TMS27C240-15JL [TI]

16-BIT PROGRAMMABLE READ-ONLY MEMORIES; 16位可编程只读存储器
TMS27C240-15JL
型号: TMS27C240-15JL
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

16-BIT PROGRAMMABLE READ-ONLY MEMORIES
16位可编程只读存储器

存储 内存集成电路 可编程只读存储器 电动程控只读存储器
文件: 总15页 (文件大小:203K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SMLS240D− NOVEMBER 1990 − REVISED SEPTEMBER 1997  
TMS27PC240 FN PACKAGE  
(TOP VIEW)  
D
D
D
D
D
Organization . . . 262144 by 16 Bits  
Single 5-V Power Supply  
All Inputs/Outputs Fully TTL Compatible  
Static Operations (No Clocks, No Refresh)  
Max Access/Min Cycle Time  
6
5
4
3
2 1 44 43 42 41 40  
A13  
A12  
A11  
A10  
A9  
GND  
NC  
A8  
7
DQ12  
DQ11  
DQ10  
DQ9  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
8
V
10%  
CC  
9
’27C/PC240-10  
’27C/PC240-12  
’27C/PC240-15  
100 ns  
120 ns  
150 ns  
10  
11  
12  
13  
14  
15  
16  
17  
DQ8  
GND  
D
D
16-Bit Output For Use in  
Microprocessor-Based Systems  
NC  
DQ7  
DQ6  
DQ5  
DQ4  
A7  
A6  
A5  
Very High Speed SNAP! Pulse  
Programming  
D
D
D
D
Power-Saving CMOS Technology  
3-State Output Buffers  
18 19 20 21 22 23 24 25 26 27 28  
400-mV Minimum DC Noise Immunity With  
Standard TTL Loads  
PIN NOMENCLATURE  
Latchup Immunity of 250 mA on All Input  
and Output Lines  
A0A17  
Address Inputs  
DQ0DQ15 Inputs (programming)/Outputs  
E
G
GND  
NC  
Chip Enable  
Output Enable  
Ground  
No Connection  
5-V Supply  
D
No Pullup Resistors Required  
D
Low Power Dissipation (V  
= 5.5 V)  
CC  
− Active . . . 275 mW Worst Case  
− Standby . . . 0.55 mW Worst Case  
(CMOS-Input Levels)  
V
CC  
V
PP  
13-V Power Supply  
D
Temperature Range Options  
Pins 11 and 30 (J package) and pins 12 and 34  
(FN package) must be connected externally to  
ground.  
Only in program mode  
description  
The TMS27C240 series are 262144 by 16-bit (4194304-bit), ultraviolet-light erasable, electrically  
programmable read-only memories (EPROMs).  
The TMS27PC240 series are 262144 by 16-bit (4194304-bit), one-time programmable (OTP) electrically  
programmable read-only memories (PROMs).  
These devices are fabricated using power-saving CMOS technology for high speed and simple interface with  
MOS and bipolar circuits. All inputs (including program data inputs) can be driven by Series 74 TTL circuits  
without the use of external pull-up resistors. Each output can drive one Series 74 TTL circuit without external  
resistors.  
The TMS27C240 EPROM is offered in a dual-in-line ceramic package (J suffix) designed for insertion in  
mounting hole rows on 15,2-mm (600-mil) centers. The TMS27C240 is offered with two choices of temperature  
ranges of 0°C to 70°C (JL suffix) and − 40°C to 85°C (JE suffix). See Table 1.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢀꢤ  
Copyright 1997, Texas Instruments Incorporated  
ꢠ ꢤ ꢡ ꢠꢙ ꢚꢮ ꢜꢛ ꢟ ꢧꢧ ꢥꢟ ꢝ ꢟ ꢞ ꢤ ꢠ ꢤ ꢝ ꢡ ꢩ  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢃ ꢆ ꢇ ꢃ ꢈꢃ ꢉ ꢆ ꢆ ꢊꢋ ꢉ ꢈ ꢌꢊꢍ ꢀ ꢎꢏ ꢐ ꢑꢒꢂ ꢒꢊꢓ ꢐ  
