Differential Output  
TMDS Data 1 Differential Output  
TMDS Data 0 Differential Output  
TMDS Clock Differential Output  
OUT_D1n/p  
OUT_D0n/p  
OUT_CLKn/p  
HOT PLUG DETECT PINS  
HPD_SRC  
4
O
I
Hot Plug Detect Output to source side  
Hot Plug Detect Input from sink side  
HPD_SNK  
33  
AUDIO RETURN CHANNEL and DDC PINS  
SPDIF_IN  
45  
44  
47  
46  
39  
38  
I
SPDIF signal input  
ARC_OUT  
SDA_SRC  
O
Audio return channel output  
I/O  
I/O  
I/O  
I/O  
Source Side TMDS Port Bidirectional DDC Data line  
Source Side TMDS Port Bidirectional DDC Clock line  
Sink Side TMDS Port Bidirectional DDC Data Line  
Sink Side TMDS Port Bidirectional DDC Clock Line  
SCL_SRC  
SDA_SNK,  
SCL_SNK  
CONTROL PINS(2)  
Operation Enable/Reset Pin  
OE = L: Power Down Mode  
OE = H: Normal Operation  
Internal weak pull up: Resets device when transitions from H to L  
OE  
42  
17  
I
I
Signal detector circuit enable  
SIG_EN = L: Signal Detect Circuit Disabled: Term resistors always connected (Default)  
SIG_EN = H: Signal Detect Circuit Enabled: When no valid clock device enters Standby  
SIG_EN  
Mode.  
Internal weak pull down  
De-emphasis Control when I2C_EN/PIN = Low.  
PRE_SEL = L: -2 dB  
PRE_SEL = No Connect: 0 dB  
PRE_SEL = H: Reserved  
When I2C_EN/PIN = High; De-emphasis is controlled through I2C  
I
PRE_SEL  
20  
21  
3-Level  
Input Receive Equalization pin strap when I2C_EN/PIN = Low  
EQ_SEL = L: Fixed EQ at 7.5 dB  
EQ_SEL = No Connect: Adaptive EQ  
EQ_SEL = H: Fixed at 14 dB  
EQ_SEL/A0  
I
When I2C_EN/PIN = High Address Bit 1  
Note: 3 level for pin strap programming but 2 level when I2C address  
I2C_EN/PIN = High; Puts Device into I2C Control Mode  
I2C_EN/PIN = Low; Puts Device into Pin Strap Mode  
I2C_EN/PIN  
SCL_CTL  
10  
15  
I
I2C Clock Signal when I2C_EN/PIN = High.  
Note: When I2C_EN = Low; Pin strapping takes priority and those functions cannot be  
changed by I2C  
I/O  
I2C Data Signal when I2C_EN/PIN = High  
SDA_CTL  
VSadj  
16  
22  
I/O  
I
Note: When I2C_EN = Low; Pin strapping takes priority and those functions cannot be  
changed by I2C  
TMDS Output Voltage Swing Control; Nominal 7.06 kΩ Resistor to GND  
(1) (1) G = Ground, I = Input, O = Output, P = Power  
(2) (H) Logic High (Pin strapped to VCC through 65 kΩ resistor); (L) Logic Low (Pin strapped to GND through 65 kΩ resistor); (Mid-Level =  
No connect)  
Copyright © 2015–2017, Texas Instruments Incorporated  
5
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
High address bit 2 for I2C programming  
Weak internal pull down.  
A1  
27  
I
Note: When I2C_EN/PIN = Low for Pin Strapping Mode leave this pin as No connect  
Transmit Termination Control  
TX_TERM_CTL = H: No transmit Termination  
TX_TERM_CTL = L: Reserved  
I
TX_TERM_CTL  
36  
TX_TERM_CTL = No Connect: Automatically selects the termination impedance  
2 Gbps > DR 3.4 Gbps – 150 - 300 Ω differential near end termination  
DR < 2 Gbps – no termination  
3-Level  
Note: If left floating; the device will be in Automatic Select Mode. DR stands for Data Rate  
Receive Polarity Swap and Receive Lane Swap control pin  
SWAP/POL = H: Receive Lanes Polarity Swap (Retimer Mode Only)  
SWAP/POL = L: Receive Lanes (Retimer and Redriver Mode)  
Swap SWAP/POL = No Connect, Normal Operation  
I
SWAP/POL  
NC  
1
3-Level  
18, 40  
No connect  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)(2)(3)  
MIN  
–0.3  
–0.3  
MAX  
4
UNIT  
VCC  
Supply Voltage Range  
VDD  
1.4  
Main Link Input Differential Voltage (IN_Dx,  
IN_CLKx); IIN = 15mA  
VCC - 0.75 V  
–0.3  
VCC + 0.3 V  
4
TMDS Outpus ( OUT_Dx)  
V
HPD_SRC, Vsadj, SDA_CTL, SCL_CTL, OE, A1,  
Voltage Range  
PRE_SEL, EQ_SEL/A0, I2C_EN/PIN, SIG_EN,  
TX_TERM_CTL,  
–0.3  
–0.3  
4
HDP_SNK, SDA_SNK, SCL_SNK, SDA_SRC,  
SCL_SRC  
6
Main Link Input Differential Voltage (IN_Dx,  
Input Current IIN  
IN_CLKx);  
15  
mA  
°C  
Continuous power dissipation  
Storage temperature, Tstg  
See Thermal Information  
–65 150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential voltages, are with respect to network ground terminal.  
(3) Tested in accordance with JEDEC Standard 22, Test Method A114-B  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.135  
1.1  
NOM  
3.3  
MAX  
3.465  
1.27  
150  
92.7  
85  
UNIT  
V
VCC  
Supply Voltage Nominal Value 3.3 V  
Supply Voltage Nominial Value 1.2 V  
Storage temperature  
VDD  
1.2  
V
TSTG  
TCASE  
–65  
°C  
°C  
°C  
°C  
Case temperature  
Operating free-air temperature (TMDS171)  
Operating free-air temperature (TMDS171I)  
0
TA  
–40  
85  
MAIN LINK DIFFERENTIAL PINS  
VID(PP)  
Peak-to-peak input differential voltage  
75  
VCC – 0.4  
0.25  
1560  
VCC + 0.1  
3.4  
mVpp  
V
VIC  
Input Common Mode Voltage  
Data rate  
dR  
Gbps  
KΩ  
R(VSADJ)  
TMDS compliant swing voltage bias resistor 1%  
7.06  
CONTROL PINS  
VI(DC)  
DC Input Voltage  
–0.3  
3.6  
0.8  
V
V
Low-level input voltage OE  
(1)  
VIL  
Low-level input voltage at PRE_SEL, EQ_SEL/A0, TX_TERM_CTL,  
SWAP/POL pins only(1)  
0.3  
1.4  
V
V
V
Mid-Level input voltage at PRE_SEL, EQ_SEL/A0, TX_TERM_CTL,  
SWAP/POL pins only(1)  
(1)  
VIM  
1
1.2  
High-level input voltage at PRE_SEL, EQ_SEL/A0, TX_TERM_CTL,  
SWAP/POL, OE(2) pins only(1)  
(1)  
VIH  
2.6  
VOL  
VOH  
IIH  
Low-level output voltage  
High-level output voltage  
High level input current  
0.4  
V
2.4  
30  
V
30  
25  
µA  
µA  
mA  
µA  
KΩ  
IIL  
Low level input current  
–25  
–50  
IOS  
Short circuit output current  
High impedance output current  
Pull up resistance on OE pin  
50  
IOZ  
10  
R(OEPU)  
150  
250  
(1) These values are based upon a microcontroller driving the control pins. The pull up/down/floating resistor configuration will set control  
pins properly which will have a different value than shown due to internal biasing.  
(2) This value is based upon a microcontroller driving the OE pin. A passive reset circuit using an external capacitor and the internal pullup  
resistor will set OE pin properly, but may have a different value than shown due to internal biasing.  
6.4 Thermal Information  
RGZ (QFN)  
THERMAL METRIC(1)  
UNIT  
48 PINS  
31.1  
18.2  
8.1  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJB  
8.1  
RθJC(bot)  
3.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2015–2017, Texas Instruments Incorporated  
7
 
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
6.5 Electrical Characteristics  
The Maximum rating is simulated at 3.465 V VCC and 1.27 V VDD and at 85°C temperature. The Typical rating is simulated at  
3.3 VCC and 1.2 V VDD and at 27°C temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power Supply  
Device power Dissipation  
(Retimer Operation)  
(1)(2)  
OE = H, VCC = 3.3 V / 3.465 V, VDD = 1.2 V / 1.27 V  
IN_Dx: VID_PP = 1200 mV, I2C_EN/PIN = L, PRE_SEL= H,  
EQ_CTL= H, SDA_CTL/CLK_CTL = 0 V  
P(D1)  
675  
400  
875  
600  
mW  
mW  
Device power Dissipation  
(Redriver Operation)  
(1)(2)  
P(D2)  
3.4 Gbps TMDS pattern, VI = 3.3 V; VSADJ = 7.06 kΩ  
OE = H, VCC = 3.3 V / 3.465 V  
VDD = 1.2 V / 1.27 V , HPD = H,  
No Valid input Signal  
(1)(2)(3)  
P(SD1)  
Device power in Standby  
50  
100  
mW  
OE = L, VCC = 3.3 V / 3.465 V  
VDD = 1.2 V / 1.27 V  
(1)(2)(3)  
P(SD2)  
Device power in PowerDown  
10  
80  
30  
mW  
mA  
VCC Supply current (TMDS 3.4 OE = H, VCC = 3.3 V / 3.465 V  
(1)(2)  
ICC1  
140  
Gpbs Retimer Mode)  
VDD = 1.2 V / 1.27 V  
IN_Dx: VID_PP = 1200 mV,  
3.4 Gbps TMDS pattern I2C_EN/PIN = L, PRE_SEL = H,  
EQ_CTL = H, SDA_CTL/CLK_CTL = 0 V, SLEW_CTL = H  
VDD Supply current (TMDS 3.4  
Gpbs Retimer Mode)  
(1)(2)  
IDD1  
286  
51  
325  
mA  
mA  
mA  
VCC Supply current (TMDS 3.4 OE = H, VCC = 3.3 V / 3.465 V  
(1)(2)  
ICC2  
Gpbs Redriver Mode)  
VDD = 1.2 V / 1.27 V  
IN_Dx: VID_PP = 1200 mV,  
3.4 Gbps TMDS pattern I2C_EN/PIN = L, PRE_SEL = H,  
EQ_CTL = H, SDA_CTL/CLK_CTL = 0V, SLEW_CTL = H  
VDD Supply current (TMDS 3.4  
Gpbs Redriver Mode)  
(1)(2)  
IDD2  
188  
6
OE = H, VCC = 3.3 V / 3.465 V  
VDD = 1.2 V / 1.27 V  
HPD = H: No valid signal on  
IN_CLK  
3.3V Rail(1)  
15  
50  
(3)  
I(SD1)  
Standby current  
mA  
mA  
1.2V Rail  
40  
3.3V Rail(1)  
1.2V Rail  
2
5
OE = L, VCC = 3.3 V / 3.465 V  
VDD = 1.2 V / 1.27 V  
(3)  
I(SD2)  
PowerDown current  
3.5  
15  
TMDS Differential Input  
D(R_RX_DATA)  
D(R_RX_CLK)  
tRX_DUTY  
TMDS data lanes data rate  
0.25  
25  
3.4  
340  
60%  
0.3  
Gbps  
MHz  
TMDS clock lanes clock rate  
Input clock duty circle  
40%  
50%  
tCLK_JIT  
Input clock jitter tolerance  
Input data jitter tolerance  
Tbit  
ps  
tDATA_JIT  
Test the TTP2 See Figure 11  
150  
tRX_INTRA  
tRX_INTER  
Input intra-pair skew tolerance Test at TTP2 when DR = 1.6 Gbps See Figure 11  
Input inter-pair skew tolerance  
112  
ps  
1.8  
ns  
Fixed EQ gain for data lane  
EQ_SEL/A0=H; Fixed EQ gain, test at 3.4 Gbps  
IN_D(0,1,2)n/p  
EQH(D)  
EQL(D)  
EQZ(D)  
EQ(C)  
14  
Fixed EQ gain for data lane  
EQ_SEL/A0=L; Fixed EQ gain, test at 3.4 Gbps  
IN_D(0,1,2)n/p  
7.5  
dB  
Adaptive EQ gain for data lane  
EQ_SEL/A0=NC; adaptive EQ  
IN_D(0,1,2)n/p  
2
14  
EQ gain for clock lane  
EQ_SEL/A0=H,LNC  
IN_CLKn/p  
0
Input differential termination  
impedance  
R(INT)  
90  
100  
115  
Ω
TMDS Differential Output  
PRE_SEL = NC; TX_TERM_CTL = H; OE = H; DR = 750  
VCC  
-
VCC  
+
Mbps; VSadj = 7.06 kΩ  
10mV  
10mV  
Single-ended high level output  
voltage  
VOH  
PRE_SEL = NC; TX_TERM_CTL = H; OE = NC; DR = 2.97  
VCC  
-
VCC  
+
Gbps; VSadj = 7.06 kΩ  
200mV  
10mV  
V
PRE_SEL = NC; TX_TERM_CTL = H; OE = H; DR = 750  
VCC  
-
VCC  
-
Single-ended low level output  
voltage No Pre-emphasis,  
Load is 50 Ω pull ups to 3.135  
V and 3.465 V  
Mbps; VSadj = 7.06 kΩ  
600mV  
400mV  
VOL  
PRE_SEL = NC; TX_TERM_CTL = H; OE = NC; DR = 2.97  
Gbps; VSadj = 7.06 kΩ  
VCC  
-
VCC  
-
700mV  
400mV  
(1) ICC is a direct result of the source design as the TMDS171 integrated receive termination resistor accounts for 85 mA to 100 mA.  
(2) IDD is impacted by ARC usage. Connecting a 500 KΩ resistor to GND at SPDIF reduces the value by more than 20 mA.  
(3) The measurements were made with no active source connected.  
8
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
Electrical Characteristics (continued)  
The Maximum rating is simulated at 3.465 V VCC and 1.27 V VDD and at 85°C temperature. The Typical rating is simulated at  
3.3 VCC and 1.2 V VDD and at 27°C temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Single-ended output voltage  
swing on data lane  
PRE_SEL = NC; TX_TERM_CTL = H/NC; OE = NC;  
DR = 3.4 Gbps; VSadj = 7.06 kΩ  
V(SWING_DA)  
V(SWING_CLK)  
400  
500  
600  
Single-ended output voltage  
swing on clock lane  
PRE_SEL = NC; TX_TERM_CTL = H/NC; OE = NC;  
DR = 3.4 Gbps; VSadj = 7.06 kΩ  
400  
–5  
500  
20  
600  
Change in single-end output  
voltage swing per 100Ω  
ΔVSadj  
ΔV(SWING)  
Change in steady state output  
common mode voltage  
between logic levels  
mV  
ΔVOCM(SS)  
5
Initial output differential  
voltage before steady state  
when pre-emphasis or de-  
emphasis is implemented  
VOD(PP)  
VSadj = 7.06 kΩ; PRE_SEL = NC, See Figure 8  
800  
600  
1200  
Steady state output differential  
voltage  
VOD(SS)  
IOS  
VSadj = 7.06 kΩ; PRE_SEL = L, See Figure 9  
1075  
50  
Short circuit current limit  
Main link output shorted to GND  
mA  
µA  
Ω
Failsafe condition leakage  
current  
VCC = 0 V; VDD = 0 V; TMDS Outputs pulled to 3.3V through  
50 Ω resistor  
ILEAK  
45  
R(TERM)  
Source Termination resistance  
150  
300  
DDC and I2C  
SCL/SDA_SNK,  
SCL/SDA_SRC DC input  
voltage  
–0.3  
–0.3  
5.5  
3.6  
V
V
V
V
V
V
VI-DC  
SCL/SDA_CTL, DC input  
voltage  
SCL/SDA_SNK,  
SCL/SDA_SRC Low level  
input voltage  
0.3 x VCC  
0.3 x VCC  
VIL  
SCL/SDA_CTL Low level input  
voltage  
SCL/SDA_SNK,  
SCL/SDA_SRC high level  
input voltage  
3
VIH  
SCL/SDA_CTL high level input  
voltage  
0.7 x VCC  
SCL/SDA_CTL,  
SCL/SDA_SRC low level  
output voltage  
IO = 3 mA and VCC > 2 V  
IO = 3 mA and VCC < 2 V  
0.4  
V
V
VOL  
fSCL  
Cbus  
0.2 x VCC  
SCL clock frequency fast I2C  
mode for local I2C control  
400  
400  
kHz  
pF  
Total capacitive load for each  
bus line (DDC and local I2C  
pins)  
HPD  
VIH  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
HPD_SNK  
2.1  
VIL  
HPD_SNK  
0.8  
3.6  
0.1  
VOH  
VOL  
IOH = -500 µA; HPD_SRC  
IOL = -500 µA; HPD_SRC  
2.4  
0
V
Failsafe condition leakage  
current  
ILEAK  
VCC = 0 V; VDD = 0 V; HPD_SNK = 5 V  
40  
40  
Device powered; VIH = 5 V; IH(HPD) includes Rpd(HPD) resistor  
current  
IH(HPD)  
High level input current  
µA  
Device powered; VIL = 0.8 V; IH(HPD) includes Rpd(HPD)  
resistor current  
30  
Rpd(HPD)  
HPD input termination to GND; VCC < 0 V  
150  
0
190  
220  
kΩ  
SPDIF and ARC  
Operating DC voltage for  
V(EL)  
Test at ARC_OUT, see Figure 19  
5
V
single mode ARC output  
Copyright © 2015–2017, Texas Instruments Incorporated  
9
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
The Maximum rating is simulated at 3.465 V VCC and 1.27 V VDD and at 85°C temperature. The Typical rating is simulated at  
3.3 VCC and 1.2 V VDD and at 27°C temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Operating DC voltage for  
SPDIF input  
VIN(DC)  
0.05  
V
Signal amplitude of SPDIF  
input  
V(SP_SW)  
V(ElSWING)  
CLK(ARC)  
0.2  
0.4  
0.5  
0.5  
0.6  
0.6  
V
V
Signal amplitude on the ARC  
output  
Test at ARC_OUT, 75 Ω external termination resistor, see  
Figure 19  
5.645±0.  
1%  
Signal frequency on ARC  
Test at ARC_OUT, see Figure 19  
3.687  
13.517  
MHz  
Duty Cycle  
Data Rate  
Output Clock Duty cycle  
SPDIF Input DR  
45%  
50%  
55%  
7.373  
11.29  
27.034  
Mbps  
UI  
The rise/fall time for ARC  
output  
tEDGE  
From 10% to 90% voltage level, see Figure 19  
0.1 MHz to 128 times the maximum frame rate  
0.4  
The Input Termination  
resistance for SPDIF  
R(IN_SPDIF)  
R(EST)  
75  
55  
Ω
Ω
Single mode Output  
Termination resistance  
36  
75  
6.6 Switching Characteristics  
The Maximum rating is simulated at 3.465 V VCC and 1.27 V VDD and at 85°C temperature. The Typical rating is simulated at  
3.3 V VCC and 1.2 V VDD and at 27°C temperature (unless otherwise noted)  
PARAMETER  
TMDS Redriver Mode  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DR  
Data rate (Redriver mode)  
250  
250  
250  
3400  
600  
Mbps  
tPLH  
tPHL  
Propagation delay time (low to high)  
Propagation delay time (high to low)  
800  
Transition time (rise and fall time);  
measured at 20% and 80% levels  
for Data Lanes.  
TX_TERM_CTL=L; PRE_SEL=NC;  
Data Rate 3.4 Gbps; Clock 340 MHz  
tT1  
75  
ps  
TX_TERM_CTL=NC;  
PRE_SEL=NC;  
tSK1(T)  
tSK2(T)  
Intra-pair output skew  
Inter-pair output skew  
40  
TX_TERM_CTL=NC;  
PRE_SEL=NC;  
100  
tJITD1  
tJITC1  
Total output data jitter  
Total output clock jitter  
DR = 750 Mbps, PRE_SEL = NC,  
EQ_SEL/A0 = NC. See Figure 5 at  
TTP3  
0.2  
Tbit  
0.25  
TMDS Retimer Mode  
DR  
Data rate (retimer mod )  
1.2  
3.4  
Gbps  
Gbps  
Automatic redriver to Retimer Cross- Measured with input signal applied  
Over  
d(XVR)  
0.75  
1.00  
1.25  
from 0 to 200 mVPP  
f(CROSSOVE  
R)  
Crossover frequency hysteresis  
Data Retimer PLL bandwidth  
250  
0.4  
MHz  
MHz  
µs  
PLL(BW)  
Default loop bandwidth setting  
Tested when data rate > 1.0 Gbps  
1
Input Clock Frequency Detection  
and Retimer Acquisition Time  
tACQ  
IJT1  
180  
Input Clock Jitter Tolerance  
0.3  
Tbit  
Transition time (rise and fall time);  
measured at 20% and 80% levels  
for Data Lanes. TMDS  
tT1  
75  
ps  
tDCD  
OUT_CLK ± duty cycle  
40%  
50%  
60%  
0.2  
Default setting for internal inter-pair  
skew adjust, PRE_SEL = NC;  
TX_TERM_CTL = NC, DR 3.4  
Gbps; See Figure 6  
tSK_INTER  
Inter-pair output skew  
Tch  
10  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
Switching Characteristics (continued)  
The Maximum rating is simulated at 3.465 V VCC and 1.27 V VDD and at 85°C temperature. The Typical rating is simulated at  
3.3 V VCC and 1.2 V VDD and at 27°C temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Default setting for internal intra-pair  
skew adjust, PRE_SEL = NC;  
TX_TERM_CTL = NC, DR 3.4  
Gbps; See Figure 6  
tSK_INTRA  
Intra-pair output skew  
0.15  
Tbit  
tJITC2  
tJITD2  
HPD  
Total output clock jitter  
Total output data jitter  
CLK Rate 340 MHz  
0.25  
0.2  
Tbit  
Tbit  
DR 3.4 Gbps; See Figure 11  
Propagation delay from HPD_SNK  
to HPD_SRC; rising edge and falling  
edge(1)  
see Figure 13; not valid during  
switching time  
tPD(HPD)  
40  
2
120  
ns  
tT(HPD)  
HPD logical disconnected timeout  
see Figure 14  
ms  
DDC and I2C  
Rise time of both SDA and SCL  
signals  
tr  
tf  
VCC = 3.3 V  
300  
300  
ns  
Fall time of both SDA and SCL  
signals  
tHIGH  
Pulse duration, SCL high  
0.6  
1.3  
100  
0.6  
0.6  
0.6  
µs  
ns  
tLOW  
Pulse duration, SCL low  
tSU1  
Setup time, SDA to SCL  
tST,STA  
tHD,STA  
tST,STO  
Setup time, SCL to start condition  
Hold time, start condition to SCL  
Setup time, SCL to stop condition  
µs  
Bus free time between stop and start  
condition  
t(BUF)  
tPLH1  
tPHL1  
tPLH2  
tPHL2  
1.3  
Propagation delay time, low-to-high-  
level output  
360  
230  
250  
200  
Source to Sink:100 kbps pattern;  
Cb(Sink) = 400 pF(2); see Figure 17  
Propagation delay time, high-to-low-  
level output  
ns  
Propagation delay time, low-to-high-  
level output  
Sink to Source: 100 kbps pattern;  
Cb(Source) = 100 pF(2); see Figure 18  
Propagation delay time, high-to-low-  
level output  
(1) The Maximum rating is simulated at 3.465 V VCC and 1.27 V VDD  
(2) Cb = total capacitance of one bus line in pF.  
Copyright © 2015–2017, Texas Instruments Incorporated  
11  
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
6.7 Typical Characteristics  
200  
180  
160  
140  
120  
100  
80  
300  
270  
240  
210  
180  
150  
120  
90  
1.2V  
3.3V  
1.2V  
3.3V  
60  
40  
60  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Data Rate (Gbps)  
Data Rate (Gbps)  
D001  
D002  
Figure 1. Current vs Data Rate Redriver Mode  
Figure 2. Current vs Data Rate Retimer Mode  
1600  
VOD No Term  
VOD 150 to 300 W  
1400  
1200  
1000  
800  
600  
400  
200  
0
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
Vsadj (kW)  
D003  
Figure 3. VOD vs VSadj  
7 Parameter Measurement Information  
VCC  
3.3V  
50  
50Ω  
50Ω  
50Ω  
0.5 pF  
D+  
Y
Z
Receiver  
Driver  
VID  
VD+  
VY  
D-  
VID = VD+ - VD-  
VD-  
VOD = VY - VZ  
VZ  
VICM = (VD+ + VD-  
2
)
VOC = (VY + VZ)  
2
Figure 4. TMDS Main Link Test Circuit  
12  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
Parameter Measurement Information (continued)  
2.2V  
VTERM  
VID  
1.8V  
VID+  
VID(pp)  
0V  
VID-  
tPHL  
80%  
tPLH  
80%  
VOD(pp)  
VOD  
0V  
20%  
tf  
20%  
tr  
Figure 5. Input/Output Timing Measurements  
tSK_INTRA  
tSK_INTRA  
TMDS_OUTxp  
TMDS_OUTxn  
50%  
tSK_INTER  
TMDS_OUTyp  
TMDS_OUTyn  
Figure 6. TMDS Output Skew Measurements  
Figure 7. HDMI/DVI TMDS Output Common Mode Measurement  
Copyright © 2015–2017, Texas Instruments Incorporated  
13  
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Parameter Measurement Information (continued)  
ëh5(tt)  
tw9_{9[=ù  
wsadj = 7.06YQ  
Figure 8. Output Differential Waveform  
tw9_{9[ = ù  
ësadj = 7.06 lQ  
tw9_{9[ = [  
ësadj = 7.06 lQ  
1sꢀ biꢀ  
2nd ꢀo ꢁ biꢀ  
ëh5({{)  
ëh5(tt)  
Figure 9. Output De-emphasis Waveform  
14  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
Parameter Measurement Information (continued)  
Avcc(4)  
RT  
(5)  
RT  
SMA  
SMA  
SMA  
SMA  
w9C  
/able  
9v  
Data +  
Coax  
Coax  
Coax  
Coax  
RX  
+EQ  
OUT  
Data -  
Parallel(6)  
BERT  
Jitter Test  
Instrument(2,3)  
FR4 PCB trace(1)  
Device  
FR4 PCB trace  
AVcc  
RT  
[No Pre-  
emphasis]  
RT  
w9C  
SMA  
SMA  
SMA  
SMA  
Coax  
Coax  
Coax  
Coax  
Clk+  
Clk-  
/able  
9v  
RX  
+EQ  
OUT  
Jitter Test  
Instrument(2,3)  
TTP4_EQ  
TTP4  
TTP1  
TTP2  
TTP3  
(1) The FR4 trace between TTP1 and TTP2 is designed to emulate 1-8” of FR4, connector and another 1-8” of FR4.  
Trace width – 4 mils. 100 Ω differential impedance.  
(2) All Jitter is measured at a BER of 10-9  
(3) Residual jitter reflects the total jitter measured at TTP4 minus the jitter measured at TTP1  
(4) AVCC = 3.3 V  
(5) RT = 50 Ω  
(6) The input signal from parallel Bert does not have any pre-emphasis. Refer to Recommended Operating Conditions.  
Figure 10. Jitter Measurement Circuit  
690  
90  
0
-90  
-690  
!bsolute Çime  
75ps  
75ps  
75ps  
75ps  
ꢀormalized Çime: tbit  
Figure 11. HDMI Output Jitter Measurement  
Copyright © 2015–2017, Texas Instruments Incorporated  
15  
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Parameter Measurement Information (continued)  
It5_{bY  
It5_{w/  
190K  
100Kꢀ  
Figure 12. HPD Test Circuit  
HPD_SNK  
VCC  
50%  
0 V  
tPD(HPD)  
HPD_SRC  
VCC  
50%  
0 V  
Figure 13. HPD Timing Diagram No. 1  
Itꢀ_{bY  
ë//  
50%  
0ë  
Itꢀ [ogical disconnecꢁ  
Çimeouꢁ  
Ç(Itꢀ)  
Itꢀ_{w/  
ë//  
0ë  
[ogically  
ꢀisconnecꢁed  
ꢀevice [ogically  
/onnecꢁed  
Figure 14. HPD Logic Disconnect Timeout  
16  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
Parameter Measurement Information (continued)  
tI5,{Ç!  
tf  
tr  
{/[  
t{Ç,{Çh  
{5!  
t(.ÜC)  
{Ç!wÇ  
{Çht  
Figure 15. Start and Stop Condition Timing  
tILDI  
t[hí  
{/[  
t{Ç,{Ç!  
{5!  
t
{Ü1  
Figure 16. SCL and SDA Timing  
Copyright © 2015–2017, Texas Instruments Incorporated  
17  
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Parameter Measurement Information (continued)  
{5!_{w/ꢀ{/[_{w/  
LbtÜÇ  
½ ëcc  
tꢀ[I1  
tꢀI[1  
80%  
20%  
{5!_{bYꢀ{/[_{bY  
hÜÇtÜÇ  
½ ëcc  
tf  
Figure 17. DDC Propagation Delay – Source to Sink  
tr  
{5!_{bY/{ꢀ[_{bY  
LbtÜÇ  
½ ëcc  
tꢀI[2  
tꢀ[I2  
80%  
20%  
{5!_{wꢀ/{ꢀ[_{wꢀ  
hÜÇtÜÇ  
½ ëcc  
tf  
Figure 18. DDC Propagation Delay – Sink to Source  
tr  
18  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
Parameter Measurement Information (continued)  
1uC  
weceiver  
!w/_hÜÇ  
{t5LC_Lb  
wesꢀ  
ë9[  
ë9[ {íLbD  
Figure 19. ARC Output  
ÜL  
0.4ÜL  
0.4ÜL  
Figure 20. Rise/Fall Time of ARC  
Copyright © 2015–2017, Texas Instruments Incorporated  
19  
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TMDS171 is a digital video interface (DVI) or high-definition multimedia interface (HDMI) retimer. The  
TMDS171 supports four TMDS channels, Audio Return Channel (SPDIF_IN/ARC_OUT), Hot Plug Detect, and a  
Digital Display Control (DDC) interfaces. The TMDS171 supports signaling rates up to 3.4 Gbps to allow for the  
highest resolutions of 4k2k30p 24 bits per pixel and up to WUXGA 12-bit color depth or 1080p with higher  
refresh rates. The TMDS171 can automatically configure itself as a re-driver at low data rate (< 1 Gbps) or as a  
re-timer above this data rate. For passing compliance and reducing system level design issues several features  
have been included such as TMDS output amplitude adjust using an external resistor on the VSADJ pin and  
source termination selection control. Device operation and configuration can be programmed by pin strapping or  
I2C. Four TMDS171s can be used on one I2C bus when I2C_EN enable and device address set by A0/A1.  
To reduce active power the TMDS171 supports dual power supply rails of 1.2 V on VDD and 3.3 V on VCC. The  
TMDS171 supports several methods of power management. It can enter power down mode using three  
methods; (1) HPD is low; (2) Writing an 1 to register 09h[3]; or (3) de-asserting OE. If using OE, the device must  
be reprogrammed via I2C if it was originally programmed this way. The SIG_EN pin enables the signal detect  
circuit that provides an automatic power-management feature during normal operation. When no valid signal is  
present on the inputs the device enters Stand by mode. By disabling the detect circuit the receiver block is  
always on. DDC bridge supports 100 Kbps data rate default and 400 kbps adjustable by software.  
TMDS171 supports both fixed EQ gain control or adaptive equalization to compensate for different lengths of  
input cables or board traces. The EQ gain can be software adjusted by I2C control or selection between two fixed  
values or adaptive equalization by pin strapping EQ_SEL pin. Implementers can use the TX_TERM_CTL pin to  
change the transmitter termination impedance for better output performance when working in HDMI1.4b or leave  
it floating. When floating the TMDS171 in conjunction with the rate detect will automatically change its output  
termination to be compatible with HDMI1.4b requirements.  
The TMDS171 supports single ended mode audio return channel. To assist in ease of implementation the  
TMDS171 supports receive lane swapping and receive polarity swap. When swapping the input lanes IN_CLK  
and IN_D2 swap and IN_D1 and IN_D0 swap with each other. Swap works in both retimer and redriver mode.  
Polarity swap will swap the receive pins n and p channel polarity in each lane and is only available during retimer  
mode. Both lane swap and polarity swap can be implemented at the same time in retimer mode using I2C  
control.  
Two versions of the device are offered to support extended commercial temperature range 0ºC to 85ºC  
(TMDS171) or industrial operational temperature range from -40ºC to 85ºC (TMDS171I).  
20  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
8.2 Functional Block Diagram  
Iꢃ5_{w/  
Iꢃ5_{bY  
130YQ  
{LD_9b  
ë.L!{  
{LDb![ 59Ç9/Ç  
ë{!5W  
{LD_59Ç_hÜÇ  
ꢁ0Q  
ꢁ0Q  
hÜÇ_/[Yp  
Lb_/[Yp  
Lb_/[Yn  
Çꢄ5{  
9v  
hÜÇ_/[Yn  
5ata wegisters  
{í!ꢃ  
ꢃ[[  
ë.L!{  
ꢃ[[ /ontrol  
{9w59{  
ꢁ0Q  
ꢁ0Q  
Lb_5ꢀ2:0]p  
Lb_5ꢀ2:0]n  
hÜÇ_5ꢀ2:0]p  
9v  
Çꢄ5{  
hÜÇ_5ꢀ2:0]n  
Ç9wꢄ_{9[  
/ontrol .lock, L2/ wegisters  
L2/_9bꢂꢃLb  
9v_/Ç[  
ꢃw9_{9[  
9naꢅle  
9v_{9[  
{LD_9b  
{LD_59Ç_hÜÇ  
9v_{9[ꢂ!0  
Ç9{Çꢂ!1  
Ç9{Ç  
!0  
{LD_9b  
ꢃw9_{9[  
h9  
!1  
[ocal L2/  
/ontrol  
Çó_Ç9wꢄ_/Ç[  
{5!_/Ç[  
{/[_/Ç[  
{í!ꢃꢂꢃh[  
{5!_{w/  
{/[_{w/  
{5!_{bY  
{/[_{bY  
!/ÇLë9 55/ .[h/Y  
{ꢃ5LC_Lb  
!w/_hÜÇ  
!w/ Cunction  
Db5  
1ꢆ0ꢁë  
3ꢆ3ë  
ë55  
ë//  
ëw9D  
Copyright © 2016, Texas Instruments Incorporated  
8.3 Feature Description  
8.3.1 Reset Implementation  
When OE is de-asserted, control signal inputs are ignored; the HDMI inputs and outputs are high impedance. It  
is critical to transition the OE from a low level to high after the VCC supply has reached the minimum  
recommended operating voltage. This is achieved by a control signal to the OE input, or by an external capacitor  
connected between OE and GND. To insure the TMDS171 is properly reset, the OE pin must be de-asserted for  
at least 100 μs before being asserted. When OE is re-asserted the TMDS171 will have to be reprogrammed if it  
Copyright © 2015–2017, Texas Instruments Incorporated  
21  
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Feature Description (continued)  
was programmed by I2C and not pin strapping. When implementing the external capacitor, the size of the  
external capacitor depends on the power up ramp of the VCC supply, where a slower ramp-up results in a larger  
value external capacitor. Refer to the latest reference schematic for TMDS171; consider approximately 200 nF  
capacitor as a reasonable first estimate for the size of the external capacitor. Both OE implementations are  
shown in Figure 21 and Figure 22.  
h9  
ww{Ç = 200 Y  
/
Figure 21. External Capacitor Controlled OE  
Dth  
h9  
/
Figure 22. OE Input from Active controller  
8.3.2 Operation Timing  
TMDS171 starts to operate after the OE signal is properly set after power up timing complete. See Figure 23,  
Figure 24, Table 1. If OE is held low until VDD and VCC become stable there is no rail sequence requirement.  
t
d2  
h9  
t
d1  
ë// ꢀ ë55  
ë55 ꢀ ë//  
Figure 23. Power up Timing for TMDS171  
22  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
 