ꢀ ꢁ ꢂ ꢃ ꢄꢔ ꢅꢃ ꢆꢇ ꢃ ꢈ ꢃ ꢉ ꢆ ꢆ ꢊꢋ ꢉ ꢈ ꢌꢊꢍ ꢀ  
ꢔ ꢑꢕꢖꢑ ꢒ ꢁꢁ ꢒ ꢊꢓ ꢐ ꢑꢐ ꢒꢗ ꢌꢕꢘ ꢓꢋ ꢁꢐ ꢁꢕ ꢑ ꢍꢐꢂ  
SMLS240D− NOVEMBER 1990 − REVISED SEPTEMBER 1997  
TMS27C240 J PACKAGE  
(TOP VIEW)  
V
V
CC  
1
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
PP  
E
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
2
DQ15  
DQ14  
DQ13  
DQ12  
DQ11  
DQ10  
DQ9  
3
4
5
6
7
8
9
DQ8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
GND  
GND  
A8  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
DQ2  
DQ1  
DQ0  
G
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢁꢂ  
ꢌꢊ  
ꢓꢋ  
SMLS240D− NOVEMBER 1990 − REVISED SEPTEMBER 1997  
description (continued)  
The TMS27PC240 OTP PROM is offered in a 44-lead plastic leaded chip carrier package using 1,25-mm  
(50-mil) lead spacing (FN suffix). The TMS27PC240 is offered with two choices of temperature ranges of 0°C  
to 70°C (FNL suffix) and −40°C to 85°C (FNE suffix). See Table 1.  
Table 1. Temperature Range Suffixes  
SUFFIX FOR OPERATING FREE-  
AIR TEMPERATURE RANGES  
0°C TO 70°C  
− 40°C TO 85°C  
TMS27C240-XXX  
TMS27PC240-XXX  
JL  
JE  
FNL  
FNE  
These EPROMs and OTP PROMs operate from a single 5-V supply (in the read mode), and they are ideal for  
use in microprocessor-based systems. One other (13 V) supply is needed for programming . All programming  
signals are TTL level. For programming outside the system, existing EPROM programmers can be used.  
operation  
The eight modes of operation for the TMS27C240 and TMS27PC240 are listed in Table 2. The read mode  
requires a single 5-V supply. All inputs are TTL level except for V during programming (13 V for SNAP! Pulse),  
PP  
and 12 V on A9 for the signature mode.  
Table 2. Operation Modes  
FUNCTION  
E
G
V
PP  
V
CC  
A9  
A0  
I/O  
DQ0DQ7  
DQ8DQ15  
Read  
V
IL  
V
IL  
V
CC  
V
CC  
X
X
Output Disable  
Standby  
V
V
V
V
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
X
X
X
X
X
X
X
X
X
X
Hi-Z  
Hi-Z  
IL  
IH  
CC  
V
IH  
X
CC  
Programming  
Verify  
V
V
IH  
V
V
V
Data In  
Data Out  
Hi-Z  
IL  
IH  
IH  
PP  
PP  
PP  
V
V
V
IL  
Program Inhibit  
V
IH  
Manufacturer’s  
Code  
Signature Mode (Mfg)  
V
V
V
V
V
V
IL  
IL  
IL  
IL  
CC  
CC  
CC  
CC  
H
IL  
0097  
Device Code  
0030  
Signature Mode (Device)  
V
V
V
V
V
H
V
IH  
X can be V or V  
IL IH  
H
.
V
= 12 V 0.5 V.  
read/output disable  
When the outputs of two or more TMS27C240s or TMS27PC240s are connected in parallel on the same bus,  
the output of any particular device in the circuit can be read with no interference from the competing outputs  
of the other devices. To read the output of a single device, a low-level signal is applied to the E and G pins. All  
other devices in the circuit should have their outputs disabled by applying a high-level signal to one of these  
pins.  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢃ ꢆ ꢇ ꢃ ꢈꢃ ꢉ ꢆ ꢆ ꢊꢋ ꢉ ꢈ ꢌꢊꢍ ꢀ ꢎꢏ ꢐ ꢑꢒꢂ ꢒꢊꢓ ꢐ  
ꢀ ꢁ ꢂ ꢃ ꢄꢔ ꢅꢃ ꢆꢇ ꢃ ꢈ ꢃ ꢉ ꢆ ꢆ ꢊꢋ ꢉ ꢈ ꢌꢊꢍ ꢀ  
ꢔ ꢑꢕꢖꢑ ꢒ ꢁꢁ ꢒ ꢊꢓ ꢐ ꢑꢐ ꢒꢗ ꢌꢕꢘ ꢓꢋ ꢁꢐ ꢁꢕ ꢑ ꢍꢐꢂ  
SMLS240D− NOVEMBER 1990 − REVISED SEPTEMBER 1997  
latchup immunity  
Latchup immunity on the TMS27C240 and TMS27PC240 is a minimum of 250 mA on all inputs and outputs.  
This feature provides latchup immunity beyond any potential transients at the P.C. board level when the devices  
are interfaced to industry-standard TTL or MOS logic devices. Input-output layout approach controls latchup  
without compromising performance or packing density.  
power down  
Active I  
supply current can be reduced from 50 mA to 1 mA by applying a high TTL input on E and to  
CC  
100 µA by applying a high CMOS input on E. In this mode all outputs are in the high-impedance state.  
erasure (TMS27C240)  
Before programming, the TMS27C240 is erased by exposing the chip through the transparent lid to a high  
intensity ultraviolet light (wavelength 2537 Å). The recommended minimum exposure dose (UV intensity ×  
2
2
exposure time) is 15-Ws/cm . A 12-mW/cm , filterless UV lamp erases the device in 21 minutes. The lamp  
should be located about 2.5 cm above the chip during erasure. After erasure, all bits are in the high state. It  
should be noted that normal ambient light contains the correct wavelength for erasure. Therefore, when using  
the TMS27C240, the window should be covered with an opaque label.  
initializing (TMS27PC240)  
The one-time programmable TMS27PC240 PROM is provided with all bits in the logic high state, then logic lows  
are programmed into the desired locations. Logic lows programmed into an OTP PROM cannot be erased.  
SNAP! Pulse programming  
The TMS27C240 and TMS27PC240 are programmed by using the SNAP! Pulse programming algorithm. The  
programming sequence is shown in the SNAP! Pulse programming flow chart, shown in Figure 1.  
The initial setup is V = 13 V, V  
is presented in parallel (eight bits) on pins DQ0 through DQ15. Once addresses and data are stable, the  
= 6.5 V, E = V , and G = V . Once the initial location is selected, the data  
IH IH  
PP  
CC  
programming mode is achieved when E is pulsed low (V ) with a pulse duration of t  
programmed only once before going to interactive mode.  
. Every location is  
IL  
w(PGM)  
In the interactive mode, the word is verified at V = 13 V, V  
is not read, the programming is performed by pulling E low with a pulse duration of t  
verification and programming is performed up to a maximum of 10 times. When the device is fully programmed,  
= 6.5 V, E = V , and G = V . If the correct data  
PP  
CC  
IH  
IL  
. This sequence of  
w(PGM)  
all bytes are verified with V  
= V = 5 V 10%.  
CC  
PP  
program inhibit  
Programming can be inhibited by maintaining a high level input on the E and G pins.  
program verify  
Programmed bits can be verified with V = 13 V when G = V and E = V .  
PP  
IL  