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
Feature Description (continued)  
td3  
/5w !ctive  
td4  
wetimer mode  
h9 5e-assert or  
Iꢀ5_{bY 5e-assert or  
wedriver mode  
Figure 24. CDR Timing for TMDS171  
Table 1. Power Up and Operation Timing Requirements  
DESCRIPTION  
MIN  
0
TYP  
MAX  
UNIT  
µs  
td1  
VDD Stable before VCC  
200  
td2  
VDD and VCC stable before OE de-assertion  
CDR active operation after retimer mode initiated  
CDR turn off time after retimer mode de-assert  
VDD supply ramp up requirements  
100  
µs  
td3  
15  
ms  
ns  
td4  
120  
100  
100  
VDD(ramp)  
VCC(ramp)  
ms  
ms  
VCC supply ramp up requirements  
8.3.3 Swap and Polarity Working (Retimer Mode Only)  
TMDS171 incorporates swap function which can set the input lanes in swap mode. The IN_D2 will route to the  
OUT_CLK position by swapping with IN_CLK. The IN_D1 swaps with IN_D0. The Swap function only changes  
the input pins. The EQ setup follows the new mapping, see Figure 25. This function can be used with the  
SWAP/POL pin 1 and control the register 0x09h bit 7 for SWAP enable. The Swap function works in both redriver  
and retimer mode. The TMDS171 can also swap the input polarity signals. When SWAP/POL is high the n and p  
pins on each lane will swap. Polarity swap only works when in retimer mode. When this function is enabled and  
the device is in automatic cross over mode between redriver and retimer modes, care must be taken to avoid  
losing polarity swap. When the data rate drops to the redriver level, the polarity swap is lost.  
Table 2. SWAP Pin Mapping  
Normal Op  
SWAP = L or CSR 0x09h bit 7 is 1'b1  
IN_D2 OUT_CLK  
IN_D2 OUT_D2  
IN_D1 OUT_D1  
IN_D0 OUT_D0  
IN_CLK OUT_CLK  
IN_D1 OUT_D0  
IN_D0 OUT_D1  
IN_CLK OUT_D2  
Copyright © 2015–2017, Texas Instruments Incorporated  
23  
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
36  
35  
34  
33  
32  
Çꢁwa_/Ç[  
hÜÇ_ꢀ2p  
hÜÇ_ꢀ2n  
{í!tꢂth[  
1
2
{í!tꢂth[  
36  
35  
34  
33  
32  
Çꢁwa_/Ç[  
1
2
Lb_ꢀ2p  
Lb_ꢀ2n  
hÜÇ_ꢀ2p  
hÜÇ_ꢀ2n  
Lb_ꢀ2p  
Lb_ꢀ2n  
ꢀ!Ç! [!bꢁ2  
/[h/Y [!bꢁ  
3
3
Itꢀ_{bY  
hÜÇ_ꢀ1p  
4
Itꢀ_{bY  
hÜÇ_ꢀ1p  
Itꢀ_{w/  
Lb_ꢀ1p  
Itꢀ_{w/  
Lb_ꢀ1p  
4
5
5
ꢀ!Ç! [!bꢁ1  
ꢀ!Ç! [!bꢁ0  
hÜÇ_ꢀ1n  
hÜÇ_ꢀ1n  
Lb_ꢀ1n  
Dbꢀ  
31  
30  
6
Lb_ꢀ1n  
Dbꢀ  
31  
30  
6
Dbꢀ  
7
Dbꢀ  
7
29  
28  
27  
26  
25  
Lb_ꢀ0p  
hÜÇ_ꢀ0p  
hÜÇ_ꢀ0n  
!1  
8
Lb_ꢀ0p  
hÜÇ_ꢀ0p  
hÜÇ_ꢀ0n  
29  
28  
27  
26  
25  
8
ꢀ!Ç! [!bꢁ0  
ꢀ!Ç! [!bꢁ1  
Lb_ꢀ0n  
L2/_ꢁbꢂtLb  
Lb_/[Yp  
9
Lb_ꢀ0n  
L2/_ꢁbꢂtLb  
Lb_/[Yp  
9
10  
11  
12  
10  
11  
12  
!1  
hÜÇ_/[Yp  
hÜÇ_/[Yn  
/[h/Y [!bꢁ  
hÜÇ_/[Yp  
hÜÇ_/[Yn  
ꢀ!Ç! [!bꢁ2  
Lb_/[Yn  
Lb_/[Yn  
{í!t = ù  
Ln bormal íorking  
{í!t = [  
Ln {wap íorking  
Figure 25. TMDS171 Swap Function  
8.3.4 TMDS Inputs  
Standard TMDS terminations are integrated on all TMDS inputs. External terminations are not required. Each  
input data channel contains an adaptive or fixed equalizer to compensate for Inter-Symbol Interference (ISI) due  
to cable, connector, and/or board trace losses. The voltage at the TMDS input pins must be limited under the  
absolute maximum ratings. TMDS input pins have incorporated failsafe circuits. An unused input channel can be  
externally biased to prevent output oscillation by connecting the N input pin to be grounded through a 1-k  
resistor and the other pin left open. The input pins can be polarity changed through local I2C register when in  
retimer mode.  
8.3.5 TMDS Inputs Debug Tools  
There are two methods for debugging a system to make sure the inputs to the TMDS171 are valid. A TMDS  
error checker is implemented to provide a rough Bit Error Rate per data lane. This allows the system  
implementer to determine how the link between the source and TMDS171 is performing on all three data lanes.  
See CSR BIT FIELD DEFINITIONS – RX PATTERN VERIFIER CONTROL/STATUS register.  
If a high error count is evident the TMDS171 has a way to view the general receiver eye quality. A tool is  
available that uses the I2C link to down load the data that can be plotted for an eye diagram. This is available per  
data lane. This tool also provides a method to turn on an internal PRBS generator that will transmit a data signal  
on the data pins. A clock at the proper frequency is required on the IN_CLK pins to generated the expected  
output data rate.  
8.3.6 Receiver Equalizer  
The equalizer used to clean up inter-symbol interference (ISI) jitter/loss from the bandwidth-limited board traces  
or cables. TMDS171 supports fixed receiver equalizer and adaptive equalizer by setting the EQ_SEL/A0 pin or  
through I2C. When EQ_SEL/A0 is high, the EQ gain is fixed to 10 dB and when set low the EQ gain is set to 7.5  
dB. TMDS171 operates in adaptive equalizer mode when EQ_SEL/A0 pin is left floating. The EQ gain will be  
automatically adjusted based on the data rate to compensate for trace or cable loss. Implementers can enable  
the various EQ settings through local I2C control.  
24  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
Figure 26. Adaptive EQ Gain Curve  
8.3.7 Input Signal Detect Block  
When SIG_EN is enabled, the TMDS looks for a valid TMDS clock signal input. The terminations on the TMDS  
data lines are connected and the device is fully functional when a valid signal is detected. If no valid TMDS clock  
signal is detected, the device enters standby mode waiting for a valid signal at the clock input. The internal CDR  
is shut down and all of the TMDS outputs are in high-Z status. TMDS signal detect circuit can be set as enable  
by SIG_EN pin or through local I2C control but is default disabled. Designers are recommended to activate this  
function in normal operation for power saving.  
8.3.8 Audio Return Channel  
The Audio Return Channel in TMDS171 enables a TV, via a single HDMI cable, to send audio data “upstream” to  
an A/V receiver or surround audio controller, increasing user flexibility and eliminating the need for any separate  
S/PDIF audio connection. The TMDS171 supports single mode audio return channel. Implementers can send the  
S/PDIF signal to SPDIF_IN. The signal from ARC_OUT is sent to HDMI connectors and is passed through the  
general HDMI cable to audio receiver. By I2C control, customer can disable ARC_OUT by register. Enabled by  
default after initialization.  
8.3.9 Transmitter Impedance Control  
Source termination is disabled at data rates < 2 Gbps. When the data rate is between 2 Gbps and 3.4 Gbps, the  
output signal may be better if the termination value around 150 to 300 depending upon system  
implementation. TMDS171 supports two different source termination impedances for ease of implementation. Pin  
36, TX_TERM_CTL, offers a selection option to choose the output termination impedance value.  
Table 3. TX Termination Control  
Control Pin 36  
TX_TERM_CTL = H  
TX_TERM_CTL = L  
DESCRIPTION  
The transmit Termination is disabled  
Reserved  
Automatic select the impedance  
TX_TERM_CTL = Z  
2 Gbps > DR < 3.4 Gbps – 150 - 300 Ω differential near end termination  
DR < 2 Gbps – no termination  
Copyright © 2015–2017, Texas Instruments Incorporated  
25  
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
1600  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
VOD No Term  
VOD 150 to 300 W  
VOD No Term  
VOD 150 to 300 W  
1400  
1200  
1000  
800  
600  
400  
200  
0
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
Vsadj (kW)  
Vsadj (kW)  
D003  
D003  
8.3.10 TMDS Outputs  
A 1% precision resistor, 7.06 kΩ, connected from VSADJ to ground is recommended to allow the differential  
output swing to comply with TMDS signal levels. The differential output driver provides a typical 10 mA current  
sink capability, which provides a typical 500 mV voltage drop across a 50 Ω termination resistor.  
!ë//  
ëcc  
Ça5{171  
ùo=wÇ  
ùo=wÇ  
Ça5{ 5wLë9w  
Ça5{ w9/9Lë9w  
Figure 27. TMDS Driver and Termination Circuit  
In Figure 27, if VCC (TMDS171 supply) and AVCC (sink termination supply) are both powered, the TMDS output  
signals are high impedance when OE = high. Both supplies being active are the normal operating condition.  
Again refer to Figure 27, if VCC is on and AVCC is off, the TMDS outputs source a typical 5 mA current through  
each termination resistor to ground. A total of 33 mW of power is consumed by the terminations independent of  
the OEB logical selection. When AVCC is powered on, normal operation (OE controls output impedance) is  
resumed. When the power source of the device is off and the power source to termination is on, the IO(off),  
output leakage current, specification ensures the leakage current is limited to 45 μA or less. The PRE_SEL pin  
provides – 2 dB de-emphasis gain, allowing output signal pre-conditioning to offset interconnect losses from the  
TMDS171 outputs to a TMDS receiver. De-emphasis is recommended to be set at 0 dB while connecting to a  
receiver through short PCB route. The VOD of the data lanes and clock lane can be adjusted through I2C. See  
Table 11 for detail. Figure 1 shows the different output voltages based on the different VSADJ settings.  
26  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
8.3.11 Pre-Emphasis/De-Emphasis  
The TMDS171 provides de-emphasis as a way to compensate for ISI loss between the TMDS171 outputs and a  
TMDS receiver. There are two methods to implement this function. When in pin strapping mode the PRE_SEL  
pin controls this function. The PRE_SEL pin provides - 2 dB or 0 dB de-emphasis, which allows the output signal  
pre-conditioning. De-emphasis is recommended to be set at 0-dB while connecting to a receiver through short  
PCB traces. When pulled to ground through a 65 kΩ resistor - 2 dB can be realized, see Figure 9. When using  
I2C, reg0Ch[1:0] is used to make these adjustments.  
As there are times that true pre-emphasis may be the best solution there are two methods to accomplish this. If  
pin strapping is being used the best method is to reduce the VSADJ resistor value thus increasing the VOD swing  
and then pulling the PRE_SEL pin to ground using a 65 kΩ resistor, see Figure 28. If using I2C there are two  
methods to accomplish this. The first is similar to pin strapping but reducing VSADJ resistor value and then  
implementing - 2 db de-emphasis through I2C, reg0Ch[1:0] = 01. The second method is to increase the VOD  
swing by setting reg0Ch[7:5] = 011 and reg0Ch[1:0] = 01 which will accomplish the same pre-emphasis value,  
see Figure 29. Note: De-emphasis is only implement able during retimer mode. In redriver mode this function is  
not available.  
tw9_{9[ = ù  
ësadj = 7.06YQ  
tw9_{9[ = [  
ësadj = 4.5YQ  
1sꢁ biꢁ  
2nd ꢁo ꢂ biꢁ  
ëh5(tt) = 1400mëpp  
ëh5({{) = 11ꢀ0mëpp  
Figure 28. Pre-emphasis Using Pin Strapping  
Copyright © 2015–2017, Texas Instruments Incorporated  
27  
 