IH  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢁꢂ  
ꢌꢊ  
ꢓꢋ  
SMLS240D− NOVEMBER 1990 − REVISED SEPTEMBER 1997  
signature mode  
The signature mode provides access to a binary code identifying the manufacturer and type. This mode is  
activated when A9 (pin 31 for the J package) is forced to 12 V. Two identifier bytes are accessed by toggling  
A0. DQ0−DQ7 contain the valid codes. All other addresses must be held low. The signature code for these  
devices is 9730. A0 low selects the manufacturer’s code 97 (Hex), and A0 high selects the device code 30  
(Hex), as shown in Table 3.  
Table 3. Signature Mode  
PINS  
IDENTIFIER  
A0  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
DQ2  
DQ1  
DQ0  
HEX  
97  
MANUFACTURER CODE  
DEVICE CODE  
V
1
0
0
0
0
1
1
1
0
0
1
0
1
0
1
0
IL  
V
IH  
30  
E = G = V , A9 = V , A1A8 = V , A10A17 = V , V  
IL IL IL PP  
= V , PGM = V or V  
.
H
CC IH IL  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢃ ꢆ ꢇ ꢃ ꢈꢃ ꢉ ꢆ ꢆ ꢊꢋ ꢉ ꢈ ꢌꢊꢍ ꢀ ꢎꢏ ꢐ ꢑꢒꢂ ꢒꢊꢓ ꢐ  
ꢀ ꢁ ꢂ ꢃ ꢄꢔ ꢅꢃ ꢆꢇ ꢃ ꢈ ꢃ ꢉ ꢆ ꢆ ꢊꢋ ꢉ ꢈ ꢌꢊꢍ ꢀ  
ꢔ ꢑꢕꢖꢑ ꢒ ꢁꢁ ꢒ ꢊꢓ ꢐ ꢑꢐ ꢒꢗ ꢌꢕꢘ ꢓꢋ ꢁꢐ ꢁꢕ ꢑ ꢍꢐꢂ  
SMLS240D− NOVEMBER 1990 − REVISED SEPTEMBER 1997  
Start  
Address = First Location  
Program  
Mode  
V
CC  
= 6.5 V, V  
= 13 V  
PP  
Program One Pulse = t = 100 µs  
Increment Address  
w
No  
Last  
Address?  
Yes  
Address = First Location  
X = 0  
Program One Pulse = t = 100 µs  
w
No  
Fail  
Increment  
Address  
Verify  
One Byte  
X = X + 1  
X = 10?  
Interactive  
Mode  
Pass  
No  
Last  
Address?  
Yes  
Yes  
Device Failed  
V
CC  
= V = 5 V 10%  
PP  
Compare  
All Bytes  
To Original  
Data  
Fail  
Final  
Verification  
Pass  
Device Passed  
Figure 1. SNAP! Pulse Programming Flow Chart  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢁꢂ  
ꢐꢂ  
SMLS240D− NOVEMBER 1990 − REVISED SEPTEMBER 1997  
logic symbol  
EPROM 256K × 16  
21  
22  
23  
24  
25  
26  
27  
28  
29  
31  
32  
33  
34  
35  
36  
37  
38  
39  
A0  
A1  
0
19  
A ∇  
A ∇  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQ8  
DQ9  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
18  
17  
16  
15  
14  
13  
12  
10  
9
A2  
A ∇  
A ∇  
A ∇  
A ∇  
A ∇  
A ∇  
A ∇  
A ∇  
A ∇  
A ∇  
A ∇  
A ∇  
A ∇  
A ∇  
A3  
A4  
A5  
A6  
A7  
0
A
262 143  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
8
7
6
5
4
3
17  
2
E
[PWR DWN]  
&
20  
G
EN  
These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.  
Pin numbers are for the J package.  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢃ ꢆ ꢇ ꢃ ꢈꢃ ꢉ ꢆ ꢆ ꢊꢋ ꢉ ꢈ ꢌꢊꢍ ꢀ ꢎꢏ ꢐ ꢑꢒꢂ ꢒꢊꢓ ꢐ  
ꢀ ꢁ ꢂ ꢃ ꢄꢔ ꢅꢃ ꢆꢇ ꢃ ꢈ ꢃ ꢉ ꢆ ꢆ ꢊꢋ ꢉ ꢈ ꢌꢊꢍ ꢀ  
ꢔ ꢑꢕꢖꢑ ꢒ ꢁꢁ ꢒ ꢊꢓ ꢐ ꢑꢐ ꢒꢗ ꢌꢕꢘ ꢓꢋ ꢁꢐ ꢁꢕ ꢑ ꢍꢐꢂ  
SMLS240D− NOVEMBER 1990 − REVISED SEPTEMBER 1997  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†  
Supply voltage range, V  
Supply voltage range, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.6 V to 7 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.6 V to 13 V  
CC  
PP  