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
tw9_{9[ = ù  
ësadj = 7.06YQ  
ësadj = 7.06YQ  
L2/ weg0/hꢀ7:5] = 011  
weg0/ꢀ1:0] = 01  
1sꢀ biꢀ  
2nd ꢀo ꢁ biꢀ  
ëh5(tt) = 1200mëpp  
ëh5({{) = 1020mëpp  
Figure 29. Pre-emphasis Using I2C  
8.4 Device Functional Modes  
8.4.1 Retimer Mode  
Clock and Data Recovery Circuits (CDR) are used to track, sample and retime the equalized data bit streams.  
The CDRs are designed with loop bandwidth to minimize the amount of jitter transfer from the video source to  
the TMDS outputs. Input jitter within the CDR’s PLL bandwidth, < 1 MHz, is transferred to the TMDS outputs.  
Higher frequency jitter above the CDR loop bandwidth is attenuated, providing a jitter cleaning function to reduce  
the amount of high frequency jitter from the video source. The retimer is automatically activated at pixel clock  
above approximately 100 MHz when jitter cleaning is needed for robust operation. The retimer operates at about  
100 Mhz – 340 MHz pixel clock (1 – 3.4 Gbps). At pixel clock below about 100 MHz, the TMDS171 automatically  
bypasses the internal retimer, and operates as a redriver. When the video source changes resolution, the internal  
retimer starts the acquisition process to determine the input clock frequency and acquire lock to the new data bit  
streams. During the clock frequency detection period and the retimer acquisition period that last approximately 7  
ms, the TMDS drivers can be kept active (default) or programmed to be disabled to avoid sending invalid clock or  
data to the downstream receiver. The TMDS171 can support retimer mode across the full data rate range of 250  
Mbps - 3.4 Gbps by setting DEV_FUNC_MODE bits at reg0Ah[1:0], See Table 9. For compliance testing such as  
JTOL for 480 Mbps the PLL must be forced to lock.  
8.4.2 Redriver Mode  
The TMDS171 can function as a redriver which compensates for ISI channel loss. In this mode, power is  
reduced as the CDR and PLL are turned off. When in automatic mode, the TMDS171 is in redriver mode for data  
rates < 1.0 Gbps. By using I2C the device can be put in Redriver mode for the complete data range of 250 Mbps  
to 3.4 Gbps. This is done by writing a 00 to register 0Ah[1:0]. If the link has excessive random jitter then retimer  
mode is the best operating mode. If the link has excessive random jitter, the retimer mode is the best operating  
mode. When in redriver mode, the device compensates for ISI loss only. When in redriver mode compliance is  
not ensured as skew compensation and retiming functions are disabled. If a significant amount of random jitter is  
present, the system may not pass compliance at the connector.  
28  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
Device Functional Modes (continued)  
8.4.3 DDC Functional Description  
The TMDS171 solves sink/source level issues by implementing a master/salve control mode for the DDC bus.  
When the TMDS171 detects the start condition on the DDC bus from the SDA_SRC/SCL_SRC, it transfers the  
data or clock signal to the SDA_SNK/SCL_SNK with little propagation delay. When SDA_SNK detects the  
feedback from the downstream device, the TMDS171 pulls up or pulls down the SDA_SRC bus and delivers the  
signal to the source.  
The DDC link defaults to 100 kbps but can be set to various values including 400 kbps by setting the correct  
value to address 0Bh through the I2C interface. The DDC lines are 5 V tolerant when the device is powered off.  
The HPD goes to high impedance when VCC is under low power conditions < 1.5 V.  
NOTE  
The TMDS171 utilizes clock stretching for DDC transactions. As there are sources and  
sinks that do not perform this function correctly as system may not work correctly as DDC  
transactions are incorrectly transmitted/recieved. To overcome this a snoop configuration  
can be implemented where the SDA/SCL from the source is connected directly to the  
SDA/SCL sink. The TMDS171 will need its SDA_SNK and SCL_SNK pins connected to  
this link.  
8.4.4 Mode Selection Functional Description  
Mode Selection Definition: reg0Ah[7] is the mode select register, see Table 9. This bit lets the receiver know  
where the device is located in a system for the purpose of centering the AEQ point. The TMDS171 is targeting  
sink or dock applications so the default value is 1 which centers the EQ at 12 dB to 13 dB, see Table 12. If the  
TMDS171 is in a source application the value should be changed to a 0 which centers the EQ at 6.5 dB to 7.5  
dB.  
Copyright © 2015–2017, Texas Instruments Incorporated  
29  
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.5 Register Maps  
8.5.1 Local I2C Overview  
The TMDS171 local I2C interface is enabled when I2C_EN/PIN is high. The SCL_CTL and SDA_CTL terminals  
are used for I2C clock and I2C data respectively. The TMDS171 I2C interface conforms to the two-wire serial  
interface defined by the I2C Bus Specification, Version 2.1 (January 2000), and supports the fast mode transfer  
up to 400 kbps.  
The device address byte is the first byte received following the START condition from the master device. The 7  
bit device address for TMDS171 decides by the combination of EQ_SEL/A0 and A1. Table 4 clarifies the  
TMDS171 target address.  
Table 4. TMDS171 I2C Device Address Description  
TMDS171 I2C Device Address  
A1/A0  
00  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (W/R)  
HEX  
BC/BD  
BA/BB  
B8/B9  
B6/B7  
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
1
0
1
0
1
0/1  
0/1  
0/1  
0/1  
01  
10  
11  
The typical source application of the TMDS171 is as a retimer in a TV connecting the HDMI input connector and  
an internal HDMI receiver through flat cables. The register setup can adjust by source side. When TMDS171  
used in sink side application, it received data from input connector and transmit to receiver. The local I2C is not 5  
V tolerant and only support 3.3 V. Local I2C buses run at 400 kHz supporting fast-mode I2C operation.  
The following procedure is followed to write to the TMDS171 I2C registers:  
1. The master initiates a write operation by generating a start condition (S), followed by the TMDS171 7-bit  
address and a zero-value “W/R” bit to indicate a write cycle  
2. The TMDS171 acknowledges the address cycle  
3. The master presents the sub-address (I2C register within TMDS171) to be written, consisting of one byte of  
data, MSB-first  
4. The TMDS171 acknowledges the sub-address cycle  
5. The master presents the first byte of data to be written to the I2C register  
6. The TMDS171 acknowledges the sub-address cycle  
7. TMDS171 acknowledges the byte transfer  
8. The master may continue presenting additional bytes of data to be written, with each byte transfer completing  
with an acknowledge from the TMDS171  
9. The master terminates the write operation by generating a stop condition (P)  
The following procedure is followed to read the TMDS171 I2C registers:  
1. The master initiates a read operation by generating a start condition (S), followed by the TMDS171 7-bit  
address and a one-value “W/R” bit to indicate a read cycle  
2. The TMDS171 acknowledges the address cycle  
3. The TMDS171 transmit the contents of the memory registers MSB-first starting at register 00h.  
4. The TMDS171 will wait for either an acknowledge (ACK) or a not-acknowledge (NACK) from the master after  
each byte transfer; the I2C master acknowledges reception of each data byte transfer  
5. If an ACK is received, the TMDS171 transmits the next byte of data  
6. The master terminates the read operation by generating a stop condition (P)  
NOTE  
Nno sub-addressing is included for the read procedure, and reads start at register offset  
00h and continue byte by byte through the registers until the I2C master terminates the  
read operation.  
30  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
Refer to Table 4 for TMDS171 local I2C register descriptions. Reads from reserved fields not described return  
zeros, and writes are ignored.  
8.5.1.1 BIT Access Tag Conventions  
A table of bit descriptions is typically included for each register description that indicates the bit field name, field  
description, and the field access tags. The field access tags are described in Table 5.  
Table 5. Access Tags  
ACCESS TAG  
NAME  
Read  
DESCRIPTION  
The field shall be read by software  
R
W
S
Write  
The field shall be written by software  
Set  
The field shall be set by a write of one. Writes of Zero to the field have no effect  
The field shall be cleared by a write of one. Writes of Zero to the field have no effect  
Hardware may autonomously update this field  
C
Clear  
u
Update  
No Access  
NA  
Not accessible or not applicable  
8.5.2 CSR Bit Field Definitions, DEVICE_ID (offset: 00000000 00000111) (reset:00h 07h)  
Figure 30. CSR Bit Field Definitions, DEVICE_ID (00h 07h)  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 6. CSR Bit Field Definitions, DEVICE_ID (00h 07h)  
Bit  
Field  
Type  
Reset  
Description  
7:0  
DEVICE_ID  
R
00h 07h  
These fields return a string of ASCII characters “TMDS171”  
preceded by one space characters.  
TMDS171:  
0x00 – 0x07 = {- 0x54”T”, 0x4D”M”, 0x44”D”, 0x53”S”, 0x31”1”,  
0x37”7”, 0x31”1”, 0x20},  
8.5.3 CSR Bit Field Definitions, REV _ID (offset: 00001000) (reset: 01h)  
Figure 31. CSR Bit Field Definitions, REV _ID (08h)  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
1
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 7. CSR Bit Field Definitions, REV _ID (08h)  
Bit  
Field  
Type  
Reset  
Description  
7:0  
REV _ID  
R
01h  
This field identifies the device revision.  
0000001– TMDS171 Revision 1  
Copyright © 2015–2017, Texas Instruments Incorporated  
31  
 
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.5.4 CSR BIT Field Definitions – Misc Control (offset: 00001001) (reset: 02h)  
Figure 32. CSR Bit Field Definitions – Misc Control (09h)  
7
0
6
0
5
0
4
0
3
0
2
0
1
1
0
0
R/W/U  
R/W/U  
R
R/W/U  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 8. CSR Bit Field Definitions – Misc Control (09h)  
Bit  
Field  
Type  
Reset  
Description  
7
Lane_SWAP  
R/W/U  
1’b0  
This field Swaps the input lanes as per Figure 25.  
0 --- Disable (default) No Lane Swap  
1 --- enable: Swaps input lanes (Redriver and Retimer Mode)  
Note: field is loaded from SWAP/POL pin; Writes are ignored  
when I2C_EN/PIN = 0  
6
LANE_POLARITY  
R/W/U  
1’b0  
Swaps the input Data and Clock lanes polarity.  
0 – Disabled: No polarity swap  
1 – Swaps the input Data and Clock lane polarity (Retimer Mode  
Only)  
Note: field is loaded from SWAP/POL pin; Writes are ignored  
when I2C_EN/PIN = 0  
5
4
Reserved  
SIG_EN  
R
1’b0  
1’b0  
Reserved  
R/W/U  
This field enable the clock lane activity detect circuitry.  
0 – Disable(Default) Clock detector circuit closed and receiver  
always works in normal operation.  
1 – Enable , Clock detector circuit will make receiver automatic  
enter the standby state when no valid data detect.  
Note: field is loaded from SIG_EN pin; Writes are ignored when  
I2C_EN/PIN = 0  
3
2
PD_EN  
R/W  
R/W  
1’b0  
1’b0  
0 – Normal working (default)  
1 – Forced Power down by I2C, Lowest Power state  
HPD_AUTO_PWRDWN_DISABLE  
0 – Automatically enters power down mode based on HPD_SNK  
(default)  
1 – Will not automatically enter power down mode  
1:0  
I2C_DR_CTL  
R/W  
2’b10  
I2C data rate supported for configuring device.  
00 – 5 Kbps  
01 – 10 Kbps  
10 – 100 Kbps(default)  
11 – 400 Kbps (Note: HPD_AUTO_PWRDWN_DISABLE must  
be set before enabling 400 Kbps mode)  
32  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
8.5.5 CSR BIT Field Definitions – Misc Control (offset: 00001010) (reset: B1h)  
Figure 33. CSR Bit Field Definitions – Misc Control (0Ah)  
7
1
6
0
5
1
4
1
3
0
2
0
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R
W
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 9. CSR Bit Field Definitions – Misc Control (0Ah)  
Bit  
Field  
Type  
Reset  
Description  
7
Application Mode Selection  
R/W  
1’b1  
See Mode Selection  
TMDS171  
0 – Source  
1 – Sink (Default)  
6
HPDSNK_GATE_EN  
R/W  
1’b0  
Swaps the input Data and Clock lanes polarity. The field set the  
HPD_SNK signal pass through to HPD_SRC or not and  
HPD_SRC whether held in the de-asserted state.  
0 – HPD_SNK passed through to the HPD_SRC ( default )  
1 – HPD_SNK will not pass through to the HPD_SRC.  
5
4
EQ_ADA_EN  
EQ_EN  
R/W  
R/W  
1’b1  
1’b1  
This field enable the equalizer functioning state; Writes are  
ignored when I2C_EN/PIN = 0  
0 – Fixed EQ  
1 – Adaptive EQ (default)  
This field enable the Equalizer; Writes are ignored when  
I2C_EN/PIN = 0  
0 -- EQ disable  
1 – EQ enable (default)  
3
2
Reserved  
R
1’b0  
1’b0  
Reserved  
APPLY_RXTX_CHANGES  
W
Self-clearing write-only bit.  
Writing a 1 to this bit will apply new TX_TERM, HDMI_TWPST1,  
EQ_EN, EQ_ADA_EN, VSWING, Fixed EQ value settings to the  
clock and data lanes. Writes to the respective registers do not  
take immediate effect.  
This bit does not need to be written if I2C configuration occurs  
while OE or HPD_SNK are low, I2C PD_EN=1 or there is no  
HDMI clock applied and SIG_EN is high.  
1:0  
DEV_FUNC_MODE.  
R/W  
2’b01  
This field selects the Device Working Function Mode.  
00 – Redriver Mode across full range 250 Mbps – 3.4 Gbps  
01 - Automatic Redriver to Retimer Cross Over at 1.0 Gbps  
(default)  
10 - Reserved  
11 - Retimer Mode across full range 250 Mbps – 3.4 Gbps  
When changing crossover point, need to toggle PD_EN or  
toggle external HPD_SNK.  
Copyright © 2015–2017, Texas Instruments Incorporated  
33  
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.5.6 CSR BIT Field Definitions – Misc Control (offset: 00001011) (reset: 00h)  
Figure 34. CSR Bit Field Definitions – Misc Control (0Bh)  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R
R
R
R/W/U  
R/W/U  
R/W  
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 10. CSR Bit Field Definitions – Misc Control (0Bh)  
Bit  
7:5  
4:3  
Field  
Type  
R
Reset  
2’b000  
2’b00  
Description  
Reserved  
TX_TERM_CTL  
Reserved  
RWU  
Controls termination for HDMI TX; Writes are ignored when  
I2C_EN/PIN = 0  
00 – No termination  
01 – 150 to 300 Ω  
10 – Reserved.  
11 – Reserved  
2
DDC_DR_SEL  
Reserved  
R/W  
R
1’b0  
Defines the DDC output speed for both DDC bridge and AUX-  
DDC Bridge.  
0 = 100 kbps (default)  
1 = 400 kbps (Note: HPD_AUTO_PWRDWN_DISABLE must be  
set before enabling 400 Kbps mode)  
1:0  
2’b00  
Reserved  
34  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
8.5.7 CSR BIT Field Definitions – Misc Control (offset: 00001100) (reset: 00h)  
Figure 35. CSR Bit Field Definitions – Misc Control (0Ch)  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W/U  
R/W/U  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 11. CSR Bit Field Definitions – Misc Control (0Ch)  
Bit  
Field  
Type  
Reset  
Description  
7:5  
VSWING_DATA  
R/W  
3’b000  
Data Output Swing Control (Need Design input on what is  
available)  
000 – Vsadj set (default)  
001 – Increase by 7%  
010 – Increase by 13%  
011 – Increase by 18%  
100 – Decrease by 30%  
101 – Decrease by 22%  
110 – Decrease by 15%  
111 – Decrease by 7%  
4:2  
VSWING_CLK  
R/W  
13’b000  
Clock Output Swing Control: Default is set by DR which means  
standard based swing values but this allows for the swing to be  
overridden by selecting one of the following values.  
000 – Set by Data Rate  
001 – Increase by 7%  
010 – Increase by 13%  
011 – Increase by 18%  
100 – Decrease by 30%  
101 – Decrease by 22%  
110 – Decrease by 15%  
111 – Decrease by 7%  
1:0  
HDMI_TWPST1[1:0]  
R/W/U  
2’b00  
HDMI pre-emphasis FIR post-cursor-1 signed tap weight.  
00 – No pre-emphasis  
01 – 2 dB pre-emphasis.  
10 – Reserved  
11 – Reserved  
Note: Reflects value of PRE_SEL pin; Writes are ignored when  
I2C_EN/PIN = 0  
Copyright © 2015–2017, Texas Instruments Incorporated  
35  
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.5.8 CSR BIT Field Definitions – Equalization Control Register (offset: 00001101) (reset: 01h)  
Figure 36. CSR BIT Field Definitions – Equalization Control Register (0Dh)  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
1
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 12. CSR BIT Field Definitions – Equalization Control Register (0Dh)  
Bit  
7:6  
5:3  
Field  
Type  
R
Reset  
2’b00  
Description  
Reserved  
Data Lane EQ  
Reserved  
R/W  
1’b000  
Sets Fixed EQ Values  
000 – 0 dB  
001 – 4.5 dB  
010 – 6.5 dB  
011 – 8.5 dB  
100 – 10.5 dB  
101 – 12 dB  
110 – 14 dB  
111 – 16.5 dB  
2:1  
0
Clock Lane EQ  
Reserved  
R/W  
R
13’b000  
1’b1  
- Sets Fixed EQ Values.  
00 – 0 dB  
01 – 1.5 dB  
10 – 3 dB  
011 – RSVD  
Reserved  
8.5.9 CSR BIT Field Definitions – RX Pattern Verifier Control/Status (offset: 00001110) (reset: 00h)  
Figure 37. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (0Eh)  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 13. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (0Eh)  
Bit  
Field  
Type  
Reset  
Description  
7:4  
PV_SYNC[3:0]  
R/W  
4’b0000  
Pattern timing pulse. This field is updated for 8UI once every  
cycle of the PRBS generator. 1 bit per lane.  
3:0  
PV_LD[3:0]  
R/W  
4’b0000  
Load pattern-verifier controls into RX lanes. When asserted high,  
the PV_TO, PV_SEL, PV_LEN, PV_CP20, and PV_CP values  
are enabled into the corresponding RX lane. These values are  
then latched and held when PV_LD[n] is subsequently de-  
asserted low. 1 bit per lane.  
8.5.10 CSR BIT Field Definitions – RX Pattern Verifier Control/Status (offset: 00001111) (reset: 00h)  
Figure 38. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (0Fh)  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/U  
R/U  
R/U  
R/U  
R/U  
R/U  
R/U  
R/U  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 14. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (0Fh)  
Bit  
7:4  
3:0  
Field  
Type  
R/U  
Reset  
Description  
PV_SYNC[3:0]  
PV_LD[3:0]  
4’b0000  
4’b0000  
Pattern verification mismatch detected. 1 bit per lane.  
Pattern search/training in progress. 1 bit per lane.  
R/U  
36  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
8.5.11 CSR BIT Field Definitions – RX Pattern Verifier Control/Status (offset: 00010000) (reset: 00h)  
Figure 39. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (10h)  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W  
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 15. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (10h)  
Bit  
Field  
Type  
Reset  
Description  
7
PV_CP20  
R/W  
1’b0  
Customer pattern length 20/16 bits.  
0 – 16 bits  
1 – 20 bits  
6
Reserved  
R
1’b0  
Reserved  
5:3  
PV_LEN[2:0]  
R,W  
3’b000  
]PRBS pattern length  
000 – PRBS7  
001 – PRBS11  
010 – PRBS23  
011 – PRBS31  
100 – PRBS15  
101 – PRBS15  
110 – PRBS20  
111 – PRBS20  
2:0  
PV_SEL[24:0]  
R/W  
3’b000  
Pattern select control  
000 – Disabled  
001 – PRBS  
010 - Clock  
011 - Custom  
1xx – Timing only mode with sync pulse spacing defined by  
PV_LEN  
8.5.12 CSR BIT Field Definitions – RX Pattern Verifier Control/Status (offset: 00010001) (reset: 00h)  
Figure 40. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (11h)  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 16. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (11h)  
Bit  
Field  
Type  
Reset  
Description  
7
PV_CP[7:0]  
R/W  
‘h00  
Custom pattern data.  
8.5.13 CSR BIT Field Definitions – RX Pattern Verifier Control/Status (offset: 00010010) (reset: 00h)  
Figure 41. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (12h)  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 17. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (12h)  
Bit  
Field  
Type  
Reset  
Description  
7
PV_CP[15:8]  
R/W  
‘h00  
Custom pattern data.  
Copyright © 2015–2017, Texas Instruments Incorporated  
37  
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.5.14 CSR BIT Field Definitions – RX Pattern Verifier Control/Status (offset: 00010011) (reset: 00h)  
Figure 42. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (13h)  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R
R
R
R
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 18. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (13h)  
Bit  
7:4  
3:0  
Field  
Type  
R
Reset  
Description  
Reserved  
PV_CP[19:16]  
4’b0000  
4’b0000  
Reserved  
R/W  
Custom pattern data. Used when PV_CP20 = 1’b1.  
8.5.15 CSR BIT Field Definitions – RX Pattern Verifier Control/Status (offset: 00010100) (reset: 00h)  
Figure 43. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (14h)  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R
R
R
R
R
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 19. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (14h)  
Bit  
7:3  
2:0  
Field  
Type  
R
Reset  
Description  
Reserved  
PV_THR[2:0]  
5’b00000  
3’b000  
Reserved  
R/W  
Pattern-verifier retain threshold.  
8.5.16 CSR BIT Field Definitions – RX Pattern Verifier Control/Status (offset: 00010101) (reset: 00h)  
Figure 44. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (15h)  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R
R
R
R/S/U  
R/S/U  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 20. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (15h)  
Bit  
7
Field  
Type  
R
Reset  
1’b0  
Description  
DESKEW_CMPLT  
Reserved  
Indicates that TMDS lane deskew has completed when high.  
Reserved  
6:5  
4
R
2’b00  
1’b0  
BERT_CLR  
TST_INTQ_CLR  
TST_SEL[2:0]  
R/S/U  
R/S/U  
R/W  
Clear BERT counter (on rising edge).  
Clear latched interrupt flag.  
3
1’b0  
2:0  
3’b000  
Test interrupt source select.  
38  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
8.5.17 CSR BIT Field Definitions – RX Pattern Verifier Control/Status (offset: 00010110) (reset: 00h)  
Figure 45. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (16h)  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 21. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (16h)  
Bit  
7:4  
3
Field  
Type  
R/W  
R
Reset  
4’b0000  
1’b0  
Description  
PV_DP_EN[3:0]  
Reserved  
Enable datapath verified based on DP_TST_SEL, 1 bit per lane  
Reserved  
2:0  
DP_TST_SEL[2:0]  
R/W  
3’b000  
Selects pattern reported by BERT_CNT[11:0],  
TST_INT[0] and TST_INTQ[0] and PV_DP_EN is non-zero.  
000 – TMDS disparity or data errors  
001 – FIFO errors  
010 – FIFO overflow errors  
011 – FIFO underflow errors  
100 – TMDS deskew status  
101,110,111 – Reserved.  
8.5.18 CSR BIT Field Definitions – RX Pattern Verifier Control/Status (offset: 00010111) (reset: 00h)  
Figure 46. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (17h)  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/U  
R/U  
R/U  
R/U  
R/U  
R/U  
R/U  
R/U  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 22. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (17h)  
Bit  
7:4  
3:0  
Field  
Type  
R/U  
Reset  
Description  
TST_INTQ[3:0]  
RTST_INT[3:0]  
4’b0000  
4’b0000  
Latched interrupt flag. 1 bit per lane  
Test interrupt flag. 1 bit per lane.  
R/U  
8.5.19 CSR BIT Field Definitions – RX Pattern Verifier Control/Status (offset: 00011000) (reset: 00h)  
Figure 47. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (18h)  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/U  
R/U  
R/U  
R/U  
R/U  
R/U  
R/U  
R/U  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 23. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (18h)  
Bit  
Field  
Type  
Reset  
Description  
7:0  
BERT_CNT[7:0]  
R/U  
‘h00  
BERT error count. Lane 0  
Copyright © 2015–2017, Texas Instruments Incorporated  
39  
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.5.20 CSR BIT Field Definitions – RX Pattern Verifier Control/Status (offset: 00011001) (reset: 00h)  
Figure 48. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (19h)  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R
R
R
R
R/U  
R/U  
R/U  
R/U  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 24. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (19h)  
Bit  
7:4  
3:0  
Field  
Type  
R
Reset  
Description  
Reserved  
4’b0000  
4’b0000  
Reserved  
BERT_CNT[11:8]  
R/U  
BERT error count. Lane 0  
8.5.21 CSR BIT Field Definitions – RX Pattern Verifier Control/Status (offset: 00011010) (reset: 00h)  
Figure 49. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (1Ah)  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/U  
R/U  
R/U  
R/U  
R/U  
R/U  
R/U  
R/U  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 25. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (1Ah)  
Bit  
Field  
Type  
Reset  
Description  
7:0  
BERT_CNT[19:12].  
R/U  
‘h00  
BERT error count. Lane 1  
8.5.22 CSR BIT Field Definitions – RX Pattern Verifier Control/Status (offset: 00011011) (reset: 00h)  
Figure 50. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (1Bh)  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R
R
R
R
R/U  
R/U  
R/U  
R/U  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 26. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (1Bh)  
Bit  
7:4  
3:0  
Field  
Type  
R
Reset  
Description  
Reserved  
4’b0000  
4’b0000  
Reserved  
BERT_CNT[23:20]  
R/U  
BERT error count. Lane 1  
8.5.23 CSR BIT Field Definitions – RX Pattern Verifier Control/Status (offset: 00011100) (reset: 00h)  
Figure 51. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (1Ch)  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/U  
R/U  
R/U  
R/U  
R/U  
R/U  
R/U  
R/U  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 27. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (1Ch)  
Bit  
Field  
Type  
Reset  
Description  
7:0  
BERT_CNT[31:24]  
R/U  
‘h00  
BERT error count. Lane 2  
40  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
8.5.24 CSR BIT Field Definitions – RX Pattern Verifier Control/Status (offset: 00011101) (reset: 00h)  
Figure 52. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (1Dh)  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R
R
R
R
R/U  
R/U  
R/U  
R/U  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 28. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (1Dh)  
Bit  
7:4  
3:0  
Field  
Type  
R
Reset  
Description  
Reserved  
4’b0000  
4’b0000  
Reserved  
BERT_CNT[35:32]  
R/U  
BERT error count. Lane 2  
8.5.25 CSR BIT Field Definitions – RX Pattern Verifier Control/Status (offset: 00011110) (reset: 00h)  
Figure 53. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (1Eh)  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/U  
R/U  
R/U  
R/U  
R/U  
R/U  
R/U  
R/U  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 29. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (1Eh)  
Bit  
Field  
Type  
Reset  
Description  
7:0  
BERT_CNT[19:12]  
R/U  
’h00  
BERT error count. Lane 3  
8.5.26 CSR BIT Field Definitions – RX Pattern Verifier Control/Status (offset: 00011111) (reset: 00h)  
Figure 54. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (1Fh)  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R
R
R
R
R/U  
R/U  
R/U  
R/U  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 30. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (1Fh)  
Bit  
7:4  
3:0  
Field  
Type  
R
Reset  
Description  
Reserved  
4’b0000  
4’b0000  
Reserved  
BERT_CNT[23:20]  
R/U  
BERT error count. Lane 3  
8.5.27 CSR BIT Field Definitions – RX Pattern Verifier Control/Status (offset: 00100000) (reset: 00h)  
Figure 55. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (20h)  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R
R
R/W  
R/W  
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset, S= Set, U = autonomously update  
Table 31. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (20h)  
Bit  
Field  
Type  
Reset  
Description  
7
PWR_DWN_STATUS  
R
1’b0  
Power Down Status Bit.  
0 = Normal Operation (default)  
1 = Device in Power Down Mode  
Copyright © 2015–2017, Texas Instruments Incorporated  
41  
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Table 31. CSR BIT Field Definitions – RX Pattern Verifier Control/Status (20h) (continued)  
Bit  
Field  
Type  
Reset  
Description  
6
STB_STATUS  
R
1’b0  
Standby Status Bit  
0 = Normal Operation (default)  
1 = Device in Standby Mode  
5:0  
Reserved  
R
6’b000000 Reserved  
42  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TMDS171 was defined to work in many applications. This includes source applications like a Blu-Ray DVD  
player or AVR. The adaptive receive equalizer makes it ideal for sink applications like HDTV, monitors and  
projectors where cable length can be widely varied. The TMDS171 is also capable of working as an active cable  
to extend the cable length even further.  
9.1.1 Application Chain Showing DDC Connections  
The DDC circuitry inside the TMDS171 allows multiple stage operation as shown in Figure 56. The retimer  
devices can be connected to any of the bus segments. The number of devices that can be connected in series is  
limited by repeater delay/time of flight considerations for the maximum bus speed requirements.  
{hÜw/9  
!cꢂive /ꢃble  
{LꢄY  
ꢁë  
ꢁë  
3ꢀ3ë  
ꢁë  
ꢁë  
3ꢀ3ë  
wÜtsouce  
wÜtsource  
wup wup  
wup wup  
wÜtsink  
wÜtsink  
{[Y_{w/  
w{[Y  
Ç{/[  
{[Y_{w/ {[Y_{LꢄY  
{5!_{w/ {5!_{LꢄY  
{[Y_{LꢄY  
{[Y_{w/  
{[Y_{LꢄY  
{5!_{w/ {5!_{LꢄY  
{5!_{w/ {5!_{LꢄY  
w{5!  
Ç{5!  
/2  
/2  
/1  
/1  
/3  
/2  
/3  
/2  
.Ü{  
{[!ë9  
.Ü{  
a!{Ç9w  
Ça5{171  
Ça5{171  
Ça5{171  
Copyright © 2016, Texas Instruments Incorporated  
Figure 56. Typical Series Application  
9.1.2 DDC Pull Up Resistors  
This section is for information only and subject to change depending upon system implementation. The pull-up  
resistor value is determined by two requirements.  
1. The maximum sink current of the I2C buffer: The maximum sink current is 3 mA or slightly higher for an I2C  
driver supporting standard-mode I2C operation.  
V
CC  
Rup(min) =  
I
sink  
(1)  
2. The maximum transition time on the bus:  
The maximum transition time, T, of an I2C bus is set by an RC time constant, where R is the pull-up resistor  
value, and C is the total load capacitance. The parameter, k, can be calculated from Equation 2 by solving  
for t, the times at which certain voltage thresholds are reached. Different input threshold combinations  
introduce different values of t. Table 32 summarizes the possible values of k under different threshold  
combinations.  
Copyright © 2015–2017, Texas Instruments Incorporated  
43  
 