Input voltage range (see Note 1): All inputs except A9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.6 V to V  
+ 1 V  
CC  
A9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.6 V to 13.5 V  
Output voltage range (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.6 V to V + 1 V  
CC  
Operating free-air temperature range (’27C240-_ _JL; ’27PC240-_ _ FNL) . . . . . . . . . . . . . . . . 0° C to 70° C  
Operating free-air temperature range (’27C240-_ _JE, ’27PC240-_ _FNE) . . . . . . . . . . . . . . − 40° C to 85° C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150° C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to GND.  
recommended operating conditions  
MIN  
4.5  
NOM  
5
MAX  
5.5  
UNIT  
Read mode (see Note 2)  
V
V
V
V
Supply voltage  
V
CC  
PP  
IH  
SNAP! Pulse programming algorithm  
6.25  
6.5  
6.75  
Read mode  
V
0.6  
V
+0.6  
CC  
13.25  
CC  
Supply voltage  
V
V
SNAP! Pulse programming algorithm  
12.75  
2
13  
TTL  
V
+0.5  
CC  
High-level dc input voltage  
CMOS  
TTL  
V
− 0.2  
CC  
− 0.5  
V
+0.5  
CC  
0.8  
Low-level dc input voltage  
V
IL  
CMOS  
− 0.5  
0.2  
’27C240-_ _JL  
’27PC240-_ _ FNL  
T
Operating free-air temperature  
Operating free-air temperature  
0
70  
°C  
°C  
A
’27PC240-_ _FNE  
’27C240-_ _JE  
T
A
− 40  
85  
NOTE 2:  
V
must be applied before or at the same time as V  
PP  
and removed after or at the same time as V . The device must not be inserted  
PP  
CC  
into or removed from the board when V  
or V  
CC  
is applied.  
PP  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢁꢂ  
ꢌꢊ  
SMLS240D− NOVEMBER 1990 − REVISED SEPTEMBER 1997  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature  
PARAMETER  
TEST CONDITIONS  
= − 400 µA  
MIN  
MAX  
UNIT  
I
I
I
I
2.4  
OH  
OH  
OL  
OL  
V
V
High-level dc output voltage  
V
OH  
= − 20 µA  
V
− 0.1  
CC  
= 2.1 mA  
0.4  
0.1  
1
Low-level dc output voltage  
V
OL  
= 20 µA  
I
I
I
I
Input current (leakage)  
Output current (leakage)  
V = 0 V to 5.5 V  
µA  
µA  
µA  
mA  
mA  
µA  
I
I
V
V
V
V
V
V
= 0 V to V  
CC  
1
O
O
V
V
supply current  
= V  
CC  
= 5.5 V  
10  
50  
1
PP1  
PP2  
PP  
PP  
PP  
CC  
CC  
supply current (during program pulse)  
= 13 V  
PP  
= 5.5 V,  
= 5.5 V,  
= 5.5 V,  
E = V  
E = V  
E = V  
IH  
I
VCC supply current (standby)  
CC1  
CC2  
100  
CC  
,
IL  
CC  
I
V
CC  
supply current (active)  
t
= minimum cycle time,  
outputs open  
50  
mA  
cycle  
capacitance over recommended ranges of supply voltage and operating free-air  
temperature, f = 1 MHz  
PARAMETER  
TEST CONDITIONS  
V = 0 V  
MIN TYP  
MAX  
8
UNIT  
pF  
C
C
Input capacitance  
Output capacitance  
4
8
i
I
V
O
= 0 V  
12  
pF  
o
Capacitance measurements are made on a sample basis only.  
Typical values are at T = 25°C and nominal voltages.  
A
switching characteristics over recommended ranges of operating conditions (see Notes 3  
and 4)  
’27C240-10  