 
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Application Information (continued)  
T = k x RC  
(2)  
(3)  
-t  
æ
ç
ç
ç
è
ö
÷
÷
÷
ø
RC  
V t = VDD x 1-e  
( )  
Table 32. Value k upon Different Input Threshold Voltages  
Vth-\Vth+  
0.7 VCC  
1.0986  
1.0415  
0.9808  
0.9163  
0.8473  
0.65 VCC  
0.9445  
0.8873  
0.8267  
0.7621  
0.6931  
0.6 VCC  
0.8109  
0.7538  
0.6931  
0.6286  
0.5596  
0.55 VCC  
0.6931  
0.6360  
0.5754  
0.5108  
0.4418  
0.5 VCC  
0.5878  
0.5306  
0.4700  
0.4055  
0.3365  
0.45 VCC  
0.4925  
0.4353  
0.3747  
0.3102  
0.2412  
0.4 VCC  
0.4055  
0.3483  
0.2877  
0.2231  
0.1542  
0.35 VCC  
0.3254  
0.2683  
0.2076  
0.1431  
0.0741  
0.3 VCC  
0.2513  
0.1942  
0.1335  
0.0690  
0.1 VCC  
0.15 VCC  
0.2 VCC  
0.25 VCC  
0.3 VCC  
From Equation 1, Rup(min) = 5.5 V / 3 mA = 1.83 kΩ to operate the bus under a 5-V pull-up voltage and provide  
less than 3 mA when the I2C device is driving the bus to a low state. If a higher sink current, for example 4 mA,  
is allowed, Rup(min) can be as low as 1.375 kΩ.  
If DDC working at standard mode of 100 Kbps, the maximum transition time T is fixed, 1 μs, and using the k  
values from Table 32, the recommended maximum total resistance of the pull-up resistors on an I2C bus can be  
calculated for different system setups. If DDC working at fast mode of 400 Kbps, the transition time should be set  
at 300 ns according to I2C specification.  
To support the maximum load capacitance specified in the HDMI spec, Ccable(max) = 700 pF/C(source) = 50 pF/Ci =  
50 pF, R(max) can be calculated as shown in Table 33.  
Table 33. Pull-Up Resistor Upon Different Threshold Voltages and 800-pF Loads  
Vth-\Vth+  
0.1 VCC  
0.7 VCC  
1.14  
1.2  
0.65 VCC  
1.32  
0.6 VCC  
1.54  
1.65  
1.8  
0.55 VCC  
1.8  
0.5 VCC  
2.13  
0.45 VCC  
2.54  
0.4 VCC  
3.08  
3.59  
4.35  
5.6  
0.35 VCC  
3.84  
0.3 VCC  
4.97  
6.44  
9.36  
18.12  
UNIT  
KΩ  
0.15 VCC  
0.2 VCC  
1.41  
1.97  
2.36  
2.87  
4.66  
KΩ  
1.27  
1.36  
1.48  
1.51  
2.17  
2.66  
3.34  
6.02  
KΩ  
0.25 VCC  
0.3 VCC  
1.64  
1.99  
2.23  
2.45  
3.08  
4.03  
8.74  
KΩ  
1.8  
2.83  
3.72  
5.18  
8.11  
16.87  
KΩ  
44  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
To accommodate the 3 mA drive current specification, a narrower threshold voltage range is required to support  
a maximum 800 pF load capacitance for a standard-mode I2C bus.  
9.2 Source Side Application  
I5aL/5ëL  
weceptacle  
Ça5{_52p  
{ource {ide  
1
3
3ꢁ  
34  
32  
31  
2ꢂ  
28  
26  
2ꢁ  
2
3
2
52p  
52n  
Lb_52p  
hÜÇ_52p  
hÜÇ_52n  
hÜÇ_51p  
hÜÇ_51n  
hÜÇ_50p  
hÜÇ_50n  
hÜÇ_ꢀ[Yp  
hÜÇ_ꢀ[Yn  
Db51  
Ça5{_52n  
Ça5{_51p  
Db52  
Db53  
Db54  
Db5ꢁ  
Db56  
Lb_52n  
Lb_51p  
Lb_51n  
Lb_50p  
Lb_50n  
Lb_ꢀ[Yp  
Lb_ꢀ[Yn  
It5_{wꢀ  
8
4
51p  
11  
14  
17  
6
6
Ça5{_51n  
Ça5{_50p  
Ça5{_50n  
Ça5{_ꢀ[Yp  
Ça5{_ꢀ[Yn  
ꢀ9ꢀ  
51n  
7
8
50p  
50n  
10  
12  
11  
12  
4
Ça5{_ꢀ[Yp  
Ça5{_ꢀ[Yn  
ꢁë  
13  
It5  
ꢀ9ꢀ  
20  
21  
22  
23  
ꢁë  
ꢀ!{9_Db51  
55ꢀ_{ꢀ[ ꢀ!{9_Db52  
55ꢀ_{5! ꢀ!{9_Db53  
2YQ  
2YQ  
38  
3ꢂ  
33  
44  
40  
18  
1ꢁ  
16  
1ꢂ  
{ꢀ[_{bY  
{5!_{bY  
It5_{bY  
!wꢀ_hÜÇ  
2YQ  
2YQ  
46  
47  
4ꢁ  
55ꢀ_{ꢀ[  
55ꢀ_{5!  
{t5LC  
{ꢀ[_{wꢀ  
{5!_{wꢀ  
{t5LC_Lb  
It5  
ꢀ!{9_Db54  
bꢀ  
bꢀ  
bꢀ  
1aQ  
0.01uC  
500YQ  
ÇI9wa![ t!5  
Db5  
ëꢀꢀ_3.3ë  
41  
7
Db5  
65lQ  
65lQ  
1
1ꢂ  
30  
Db5  
ëꢀꢀ_3.3ë  
{í!t/th[  
L2ꢀ_9b/tLb  
{LD_9b  
Db5  
10  
17  
20  
21  
27  
36  
2YQ  
2YQ  
1ꢁ  
tw9_{9[  
L2ꢀ_{ꢀ[  
L2ꢀ_{5!  
{ꢀ[_ꢀÇ[  
{5!_ꢀÇ[  
16  
42  
22  
9v_{9[/!0  
Ç9{Ç/!1  
hptional  
Çó_Ç9wa_ꢀÇ[  
h9  
0.1uC  
65lQ  
65lQ  
ꢀ9ꢀ  
ꢀ9ꢀ  
ë{!5W  
7YQ  
1%  
ë55_1.1ë  
ëꢀꢀ_3.3ë  
14  
24  
23  
37 48  
13 43  
10uC  
0.1uC 0.1uC 0.1uC 0.1uC 0.01uC 0.01uC  
10uC  
0.1uC 0.1uC  
ë55_1.1ë  
ëꢀꢀ_3.3ë  
Copyright © 2016, Texas Instruments Incorporated  
Figure 57. TMDS171 in Source Side Application  
Copyright © 2015–2017, Texas Instruments Incorporated  
45  
 