’27C240-12  
’27C240-15  
’27PC240-10 ’27PC240-12 ’27PC240-15  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
100  
100  
50  
MIN  
MAX  
120  
120  
50  
MIN  
MAX  
150  
150  
50  
t
t
t
Access time from address  
ns  
ns  
ns  
a(A)  
Access time from chip enable  
Output enable time from G  
a(E)  
C
= 100 pF,  
L
1 Series 74  
TTL load,  
Input t 20 ns,  
en(G)  
Output disable time from G or E, whichever  
t
0
0
50  
0
0
50  
0
0
50  
ns  
ns  
dis  
r
f
occurs first  
Input t 20 ns  
Output data valid time after change of  
address, E, or G, whichever occurs first  
t
v(A)  
§
§
Value calculated from 0.5 V delta to measured level.  
NOTES: 3. For all switching characteristics, the input pulse levels are 0.4 V to 2.4 V. Timing measurements are made at 2 V for logic high and  
0.8 V for logic low (see Figure 2).  
4. Common test conditions apply for t  
except during programming.  
dis  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢔ ꢅꢃ ꢆꢇ ꢃ ꢈ ꢃ ꢉ ꢆ ꢆ ꢊꢋ ꢉ ꢈ ꢌꢊꢍ ꢀ  
ꢔ ꢑꢕꢖꢑ ꢒ ꢁꢁ ꢒ ꢊꢓ ꢐ ꢑꢐ ꢒꢗ ꢌꢕꢘ ꢓꢋ ꢁꢐ ꢁꢕ ꢑ ꢍꢐꢂ  
SMLS240D− NOVEMBER 1990 − REVISED SEPTEMBER 1997  
switching characteristics for programming: V  
(see Note 3)  
= 6.5 V and V = 13 V (SNAP! Pulse), T = 25°C  
PP  
CC  
A
PARAMETER  
MIN  
MAX  
UNIT  
ns  
t
t
Output disable time from G  
Output enable time from G  
0
100  
150  
dis(G)  
ns  
en(G)  
NOTE 3: For all switching characteristics the input pulse levels are 0.4 V to 2.4 V. Timing measurements are made at 2 V for logic high and  
0.8 V for logic low. (See Figure 2)  
timing requirements for programming  
MIN NOM  
MAX  
UNIT  
µs  
t
t
t
t
t
t
t
t
t
Pulse duration, program  
Setup time, address  
Setup time, E  
SNAP! Pulse programming algorithm  
95  
2
100  
105  
w(PGM)  
µs  
su(A)  
2
µs  
su(E)  
Setup time, G  
2
µs  
su(G)  
su(D)  
Setup time, data  
2
µs  
Setup time, V  
Setup time, V  
2
µs  
su(VPP)  
su(VCC)  
h(A)  
PP  
2
µs  
CC  
Hold time, address  
Hold time, data  
0
µs  
2
µs  
h(D)  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
SMLS240D− NOVEMBER 1990 − REVISED SEPTEMBER 1997  
PARAMETER MEASUREMENT INFORMATION  
2.08 V  
R
= 800 Ω  
L
Output  
Under Test  
C
= 100 pF  
L
(see Note A)  
2.4 V  
2 V  
2 V  
0.8 V  
0.8 V  
0.40 V  
NOTES: A.  
C
includes probe and fixture capacitance.  
L
B. The ac testing inputs are driven at 2.4 V for logic high and 0.4 V for logic low. Timing  
measurements are made at 2 V for logic high and 0.8 V for logic low for both inputs  
and outputs.  
Figure 2. The ac Testing Output Load Circuit and Waveform  
A0A17  
Address Valid  
E
G
t
a(E)  
t
t
dis  
v(A)  
en(G)  
t
t
a(A)  
Output  
Valid  
DQ0DQ15  
Hi-Z  
Hi-Z  
Figure 3. Read-Cycle Timing  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢃ ꢆ ꢇ ꢃ ꢈꢃ ꢉ ꢆ ꢆ ꢊꢋ ꢉ ꢈ ꢌꢊꢍ ꢀ ꢎꢏ ꢐ ꢑꢒꢂ ꢒꢊꢓ ꢐ  
ꢀ ꢁ ꢂ ꢃ ꢄꢔ ꢅꢃ ꢆꢇ ꢃ ꢈ ꢃ ꢉ ꢆ ꢆ ꢊꢋ ꢉ ꢈ ꢌꢊꢍ ꢀ  
ꢔ ꢑꢕꢖꢑ ꢒ ꢁꢁ ꢒ ꢊꢓ ꢐ ꢑꢐ ꢒꢗ ꢌꢕꢘ ꢓꢋ ꢁꢐ ꢁꢕ ꢑ ꢍꢐꢂ  
SMLS240D− NOVEMBER 1990 − REVISED SEPTEMBER 1997  
PARAMETER MEASUREMENT INFORMATION  
Verify  
Program  
A0A17  
Address Stable  
t
t
h(A)  
su(A)  
Data-Out  
Stable  
DQ0DQ15  
Data-In Stable  
Hi-Z  
t
en(G)  
t
t
dis(G)  
su(D)  
V
PP  
t
su(VPP)  
V
CC  
t
su(E)  
t
h(D)  
t
su(VCC)  
E
t
su(G)  
t
w(PGM)  
G
13-V V  
PP  
and 6.5-V V for SNAP! Pulse programming  
CC  
Figure 4. Programming-Cycle Timing (SNAP! Pulse Programming)  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢓꢋ  
ꢐꢂ  
SMLS240D− NOVEMBER 1990 − REVISED SEPTEMBER 1997  
FN (S-PQCC-J**)  
PLASTIC J-LEADED CHIP CARRIER  
20 PIN SHOWN  
Seating Plane  
0.004 (0,10)  
0.180 (4,57) MAX  
0.120 (3,05)  
D
0.090 (2,29)  
D1  
0.020 (0,51) MIN  
3
1
19  
0.032 (0,81)  
0.026 (0,66)  
4
18  
D2/E2  
D2/E2  
E
E1  
8
14  
0.021 (0,53)  
0.013 (0,33)  
0.007 (0,18)  
0.050 (1,27)  
9
13  
M
0.008 (0,20) NOM  
D/E  
D1/E1  
D2/E2  
NO. OF  
PINS  
**  
MIN  
0.385 (9,78)  
MAX  
MIN  
MAX  
MIN  
MAX  
0.395 (10,03)  
0.350 (8,89)  
0.356 (9,04)  
0.141 (3,58)  
0.191 (4,85)  
0.291 (7,39)  
0.341 (8,66)  
0.169 (4,29)  
0.219 (5,56)  
0.319 (8,10)  
0.369 (9,37)  
20  
28  
44  
52  
68  
84  
0.485 (12,32) 0.495 (12,57) 0.450 (11,43) 0.456 (11,58)  
0.685 (17,40) 0.695 (17,65) 0.650 (16,51) 0.656 (16,66)  
0.785 (19,94) 0.795 (20,19) 0.750 (19,05) 0.756 (19,20)  
0.985 (25,02) 0.995 (25,27) 0.950 (24,13) 0.958 (24,33) 0.441 (11,20) 0.469 (11,91)  
1.185 (30,10) 1.195 (30,35) 1.150 (29,21) 1.158 (29,41) 0.541 (13,74) 0.569 (14,45)  
4040005/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-018  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂ ꢃ ꢄꢔ ꢅꢃ ꢆꢇ ꢃ ꢈ ꢃ ꢉ ꢆ ꢆ ꢊꢋ ꢉ ꢈ ꢌꢊꢍ ꢀ  
ꢔ ꢑꢕꢖꢑ ꢒ ꢁꢁ ꢒ ꢊꢓ ꢐ ꢑꢐ ꢒꢗ ꢌꢕꢘ ꢓꢋ ꢁꢐ ꢁꢕ ꢑ ꢍꢐꢂ  
SMLS240D− NOVEMBER 1990 − REVISED SEPTEMBER 1997  
J (R-CDIP-T**)  
CERAMIC SIDE-BRAZE DUAL-IN-LINE PACKAGE  
24 PIN SHOWN  
B
13  
24  
C
12  
1
Lens Protrusion  
0.010 (0,25) MAX  
0.065 (1,65)  
0.045 (1,14)  
0.090 (2,29)  
0.060 (1,53)  
0.175 (4,45)  
A
0.140 (3,56)  
0.018 (0,46) MIN  
Seating Plane  
0°ā10°  
0.125 (3,18) MIN  
0.022 (0,56)  
0.014 (0,36)  
0.100 (2,54)  
0.012 (0,30)  
0.008 (0,20)  
PINS**  
24  
28  
32  
40  
DIM  
NARR  
WIDE  
NARR  
WIDE  
NARR  
WIDE  
NARR  
WIDE  
0.624(15,85) 0.624(15,85) 0.624(15,85) 0.624(15,85) 0.624(15,85) 0.624(15,85) 0.624(15,85) 0.624(15,85)  
0.590(14,99) 0.590(14,99) 0.590(14,99) 0.590(14,99) 0.590(14,99) 0.590(14,99) 0.590(14,99) 0.590(14,99)  
1.265(32,13) 1.265(32,13) 1.465(37,21) 1.465(37,21) 1.668(42,37) 1.668(42,37) 2.068(52,53) 2.068(52,53)  
1.235(31,37) 1.235(31,37) 1.435(36,45) 1.435(36,45) 1.632(41,45) 1.632(41,45) 2.032(51,61) 2.032(51,61)  
0.541(13,74) 0.598(15,19) 0.541(13,74) 0.598(15,19) 0.541(13,74) 0.598(15,19) 0.541(13,74) 0.598(15,19)  
0.514(13,06) 0.571(14,50) 0.514(13,06) 0.571(14,50) 0.514(13,06) 0.571(14,50) 0.514(13,06) 0.571(14,50)  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
A
B
C
4040084/B 04/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