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
Source Side Application (continued)  
9.2.1 Design Requirements  
The TMDS171 can be designed into many different applications. In all the applications there are certain  
requirements for the system to work properly. Two voltage rails are required in order to support lowest power  
consumption possible. OE pin must have a 200 nF capacitor to ground. This pin can be driven by a processor  
but the pin needs to change states after voltage rails have stabilized. The best way to configure the device is by  
using I2C but pin strapping is also provided as I2C is not available in all cases. As sources may have many  
different naming conventions it is necessary to confirm that the link between the source and the TMDS171 are  
correctly mapped. A Swap function is provide for the input pins incase signaling if reversed between source and  
device. Table 34 provides information on expected values in order to perform properly.  
Table 34. Design Parameters  
PARAMETER  
VCC  
VALUE  
3.3 V  
VDD  
1.2 V  
Main Link Input Voltage  
Control Pin Max Voltage for Low  
Control Pin Voltage Range Mid  
Control Pin Min Voltage for High  
R(VSADJ) Resistor  
VID = 75 mVPP to 1.4 VPP  
65 kΩ pulldown  
Left Not Connected/Floating  
65 kΩ pullup  
7.06 kΩ 1%  
9.2.2 Detailed Design Procedure  
The TMDS171 is a signal conditioning device that provides several forms of signal conditioning in order to  
support compliance for HDMI or DVI at a source connector. These forms of signal conditioning are accomplished  
using receive equalization, retiming, and output driver configurability. The transmitter will drive 2-3” of board trace  
and connector when compliance is required at the connector.  
To design in the TMDS171 the following need to be understood for a source side application:  
Determine the loss profile between the GPU/chipset and the HDMI/DVI connector.  
Based upon this loss profile and signal swing determine optimal location for the TMDS171, in order to pass  
source electrical compliance. Usually within 2”-3” of the connector  
Use the typical application Figure 57 for information on control pin resistors.  
The TMDS171 has a receiver adaptive equalizer but can also be configured using EQ_SEL control pin.  
Set the VOD, Pre-emphasis, termination, and edge rate levels appropriately to support compliance by using  
the appropriate VSADJ resistor value and setting PRE_SEL, and TX_TERM_CTL control pins.  
The thermal pad must be connected to ground.  
See Figure 57 for recommended decouple capacitors from VCC and VDD pins to Ground  
9.2.3 Application Curves  
Figure 59. 4k2k30 Compliance Eye  
Figure 58. 1080p Compliance Eye  
46  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
9.2.4 Sink Side Application  
For a sink side application HPD needs consideration. The TMDS171 drives the HPD signal to 3.3V which  
meetings requirements but if 5 V HPD signaling is required the two circuits shown in Figure 60 are required. As  
sources are not consistent in implementing all aspects of the DDC link it is recommended to configure the  
TMDS171 as per Figure 60. Another consideration in relationship to how HPD is implemented is the architecture  
and behavior of the HDMI RX/Scalar.  
IꢀꢂL/ꢀëL  
/onnector  
IꢀꢂL ꢃó/{calar  
35  
34  
32  
31  
2ꢆ  
28  
26  
25  
2
3
Çꢂꢀ{_ꢀ2p  
Çꢂꢀ{_ꢀ2n  
Çꢂꢀ{_ꢀ1p  
Çꢂꢀ{_ꢀ1n  
Çꢂꢀ{_ꢀ0p  
Çꢂꢀ{_ꢀ0n  
Çꢂꢀ{_ꢅ[Yp  
Çꢂꢀ{_ꢅ[Yn  
h9  
Dꢄꢀ1  
Dꢄꢀ2  
ꢀ2p  
ꢀ2n  
Lꢄ_ꢀ2p  
Lꢄ_ꢀ2n  
Lꢄ_ꢀ1p  
Lꢄ_ꢀ1n  
Lꢄ_ꢀ0p  
Lꢄ_ꢀ0n  
Lꢄ_ꢅ[Yp  
Lꢄ_ꢅ[Yn  
hÜÇ_ꢀ2p  
hÜÇ_ꢀ2n  
hÜÇ_ꢀ1p  
hÜÇ_ꢀ1n  
hÜÇ_ꢀ0p  
hÜÇ_ꢀ0n  
hÜÇ_ꢅ[Yp  
hÜÇ_ꢅ[Yn  
5
Dꢄꢀ3  
Dꢄꢀ4  
Dꢄꢀ5  
Dꢄꢀ6  
ꢀ1p  
6
ꢀ1n  
8
ꢀ0p  
ꢀ0n  
11  
12  
Çꢂꢀ{_ꢅ[Yp  
Çꢂꢀ{_ꢅ[Yn  
hptional  
h9  
5ë  
ꢅ!{9_Dꢄꢀ1  
ꢅ!{9_Dꢄꢀ2  
ꢅ!{9_Dꢄꢀ3  
ꢅ!{9_Dꢄꢀ4  
Lf 5ë is required. {ee 5ë  
Itꢀ implemenꢁaꢁion  
below  
47YQ  
47YQ  
38  
3ꢆ  
ꢀꢀꢅ_{ꢅ[  
ꢀꢀꢅ_{ꢀ!  
{ꢅ[_{ꢄY  
{ꢀ!_{ꢄY  
4
Itꢀ_{ꢃꢅ  
Itꢀ  
ꢂꢂ/_{/[  
ꢂꢂ/_{ꢂ!  
IꢀꢂL_5ë  
1YQ  
46  
47  
{ꢅ[_{ꢃꢅ  
{ꢀ!_{ꢃꢅ  
IꢀꢂL_5ë  
IꢀꢂL_5ë  
ꢂꢂ/_{/[  
0.01uC  
1uC  
45  
33  
ꢀꢀꢅ_{ꢅ[  
ꢀꢀꢅ_{ꢀ!  
{tꢀLC_Lꢄ  
Itꢀ_{ꢄY  
{tꢀLC  
Itꢀ  
ꢂꢂ/_{ꢂ!  
40  
18  
ꢄꢅ  
ꢄꢅ  
500YQ  
2nd metꢁod to implement Iꢃꢂ  
in bypassing Iꢃꢂ_{w/ and  
tieing Iꢃꢂ_{ꢅY to 5ë from  
IꢂꢀL /onnecotr  
ꢅ9ꢅ  
!ꢃꢅ  
ꢅ9ꢅ  
weduces ꢃoꢄer /onsumption  
Lf !w/ not used in system  
ëꢅꢅ  
1uC  
44  
!ꢃꢅ_hÜÇ  
ÇI9ꢃꢂ![ t!ꢀ  
Dꢄꢀ  
55Q  
65lQ  
1
65lQ  
41  
Lmplementation specific.  
ꢀay not be needed if {ource  
ꢁas implemented  
{í!t/th[  
L2ꢅ_9ꢄ/tLꢄ  
{LD_9ꢄ  
7
10  
17  
20  
21  
27  
36  
Dꢄꢀ  
ëꢅꢅ  
1ꢆ  
30  
Dꢄꢀ  
Dꢄꢀ  
tꢃ9_{9[  
9v_{9[/!0  
!1  
2YQ  
2YQ  
15  
L2ꢅ_{ꢅ[  
L2ꢅ_{ꢀ!  
{ꢅ[_ꢅÇ[  
{ꢀ!_ꢅÇ[  
16  
Çó_Ç9ꢃꢂ_ꢅÇ[  
hptional  
42  
h9  
65lQ  
h9  
65lQ  
0.1uC  
ëꢀꢀ  
22  
ë{!ꢀW  
ëꢅꢅ  
7.06YQ  
10uC  
0.1uC 0.1uC 0.1uC 0.1uC 0.01uC 0.01uC  
1%  
10uC  
0.01uC 0.1uC  
14  
24  
23  
37 48  
13 43  
ëꢅꢅ  
ëꢀꢀ  
5ë Itꢀ Lmplemenꢁaꢁion  
5ë  
5ë  
1lQ  
1lQ  
5ë  
10Q  
1lQ  
Itꢀ  
100Q  
Itꢀ_{ꢃꢅ  
100lQ  
Figure 60. TMDS171 in Sink Side Application, 5 V HPD Implementation  
Copyright © 2015–2017, Texas Instruments Incorporated  
47  
 