ETC

TMS27C240-80JE

256KX16 UVPROM, 80ns, CDIP40, 0.600 INCH, WINDOWED, CERAMIC, DIP-40
TI

TMS27C240-80JE4

256KX16 UVPROM, 80ns, CDIP40, 0.600 INCH, WINDOWED, CERAMIC, DIP-40
TI

TMS27C240-8JE

256KX16 UVPROM, 80ns, CDIP40, 0.600 INCH, WINDOWED, CERAMIC, DIP-40
TI

TMS27C256

TMS27C256 32768 BY 8-BIT UV ERASABLE TMS27PC256 32768 BY 8-BIT PROGRAMMABLE READ-ONLY MEMORIES
TI

TMS27C256-10

8-BIT PROGRAMMABLE READ-ONLY MEMORIES
TI

TMS27C256-100JE

32KX8 UVPROM, 100ns, CDIP28, 0.600 INCH, WINDOWED, CERAMIC, DIP-28
TI

TMS27C256-100JE4

UVPROM, 32KX8, 100ns, CMOS, CDIP28, 0.600 INCH, WINDOWED, CERAMIC, DIP-28
ROCHESTER

TMS27C256-100JL4

UVPROM, 32KX8, 100ns, CMOS, CDIP28, 0.600 INCH, WINDOWED, CERAMIC, DIP-28
ROCHESTER

TMS27C256-10JE

32KX8 UVPROM, 100ns, CDIP28, 0.600 INCH, SIDE BRAZED, CERAMIC, DIP-28
TI

TMS27C256-10JE4

32KX8 UVPROM, 100ns, CDIP28, 0.600 INCH, WINDOWED, CERDIP-28
TI

TMS27C256-10JL

UVPROM, 32KX8, 100ns, CMOS, CDIP28, 0.600 INCH, SIDE BRAZED, CERAMIC, DIP-28
ROCHESTER