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
9.2.4.1 Design Requirements  
See Table 35 for the Sink Side design example parameters.  
Table 35. Design Parameters  
PARAMETER  
VCC  
VALUE  
3.3 V  
VDD  
1.2 V  
Main Link Input Voltage  
Control Pin Max Voltage for Low  
Control Pin Voltage Range Mid  
Control Pin Min Voltage for High  
R(VSADJ) Resistor  
VID = 75 mVPP to 1.4 VPP  
65 kΩ pulldown  
Left Not Connected/Floating  
65 kΩ pullup  
7.06 kΩ 1%  
9.2.4.2 Detailed Design Procedure  
To design in the TMDS171 the following need to be understood for a source side application.  
Determine the loss profile between the RX/chipset and the HDMI/DVI connector.  
Based upon this loss profile and signal swing determine optimal location for the TMDS171, in order to pass  
sink electrical compliance.  
Use the typical application Figure 56 for information on control pin resistors.  
The TMDS171 has a receiver adaptive equalizer but can also be configured using EQ_SEL control pin.  
Set the VOD, Pre-emphasis, termination, and edge rate levels appropriately to support link between  
TMDS171 and HDMI RX/Chipset by using the appropriate VSADJ resistor value and setting PRE_SEL and  
TX_TERM_CTL control pins.  
The thermal pad must be connected to ground.  
See Figure 60 for recommended decouple caps from VCC and VDD pins to Ground.  
48  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
9.3 System Examples  
Another way to configure sink application is to configure the sink as per Figure 61. This is done as not all  
sources are supporting clock stretching as per standard.  
I5aL/5ëL  
/onnector  
{ink {ide  
I5aL wó/{cꢀlꢀr  
3ꢂ  
34  
32  
31  
2ꢃ  
28  
26  
2ꢂ  
2
3
Ça5{_52p  
Ça5{_52n  
Ça5{_51p  
Ça5{_51n  
Ça5{_50p  
Ça5{_50n  
Ça5{_ꢁ[Yp  
Ça5{_ꢁ[Yn  
Db51  
52p  
52n  
Lb_52p  
Lb_52n  
Lb_51p  
Lb_51n  
Lb_50p  
Lb_50n  
Lb_ꢁ[Yp  
Lb_ꢁ[Yn  
hÜÇ_52p  
Db52  
Db53  
Db54  
Db5ꢂ  
Db56  
hÜÇ_52n  
hÜÇ_51p  
hÜÇ_51n  
hÜÇ_50p  
hÜÇ_50n  
hÜÇ_ꢁ[Yp  
hÜÇ_ꢁ[Yn  
51p  
6
51n  
8
50p  
50n  
11  
12  
Ça5{_ꢁ[Yp  
Ça5{_ꢁ[Yn  
ꢂë  
I5aL_ꢂë  
I5aL_ꢂë  
ꢁ!{9_Db51  
ꢁ!{9_Db52  
ꢁ!{9_Db53  
ꢁ!{9_Db54  
47YQ  
47YQ  
1YQ  
38  
3ꢃ  
55ꢁ_{ꢁ[  
55ꢁ_{5!  
h9  
{ꢁ[_{bY  
{5!_{bY  
4
Iꢃꢂ  
It5_{wꢁ  
bꢁ  
It5  
ꢂꢂ/_{/[  
ꢂꢂ/_{ꢂ!  
hptional  
h9  
46  
47  
{ꢁ[_{wꢁ  
{5!_{wꢁ  
0.01uC  
Iꢃꢂ  
1uC  
4ꢂ  
33  
ꢂꢂ/_{/[  
ꢂꢂ/_{ꢂ!  
55ꢁ_{ꢁ[  
55ꢁ_{5!  
{t5LC_Lb  
It5_{bY  
{t5LC  
It5  
500YQ  
ꢁ9ꢁ  
!wꢁ  
ꢁ9ꢁ  
weduces ꢃoꢄer /onsumption  
Lf !w/ not used in system  
ëꢁꢁ_3.3ë  
1uC  
44  
!wꢁ_hÜÇ  
ÇI9wa![ t!5  
Db5  
55Q  
65lQ  
1
65lQ  
41  
Lmplementation specific.  
ꢀay not be needed if {ource  
ꢁas implemented  
{í!t/th[  
L2ꢁ_9b/tLb  
{LD_9b  
7
10  
17  
20  
21  
27  
36  
Db5  
ëꢁꢁ_3.3ë  
1ꢃ  
30  
Db5  
Db5  
tw9_{9[  
9v_{9[/!0  
!1  
2YQ  
2YQ  
1ꢂ  
L2ꢁ_{ꢁ[  
L2ꢁ_{5!  
{ꢁ[_ꢁÇ[  
{5!_ꢁÇ[  
16  
Çó_Ç9wa_ꢁÇ[  
hptional  
42  
h9  
65lQ  
h9  
65lQ  
0.1uC  
ëꢁꢁ_3.3ë  
ë55_1.1ë  
22  
10uC  
ë{!5W  
0.1uC 0.1uC  
7YQ  
1%  
10uC  
0.1uC 0.1uC 0.1uC 0.01uC 0.01uC  
0.1uC  
14  
24  
23  
37 48  
13 43  
ë55_1.1ë  
ëꢁꢁ_3.3ë  
Copyright © 2016, Texas Instruments Incorporated  
Figure 61. TMDS171 in Sink Side Application  
Copyright © 2015–2017, Texas Instruments Incorporated  
49  
 
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
10 Power Supply Recommendations  
To minimize the power consumption of customer application, TMDS171 used the dual power supply. VCC is 3.3 V  
with 5% range to support the I/O voltage. The VDD is 1.2 V with 1.1 V to 1.27 V range to supply the internal digital  
control circuit. TMDS171 operates in 3 different working states.  
o Power down Mode:  
OE = Low puts the device into its lowest power state by shutting down all function blocks.  
When OE is re-asserted the transitions from LH will create a reset and if the device is programmed  
through I2C it must to be reprogrammed.  
Writing a 1 to register 09h[3].  
OE = High, HPD_SNK = Low  
Standby Mode: HPD_SNK = High but no valid clock signal detect on clock lane.  
Normal operation: Working in Redriver or Retimer  
When HPD assert, the device CDR and output will enable based on the signal detector circuit result.  
HPD_SRC = HPD_SNK in all conditions.  
50  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
Table 36. Power Up and Operation Timing Requirements  
INPUTS  
SIG_EN  
STATUS  
SDA/  
SCL_CTL  
OUT_Dx  
OUT_CLK  
HPD_SNK  
OE  
IN_CLK  
Device Mode  
HPD_SRC  
IN_Dx  
DDC  
ARC  
Mode  
X
L
L
H or L  
H or L  
X
X
X
X
H
L
RX Termination On  
RX Termination On  
Disable  
Active  
High-Z  
High-Z  
Disabled  
Disabled  
Disable  
Disable  
Power Down Mode  
Power Down Mode  
H
Power Down Mode by W 1 to  
09h[3]  
H
H
H
H
H
H
H
H
H
H
H or L  
H
X
X
H
H
H
H
H
RX Termination On  
Active  
Active  
Active  
Active  
Active  
High-Z  
High-Z  
Disabled  
Active  
Active  
Active  
Active  
Disable  
Active  
Active  
Active  
Active  
No Valid TMDS  
Clock  
D0-D2 disabled with RX  
Termination On, IN_CLK Active  
Standby Mode  
(Squelch waiting)  
X
No Valid TMDS  
Clock  
D0-D2 disabled with RX  
Termination On, IN_CLK Active  
Standby Mode  
(Squelch waiting)  
H or L  
H
Retimer mode  
Retimer mode  
Redriver mode  
High-Z  
Valid TMDS  
Clock  
RX Active  
RX Active  
TX Active  
TX Active  
Normal operation  
Normal operation  
No Valid TMDS  
Clock  
H or L  
Copyright © 2015–2017, Texas Instruments Incorporated  
51  
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
On a high-K board – It is always recommended to solder the PowerPAD™ onto the thermal land. A thermal land  
is the area of solder-tinned-copper underneath the PowerPAD™ package. On a high-K board the TMDS171 can  
operate over the full temperature range by soldering the PowerPAD onto the thermal land without vias.  
On a low-K board – In order for the device to operate across the temperature range on a low-K board, a 1-oz Cu  
trace connecting the GND pins to the thermal land must be used. A simulation shows RθJA = 100.84°C/W  
allowing 545 mW power dissipation at 70°C ambient temperature.  
A general PCB design guide for PowerPAD packages is provided in the document SLMA002 - PowerPAD  
Thermally Enhanced Package.  
TI recommends six layers as the TMDS171 is a two voltage rail device.  
Routing the high-speed TMDS traces on the top layer avoids the use of vias. (and the introduction of their  
inductances) and allows for clean interconnects from the HDMI connectors to the retimer inputs and outputs.  
It is important to match the electrical length of these high speed traces to minimize both inter-pair and intra-  
pair skew.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission link interconnects and provides an excellent low –inductance path for the return current flow.  
Placing a power plane next to the ground plane creates an additional high-frequency bypass capacitance.  
Routing slower seed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power/ground plane system to  
the stack to keep symmetry. This makes the stack mechanically stable and prevents it from warping. Also the  
power and ground plane of each power system can be place closer together, thus increasing the high  
frequency bypass capacitance significantly.  
[ayer 1: Çꢀꢁ{ signal layer  
[ayer 1: Çꢀꢁ{ signal layer  
5 to 10 mils  
20 to 40 mils  
5 to 10 mils  
[ayer 2: Dround ꢂlane  
[ayer 2: Dround ꢂlane  
[ayer 3: ë// ꢂower ꢂlane  
[ayer 4: ëꢁꢁ ꢂower ꢂlane  
[ayer 5: Dround ꢂlane  
[ayer 3: ꢂower ꢂlane  
[ayer 4: /ontrol signal layer  
[ayer 6: /ontrol signal layer  
Figure 62. Recommended 4 or 6 Layer PCB Stack  
52  
Copyright © 2015–2017, Texas Instruments Incorporated  
TMDS171, TMDS171I  
www.ti.com.cn  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
11.2 Layout Example  
1µC  
!ꢄ/_ꢆÜÇ  
ꢀꢀQ  
Db5  
1µC  
{ꢁ5LC_Lb  
{5!_{bY  
{/[_{ꢄ/  
2kQ  
2kQ  
ë//  
2kQ  
ꢀë  
2kQ  
ë//  
ꢀë  
{5!_{ꢄ/  
{/[_{bY  
aꢂtch Iigh {peed trꢂces  
length ꢂs close ꢂs possiꢃle to  
minimize {kew  
6ꢀkQ  
ë//  
{í!ꢁꢅꢁꢆ[  
6ꢀkQ  
Db5  
6ꢀkQ  
ë//  
Çó_Ç9ꢄa_/Ç[  
1
6ꢀkQ  
Db5  
Lb_52pꢅn  
ꢆÜÇ_52pꢅn  
Iꢁ5_{bY  
Iꢁ5_{ꢄ/  
Lb_51pꢅn  
ꢆÜÇ_51pꢅn  
Db5  
Db5  
Db5  
Lb_50pꢅn  
ꢆÜÇ_50pꢅn  
6ꢀkQ  
ë//  
6ꢀkQ  
ë//  
!1  
L2/_9bꢅꢁLb  
6ꢀkQ  
Db5  
6ꢀkQ  
Db5  
ꢆÜÇ_/[Ypꢅn  
Lb_/[Ypꢅn  
{/[_/Ç[  
ꢁlꢂce ë// ꢂnd ë55 decoupling  
cꢂps ꢂs close to ë// ꢂnd ë55  
pins ꢂs possiꢃle  
ë//  
ë//  
2kQ  
2kQ  
ë{!5W  
{5!_/Ç[  
aꢂtch Iigh {peed trꢂces  
length ꢂs close ꢂs possiꢃle to  
minimize {kew  
(1) If ARC is not used a 500Kresistor should be tied to GND at the SPDIF_IN pin  
(2) The 55-Ω resistor to GND on the ARC_OUT pin is implementation specific and my not be needed if it is already  
implemented elsewhere.  
Figure 63. Layout  
版权 © 2015–2017, Texas Instruments Incorporated  
53  
TMDS171, TMDS171I  
ZHCSEG5E OCTOBER 2015REVISED SEPTEMBER 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 相关文档ꢀ  
[HDMI] 高清多媒体接口规范版本 1.4b2011 10 月  
[HDMI] 高清多媒体接口 CTS 版本 1.4b2011 10 月  
[I2C] I2C 总线规范版本 2.12000 1 月  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
is a trademark of ~HDMI.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
54  
版权 © 2015–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMDS171IRGZR  
TMDS171IRGZT  
TMDS171RGZR  
TMDS171RGZT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
48  
48  
48  
48  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
0 to 70  
TMDS171I  
NIPDAU  
NIPDAU  
NIPDAU  
TMDS171I  
TMDS171  
TMDS171  
0 to 70  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Jan-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMDS171IRGZR  
TMDS171IRGZT  
TMDS171RGZR  
TMDS171RGZT  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
48  
48  
48  
48  
2500  
250  
330.0  
180.0  
330.0  
180.0  
16.4  
16.4  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
1.1  
1.1  
1.1  
1.1  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
2500  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Jan-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMDS171IRGZR  
TMDS171IRGZT  
TMDS171RGZR  
TMDS171RGZT  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
48  
48  
48  
48  
2500  
250  
367.0  
210.0  
367.0  
210.0  
367.0  
185.0  
367.0  
185.0  
38.0  
35.0  
38.0  
35.0  
2500  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
RGZ0048B  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
7.15  
6.85  
A
B
PIN 1 INDEX AREA  
7.15  
6.85  
1 MAX  
C
SEATING PLANE  
0.05  
0.00  
0.08 C  
2X 5.5  
4.1 0.1  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
13  
24  
44X 0.5  
12  
25  
49  
SYMM  
2X  
5.5  
0.30  
0.18  
36  
48X  
1
0.1  
0.05  
C B A  
48  
37  
SYMM  
PIN 1 ID  
(OPTIONAL)  
0.5  
0.3  
48X  
4218795/B 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGZ0048B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.1)  
(1.115) TYP  
(0.685)  
TYP  
37  
48  
48X (0.6)  
1
36  
48X (0.24)  
(1.115)  
TYP  
44X (0.5)  
(0.685)  
TYP  
SYMM  
49  
(
0.2) TYP  
VIA  
(6.8)  
(R0.05)  
TYP  
12  
25  
13  
24  
SYMM  
(6.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218795/B 02/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGZ0048B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.37)  
TYP  
37  
48  
48X (0.6)  
1
36  
48X (0.24)  
44X (0.5)  
(1.37)  
TYP  
SYMM  
49  
(R0.05) TYP  
(6.8)  
9X  
METAL  
TYP  
(
1.17)  
12  
25  
13  
24  
SYMM  
(6.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 49  
73% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:12X  
4218795/B 02/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TMDS171RGZR

3.4Gbps HDMI 1.4b TMDS 重定时器 | RGZ | 48 | 0 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMDS171RGZT

3.4Gbps HDMI 1.4b TMDS 重定时器 | RGZ | 48 | 0 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMDS181

6Gbps HDMI 2.0 TMDS 重定时器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMDS181IRGZR

6Gbps HDMI 2.0 TMDS 重定时器 | RGZ | 48 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMDS181IRGZT

6Gbps HDMI 2.0 TMDS 重定时器 | RGZ | 48 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMDS181RGZR

6Gbps HDMI 2.0 TMDS 重定时器 | RGZ | 48 | 0 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMDS181RGZT

6Gbps HDMI 2.0 TMDS 重定时器 | RGZ | 48 | 0 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMDS250

2.5 Gbps 2-TO-1 DVI/HDMI SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMDS250PAGR

2.5 Gbps 2-TO-1 DVI/HDMI SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMDS250PAGRG4

SPECIALTY CONSUMER CIRCUIT, PQFP64, GREEN, PLASTIC, TQFP-64

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMDS251

2.5 Gbps 2-TO-1 DVI/HDMI SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMDS251PAGR

2.5 Gbps 2-TO-1 DVI/HDMI SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI