TMS320F2801-Q1 [TI]

TMS320F280x, TMS320C280x, TMS320F2801x digital signal processors;
TMS320F2801-Q1
型号: TMS320F2801-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TMS320F280x, TMS320C280x, TMS320F2801x digital signal processors

文件: 总155页 (文件大小:3871K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
TMS320F280x, TMS320C280x, TMS320F2801x digital signal processors  
Three 32-bit CPU timers  
Enhanced control peripherals  
– Up to 16 PWM outputs  
– Up to 6 HRPWM outputs with 150-ps MEP  
resolution  
– Up to four capture inputs  
– Up to two quadrature encoder interfaces  
– Up to six 32-bit/six 16-bit timers  
Serial port peripherals  
– Up to 4 SPI modules  
– Up to 2 SCI (UART) modules  
– Up to 2 CAN modules  
– One Inter-Integrated-Circuit (I2C) bus  
12-bit ADC, 16 channels  
1 Features  
High-performance static CMOS technology  
– 100 MHz (10-ns cycle time)  
– 60 MHz (16.67-ns cycle time)  
– Low-power (1.8-V core, 3.3-V I/O) design  
JTAG boundary scan support  
– IEEE Standard 1149.1-1990 Standard Test  
Access Port and Boundary Scan Architecture  
High-performance 32-bit CPU (TMS320C28x)  
– 16 × 16 and 32 × 32 MAC operations  
– 16 × 16 dual MAC  
– Harvard bus architecture  
– Atomic operations  
– Fast interrupt response and processing  
– Unified memory programming model  
– Code-efficient (in C/C++ and Assembly)  
On-chip memory  
– 2 × 8 channel input multiplexer  
– Two sample-and-hold  
– Single/simultaneous conversions  
– Fast conversion rate:  
– F2809: 128K × 16 flash, 18K × 16 SARAM  
F2808: 64K × 16 flash, 18K × 16 SARAM  
F2806: 32K × 16 flash, 10K × 16 SARAM  
F2802: 32K × 16 flash, 6K × 16 SARAM  
F2801: 16K × 16 flash, 6K × 16 SARAM  
F2801x: 16K × 16 flash, 6K × 16 SARAM  
– 1K × 16 OTP ROM (flash devices only)  
– C2802: 32K × 16 ROM, 6K × 16 SARAM  
C2801: 16K × 16 ROM, 6K × 16 SARAM  
Boot ROM (4K × 16)  
– With software boot modes (via SCI, SPI, CAN,  
I2C, and parallel I/O)  
– Standard math tables  
Clock and system control  
– On-chip oscillator  
– Watchdog timer module  
Any GPIO A pin can be connected to one of the  
three external core interrupts  
Peripheral Interrupt Expansion (PIE) block that  
supports all 43 peripheral interrupts  
Endianness: Little endian  
128-bit security key/lock  
– Protects flash/OTP/L0/L1 blocks  
– Prevents firmware reverse-engineering  
80 ns - 12.5 MSPS (F2809 only)  
160 ns - 6.25 MSPS (280x)  
267 ns - 3.75 MSPS (F2801x)  
– Internal or external reference  
Up to 35 individually programmable, multiplexed  
GPIO pins with input filtering  
Advanced emulation features  
– Analysis and breakpoint functions  
– Real-time debug via hardware  
Development support includes  
– ANSI C/C++ compiler/assembler/linker  
– Code Composer StudioIDE  
– SYS/BIOS  
– Digital motor control and digital power software  
libraries  
Low-power modes and power savings  
– IDLE, STANDBY, HALT modes supported  
– Disable individual peripheral clocks  
Package options  
– Thin quad flatpack (PZ)  
– MicroStar BGA(GGM, ZGM)  
Temperature options  
– A: –40°C to 85°C (PZ, GGM, ZGM)  
– S: –40°C to 125°C (PZ, GGM, ZGM)  
– Q: –40°C to 125°C (PZ)  
(AEC-Q100 qualification for automotive  
applications)  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Digital power  
2 Applications  
Motor drive and control  
3 Description  
The TMS320F2809, TMS320F2809-Q1, TMS320F2808, TMS320F2808-Q1 TMS320F2806, TMS320F2802,  
TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320C2802-Q1, and TMS320C2801 devices,  
members of the TMS320C28x DSP generation, are highly integrated, high-performance solutions for demanding  
control applications.  
Throughout this document, TMS320F2809, TMS320F2809-Q1 TMS320F2808, TMS320F2808-Q1  
TMS320F2806, TMS320F2802-Q1, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015-Q1,  
and TMS320F28016-Q1 are abbreviated as F2809, F2808, F2806, F2802-Q1, F2801-Q1, C2802, C2801,  
F28015-Q1, and F28016-Q1, respectively. TMS320F28015-Q1 and TMS320F28016-Q1 are abbreviated as  
F2801x. Device Comparison (100-MHz Devices) and Device Comparison (60-MHz Devices) provide a summary  
of features for each device.  
Device Information  
PART NUMBER(1)  
TMS320F2809ZGM  
PACKAGE  
BODY SIZE  
BGA MicroStar (100)  
BGA MicroStar (100)  
BGA MicroStar (100)  
BGA MicroStar (100)  
BGA MicroStar (100)  
BGA MicroStar (100)  
BGA MicroStar (100)  
BGA MicroStar (100)  
BGA MicroStar (100)  
BGA MicroStar (100)  
BGA MicroStar (100)  
BGA MicroStar (100)  
BGA MicroStar (100)  
BGA MicroStar (100)  
BGA MicroStar (100)  
BGA MicroStar (100)  
BGA MicroStar (100)  
BGA MicroStar (100)  
LQFP (100)  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
10.0 mm × 10.0 mm  
14.0 mm × 14.0 mm  
14.0 mm × 14.0 mm  
14.0 mm × 14.0 mm  
14.0 mm × 14.0 mm  
14.0 mm × 14.0 mm  
14.0 mm × 14.0 mm  
14.0 mm × 14.0 mm  
14.0 mm × 14.0 mm  
14.0 mm × 14.0 mm  
TMS320F2808ZGM  
TMS320F2806ZGM  
TMS320F2802ZGM  
TMS320F2801ZGM  
TMS320C2802ZGM  
TMS320C2801ZGM  
TMS320F28016ZGM  
TMS320F28015ZGM  
TMS320F2809GGM  
TMS320F2808GGM  
TMS320F2806GGM  
TMS320F2802GGM  
TMS320F2801GGM  
TMS320C2802GGM  
TMS320C2801GGM  
TMS320F28016GGM  
TMS320F28015GGM  
TMS320F2809PZ  
TMS320F2808PZ  
LQFP (100)  
TMS320F2806PZ  
LQFP (100)  
TMS320F2802PZ  
LQFP (100)  
TMS320F2801PZ  
LQFP (100)  
TMS320C2802PZ  
TMS320C2801PZ  
TMS320F28016PZ  
TMS320F28015PZ  
LQFP (100)  
LQFP (100)  
LQFP (100)  
LQFP (100)  
(1) For more information on these devices, see Mechanical, Packaging, and Orderable Information.  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
4 Functional Block Diagram  
Memory Bus  
Real-Time JTAG  
(TDI, TDO, TRST, TCK,  
TMS, EMU0, EMU1)  
TINT0  
32-bit CPU TIMER 0  
TINT1  
TINT2  
7
32-bit CPU TIMER 1  
32-bit CPU TIMER 2  
INT14  
M0 SARAM  
1K x 16  
PIE  
(96 Interrupts)(A)  
M1 SARAM  
1K x 16  
INT[12:1]  
NMI, INT13  
L0 SARAM  
4K x 16  
(0-wait)  
External Interrupt  
Control  
32  
4
L1 SARAM(B)  
4K x 16  
(0-wait)  
SCI-A/B  
SPI-A/B/C/D  
I2C-A  
FIFO  
FIFO  
FIFO  
16  
2
H0 SARAM(C)  
8K x 16  
(0-wait)  
4
eCAN-A/B (32 mbox)  
eQEP1/2  
8
GPIOs  
(35)  
4
ROM  
32K x 16 (C2802)  
16K x 16 (C2801)  
C28x CPU  
(100 MHz)  
eCAP1/2/3/4  
(4 32-bit Timers)  
12  
6
ePWM1/2/3/4/5/6  
(12 PWM Outputs,  
6 Trip Zones,  
6 16-bit Timers)  
FLASH  
128K x 16 (F2809)  
64K x 16 (F2808)  
32K x 16 (F2806)  
32K x 16 (F2802)  
16K x 16 (F2801)  
16K x 16 (F2801x)  
SYSCLKOUT  
32  
System Control  
RS  
XCLKOUT  
XRS  
(Oscillator, PLL,  
Peripheral Clocking,  
Low-Power Modes,  
Watchdog)  
CLKIN  
XCLKIN  
X1  
OTP(D)  
1K x 16  
X2  
ADCSOCA/B  
Boot ROM  
4K x 16  
(1-wait state)  
SOCA/B  
12-Bit ADC  
16 Channels  
Peripheral Bus  
Protected by the code-security module.  
Copyright © 2016, Texas Instruments Incorporated  
A. 43 of the possible 96 interrupts are used on the devices.  
B. Not available in F2802, F2801, C2802, and C2801.  
C. Not available in F2806, F2802, F2801, C2802, and C2801.  
D. The 1K x 16 OTP has been replaced with 1K x 16 ROM for C280x devices.  
Figure 4-1. Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................2  
3 Description.......................................................................2  
4 Functional Block Diagram.............................................. 3  
5 Revision History.............................................................. 5  
6 Device Comparison.........................................................6  
6.1 Related Products........................................................ 8  
7 Terminal Configuration and Functions..........................9  
7.1 Pin Diagrams.............................................................. 9  
7.2 Signal Descriptions................................................... 14  
8 Specifications................................................................ 20  
8.1 Absolute Maximum Ratings...................................... 20  
8.2 ESD Ratings – Automotive....................................... 21  
8.3 ESD Ratings – Commercial...................................... 21  
8.4 Recommended Operating Conditions.......................21  
8.5 Power Consumption Summary................................. 23  
8.6 Electrical Characteristics...........................................29  
8.7 Thermal Resistance Characteristics for F280x  
8.13 Thermal Design Considerations..............................33  
8.14 Timing and Switching Characteristics..................... 34  
8.15 On-Chip Analog-to-Digital Converter...................... 60  
8.16 Migrating From F280x Devices to C280x Devices..66  
8.17 ROM Timing (C280x only).......................................67  
9 Detailed Description......................................................68  
9.1 Brief Descriptions......................................................68  
9.2 Peripherals................................................................75  
9.3 Memory Maps ........................................................ 108  
9.4 Register Map...........................................................116  
9.5 Interrupts.................................................................119  
9.6 System Control....................................................... 124  
9.7 Low-Power Modes Block........................................ 130  
10 Applications, Implementation, and Layout............. 131  
10.1 TI Design or Reference Design.............................131  
11 Device and Documentation Support........................132  
11.1 Getting Started......................................................132  
11.2 Device and Development Support Tool  
100-Ball GGM Package...............................................31  
8.8 Thermal Resistance Characteristics for F280x  
100-Pin PZ Package................................................... 31  
8.9 Thermal Resistance Characteristics for C280x  
100-Ball GGM Package...............................................32  
8.10 Thermal Resistance Characteristics for C280x  
100-Pin PZ Package................................................... 32  
8.11 Thermal Resistance Characteristics for F2809  
Nomenclature............................................................133  
11.3 Tools and Software................................................135  
11.4 Documentation Support........................................ 136  
11.5 Support Resources............................................... 138  
11.6 Trademarks........................................................... 138  
11.7 Electrostatic Discharge Caution............................138  
11.8 Glossary................................................................138  
12 Mechanical, Packaging, and Orderable  
100-Ball GGM Package...............................................33  
8.12 Thermal Resistance Characteristics for F2809  
Information.................................................................. 139  
12.1 Packaging Information.......................................... 139  
100-Pin PZ Package................................................... 33  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
5 Revision History  
Changes from March 11, 2019 to February 3, 2021 (from Revision O (March 2019) to Revision P  
(February 2021))  
Page  
Global: Updated the numbering format for tables, figures and cross-references throughout the document...... 1  
Decsription: Updated part numbers....................................................................................................................2  
Device Comparison: Updated part numbers.......................................................................................................6  
Pin Diagrams: Updated part numbers................................................................................................................ 9  
Device and Development Support Tool Nomenclature: Updated Device Nomenclature image to show -Q1 part  
number............................................................................................................................................................133  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
6 Device Comparison  
Table 6-1. Device Comparison (100-MHz Devices)  
F2809  
F2809-Q1  
F2808  
F2808-Q1  
F2806  
F2806-Q1  
F2802  
F2802-Q1  
F2801  
F2801-Q1  
FEATURE  
TYPE(1)  
C2802  
10 ns  
6K  
C2801  
10 ns  
6K  
Instruction cycle (at 100 MHz)  
10 ns  
10 ns  
10 ns  
10 ns  
10 ns  
18K  
(L0, L1, M0,  
M1, H0)  
18K  
(L0, L1, M0,  
M1, H0)  
10K  
(L0, L1, M0,  
M1)  
Single-access RAM (SARAM) (16-bit  
word)  
6K  
6K  
(L0, M0, M1) (L0, M0, M1) (L0, M0, M1) (L0, M0, M1)  
3.3-V on-chip flash (16-bit word)  
On-chip ROM (16-bit word)  
128K  
64K  
32K  
32K  
16K  
32K  
16K  
Code security for on-chip flash/  
SARAM/OTP blocks  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
Yes  
Yes  
Boot ROM (4K x 16)  
One-time programmable (OTP) ROM  
(16-bit word)  
ePWM1/2/3/4 ePWM1/2/3/4 ePWM1/2/3/4  
PWM channels  
0
0
ePWM1/2/3  
ePWM1/2/3  
ePWM1/2/3  
ePWM1/2/3  
/5/6  
/5/6  
/5/6  
ePWM1A/2A/  
3A/  
4A/5A/6A  
ePWM1A/2A/ ePWM1A/2A/ ePWM1A/2A/ ePWM1A/2A/ ePWM1A/2A/ ePWM1A/2A/  
HRPWM channels  
3A/4A  
3A/4A  
3A  
3A  
3A  
3A  
32-bit CAPTURE inputs or auxiliary  
PWM outputs  
0
0
eCAP1/2/3/4 eCAP1/2/3/4 eCAP1/2/3/4  
eCAP1/2  
eQEP1  
eCAP1/2  
eQEP1  
eCAP1/2  
eQEP1  
eCAP1/2  
eQEP1  
32-bit QEP channels (four inputs/  
channel)  
eQEP1/2  
eQEP1/2  
eQEP1/2  
Watchdog timer  
1
0
0
Yes  
80 ns  
3
Yes  
160 ns  
3
Yes  
160 ns  
3
Yes  
160 ns  
3
Yes  
160 ns  
3
Yes  
160 ns  
3
Yes  
160 ns  
3
12-Bit, 16-channel ADC conversion time  
32-Bit CPU timers  
Serial Peripheral Interface (SPI)  
Serial Communications Interface (SCI)  
SPI-A/B/C/D SPI-A/B/C/D SPI-A/B/C/D  
SPI-A/B  
SCI-A  
SPI-A/B  
SCI-A  
SPI-A/B  
SCI-A  
SPI-A/B  
SCI-A  
SCI-A/B  
SCI-A/B  
SCI-A/B  
eCAN-A  
Enhanced Controller Area Network  
(eCAN)  
0
eCAN-A/B  
eCAN-A/B  
eCAN-A  
eCAN-A  
eCAN-A  
eCAN-A  
Inter-Integrated Circuit (I2C)  
Digital I/O pins (shared)  
External interrupts  
0
I2C-A  
35  
I2C-A  
35  
I2C-A  
35  
I2C-A  
35  
I2C-A  
35  
I2C-A  
35  
I2C-A  
35  
3
3
3
3
3
3
3
1.8-V Core, 3.3-V  
Supply voltage  
I/O  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
100-Pin PZ  
Packaging  
100-Ball GGM,  
ZGM  
(PZ, GGM,  
ZGM)  
(PZ, GGM,  
ZGM)  
(PZ, GGM,  
ZGM)  
(PZ, GGM,  
ZGM)  
(PZ, GGM,  
ZGM)  
(PZ, GGM,  
ZGM)  
(PZ, GGM,  
ZGM)  
A: –40°C to 85°C  
(PZ, GGM,  
ZGM)  
(PZ, GGM,  
ZGM)  
(PZ, GGM,  
ZGM)  
(PZ, GGM,  
ZGM)  
(PZ, GGM,  
ZGM)  
(PZ, GGM,  
ZGM)  
(PZ, GGM,  
ZGM)  
Temperature  
options  
S: –40°C to 125°C  
Q: –40°C to 125°C  
(AEC-Q100  
(PZ)  
(PZ)  
(PZ)  
(PZ)  
(PZ)  
(PZ)  
(PZ)  
Qualification)  
(1) A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor  
differences between devices that do not affect the basic functionality of the module. These device-specific differences are listed in the  
C2000 real-time control peripherals reference guide and in the peripheral reference guides.  
Table 6-2. Device Comparison (60-MHz Devices)  
F28016  
F28016-Q1  
F28015  
F28015-Q1  
FEATURE  
TYPE(1)  
F2802-60  
F2801-60  
Instruction cycle (at 60 MHz)  
16.67 ns  
16.67 ns  
16.67 ns  
16.67 ns  
6K  
6K  
6K  
6K  
Single-access RAM (SARAM) (16-bit word)  
(L0, M0, M1)  
(L0, M0, M1)  
(L0, M0, M1)  
(L0, M0, M1)  
3.3-V on-chip flash (16-bit word)  
On-chip ROM (16-bit word)  
32K  
16K  
16K  
16K  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Table 6-2. Device Comparison (60-MHz Devices) (continued)  
F28016  
F28016-Q1  
F28015  
F28015-Q1  
FEATURE  
TYPE(1)  
F2802-60  
F2801-60  
Code security for on-chip flash/SARAM/OTP  
blocks  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Boot ROM (4K x 16)  
One-time programmable (OTP) ROM  
(16-bit word)  
PWM channels  
0
0
ePWM1/2/3  
ePWM1/2/3  
ePWM1/2/3/4  
ePWM1/2/3/4  
HRPWM channels  
ePWM1A/2A/3A  
ePWM1A/2A/3A  
ePWM1A/2A/3A/4A  
ePWM1A/2A/3A/4A  
32-bit CAPTURE inputs or auxiliary PWM  
outputs  
0
eCAP1/2  
eCAP1/2  
eCAP1/2  
eCAP1/2  
32-bit QEP channels (four inputs/channel)  
Watchdog timer  
0
eQEP1  
Yes  
eQEP1  
Yes  
-
Yes  
-
Yes  
16  
No. of channels  
16  
16  
16  
12-Bit ADC  
MSPS  
1
3.75  
3.75  
3.75  
267 ns  
3
3.75  
267 ns  
3
Conversion time  
267 ns  
3
267 ns  
3
32-Bit CPU timers  
0
0
0
0
Serial Peripheral Interface (SPI)  
Serial Communications Interface (SCI)  
Enhanced Controller Area Network (eCAN)  
Inter-Integrated Circuit (I2C)  
Digital I/O pins (shared)  
SPI-A/B  
SCI-A  
eCAN-A  
I2C-A  
35  
SPI-A/B  
SCI-A  
eCAN-A  
I2C-A  
35  
SPI-A  
SCI-A  
eCAN-A  
I2C-A  
35  
SPI-A  
SCI-A  
-
I2C-A  
35  
External interrupts  
3
3
3
3
1.8-V Core,  
3.3-V I/O  
1.8-V Core,  
3.3-V I/O  
1.8-V Core,  
3.3-V I/O  
1.8-V Core,  
3.3-V I/O  
Supply voltage  
100-Pin PZ  
Packaging  
Yes  
Yes  
Yes  
Yes  
100-Ball GGM, ZGM  
Yes  
Yes  
Yes  
Yes  
A: –40°C to 85°C  
(PZ, GGM, ZGM)  
(PZ GGM, ZGM)  
(PZ, GGM, ZGM)  
(PZ, GGM, ZGM)  
(PZ, GGM, ZGM)  
(PZ, GGM, ZGM)  
(PZ, GGM, ZGM)  
(PZ, GGM, ZGM)  
S: –40°C to 125°C  
Temperature options  
Q: –40°C to 125°C  
(AEC-Q100  
(PZ)  
(PZ)  
(PZ)  
(PZ)  
Qualification)  
(1) A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor  
differences between devices that do not affect the basic functionality of the module. These device-specific differences are listed in the  
C2000 real-time control peripherals reference guide and in the peripheral reference guides.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
6.1 Related Products  
For information about other devices in this family of products, see the following links:  
TMS320F2837xS Delfino™ Microcontrollers  
The DelfinoTMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for  
advanced closed-loop control applications such as industrial drives and servo motor control; solar inverters and  
converters; digital power; transportation; and power line communications. Complete development packages for  
digital power and industrial drives are available as part of the powerSUITE and DesignDRIVE initiatives.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
7 Terminal Configuration and Functions  
7.1 Pin Diagrams  
The TMS320F2809, TMS320F2808, TMS320F2808-Q1, TMS320F2806, TMS320F2806-Q1, TMS320F2802,  
TMS320F2802-Q1, TMS320F2801, TMS320F2801-Q1, TMS320C2802, TMS320C2801, TMS320F28015,  
TMS320F28015-Q1, and TMS320F28016, TMS320F28016-Q1 100-pin PZ low-profile quad flatpack (LQFP) pin  
assignments are shown in Figure 7-1, Figure 7-2, Figure 7-3, and Figure 7-4. The 100-ball GGM and ZGM ball  
grid array (BGA) terminal assignments are shown in Figure 7-5. Table 7-1 describes the function(s) of each pin.  
TDO 76  
50  
49  
GPIO16/SPISIMOA/CANTXB/TZ5  
VSS  
VSS  
77  
78  
79  
48 GPIO3/EPWM2B/SPISOMID  
47 GPIO0/EPWM1A  
XRS  
GPIO27/ECAP4/EQEP2S/SPISTEB  
VDDIO  
EMU0 80  
EMU1 81  
46  
45 GPIO2/EPWM2A  
44 GPIO1/EPWM1B/SPISIMOD  
43 GPIO34  
VDDIO  
82  
83  
84  
85  
GPIO24/ECAP1/EQEP2A/SPISIMOB  
VDD  
42  
41  
40  
39  
TRST  
VDD  
VSS  
VDD2A18  
VSS2AGND  
X2 86  
VSS  
87  
X1 88  
38 ADCRESEXT  
37 ADCREFP  
36 ADCREFM  
35 ADCREFIN  
34 ADCINB7  
33 ADCINB6  
32 ADCINB5  
31 ADCINB4  
30 ADCINB3  
29 ADCINB2  
28 ADCINB1  
27 ADCINB0  
VSS  
89  
XCLKIN 90  
GPIO25/ECAP2/EQEP2B/SPISOMIB  
91  
92  
93  
94  
95  
96  
GPIO28/SCIRXDA/TZ5  
VDD  
VSS  
GPIO13/TZ2/CANRXB/SPISOMIB  
VDD3VFL  
TEST1 97  
TEST2 98  
GPIO26/ECAP3/EQEP2I/SPICLKB  
GPIO32/SDAA/EPWMSYNCI/ADCSOCAO  
99  
VDDAIO  
100  
26  
Figure 7-1. TMS320F2809, TMS320F2808-Q1 100-Pin PZ LQFP (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
TDO 76  
50  
49  
GPIO16/SPISIMOA/TZ5  
VSS  
VSS  
77  
78  
79  
48 GPIO3/EPWM2B/SPISOMID  
47 GPIO0/EPWM1A  
XRS  
GPIO27/ECAP4/EQEP2S/SPISTEB  
VDDIO  
EMU0 80  
EMU1 81  
46  
45 GPIO2/EPWM2A  
44 GPIO1/EPWM1B/SPISIMOD  
43 GPIO34  
VDDIO  
82  
83  
84  
85  
GPIO24/ECAP1/EQEP2A/SPISIMOB  
VDD  
42  
41  
40  
39  
TRST  
VDD  
VSS  
VDD2A18  
VSS2AGND  
X2 86  
VSS  
87  
X1 88  
38 ADCRESEXT  
37 ADCREFP  
36 ADCREFM  
35 ADCREFIN  
34 ADCINB7  
33 ADCINB6  
32 ADCINB5  
31 ADCINB4  
30 ADCINB3  
29 ADCINB2  
28 ADCINB1  
27 ADCINB0  
VSS  
89  
XCLKIN 90  
GPIO25/ECAP2/EQEP2B/SPISOMIB  
91  
92  
93  
94  
95  
96  
GPIO28/SCIRXDA/TZ5  
VDD  
VSS  
GPIO13/TZ2/SPISOMIB  
VDD3VFL  
TEST1 97  
TEST2 98  
GPIO26/ECAP3/EQEP2I/SPICLKB  
GPIO32/SDAA/EPWMSYNCI/ADCSOCAO  
99  
VDDAIO  
100  
26  
Figure 7-2. TMS320F2806 100-Pin PZ LQFP (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
TDO 76  
50  
49  
GPIO16/SPISIMOA/TZ5  
VSS  
VSS  
77  
78  
79  
48 GPIO3/EPWM2B  
47 GPIO0/EPWM1A  
XRS  
SPISTEB/GPIO27  
VDDIO  
EMU0 80  
EMU1 81  
46  
45 GPIO2/EPWM2A  
44 GPIO1/EPWM1B  
43 GPIO34  
VDDIO  
82  
83  
84  
85  
SPISIMOB/GPIO24/ECAP1  
VDD  
42  
41  
40  
39  
TRST  
VDD  
VSS  
VDD2A18  
VSS2AGND  
X2 86  
VSS  
87  
X1 88  
38 ADCRESEXT  
37 ADCREFP  
36 ADCREFM  
35 ADCREFIN  
34 ADCINB7  
33 ADCINB6  
32 ADCINB5  
31 ADCINB4  
30 ADCINB3  
29 ADCINB2  
28 ADCINB1  
27 ADCINB0  
VSS  
89  
XCLKIN 90  
GPIO25/ECAP2/SPISOMIB  
91  
92  
93  
94  
95  
96  
GPIO28/SCIRXDA/TZ5  
VDD  
VSS  
SPISOMIB/GPIO13/TZ2  
(A)  
VDD3VFL  
TEST1 97  
TEST2 98  
SPICLKB/GPIO26  
GPIO32/SDAA/EPWMSYNCI/ADCSOCAO  
99  
VDDAIO  
100  
26  
A. On the C280x devices, the VDD3VFL pin is VDDIO  
.
Figure 7-3. TMS320F2802, TMS320F2801, TMS320C2802, TMS320C2801 100-Pin PZ LQFP (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
TDO 76  
50  
49  
GPIO16/SPISIMOA/TZ5  
VSS  
VSS  
77  
78  
79  
48 GPIO3/EPWM2B  
47 GPIO0/EPWM1A  
XRS  
GPIO27  
VDDIO  
EMU0 80  
EMU1 81  
46  
45 GPIO2/EPWM2A  
44 GPIO1/EPWM1B  
43 GPIO34  
VDDIO  
82  
83  
84  
85  
GPIO24/ECAP1  
VDD  
42  
41  
40  
39  
TRST  
VDD  
VSS  
VDD2A18  
VSS2AGND  
X2 86  
VSS  
87  
X1 88  
38 ADCRESEXT  
37 ADCREFP  
36 ADCREFM  
35 ADCREFIN  
34 ADCINB7  
33 ADCINB6  
32 ADCINB5  
31 ADCINB4  
30 ADCINB3  
29 ADCINB2  
28 ADCINB1  
27 ADCINB0  
VSS  
89  
XCLKIN 90  
GPIO25/ECAP2  
91  
92  
93  
94  
95  
96  
GPIO28/SCIRXDA/TZ5  
VDD  
VSS  
GPIO13/TZ2  
VDD3VFL  
TEST1 97  
TEST2 98  
GPIO26 99  
VDDAIO  
100  
26  
GPIO32/SDAA/EPWMSYNCI/ADCSOCAO  
A. CANTXA (pin 7) and CANRXA (pin 6) pins are not applicable for the TMS320F28015.  
Figure 7-4. TMS320F2801x 100-Pin PZ LQFP (Top View)  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
VSSAIO  
VSS2AGND  
VDD2A18  
VSS  
VSS  
ADCINB0  
ADCINB3  
ADCINB1  
ADCINB2  
ADCINA2  
ADCINB5  
ADCINB4  
ADCINB6  
ADCINA5  
ADCINB7  
ADCREFIN  
ADCREFM  
ADCREFP  
GPIO1  
GPIO0  
GPIO3  
GPIO16  
K
J
VDDAIO  
ADCLO  
GPIO2  
GPIO4  
GPIO5  
GPIO6  
GPIO17  
VDDIO  
VSS  
ADCINA1  
ADCINA0  
ADCINA3  
VDDA2  
GPIO18  
H
G
F
VDD  
ADCINA4  
GPIO34  
GPIO7  
GPIO19  
VSSA2  
VSS  
VDD  
ADCINA7  
ADCINA6  
ADCRESEXT  
GPIO20  
GPIO9  
GPIO8  
VDD  
VSS  
VDD1A18  
VSS1AGND  
VDDIO  
GPIO15  
GPIO31  
X1  
GPIO21  
XCLKOUT  
GPIO22  
GPIO27  
XRS  
GPIO10  
E
D
C
B
A
VDD  
VSS  
VDD  
VSS  
GPIO30  
GPIO14  
GPIO29  
TEST2  
TEST1  
GPIO28  
GPIO11  
VDDIO  
VDD3VFL  
GPIO33  
GPIO25  
XCLKIN  
VSS  
X2  
GPIO24  
EMU1  
VDDIO  
TDI  
TDO  
VSS  
GPIO23  
VSS  
VDD  
GPIO12  
GPIO26  
GPIO13  
TMS  
VSS  
GPIO32  
EMU0  
TCK  
TRST  
1
2
3
4
5
6
7
8
9
10  
Bottom View  
Figure 7-5. TMS320F2809, TMS320F2808, TMS320F2806,TMS320F2802, TMS320F2801, TMS320F28016,  
TMS320F28015, TMS320C2802, TMS320C2801 100-Ball GGM and ZGM MicroStar BGA™ (Bottom View)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
7.2 Signal Descriptions  
Table 7-1 describes the signals. All digital inputs are TTL-compatible. All outputs are 3.3 V with CMOS levels.  
Inputs are not 5-V tolerant.  
Table 7-1. Signal Descriptions  
PIN NO.  
DESCRIPTION (1)  
GGM/  
ZGM  
BALL #  
NAME  
PZ  
PIN #  
JTAG  
JTAG test reset with internal pulldown. TRST, when driven high, gives the scan system control of the  
operations of the device. If this signal is not connected or driven low, the device operates in its  
functional mode, and the test reset signals are ignored.  
NOTE: Do not use pullup resistors on TRST; it has an internal pull-down device. TRST is an active  
high test pin and must be maintained low at all times during normal device operation. An external  
pulldown resistor is required on this pin. The value of this resistor should be based on drive strength  
of the debugger pods applicable to the design. A 2.2-kΩ resistor generally offers adequate  
protection. Since this is application-specific, it is recommended that each target board be validated  
for proper operation of the debugger and the application. (I, ↓)  
TRST  
84  
A6  
TCK  
TMS  
75  
74  
A10  
B10  
JTAG test clock with internal pullup (I, ↑)  
JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP  
controller on the rising edge of TCK. (I, ↑)  
JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction  
or data) on a rising edge of TCK. (I, ↑)  
TDI  
73  
76  
C9  
B9  
JTAG scan out, test data output (TDO). The contents of the selected register (instruction or data) are  
shifted out of TDO on the falling edge of TCK. (O/Z 8 mA drive)  
TDO  
Emulator pin 0. When TRST is driven high, this pin is used as an interrupt to or from the emulator  
system and is defined as input/output through the JTAG scan. This pin is also used to put the device  
into boundary-scan mode. With the EMU0 pin at a logic-high state and the EMU1 pin at a logic-low  
state, a rising edge on the TRST pin would latch the device into boundary-scan mode. (I/O/Z, 8 mA  
drive ↑)  
EMU0  
80  
A8  
NOTE: An external pullup resistor is recommended on this pin. The value of this resistor should be  
based on the drive strength of the debugger pods applicable to the design. A 2.2-kΩ to 4.7-kΩ  
resistor is generally adequate. Since this is application-specific, it is recommended that each target  
board be validated for proper operation of the debugger and the application.  
Emulator pin 1. When TRST is driven high, this pin is used as an interrupt to or from the emulator  
system and is defined as input/output through the JTAG scan. This pin is also used to put the device  
into boundary-scan mode. With the EMU0 pin at a logic-high state and the EMU1 pin at a logic-low  
state, a rising edge on the TRST pin would latch the device into boundary-scan mode. (I/O/Z, 8 mA  
drive ↑)  
NOTE: An external pullup resistor is recommended on this pin. The value of this resistor should be  
based on the drive strength of the debugger pods applicable to the design. A 2.2-kΩ to 4.7-kΩ  
resistor is generally adequate. Since this is application-specific, it is recommended that each target  
board be validated for proper operation of the debugger and the application.  
EMU1  
81  
96  
B7  
C4  
FLASH  
3.3-V Flash Core Power Pin. This pin should be connected to 3.3 V at all times. On the ROM  
VDD3VFL  
parts (C280x), this pin should be connected to VDDIO  
.
TEST1  
TEST2  
97  
98  
A3  
B3  
Test Pin. Reserved for TI. Must be left unconnected. (I/O)  
Test Pin. Reserved for TI. Must be left unconnected. (I/O)  
CLOCK  
Output clock derived from SYSCLKOUT. XCLKOUT is either the same frequency, one-half the  
frequency, or one-fourth the frequency of SYSCLKOUT. This is controlled by the bits 1, 0  
(XCLKOUTDIV) in the XCLK register. At reset, XCLKOUT = SYSCLKOUT/4. The XCLKOUT signal  
can be turned off by setting XCLKOUTDIV to 3. Unlike other GPIO pins, the XCLKOUT pin is not  
placed in high-impedance state during a reset. (O/Z, 8 mA drive).  
XCLKOUT  
XCLKIN  
66  
90  
E8  
B5  
External Oscillator Input. This pin is used to feed a clock from an external 3.3-V oscillator. In this  
case, tie the X1 pin to GND. Alternately, when a crystal/resonator is used (or if an external 1.8-V  
oscillator is fed into the X1 pin), tie the XCLKIN pin to GND. (I)  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
www.ti.com  
NAME  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
Table 7-1. Signal Descriptions (continued)  
PIN NO.  
DESCRIPTION (1)  
GGM/  
ZGM  
PZ  
PIN #  
BALL #  
Internal/External Oscillator Input. To use the internal oscillator, a quartz crystal or a ceramic  
resonator may be connected across X1 and X2. The X1 pin is referenced to the 1.8-V core digital  
power supply. A 1.8-V external oscillator may be connected to the X1 pin. In this case, the XCLKIN  
pin must be connected to ground. If a 3.3-V external oscillator is used with the XCLKIN pin, X1 must  
be tied to GND. (I)  
X1  
X2  
88  
86  
E6  
C6  
Internal Oscillator Output. A quartz crystal or a ceramic resonator may be connected across X1 and  
X2. If X2 is not used it must be left unconnected. (O)  
RESET  
Device Reset (in) and Watchdog Reset (out).  
Device reset. XRS causes the device to terminate execution. The PC will point to the address  
contained at the location 0x3FFFC0. When XRS is brought to a high level, execution begins at the  
location pointed to by the PC. This pin is driven low by the DSP when a watchdog reset occurs.  
During watchdog reset, the XRS pin is driven low for the watchdog reset duration of 512 OSCCLK  
cycles. (I/OD, ↑)  
XRS  
78  
B8  
The output buffer of this pin is an open-drain with an internal pullup. If this pin is driven by an  
external device, it should be done using an open-drain device.  
ADC SIGNALS  
ADC Group A, Channel 7 input (I)  
ADC Group A, Channel 6 input (I)  
ADC Group A, Channel 5 input (I)  
ADC Group A, Channel 4 input (I)  
ADC Group A, Channel 3 input (I)  
ADC Group A, Channel 2 input (I)  
ADC Group A, Channel 1 input (I)  
ADC Group A, Channel 0 input (I)  
ADC Group B, Channel 7 input (I)  
ADC Group B, Channel 6 input (I)  
ADC Group B, Channel 5 input (I)  
ADC Group B, Channel 4 input (I)  
ADC Group B, Channel 3 input (I)  
ADC Group B, Channel 2 input (I)  
ADC Group B, Channel 1 input (I)  
ADC Group B, Channel 0 input (I)  
Low Reference (connect to analog ground) (I)  
ADC External Current Bias Resistor. Connect a 22-kΩ resistor to analog ground.  
External reference input (I)  
ADCINA7  
ADCINA6  
ADCINA5  
ADCINA4  
ADCINA3  
ADCINA2  
ADCINA1  
ADCINA0  
ADCINB7  
ADCINB6  
ADCINB5  
ADCINB4  
ADCINB3  
ADCINB2  
ADCINB1  
ADCINB0  
ADCLO  
16  
17  
18  
19  
20  
21  
22  
23  
34  
33  
32  
31  
30  
29  
28  
27  
24  
38  
35  
F3  
F4  
G4  
G1  
G2  
G3  
H1  
H2  
K5  
H4  
K4  
J4  
K3  
H3  
J3  
K2  
J1  
ADCRESEXT  
ADCREFIN  
F5  
J5  
Internal Reference Positive Output. Requires a low ESR (under 1.5 Ω) ceramic bypass capacitor of  
2.2 μF to analog ground. (O)  
NOTE: Use the ADC Clock rate to derive the ESR specification from the capacitor data sheet that is  
used in the system.  
ADCREFP  
ADCREFM  
37  
36  
G5  
H5  
Internal Reference Medium Output. Requires a low ESR (under 1.5 Ω) ceramic bypass capacitor of  
2.2 μF to analog ground. (O)  
NOTE: Use the ADC Clock rate to derive the ESR specification from the capacitor data sheet that is  
used in the system.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Table 7-1. Signal Descriptions (continued)  
PIN NO.  
DESCRIPTION (1)  
GGM/  
ZGM  
BALL #  
NAME  
PZ  
PIN #  
CPU AND I/O POWER PINS  
ADC Analog Power Pin (3.3 V)  
VDDA2  
VSSA2  
15  
14  
26  
25  
12  
13  
40  
39  
10  
42  
59  
68  
85  
93  
3
F2  
F1  
ADC Analog Ground Pin  
VDDAIO  
VSSAIO  
VDD1A18  
VSS1AGND  
VDD2A18  
VSS2AGND  
VDD  
J2  
ADC Analog I/O Power Pin (3.3 V)  
ADC Analog I/O Ground Pin  
ADC Analog Power Pin (1.8 V)  
ADC Analog Ground Pin  
K1  
E4  
E5  
J6  
ADC Analog Power Pin (1.8 V)  
ADC Analog Ground Pin  
K6  
E2  
G6  
F10  
D7  
B6  
D4  
C2  
H7  
E9  
A7  
B1  
E3  
H6  
K9  
H10  
F7  
VDD  
VDD  
CPU and Logic Digital Power Pins (1.8 V)  
VDD  
VDD  
VDD  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VSS  
46  
65  
82  
2
Digital I/O Power Pin (3.3 V)  
VSS  
11  
41  
49  
55  
62  
69  
77  
87  
89  
94  
VSS  
VSS  
VSS  
VSS  
Digital Ground Pins  
VSS  
D10  
A9  
D6  
A5  
A4  
VSS  
VSS  
VSS  
VSS  
GPIOA AND PERIPHERAL SIGNALS (2) (3)  
GPIO0  
General-purpose input/output 0 (I/O/Z) (4)  
EPWM1A  
-
-
Enhanced PWM1 Output A and HRPWM channel (O)  
-
-
47  
44  
45  
K8  
K7  
J7  
GPIO1  
EPWM1B  
SPISIMOD  
-
General-purpose input/output 1 (I/O/Z)(4)  
Enhanced PWM1 Output B (O)  
SPI-D slave in, master out (I/O) (not available on 2801, 2802)  
-
GPIO2  
EPWM2A  
-
-
General-purpose input/output 2 (I/O/Z)(4)  
Enhanced PWM2 Output A and HRPWM channel (O)  
-
-
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
www.ti.com  
NAME  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
Table 7-1. Signal Descriptions (continued)  
PIN NO.  
DESCRIPTION (1)  
GGM/  
ZGM  
PZ  
PIN #  
BALL #  
GPIO3  
EPWM2B  
SPISOMID  
-
General-purpose input/output 3 (I/O/Z)(4)  
Enhanced PWM2 Output B (O)  
SPI-D slave out, master in (I/O) (not available on 2801, 2802)  
-
48  
51  
53  
56  
58  
60  
61  
64  
70  
1
J8  
J9  
GPIO4  
EPWM3A  
-
-
General-purpose input/output 4 (I/O/Z)(4)  
Enhanced PWM3 output A and HRPWM channel (O)  
-
-
GPIO5  
General-purpose input/output 5 (I/O/Z)(4)  
Enhanced PWM3 output B (O)  
SPI-D clock (I/O) (not available on 2801, 2802)  
Enhanced capture input/output 1 (I/O)  
EPWM3B  
SPICLKD  
ECAP1  
H9  
G9  
G8  
F9  
GPIO6  
EPWM4A  
EPWMSYNCI  
EPWMSYNCO  
General-purpose input/output 6 (I/O/Z)(4)  
Enhanced PWM4 output A and HRPWM channel (O) (not available on 2801, 2802)  
External ePWM sync pulse input (I)  
External ePWM sync pulse output (O)  
GPIO7  
General-purpose input/output 7 (I/O/Z)(4)  
Enhanced PWM4 output B (O) (not available on 2801, 2802)  
SPI-D slave transmit enable (I/O) (not available on 2801, 2802)  
Enhanced capture input/output 2 (I/O)  
EPWM4B  
SPISTED  
ECAP2  
GPIO8  
General-purpose input/output 8 (I/O/Z)(4)  
Enhanced PWM5 output A and HRPWM channel (O) (not available on 2801, 2802)  
Enhanced CAN-B transmit (O) (not available on 2801, 2802, F2806)  
ADC start-of-conversion A (O)  
EPWM5A  
CANTXB  
ADCSOCAO  
GPIO9  
General-purpose input/output 9 (I/O/Z)(4)  
Enhanced PWM5 output B (O) (not available on 2801, 2802)  
SCI-B transmit data (O) (not available on 2801, 2802)  
Enhanced capture input/output 3 (I/O) (not available on 2801, 2802)  
EPWM5B  
SCITXDB  
ECAP3  
F8  
GPIO10  
General-purpose input/output 10 (I/O/Z)(4)  
Enhanced PWM6 output A and HRPWM channel (O) (not available on 2801, 2802)  
Enhanced CAN-B receive (I) (not available on 2801, 2802, F2806)  
ADC start-of-conversion B (O)  
EPWM6A  
CANRXB  
ADCSOCBO  
E10  
D9  
B2  
B4  
D3  
E1  
K10  
GPIO11  
General-purpose input/output 11 (I/O/Z)(4)  
Enhanced PWM6 output B (O) (not available on 2801, 2802)  
SCI-B receive data (I) (not available on 2801, 2802)  
Enhanced CAP Input/Output 4 (I/O) (not available on 2801, 2802)  
EPWM6B  
SCIRXDB  
ECAP4  
GPIO12  
TZ1  
CANTXB  
SPISIMOB  
General-purpose input/output 12 (I/O/Z)(5)  
Trip Zone input 1 (I)  
Enhanced CAN-B transmit (O) (not available on 2801, 2802, F2806)  
SPI-B Slave in, Master out (I/O)  
GPIO13  
TZ2  
CANRXB  
SPISOMIB  
General-purpose input/output 13 (I/O/Z)(5)  
Trip zone input 2 (I)  
Enhanced CAN-B receive (I) (not available on 2801, 2802, F2806)  
SPI-B slave out, master in (I/O)  
95  
8
GPIO14  
TZ3  
SCITXDB  
SPICLKB  
General-purpose input/output 14 (I/O/Z)(5)  
Trip zone input 3 (I)  
SCI-B transmit (O) (not available on 2801, 2802)  
SPI-B clock input/output (I/O)  
GPIO15  
TZ4  
SCIRXDB  
SPISTEB  
General-purpose input/output 15 (I/O/Z)(5)  
Trip zone input 4 (I)  
SCI-B receive (I) (not available on 2801, 2802)  
SPI-B slave transmit enable (I/O)  
9
GPIO16  
SPISIMOA  
CANTXB  
TZ5  
General-purpose input/output 16 (I/O/Z)(5)  
SPI-A slave in, master out (I/O)  
Enhanced CAN-B transmit (O) (not available on 2801, 2802, F2806)  
Trip zone input 5 (I)  
50  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Table 7-1. Signal Descriptions (continued)  
PIN NO.  
DESCRIPTION (1)  
GGM/  
ZGM  
BALL #  
NAME  
PZ  
PIN #  
GPIO17  
General-purpose input/output 17 (I/O/Z)(5)  
SPI-A slave out, master in (I/O)  
Enhanced CAN-B receive (I) (not available on 2801, 2802, F2806)  
Trip zone input 6 (I)  
SPISOMIA  
CANRXB  
TZ6  
52  
54  
J10  
H8  
GPIO18  
SPICLKA  
SCITXDB  
General-purpose input/output 18 (I/O/Z)(5)  
SPI-A clock input/output (I/O)  
SCI-B transmit (O) (not available on 2801, 2802)  
-
-
-
-
GPIO19  
General-purpose input/output 19 (I/O/Z)(5)  
SPISTEA  
SPI-A slave transmit enable input/output (I/O)  
SCIRXDB  
57  
G10  
SCI-B receive (I) (not available on 2801, 2802)  
-
-
-
-
GPIO20  
General-purpose input/output 20 (I/O/Z)(5)  
EQEP1A  
SPISIMOC  
CANTXB  
Enhanced QEP1 input A (I)  
SPI-C slave in, master out (I/O) (not available on 2801, 2802)  
Enhanced CAN-B transmit (O) (not available on 2801, 2802, F2806)  
63  
67  
71  
72  
83  
91  
99  
79  
92  
4
F6  
E7  
D8  
C10  
C7  
C5  
A2  
C8  
D5  
C3  
GPIO21  
General-purpose input/output 21 (I/O/Z)(5)  
Enhanced QEP1 input A (I)  
SPI-C master in, slave out (I/O) (not available on 2801, 2802)  
Enhanced CAN-B receive (I) (not available on 2801, 2802, F2806)  
EQEP1B  
SPISOMIC  
CANRXB  
GPIO22  
General-purpose input/output 22 (I/O/Z)(5)  
Enhanced QEP1 strobe (I/O)  
SPI-C clock (I/O) (not available on 2801, 2802)  
SCI-B transmit (O) (not available on 2801, 2802)  
EQEP1S  
SPICLKC  
SCITXDB  
GPIO23  
EQEP1I  
SPISTEC  
SCIRXDB  
General-purpose input/output 23 (I/O/Z)(5)  
Enhanced QEP1 index (I/O)  
SPI-C slave transmit enable (I/O) (not available on 2801, 2802)  
SCI-B receive (I) (not available on 2801, 2802)  
GPIO24  
ECAP1  
EQEP2A  
SPISIMOB  
General-purpose input/output 24 (I/O/Z)(5)  
Enhanced capture 1 (I/O)  
Enhanced QEP2 input A (I) (not available on 2801, 2802)  
SPI-B slave in, master out (I/O)  
GPIO25  
ECAP2  
EQEP2B  
SPISOMIB  
General-purpose input/output 25 (I/O/Z)(5)  
Enhanced capture 2 (I/O)  
Enhanced QEP2 input B (I) (not available on 2801, 2802)  
SPI-B master in, slave out (I/O)  
GPIO26  
ECAP3  
EQEP2I  
SPICLKB  
General-purpose input/output 26 (I/O/Z)(5)  
Enhanced capture 3 (I/O) (not available on 2801, 2802)  
Enhanced QEP2 index (I/O) (not available on 2801, 2802)  
SPI-B clock (I/O)  
GPIO27  
ECAP4  
EQEP2S  
SPISTEB  
General-purpose input/output 27 (I/O/Z)(5)  
Enhanced capture 4 (I/O) (not available on 2801, 2802)  
Enhanced QEP2 strobe (I/O) (not available on 2801, 2802)  
SPI-B slave transmit enable (I/O)  
GPIO28  
SCIRXDA  
-
General-purpose input/output 28. This pin has an 8-mA (typical) output buffer. (I/O/Z)(5)  
SCI receive data (I)  
-
TZ5  
Trip zone input 5 (I)  
GPIO29  
SCITXDA  
-
General-purpose input/output 29. This pin has an 8-mA (typical) output buffer. (I/O/Z)(5)  
SCI transmit data (O)  
-
TZ6  
Trip zone 6 input (I)  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
www.ti.com  
NAME  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
Table 7-1. Signal Descriptions (continued)  
PIN NO.  
DESCRIPTION (1)  
GGM/  
ZGM  
PZ  
PIN #  
BALL #  
GPIO30  
General-purpose input/output 30. This pin has an 8-mA (typical) output buffer. (I/O/Z)(5)  
CANRXA  
-
-
Enhanced CAN-A receive data (I)  
-
-
6
7
D2  
D1  
A1  
C1  
G7  
GPIO31  
CANTXA  
-
-
General-purpose input/output 31. This pin has an 8-mA (typical) output buffer. (I/O/Z)(5)  
Enhanced CAN-A transmit data (O)  
-
-
GPIO32  
SDAA  
EPWMSYNCI  
ADCSOCAO  
General-purpose input/output 32 (I/O/Z)(5)  
I2C data open-drain bidirectional port (I/OD)  
Enhanced PWM external sync pulse input (I)  
ADC start-of-conversion (O)  
100  
5
GPIO33  
SCLA  
EPWMSYNCO  
ADCSOCBO  
General-Purpose Input/Output 33 (I/O/Z)(5)  
I2C clock open-drain bidirectional port (I/OD)  
Enhanced PWM external synch pulse output (O)  
ADC start-of-conversion (O)  
GPIO34  
General-Purpose Input/Output 34 (I/O/Z)(5)  
-
-
-
-
-
-
43  
(1) I = Input, O = Output, Z = High impedance, OD = Open drain, ↑ = Pullup, ↓ = Pulldown  
(2) Some peripheral functions may not be available in TMS320F2801x devices. See Table 6-2 for details.  
(3) All GPIO pins are I/O/Z, 4-mA drive typical (unless otherwise indicated), and have an internal pullup, which can be selectively enabled/  
disabled on a per-pin basis. This feature only applies to the GPIO pins. The GPIO function (shown in Italics) is the default at reset. The  
peripheral signals that are listed under them are alternate functions.  
(4) The pullups on GPIO0-GPIO11 pins are not enabled at reset.  
(5) The pullups on GPIO12-GPIO34 are enabled upon reset.  
Note  
Some peripheral functions may not be available in TMS320F2801x devices. See Table 6-2 for details.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8 Specifications  
This section provides the absolute maximum ratings and the recommended operating conditions.  
8.1 Absolute Maximum Ratings  
Unless otherwise noted, the list of absolute maximum ratings are specified over operating temperature ranges. (1) (2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
VDDIO, VDD3VFL with respect to VSS  
VDDA2, VDDAIO with respect to VSSA  
VDD with respect to VSS  
4.6  
4.6  
2.5  
Supply voltage  
V
VDD1A18, VDD2A18 with respect to VSSA  
2.5  
VSSA2, VSSAIO, VSS1AGND, VSS2AGND with respect  
to VSS  
–0.3  
0.3  
Input voltage  
VIN  
–0.3  
–0.3  
–20  
–20  
–40  
–40  
–40  
–40  
–65  
4.6  
4.6  
20  
V
V
Output voltage  
VO  
(3)  
Input clamp current  
Output clamp current  
IIK (VIN < 0 or VIN > VDDIO  
)
mA  
mA  
IOK (VO < 0 or VO > VDDIO  
)
20  
A version (GGM, ZGM, PZ)(4)  
S version (GGM, ZGM, PZ)(4)  
Q version (PZ)(4)  
85  
Operating ambient temperature, TA  
125  
125  
150  
150  
°C  
(4)  
Junction temperature  
Storage temperature  
TJ  
°C  
°C  
(4)  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Section 8.4 is not implied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
(3) Continuous clamp current per pin is ±2 mA. This includes the analog inputs which have an internal clamping circuit that clamps the  
voltage to a diode drop above VDDA2 or below VSSA2  
.
(4) Long-term high-temperature storage and/or extended use at maximum temperature conditions may result in a reduction of overall  
device life. For additional information, see Semiconductor and IC package thermal metrics.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.2 ESD Ratings – Automotive  
VALUE  
UNIT  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802, TMS320C2801, TMS320F28016, and  
TMS320F28015 in 100-pin PZ package  
Human body model (HBM), per AEC-Q100-002(1)  
±2000  
±500  
±750  
Charged device model (CDM),  
per AEC-Q100-011  
All pins  
V(ESD)  
Electrostatic discharge  
V
Corner pins on 100-pin PZ:  
1, 25, 26, 50, 51, 75, 76, 100  
(1) AEC-Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
8.3 ESD Ratings – Commercial  
VALUE  
UNIT  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802, TMS320C2801, TMS320F28016, and  
TMS320F28015 in 100-ball ZGM package  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
±500  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802, TMS320C2801, TMS320F28016, and  
TMS320F28015 in 100-ball GGM package  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
±500  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.14  
1.71  
NOM  
3.3  
1.8  
0
MAX  
3.47  
1.89  
UNIT  
V
Device supply voltage, I/O, VDDIO  
Device supply voltage CPU, VDD  
Supply ground, VSS, VSSIO  
V
V
ADC supply voltage (3.3 V), VDDA2, VDDAIO  
ADC supply voltage (1.8 V), VDD1A18, VDD2A18  
Flash supply voltage, VDD3VFL  
3.14  
3.3  
1.8  
3.3  
3.47  
V
1.71  
1.89  
V
3.14  
3.47  
V
Device clock frequency (system clock),  
fSYSCLKOUT  
100-MHz devices  
60-MHz devices  
All inputs except X1  
X1  
2
100  
MHz  
MHz  
V
2
2
60  
High-level input voltage, VIH  
VDDIO + 0.3  
0.7 * VDD – 0.05  
VSS – 0.3  
VDD  
Low-level input voltage, VIL  
All inputs except X1  
X1  
0.8  
V
0.3 * VDD + 0.05  
All I/Os except Group 2  
Group 2(1)  
–4  
–8  
4
mA  
mA  
High-level output source current,  
VOH = 2.4 V, IOH  
All I/Os except Group 2  
Group 2(1)  
Low-level output sink current,  
VOL = VOL MAX, IOL  
8
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–40  
–40  
–40  
NOM  
MAX  
85  
UNIT  
A version  
S version  
°C  
125  
125  
Ambient temperature, TA  
Q version  
(AEC-Q100  
Qualification)  
(1) Group 2 pins are as follows: GPIO28, GPIO29, GPIO30, GPIO31, TDO, XCLKOUT, EMU0, and EMU1  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.5 Power Consumption Summary  
8.5.1 TMS320F2809, TMS320F2808 Current Consumption by Power-Supply Pins at 100-MHz SYSCLKOUT  
(1)  
(2)  
(3)  
(4)  
IDD  
IDDIO  
TYP(5)  
IDD3VFL  
TYP  
IDDA18  
TYP(5)  
IDDA33  
TYP(5)  
MODE  
TEST CONDITIONS  
TYP(5)  
MAX(6)  
MAX(6)  
MAX(6)  
MAX(6)  
MAX(6)  
The following peripheral  
clocks are enabled:  
ePWM1/2/3/4/5/6  
eCAP1/2/3/4  
eQEP1/2  
eCAN-A  
SCI-A/B  
SPI-A  
ADC  
I2C  
Operational  
(Flash)  
195 mA  
230 mA  
15 mA  
27 mA  
35 mA  
40 mA  
30 mA  
38 mA  
1.5 mA  
2 mA  
All PWM pins are toggled  
at 100 kHz.  
All I/O pins are left  
unconnected.  
Data is continuously  
transmitted out of the  
SCI-A, SCI-B, and  
eCAN-A ports. The  
hardware multiplier is  
exercised.  
Code is running out of  
flash with 3 wait-states.  
XCLKOUT is turned off.  
Flash is powered down.  
XCLKOUT is turned off.  
The following peripheral  
clocks are enabled:  
IDLE  
75 mA  
90 mA  
12 mA  
500 μA  
2 mA  
2 μA  
10 μA  
5 μA  
50 μA  
15 μA  
30 μA  
eCAN-A  
SCI-A  
SPI-A  
I2C  
Flash is powered down.  
Peripheral clocks are off.  
STANDBY  
HALT  
6 mA  
100 μA  
60 μA  
500 μA  
120 μA  
2 μA  
2 μA  
10 μA  
10 μA  
5 μA  
5 μA  
50 μA  
50 μA  
15 μA  
15 μA  
30 μA  
30 μA  
Flash is powered down.  
Peripheral clocks are off.  
Input clock is disabled.  
70 μA  
(1) IDDIO current is dependent on the electrical loading on the I/O pins.  
(2) The IDD3VFL current indicated in this table is the flash read-current and does not include additional current for erase/write operations.  
During flash programming, extra current is drawn from the VDD and VDD3VFL rails, as indicated in Section 8.14.6.3. If the user  
application involves on-board flash programming, this extra current must be taken into account while architecting the power-supply  
stage.  
(3) IDDA18 includes current into VDD1A18 and VDD2A18 pins. In order to realize the IDDA18 currents shown for IDLE, STANDBY, and HALT,  
clock to the ADC module must be turned off explicitly by writing to the PCLKCR0 register.  
(4) IDDA33 includes current into VDDA2 and VDDAIO pins.  
(5) TYP numbers are applicable over room temperature and nominal voltage.  
(6) MAX numbers are at 125°C and MAX voltage.  
Note  
The peripheral - I/O multiplexing implemented in the 280x devices prevents all available peripherals  
from being used at the same time. This is because more than one peripheral function may share an  
I/O pin. It is, however, possible to turn on the clocks to all the peripherals at the same time, although  
such a configuration is not useful. If this is done, the current drawn by the device will be more than the  
numbers specified in the current consumption tables.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.5.2 TMS320F2806 Current Consumption by Power-Supply Pins at 100-MHz SYSCLKOUT  
(1)  
(2)  
(3)  
(4)  
IDD  
IDDIO  
TYP(5)  
IDD3VFL  
IDDA18  
TYP(5)  
IDDA33  
MODE  
TEST CONDITIONS  
TYP(5)  
MAX(6)  
MAX(6)  
TYP(5)  
MAX(6)  
MAX(6)  
TYP(5)  
MAX(6)  
The following peripheral  
clocks are enabled:  
ePWM1/2/3/4/5/6  
eCAP1/2/3/4  
eQEP1/2  
eCAN-A  
SCI-A/B  
SPI-A  
ADC  
I2C  
Operational  
(Flash)  
195 mA 230 mA 15 mA  
27 mA  
35 mA  
40 mA  
30 mA  
38 mA  
1.5 mA  
2 mA  
All PWM pins are toggled at  
100 kHz.  
All I/O pins are left  
unconnected.  
Data is continuously  
transmitted out of the SCI-A,  
SCI-B, and eCAN-A ports.  
The hardware multiplier is  
exercised.  
Code is running out of flash  
with 3 wait-states.  
XCLKOUT is turned off  
Flash is powered down.  
XCLKOUT is turned off.  
The following peripheral  
clocks are enabled:  
IDLE  
75 mA  
90 mA  
12 mA  
500 μA  
2 mA  
2 μA  
10 μA  
5 μA  
50 μA  
15 μA  
30 μA  
eCAN-A  
SCI-A  
SPI-A  
I2C  
Flash is powered down.  
Peripheral clocks are off.  
STANDBY  
HALT  
6 mA  
100 μA  
60 μA  
500 μA  
120 μA  
2 μA  
2 μA  
10 μA  
10 μA  
5 μA  
5 μA  
50 μA  
50 μA  
15 μA  
15 μA  
30 μA  
30 μA  
Flash is powered down.  
Peripheral clocks are off.  
Input clock is disabled.  
70 μA  
(1) IDDIO current is dependent on the electrical loading on the I/O pins.  
(2) The IDD3VFL current indicated in this table is the flash read-current and does not include additional current for erase/write operations.  
During flash programming, extra current is drawn from the VDD and VDD3VFL rails, as indicated in Section 8.14.6.3. If the user  
application involves on-board flash programming, this extra current must be taken into account while architecting the power-supply  
stage.  
(3) IDDA18 includes current into VDD1A18 and VDD2A18 pins. In order to realize the IDDA18 currents shown for IDLE, STANDBY, and HALT,  
clock to the ADC module must be turned off explicitly by writing to the PCLKCR0 register.  
(4) IDDA33 includes current into VDDA2 and VDDAIO pins.  
(5) TYP numbers are applicable over room temperature and nominal voltage.  
(6) MAX numbers are at 125°C and MAX voltage.  
Note  
The peripheral - I/O multiplexing implemented in the 280x devices prevents all available peripherals  
from being used at the same time. This is because more than one peripheral function may share an  
I/O pin. It is, however, possible to turn on the clocks to all the peripherals at the same time, although  
such a configuration is not useful. If this is done, the current drawn by the device will be more than the  
numbers specified in the current consumption tables.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.5.3 TMS320F2802, TMS320F2801 Current Consumption by Power-Supply Pins at 100-MHz SYSCLKOUT  
(1)  
(2)  
(3)  
(4)  
IDD  
IDDIO  
TYP(5)  
IDD3VFL  
TYP(5)  
IDDA18  
TYP(5)  
IDDA33  
TYP(5)  
MODE  
TEST CONDITIONS  
TYP(5)  
MAX(6)  
MAX(6)  
MAX(6)  
MAX(6)  
MAX(6)  
The following peripheral  
clocks are enabled:  
ePWM1/2/3  
eCAP1/2  
eQEP1  
eCAN-A  
SCI-A  
SPI-A  
ADC  
I2C  
Operational  
(Flash)  
180 mA  
210 mA  
15 mA  
27 mA  
35 mA  
40 mA  
30 mA  
38 mA  
1.5 mA  
2 mA  
All PWM pins are toggled at  
100 kHz.  
All I/O pins are left  
unconnected.  
Data is continuously  
transmitted out of the SCI-A,  
SCI-B, and eCAN-A ports.  
The hardware multiplier is  
exercised.  
Code is running out of flash  
with 3 wait-states.  
XCLKOUT is turned off.  
Flash is powered down.  
XCLKOUT is turned off.  
The following peripheral  
clocks are enabled:  
IDLE  
75 mA  
90 mA  
12 mA  
500 μA  
2 mA  
2 μA  
10 μA  
5 μA  
50 μA  
15 μA  
30 μA  
eCAN-A  
SCI-A  
SPI-A  
I2C  
Flash is powered down.  
Peripheral clocks are off.  
STANDBY  
HALT  
6 mA  
100 μA  
60 μA  
500 μA  
120 μA  
2 μA  
2 μA  
10 μA  
10 μA  
5 μA  
5 μA  
50 μA  
50 μA  
15 μA  
15 μA  
30 μA  
30 μA  
Flash is powered down.  
Peripheral clocks are off.  
Input clock is disabled.  
70 μA  
(1) IDDIO current is dependent on the electrical loading on the I/O pins.  
(2) The IDD3VFL current indicated in this table is the flash read-current and does not include additional current for erase/write operations.  
During flash programming, extra current is drawn from the VDD and VDD3VFL rails, as indicated in Section 8.14.6.3. If the user  
application involves on-board flash programming, this extra current must be taken into account while architecting the power-supply  
stage.  
(3) IDDA18 includes current into VDD1A18 and VDD2A18 pins. In order to realize the IDDA18 currents shown for IDLE, STANDBY, and HALT,  
clock to the ADC module must be turned off explicitly by writing to the PCLKCR0 register.  
(4) IDDA33 includes current into VDDA2 and VDDAIO pins.  
(5) TYP numbers are applicable over room temperature and nominal voltage.  
(6) MAX numbers are at 125°C and MAX voltage.  
Note  
The peripheral - I/O multiplexing implemented in the 280x devices prevents all available peripherals  
from being used at the same time. This is because more than one peripheral function may share an  
I/O pin. It is, however, possible to turn on the clocks to all the peripherals at the same time, although  
such a configuration is not useful. If this is done, the current drawn by the device will be more than the  
numbers specified in the current consumption tables.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.5.4 TMS320C2802, TMS320C2801 Current Consumption by Power-Supply Pins at  
100-MHz SYSCLKOUT  
(1)  
(2)  
(3)  
IDD  
IDDIO  
TYP(4)  
IDDA18  
TYP(4)  
IDDA33  
MODE  
TEST CONDITIONS  
TYP(4)  
MAX(5)  
MAX(5)  
MAX(5)  
TYP(4)  
MAX(5)  
The following peripheral clocks  
are enabled:  
ePWM1/2/3  
eCAP1/2  
eQEP1  
eCAN-A  
SCI-A  
SPI-A  
ADC  
Operational  
(ROM)  
I2C  
150 mA  
165 mA  
5 mA  
10 mA  
30 mA  
38 mA  
1.5 mA  
2 mA  
All PWM pins are toggled at  
100 kHz.  
All I/O pins are left unconnected.  
Data is continuously transmitted  
out of the SCI-A, SCI-B, and  
eCAN-A ports. The hardware  
multiplier is exercised.  
Code is running out of ROM with  
3 wait-states.  
XCLKOUT is turned off.  
XCLKOUT is turned off.  
The following peripheral clocks  
are enabled:  
eCAN-A  
SCI-A  
SPI-A  
I2C  
IDLE  
75 mA  
90 mA  
12 mA  
500 μA  
2 mA  
5 μA  
50 μA  
15 μA  
30 μA  
STANDBY  
HALT  
Peripheral clocks are off.  
6 mA  
100 μA  
80 μA  
500 μA  
120 μA  
5 μA  
5 μA  
50 μA  
50 μA  
15 μA  
15 μA  
30 μA  
30 μA  
Peripheral clocks are off.  
Input clock is disabled.  
70 μA  
(1) IDDIO current is dependent on the electrical loading on the I/O pins.  
(2) IDDA18 includes current into VDD1A18 and VDD2A18 pins. In order to realize the IDDA18 currents shown for IDLE, STANDBY, and HALT,  
clock to the ADC module must be turned off explicitly by writing to the PCLKCR0 register.  
(3) IDDA33 includes current into VDDA2 and VDDAIO pins.  
(4) TYP numbers are applicable over room temperature and nominal voltage.  
(5) MAX numbers are at 125°C and MAX voltage.  
Note  
The peripheral - I/O multiplexing implemented in the 280x devices prevents all available peripherals  
from being used at the same time. This is because more than one peripheral function may share an  
I/O pin. It is, however, possible to turn on the clocks to all the peripherals at the same time, although  
such a configuration is not useful. If this is done, the current drawn by the device will be more than the  
numbers specified in the current consumption tables.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.5.5 Reducing Current Consumption  
280x devices have a richer peripheral mix compared to the 281x family. While the McBSP has been removed,  
the following new peripherals have been added on the 280x:  
3 SPI modules  
1 CAN module  
1 I2C module  
The two event manager modules of the 281x have been enhanced and replaced with separate ePWM (6), eCAP  
(4) and eQEP (2) modules, providing tremendous flexibility in applications. Like 281x, 280x DSPs incorporate a  
unique method to reduce the device current consumption. Since each peripheral unit has an individual clock-  
enable bit, significant reduction in current consumption can be achieved by turning off the clock to any peripheral  
module that is not used in a given application. Furthermore, any one of the three low-power modes could be  
taken advantage of to reduce the current consumption even further. Table 8-1 indicates the typical reduction in  
current consumption achieved by turning off the clocks.  
Table 8-1. Typical Current Consumption by Various  
Peripherals (at 100 MHz)  
PERIPHERAL  
MODULE(1)  
IDD CURRENT  
REDUCTION (mA)(2)  
ADC  
I2C  
8(3)  
5
eQEP  
ePWM  
eCAP  
SCI  
5
5
2
4
SPI  
5
eCAN  
11  
(1) All peripheral clocks are disabled upon reset. Writing to/reading  
from peripheral registers is possible only after the peripheral  
clocks are turned on.  
(2) For peripherals with multiple instances, the current quoted is per  
module. For example, the 5 mA number quoted for ePWM is for  
one ePWM module.  
(3) This number represents the current drawn by the digital portion  
of the ADC module. Turning off the clock to the ADC module  
results in the elimination of the current drawn by the analog  
portion of the ADC (IDDA18) as well.  
Note  
IDDIO current consumption is reduced by 15 mA (typical) when XCLKOUT is turned off.  
Note  
The baseline IDD current (current when the core is executing a dummy loop with no peripherals  
enabled) is 110 mA, typical. To arrive at the IDD current for a given application, the current-drawn by  
the peripherals (enabled by that application) must be added to the baseline IDD current.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.5.6 Current Consumption Graphs  
250.0  
200.0  
150.0  
100.0  
50.0  
0.0  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
SYSCLKOUT (MHz)  
1.8-V current  
IDD  
IDDA18  
IDDIO  
IDD3VFL  
3.3-V current  
Figure 8-1. Typical Operational Current Versus Frequency (F2808)  
600.0  
500.0  
400.0  
300.0  
200.0  
100.0  
0.0  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
SYSCLKOUT (MHz)  
TOTAL POWER  
Figure 8-2. Typical Operational Power Versus Frequency (F2808)  
Note  
Typical operational current for 60-MHz devices can be estimated from Figure 8-1. For IDD current  
alone, subtract the current contribution of non-existent peripherals after scaling the peripheral currents  
for 60 MHz. For example, to compute the current of F2801-60 device, the contribution by the following  
peripherals must be subtracted from IDD: ePWM4/5/6, eCAP3/4, eQEP2, SCI-B.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Current Vs SYSCLKOUT  
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
10  
SYSCLKOUT (MHz)  
IDD  
IDDA18  
1.8v current IDDIO  
IDD3VFL  
3.3v current  
Figure 8-3. Typical Operational Current Versus Frequency (C280x)  
Device Power Vs SYSCLKOUT  
400.0  
300.0  
200.0  
100.0  
0.0  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
SYSCLKOUT (MHz)  
TOTAL POWER  
Figure 8-4. Typical Operational Power Versus Frequency (C280x)  
8.6 Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.4  
TYP  
MAX UNIT  
IOH = IOH MAX  
IOH = 50 μA  
VOH High-level output voltage  
V
VDDIO – 0.2  
VOL  
Low-level output voltage  
IOL = IOL MAX  
0.4  
V
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
www.ti.com  
MAX UNIT  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
Pin with pullup  
enabled  
VDDIO = 3.3 V, VIN = 0 V All I/Os (including XRS)  
–80  
–140  
–190  
μA  
Input current  
(low level)  
IIL  
Pin with pulldown  
enabled  
VDDIO = 3.3 V, VIN = 0 V  
VDDIO = 3.3 V, VIN = VDDIO  
±2  
Pin with pullup  
enabled  
±2  
Input current Pin with pulldown  
IIH  
VDDIO = 3.3 V, VIN = VDDIO (F280x)  
VDDIO = 3.3 V, VIN = VDDIO (C280x)  
VO = VDDIO or 0 V  
28  
80  
50  
80  
190  
±2  
μA  
(high level)  
enabled  
Pin with pulldown  
enabled  
140  
Output current, pullup or pulldown  
disabled  
IOZ  
CI  
μA  
pF  
Input capacitance  
2
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.7 Thermal Resistance Characteristics for F280x 100-Ball GGM Package  
°C/W(1)  
12.08  
AIR FLOW (lfm)(2)  
JC  
JB  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
N/A  
N/A  
0
16.46  
30.58  
29.31  
28.09  
26.62  
0.4184  
0.32  
150  
250  
500  
0
JA  
(High k PCB)  
Junction-to-free air thermal resistance  
Junction-to-package top  
150  
250  
500  
PsiJT  
0.3725  
0.4887  
(1) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
8.8 Thermal Resistance Characteristics for F280x 100-Pin PZ Package  
°C/W(1)  
AIR FLOW (lfm)(2)  
JC  
JB  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
12.89  
29.58  
48.16  
40.06  
37.96  
35.17  
0.3425  
0.85  
N/A  
N/A  
0
150  
250  
500  
0
JA  
(High k PCB)  
Junction-to-free air thermal resistance  
Junction-to-package top  
150  
250  
500  
PsiJT  
1.0575  
1.410  
(1) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.9 Thermal Resistance Characteristics for C280x 100-Ball GGM Package  
°C/W(1)  
AIR FLOW (lfm)(2)  
JC  
JB  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
14.18  
21.36  
36.33  
35.01  
33.81  
32.31  
0.57  
N/A  
N/A  
0
150  
250  
500  
0
JA  
(High k PCB)  
Junction-to-free air thermal resistance  
Junction-to-package top  
0.43  
150  
250  
500  
PsiJT  
0.52  
0.67  
(1) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
8.10 Thermal Resistance Characteristics for C280x 100-Pin PZ Package  
°C/W(1)  
AIR FLOW (lfm)(2)  
JC  
JB  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
13.52  
54.78  
69.81  
60.34  
57.46  
53.63  
0.42  
N/A  
N/A  
0
150  
250  
500  
0
JA  
(High k PCB)  
Junction-to-free air thermal resistance  
Junction-to-package top  
1.23  
150  
250  
500  
PsiJT  
1.54  
2.11  
(1) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.11 Thermal Resistance Characteristics for F2809 100-Ball GGM Package  
°C/W(1)  
AIR FLOW (lfm)(2)  
JC  
JB  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
10.36  
13.3  
N/A  
N/A  
0
28.15  
26.89  
25.68  
24.22  
0.38  
150  
250  
500  
0
JA  
(High k PCB)  
Junction-to-free air thermal resistance  
Junction-to-package top  
0.35  
150  
250  
500  
PsiJT  
0.33  
0.44  
(1) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
8.12 Thermal Resistance Characteristics for F2809 100-Pin PZ Package  
°C/W(1)  
AIR FLOW (lfm)(2)  
JC  
JB  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
7.06  
28.76  
44.02  
28.34  
36.28  
33.68  
0.2  
N/A  
N/A  
0
150  
250  
500  
0
JA  
(High k PCB)  
Junction-to-free air thermal resistance  
Junction-to-package top  
0.56  
0.7  
150  
250  
500  
PsiJT  
0.95  
(1) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/  
JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
(2) lfm = linear feet per minute  
8.13 Thermal Design Considerations  
Based on the end application design and operational profile, the IDD and IDDIO currents could vary. Systems with  
more than 1 Watt power dissipation may require a product level thermal design. Care should be taken to keep Tj  
within specified limits. In the end applications, Tcase should be measured to estimate the operating junction  
temperature Tj. Tcase is normally measured at the center of the package top side surface. The thermal  
application note Semiconductor and IC package thermal metrics helps to understand the thermal metrics and  
definitions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.14 Timing and Switching Characteristics  
8.14.1 Timing Parameter Symbology  
Timing parameter symbols used are created in accordance with JEDEC Standard 100. To shorten the symbols,  
some of the pin names and other related terminology have been abbreviated as follows:  
Lowercase subscripts and their  
meanings:  
Letters and symbols and their  
meanings:  
a
c
d
f
access time  
cycle time (period)  
delay time  
H
L
High  
Low  
V
X
Z
Valid  
fall time  
Unknown, changing, or don't care level  
High impedance  
h
r
hold time  
rise time  
su  
t
setup time  
transition time  
valid time  
v
w
pulse duration (width)  
8.14.1.1 General Notes on Timing Parameters  
All output signals from the 28x devices (including XCLKOUT) are derived from an internal clock such that all  
output transitions for a given half-cycle occur with a minimum of skewing relative to each other.  
The signal combinations shown in the following timing diagrams may not necessarily represent actual cycles. For  
actual cycle examples, see the appropriate cycle description section of this document.  
8.14.1.2 Test Load Circuit  
This test load circuit is used to measure all switching characteristics provided in this document.  
Tester Pin Electronics  
Data Sheet Timing Reference Point  
W
3.5 nH  
Output  
Under  
Test  
42  
Transmission Line  
(A)  
Z0 = 50 W  
Device Pin(B)  
4.0 pF  
1.85 pF  
A. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin.  
B. The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects  
must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line  
effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer)  
from the data sheet timing.  
Figure 8-5. 3.3-V Test Load Circuit  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.14.1.3 Device Clock Table  
This section provides the timing requirements and switching characteristics for the various clock options  
available on the 280x DSPs. Section 8.14.1.3.1 and Section 8.14.1.3.2 list the cycle times of various clocks.  
8.14.1.3.1 TMS320x280x Clock Table and Nomenclature (100-MHz Devices)  
MIN  
28.6  
20  
10  
4
NOM  
MAX UNIT  
tc(OSC), Cycle time  
Frequency  
50  
35  
ns  
MHz  
ns  
On-chip oscillator  
clock  
tc(CI), Cycle time  
250  
100  
500  
100  
2000  
100  
XCLKIN(1)  
Frequency  
MHz  
ns  
tc(SCO), Cycle time  
Frequency  
10  
2
SYSCLKOUT  
XCLKOUT  
HSPCLK(2)  
LSPCLK(2)  
MHz  
ns  
tc(XCO), Cycle time  
Frequency  
10  
0.5  
10  
MHz  
ns  
tc(HCO), Cycle time  
Frequency  
20(3)  
50(3)  
40(3)  
25(3)  
100  
100  
12.5  
25  
MHz  
ns  
tc(LCO), Cycle time  
Frequency  
10  
80  
40  
MHz  
ns  
tc(ADCCLK), Cycle time (All devices except F2809)  
Frequency (All devices except F2809)  
tc(ADCCLK), Cycle time (F2809)  
Frequency (F2809)  
MHz  
ns  
ADC clock  
MHz  
(1) This also applies to the X1 pin if a 1.8-V oscillator is used.  
(2) Lower LSPCLK and HSPCLK will reduce device power consumption.  
(3) This is the default reset value if SYSCLKOUT = 100 MHz.  
8.14.1.3.2 TMS320x280x/2801x Clock Table and Nomenclature (60-MHz Devices)  
MIN  
28.6  
20  
NOM  
MAX UNIT  
tc(OSC), Cycle time  
Frequency  
50  
35  
ns  
MHz  
ns  
On-chip oscillator  
clock  
tc(CI), Cycle time  
Frequency  
16.67  
4
250  
60  
XCLKIN(1)  
SYSCLKOUT  
XCLKOUT  
HSPCLK(2)  
LSPCLK(2)  
ADC clock  
MHz  
ns  
tc(SCO), Cycle time  
Frequency  
16.67  
2
500  
60  
MHz  
ns  
tc(XCO), Cycle time  
Frequency  
16.67  
0.5  
2000  
60  
MHz  
ns  
tc(HCO), Cycle time  
Frequency  
16.67  
33.3(3)  
30(3)  
60  
60  
MHz  
ns  
tc(LCO), Cycle time  
Frequency  
16.67  
66.7(3)  
15(3)  
MHz  
ns  
tc(ADCCLK), Cycle time  
Frequency  
133.33  
7.5  
MHz  
(1) This also applies to the X1 pin if a 1.8-V oscillator is used.  
(2) Lower LSPCLK and HSPCLK will reduce device power consumption.  
(3) This is the default reset value if SYSCLKOUT = 60 MHz.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.14.2 Power Sequencing  
No requirements are placed on the power up/down sequence of the various power pins to ensure the correct  
reset state for all the modules. However, if the 3.3-V transistors in the level shifting output buffers of the I/O pins  
are powered prior to the 1.8-V transistors, it is possible for the output buffers to turn on, causing a glitch to occur  
on the pin during power up. To avoid this behavior, power the VDD (core voltage) pins prior to or simultaneously  
with the VDDIO (input/output voltage) pins, ensuring that the VDD pins have reached 0.7 V before the VDDIO pins  
reach 0.7 V.  
There are some requirements on the XRS pin:  
1. During power up, the XRS pin must be held low for tw(RSL1) after the input clock is stable (see Section  
8.14.2.1). This is to enable the entire device to start from a known condition.  
2. During power down, the XRS pin must be pulled low at least 8 μs prior to VDD reaching 1.5 V. This is to  
enhance flash reliability.  
No voltage larger than a diode drop (0.7 V) above VDDIO should be applied to any digital pin (for analog pins, it is  
0.7 V above VDDA) prior to powering up the device. Voltages applied to pins on an unpowered device can bias  
internal p-n junctions in unintended ways and produce unpredictable results.  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.14.2.1 Reset ( XRS) Timing Requirements  
MIN  
8tc(OSCCLK)  
8tc(OSCCLK)  
NOM  
MAX UNIT  
cycles  
(1)  
tw(RSL1)  
tw(RSL2)  
Pulse duration, stable XCLKIN to XRS high  
Pulse duration, XRS low  
Warm reset  
cycles  
Pulse duration, reset pulse generated by  
watchdog  
tw(WDRS)  
td(EX)  
512tc(OSCCLK)  
cycles  
Delay time, address/data valid after XRS high  
Oscillator start-up time  
32tc(OSCCLK)  
10  
cycles  
ms  
(2)  
tOSCST  
1
th(boot-mode)  
Hold time for boot-mode pins  
200tc(OSCCLK)  
cycles  
(1) In addition to the tw(RSL1) requirement, XRS has to be low at least for 1 ms after VDD reaches 1.5 V.  
(2) Dependent on crystal/resonator and board design.  
XCLKIN  
X1/X2  
OSCCLK/8  
XCLKOUT  
XRS  
User-Code Dependent  
OSCCLK * 5  
t
w(RSL2)  
User-Code Execution Phase  
t
d(EX)  
Address/Data/  
Control  
(Internal)  
(Don’t Care)  
User-Code Execution  
(A)  
t
Boot-ROM Execution Starts  
GPIO Pins as Input  
h(boot-mode)  
Boot-Mode  
Pins  
Peripheral/GPIO Function  
User-Code Dependent  
Peripheral/GPIO Function  
User-Code Execution Starts  
I/O Pins  
GPIO Pins as Input (State Depends on Internal PU/PD)  
User-Code Dependent  
A. After reset, the Boot ROM code samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code branches to  
destination memory or boot code function. If Boot ROM code executes after power-on conditions (in debugger environment), the Boot  
code execution time is based on the current SYSCLKOUT speed. The SYSCLKOUT will be based on user environment and could be  
with or without PLL enabled.  
Figure 8-6. Warm Reset  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 8-7 shows an example for the effect of writing into PLLCR register. In the first phase, PLLCR = 0x0004  
and SYSCLKOUT = OSCCLK x 2. The PLLCR is then written with 0x0008. Right after the PLLCR register is  
written, the PLL lock-up phase begins. During this phase, SYSCLKOUT = OSCCLK/2. After the PLL lock-up is  
complete (which takes 131072 OSCCLK cycles), SYSCLKOUT reflects the new operating frequency, OSCCLK x  
4.  
OSCCLK  
Write to PLLCR  
SYSCLKOUT  
OSCCLK * 2  
OSCCLK/2  
OSCCLK * 4  
(Current CPU  
Frequency)  
(CPU Frequency While PLL is Stabilizing  
With the Desired Frequency. This Period  
(PLL Lock-up Time, t ) is  
(Changed CPU Frequency)  
p
131072 OSCCLK Cycles Long.)  
Figure 8-7. Example of Effect of Writing Into PLLCR Register  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.14.3 Clock Requirements and Characteristics  
8.14.3.1 Input Clock Frequency  
PARAMETER  
MIN  
20  
20  
4
TYP MAX UNIT  
Resonator (X1/X2)  
35  
Crystal (X1/X2)  
35  
MHz  
100  
fx  
Input clock frequency  
100-MHz device  
60-MHz device  
External oscillator/clock  
source (XCLKIN or X1 pin)  
4
60  
fl  
Limp mode SYSCLKOUT frequency range (with /2 enabled)  
1–5  
MHz  
8.14.3.2 XCLKIN Timing Requirements - PLL Enabled  
NO.(1)  
MIN  
MAX UNIT  
C8  
C9  
tc(CI)  
tf(CI)  
Cycle time, XCLKIN  
33.3  
200  
6
ns  
ns  
ns  
Fall time, XCLKIN  
C10 tr(CI)  
Rise time, XCLKIN  
6
C11 tw(CIL)  
C12 tw(CIH)  
Pulse duration, XCLKIN low as a percentage of tc(OSCCLK)  
Pulse duration, XCLKIN high as a percentage of tc(OSCCLK)  
45%  
45%  
55%  
55%  
(1) This applies to the X1 pin also.  
8.14.3.3 XCLKIN Timing Requirements - PLL Disabled  
NO.(1)  
MIN  
10  
MAX UNIT  
100-MHz device  
60-MHz device  
Up to 20 MHz  
250  
ns  
250  
C8 tc(CI)  
C9 tf(CI)  
C10 tr(CI)  
Cycle time, XCLKIN  
Fall time, XCLKIN  
Rise time, XCLKIN  
16.67  
6
2
ns  
ns  
ns  
ns  
20 MHz to 100 MHz  
Up to 20 MHz  
6
20 MHz to 100 MHz  
2
C11 tw(CIL)  
C12 tw(CIH)  
Pulse duration, XCLKIN low as a percentage of tc(OSCCLK)  
Pulse duration, XCLKIN high as a percentage of tc(OSCCLK)  
45%  
45%  
55%  
55%  
The possible configuration modes are shown in Table 9-33.  
8.14.3.4 XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)  
NO.  
PARAMETER  
MIN  
TYP  
MAX UNIT  
(1) (2)  
100-MHz device  
60-MHz device  
10  
C1 tc(XCO)  
Cycle time, XCLKOUT  
ns  
16.67  
C3 tf(XCO)  
C4 tr(XCO)  
C5 tw(XCOL)  
C6 tw(XCOH)  
tp  
Fall time, XCLKOUT  
2
2
ns  
ns  
Rise time, XCLKOUT  
Pulse duration, XCLKOUT low  
Pulse duration, XCLKOUT high  
PLL lock time  
H – 2  
H – 2  
H + 2  
ns  
ns  
H + 2  
(3)  
131072tc(OSCCLK)  
cycles  
(1) A load of 40 pF is assumed for these parameters.  
(2) H = 0.5tc(XCO)  
(3) OSCCLK is either the output of the on-chip oscillator or the output from an external oscillator.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
C10  
C9  
C8  
(A)  
XCLKIN  
C6  
C3  
C1  
C4  
C5  
(B)  
XCLKOUT  
A. The relationship of XCLKIN to XCLKOUT depends on the divide factor chosen. The waveform relationship shown is intended to illustrate  
the timing parameters only and may differ based on actual configuration.  
B. XCLKOUT configured to reflect SYSCLKOUT.  
Figure 8-8. Clock Timing  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.14.4 Peripherals  
8.14.4.1 General-Purpose Input/Output (GPIO)  
8.14.4.1.1 GPIO - Output Timing  
8.14.4.1.1.1 General-Purpose Output Switching Characteristics  
PARAMETER  
MIN  
MAX  
8
UNIT  
ns  
tr(GPO)  
tf(GPO)  
tfGPO  
Rise time, GPIO switching low to high  
Fall time, GPIO switching high to low  
Toggling frequency, GPO pins  
All GPIOs  
All GPIOs  
8
ns  
25  
MHz  
GPIO  
t
r(GPO)  
t
f(GPO)  
Figure 8-9. General-Purpose Output Timing  
8.14.4.1.2 GPIO - Input Timing  
8.14.4.1.2.1 General-Purpose Input Timing Requirements  
MIN  
1tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
cycles  
cycles  
cycles  
QUALPRD = 0  
tw(SP)  
Sampling period  
QUALPRD ≠ 0  
2tc(SCO) * QUALPRD  
tw(SP) * (n(1) – 1)  
tw(IQSW)  
Input qualifier sampling window  
Pulse duration, GPIO low/high  
Synchronous mode  
With input qualifier  
2tc(SCO)  
(2)  
tw(GPI)  
tw(IQSW) + tw(SP) + 1tc(SCO)  
(1) "n" represents the number of qualification samples as defined by GPxQSELn register.  
(2) For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal.  
(A)  
GPIO Signal  
GPxQSELn = 1,0 (6 samples)  
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
1
t
Sampling Period determined  
(B)  
w(SP)  
by GPxCTRL[QUALPRD]  
t
w(IQSW)  
(C)  
(SYSCLKOUT cycle * 2 * QUALPRD) * 5  
)
Sampling Window  
SYSCLKOUT  
QUALPRD = 1  
(SYSCLKOUT/2)  
(D)  
Output From  
Qualifier  
A. This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It can vary from 00 to  
0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLKOUT cycle. For any other value "n", the qualification sampling period in  
2n SYSCLKOUT cycles (that is, at every 2n SYSCLKOUT cycles, the GPIO pin will be sampled).  
B. The qualification period selected via the GPxCTRL register applies to groups of 8 GPIO pins.  
C. The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is used.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
D. In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLKOUT cycles or greater. In other  
words, the inputs should be stable for (5 x QUALPRD x 2) SYSCLKOUT cycles. This would ensure 5 sampling periods for detection to  
occur. Since external signals are driven asynchronously, an 13-SYSCLKOUT-wide pulse ensures reliable recognition.  
Figure 8-10. Sampling Mode  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.14.4.1.3 Sampling Window Width for Input Signals  
The following section summarizes the sampling window width for input signals for various input qualifier  
configurations.  
Sampling frequency denotes how often a signal is sampled with respect to SYSCLKOUT.  
Sampling frequency = SYSCLKOUT/(2 * QUALPRD), if QUALPRD ≠ 0  
Sampling frequency = SYSCLKOUT, if QUALPRD = 0  
Sampling period = SYSCLKOUT cycle x 2 x QUALPRD, if QUALPRD ≠ 0  
In the above equations, SYSCLKOUT cycle indicates the time period of SYSCLKOUT.  
Sampling period = SYSCLKOUT cycle, if QUALPRD = 0  
In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of the  
signal. This is determined by the value written to GPxQSELn register.  
Case 1:  
Qualification using 3 samples  
Sampling window width = (SYSCLKOUT cycle x 2 x QUALPRD) x 2, if QUALPRD ≠ 0  
Sampling window width = (SYSCLKOUT cycle) x 2, if QUALPRD = 0  
Case 2:  
Qualification using 6 samples  
Sampling window width = (SYSCLKOUT cycle x 2 x QUALPRD) x 5, if QUALPRD ≠ 0  
Sampling window width = (SYSCLKOUT cycle) x 5, if QUALPRD = 0  
SYSCLK  
GPIOxn  
tw(GPI)  
Figure 8-11. General-Purpose Input Timing  
Note  
The pulse-width requirement for general-purpose input is applicable for the XINT2_ADCSOC signal as  
well.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.14.4.1.4 Low-Power Mode Wakeup Timing  
Section 8.14.4.1.4.1 shows the timing requirements, Section 8.14.4.1.4.2 shows the switching characteristics,  
and Figure 8-12 shows the timing diagram for IDLE mode.  
8.14.4.1.4.1 IDLE Mode Timing Requirements  
MIN(1)  
2tc(SCO)  
MAX  
UNIT  
Without input qualifier  
With input qualifier  
tw(WAKE-INT)  
Pulse duration, external wake-up signal  
cycles  
5tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 8.14.4.1.2.1.  
8.14.4.1.4.2 IDLE Mode Switching Characteristics  
PARAMETER(1)  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Delay time, external wake signal to program  
execution resume (2)  
Wake-up from Flash  
Flash module in active state  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
20tc(SCO)  
cycles  
cycles  
cycles  
20tc(SCO) + tw(IQSW)  
1050tc(SCO)  
td(WAKE-IDLE)  
Wake-up from Flash  
Flash module in sleep state  
1050tc(SCO) + tw(IQSW)  
20tc(SCO)  
Wake-up from SARAM  
20tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 8.14.4.1.2.1.  
(2) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. execution of an ISR (triggered  
by the wake up) signal involves additional latency.  
t
d(WAKE−IDLE)  
Address/Data  
(internal)  
XCLKOUT  
t
w(WAKE−INT)  
(A)  
WAKE INT  
A. WAKE INT can be any enabled interrupt, WDINT, XNMI, or XRS.  
Figure 8-12. IDLE Entry and Exit Timing  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.14.4.1.4.3 STANDBY Mode Timing Requirements  
TEST CONDITIONS  
MIN  
3tc(OSCCLK)  
MAX  
UNIT  
Without input qualification  
With input qualification(1)  
Pulse duration, external  
wake-up signal  
tw(WAKE-INT)  
cycles  
(2 + QUALSTDBY) * tc(OSCCLK)  
(1) QUALSTDBY is a 6-bit field in the LPMCR0 register.  
8.14.4.1.4.4 STANDBY Mode Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Delay time, IDLE instruction  
executed to XCLKOUT low  
td(IDLE-XCOL)  
32tc(SCO)  
45tc(SCO) cycles  
Delay time, external wake signal to  
program execution resume(1)  
Wake up from flash  
Flash module in active state  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
100tc(SCO)  
cycles  
100tc(SCO) + tw(WAKE-INT)  
td(WAKE-STBY)  
Wake up from flash  
Flash module in sleep state  
1125tc(SCO)  
1125tc(SCO) + tw(WAKE-INT)  
100tc(SCO)  
cycles  
cycles  
Wake up from SARAM  
100tc(SCO) + tw(WAKE-INT)  
(1) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. execution of an ISR (triggered  
by the wake up signal) involves additional latency.  
(A)  
(C)  
(E)  
(D)  
(B)  
(F)  
Device  
Status  
STANDBY  
STANDBY  
Normal Execution  
Flushing Pipeline  
Wake−up  
Signal  
t
w(WAKE-INT)  
t
d(WAKE-STBY)  
X1/X2 or  
X1 or  
XCLKIN  
XCLKOUT  
t
d(IDLE−XCOL)  
A. IDLE instruction is executed to put the device into STANDBY mode.  
B. The PLL block responds to the STANDBY signal. SYSCLKOUT is held for approximately 32 cycles (if CLKINDIV = 0) or 64 cycles (if  
CLKINDIV = 1) before being turned off. This delay enables the CPU pipe and any other pending operations to flush properly.  
C. Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in STANDBY mode.  
D. The external wake-up signal is driven active.  
E. After a latency period, the STANDBY mode is exited.  
F. Normal execution resumes. The device will respond to the interrupt (if enabled).  
Figure 8-13. STANDBY Entry and Exit Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.14.4.1.4.5 HALT Mode Timing Requirements  
MIN  
MAX  
UNIT  
cycles  
cycles  
(1)  
tw(WAKE-GPIO)  
tw(WAKE-XRS)  
Pulse duration, GPIO wake-up signal  
Pulse duration, XRS wakeup signal  
toscst + 2tc(OSCCLK)  
toscst + 8tc(OSCCLK)  
(1) See Section 8.14.2.1 for an explanation of toscst  
.
8.14.4.1.4.6 HALT Mode Switching Characteristics  
PARAMETER  
MIN  
32tc(SCO)  
MAX  
45tc(SCO)  
UNIT  
cycles  
cycles  
td(IDLE-XCOL)  
tp  
Delay time, IDLE instruction executed to XCLKOUT low  
PLL lock-up time  
131072tc(OSCCLK)  
Delay time, PLL lock to program execution resume  
Wake up from flash  
– Flash module in sleep state  
1125tc(SCO)  
cycles  
td(WAKE-HALT)  
Wake up from SARAM  
35tc(SCO)  
cycles  
(G)  
(A)  
(C)  
(E)  
(B)  
(D)  
HALT  
(F)  
Device  
Status  
HALT  
Flushing Pipeline  
PLL Lock-up Time  
Normal  
Execution  
Wake-up Latency  
GPIOn  
t
d(WAKE−HALT)  
t
w(WAKE-GPIO)  
t
p
X1/X2  
or XCLKIN  
Oscillator Start-up Time  
XCLKOUT  
t
d(IDLE−XCOL)  
A. IDLE instruction is executed to put the device into HALT mode.  
B. The PLL block responds to the HALT signal. SYSCLKOUT is held for approximately 32 cycles (if CLKINDIV = 0) or 64 cycles (if  
CLKINDIV = 1) before the oscillator is turned off and the CLKIN to the core is stopped. This delay enables the CPU pipe and any other  
pending operations to flush properly.  
C. Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as the clock source,  
the internal oscillator is shut down as well. The device is now in HALT mode and consumes absolute minimum power.  
D. When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator wake-up sequence  
is initiated. The GPIO pin should be driven high only after the oscillator has stabilized. This enables the provision of a clean clock signal  
during the PLL lock sequence. Since the falling edge of the GPIO pin asynchronously begins the wakeup process, care should be taken  
to maintain a low noise environment prior to entering and during HALT mode.  
E. Once the oscillator has stabilized, the PLL lock sequence is initiated, which takes 131,072 OSCCLK (X1/X2 or X1 or XCLKIN) cycles.  
Note that these 131,072 clock cycles are applicable even when the PLL is disabled (that is, code execution will be delayed by this  
duration even when the PLL is disabled).  
F. Clocks to the core and peripherals are enabled. The HALT mode is now exited. The device will respond to the interrupt (if enabled), after  
a latency.  
G. Normal operation resumes.  
Figure 8-14. HALT Wake-Up Using GPIOn  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.14.4.2 Enhanced Control Peripherals  
8.14.4.2.1 Enhanced Pulse Width Modulator (ePWM) Timing  
PWM refers to PWM outputs on ePWM1–6. Section 8.14.4.2.1.1 shows the PWM timing requirements and  
Section 8.14.4.2.1.2, switching characteristics.  
8.14.4.2.1.1 ePWM Timing Requirements  
TEST CONDITIONS(1)  
Asynchronous  
MIN  
2tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
cycles  
tw(SYCIN)  
Sync input pulse width  
Synchronous  
2tc(SCO)  
With input qualifier  
1tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 8.14.4.1.2.1.  
8.14.4.2.1.2 ePWM Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
20  
MAX  
UNIT  
ns  
tw(PWM)  
Pulse duration, PWMx output high/low  
Sync output pulse width  
tw(SYNCOUT)  
td(PWM)tza  
8tc(SCO)  
cycles  
Delay time, trip input active to PWM forced high  
Delay time, trip input active to PWM forced low  
no pin load  
25  
20  
ns  
ns  
td(TZ-PWM)HZ  
Delay time, trip input active to PWM Hi-Z  
8.14.4.2.2 Trip-Zone Input Timing  
8.14.4.2.2.1 Trip-Zone input Timing Requirements  
MIN(1)  
1tc(SCO)  
2tc(SCO)  
MAX UNIT  
cycles  
Asynchronous  
Synchronous  
tw(TZ)  
Pulse duration, TZx input low  
cycles  
With input qualifier  
1tc(SCO) + tw(IQSW)  
cycles  
(1) For an explanation of the input qualifier parameters, see Section 8.14.4.1.2.1.  
SYSCLK  
tw(TZ)  
TZ(A)  
td(TZ-PWM)HZ  
PWM(B)  
A. TZ: TZ1, TZ2, TZ3, TZ4 , TZ5, TZ6  
B. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery software.  
Figure 8-15. PWM Hi-Z Characteristics  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.14.4.2.3 High-Resolution PWM Timing  
Section 8.14.4.2.3.1 shows the high-resolution PWM switching characteristics.  
8.14.4.2.3.1 High-Resolution PWM Characteristics at SYSCLKOUT = 60–100 MHz  
MIN  
TYP MAX UNIT  
150 310 ps  
Micro Edge Positioning (MEP) step size(1)  
(1) The MEP step size will be largest at high temperature and minimum voltage on VDD. MEP step size will increase with higher  
temperature and lower voltage and decrease with lower temperature and higher voltage.  
Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI  
software libraries for details of using SFO function in end applications. SFO functions help to estimate the number of MEP steps per  
SYSCLKOUT period dynamically while the HRPWM is in operation.  
8.14.4.2.4 Enhanced Capture (eCAP) Timing  
Section 8.14.4.2.4.1 shows the eCAP timing requirement and Section 8.14.4.2.4.2 shows the eCAP switching  
characteristics.  
8.14.4.2.4.1 Enhanced Capture (eCAP) Timing Requirement  
TEST CONDITIONS(1)  
Asynchronous  
MIN  
2tc(SCO)  
MAX UNIT  
tw(CAP)  
Capture input pulse width  
Synchronous  
2tc(SCO)  
cycles  
With input qualifier  
1tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 8.14.4.1.2.1.  
8.14.4.2.4.2 eCAP Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
tw(APWM)  
Pulse duration, APWMx output high/low  
20  
ns  
8.14.4.2.5 Enhanced Quadrature Encoder Pulse (eQEP) Timing  
Section 8.14.4.2.5.1 shows the eQEP timing requirement and Section 8.14.4.2.5.2 shows the eQEP switching  
characteristics.  
8.14.4.2.5.1 Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements  
TEST CONDITIONS(1)  
Asynchronous(2)/synchronous  
With input qualifier  
MIN  
MAX  
UNIT  
2tc(SCO)  
tw(QEPP)  
QEP input period  
cycles  
2[1tc(SCO) + tw(IQSW)  
]
Asynchronous(2)/synchronous  
2tc(SCO)  
2tc(SCO) +tw(IQSW)  
2tc(SCO)  
tw(INDEXH)  
tw(INDEXL)  
tw(STROBH)  
tw(STROBL)  
QEP Index Input High time  
QEP Index Input Low time  
QEP Strobe High time  
QEP Strobe Input Low time  
cycles  
cycles  
cycles  
cycles  
With input qualifier  
Asynchronous(2)/synchronous  
With input qualifier  
2tc(SCO) + tw(IQSW)  
2tc(SCO)  
2tc(SCO) + tw(IQSW)  
2tc(SCO)  
Asynchronous(2)/synchronous  
With input qualifier  
Asynchronous(2)/synchronous  
With input qualifier  
2tc(SCO) +tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 8.14.4.1.2.1.  
(2) Refer to the TMS320F280x, TMS320C280x, TMS320F2801x DSPs silicon errata for limitations in the asynchronous mode.  
8.14.4.2.5.2 eQEP Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
td(CNTR)xin  
Delay time, external clock to counter increment  
4tc(SCO) cycles  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
 
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
PARAMETER  
td(PCS-OUT)QEP Delay time, QEP input edge to position compare sync output  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
6tc(SCO) cycles  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.14.4.2.6 ADC Start-of-Conversion Timing  
8.14.4.2.6.1 External ADC Start-of-Conversion Switching Characteristics  
PARAMETER  
MIN  
MAX  
UNIT  
tw(ADCSOCAL)  
Pulse duration, ADCSOCAO low  
32tc(HCO )  
cycles  
t
w(ADCSOCAL)  
ADCSOCAO  
or  
ADCSOCBO  
Figure 8-16. ADCSOCAO or ADCSOCBO Timing  
8.14.4.3 External Interrupt Timing  
8.14.4.3.1 External Interrupt Timing Requirements  
MIN(1)  
1tc(SCO)  
MAX  
UNIT  
Synchronous  
With qualifier  
(2)  
tw(INT)  
Pulse duration, INT input low/high  
cycles  
1tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Section 8.14.4.1.2.1.  
(2) This timing is applicable to any GPIO pin configured for ADCSOC functionality.  
8.14.4.3.2 External Interrupt Switching Characteristics  
PARAMETER(1)  
MIN  
MAX  
tw(IQSW) + 12tc(SCO)  
UNIT  
td(INT)  
Delay time, INT low/high to interrupt-vector fetch  
cycles  
(1) For an explanation of the input qualifier parameters, see Section 8.14.4.1.2.1.  
t
w(INT)  
XNMI, XINT1, XINT2  
t
d(INT)  
Address bus  
(internal)  
Interrupt Vector  
Figure 8-17. External Interrupt Timing  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.14.4.4 I2C Electrical Specification and Timing  
8.14.4.4.1 I2C Timing  
TEST CONDITIONS  
MIN  
MAX  
400  
UNIT  
I2C clock module frequency is between  
7 MHz and 12 MHz and I2C prescaler and  
clock divider registers are configured  
appropriately  
fSCL  
SCL clock frequency  
kHz  
Vil  
Low level input voltage  
High level input voltage  
Input hysteresis  
0.3 VDDIO  
V
V
V
V
Vih  
Vhys  
Vol  
0.7 VDDIO  
0.05 VDDIO  
0
Low level output voltage  
3 mA sink current  
0.4  
I2C clock module frequency is between  
7 MHz and 12 MHz and I2C prescaler and  
clock divider registers are configured  
appropriately  
tLOW Low period of SCL clock  
tHIGH High period of SCL clock  
1.3  
μs  
I2C clock module frequency is between  
7 MHz and 12 MHz and I2C prescaler and  
clock divider registers are configured  
appropriately  
0.6  
μs  
Input current with an input voltage  
between 0.1 VDDIO and 0.9 VDDIO MAX  
lI  
–10  
10  
μA  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.14.4.5 Serial Peripheral Interface (SPI) Timing  
This section contains both Master Mode and Slave Mode timing data.  
8.14.4.5.1 SPI Master Mode Timing  
Section 8.14.4.5.1.1 lists the master mode timing (clock phase = 0) and Section 8.14.4.5.1.2 lists the master  
mode timing (clock phase = 1). Figure 8-18 and Figure 8-19 show the timing waveforms.  
8.14.4.5.1.1 SPI Master Mode External Timing (Clock Phase = 0)  
NO.(5)  
BRR EVEN  
MIN  
BRR ODD  
MIN  
(4) (3) (2)  
PARAMETER  
UNIT  
(1)  
MAX  
MAX  
1
tc(SPC)M  
Cycle time, SPICLK  
4tc(LSPCLK)  
128tc(LSPCLK)  
5tc(LSPCLK)  
127tc(LSPCLK)  
ns  
ns  
Pulse duration, SPICLK first  
pulse  
0.5tc(SPC)M + 0.5tc(LSPCLK)  
– 10  
0.5tc(SPC)M  
+
2
3
tw(SPC1)M  
0.5tc(SPC)M – 10  
0.5tc(SPC)M + 10  
0.5tc(SPC)M + 10  
10  
0.5tc(LSPCLK) + 10  
Pulse duration, SPICLK second  
pulse  
0.5tc(SPC)M – 0.5tc(LSPCLK)  
– 10  
0.5tc(SPC)M  
tw(SPC2)M  
td(SIMO)M  
tv(SIMO)M  
tsu(SOMI)M  
th(SOMI)M  
td(SPC)M  
td(STE)M  
0.5tc(SPC)M – 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5tc(LSPCLK) + 10  
Delay time, SPICLK to  
SPISIMO valid  
4
10  
Valid time, SPISIMO valid after  
SPICLK  
0.5tc(SPC)M – 0.5tc(LSPCLK)  
– 10  
5
0.5tc(SPC)M – 10  
Setup time, SPISOMI before  
SPICLK  
8
35  
0
35  
0
Hold time, SPISOMI valid after  
SPICLK  
9
Delay time, SPISTE active to  
SPICLK  
1.5tc(SPC)M  
1.5tc(SPC)M –  
3tc(SYSCLK) – 10  
23  
24  
3tc(SYSCLK) – 10  
Delay time, SPICLK to SPISTE  
inactive  
0.5tc(SPC)M – 0.5tc(LSPCLK)  
– 10  
0.5tc(SPC)M – 10  
(1) The MASTER / SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR +1)  
(3) tc(LCO) = LSPCLK cycle time  
(4) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MAX, slave mode receive 12.5-MHz MAX.  
(5) The active edge of the SPICLK signal referenced is controlled by the clock polarity bit (SPICCR.6).  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
SPISTE  
24  
23  
Figure 8-18. SPI Master Mode External Timing (Clock Phase = 0)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
www.ti.com  
UNIT  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
8.14.4.5.1.2 SPI Master Mode External Timing (Clock Phase = 1)  
NO.(1)  
BRR EVEN  
MIN  
BRR ODD  
MIN  
(2) (3) (4)  
PARAMETER  
(5)  
MAX  
MAX  
127tc(LSPCLK)  
0.5tc(SPC)M –  
1
tc(SPC)M  
Cycle time, SPICLK  
4tc(LSPCLK)  
128tc(LSPCLK)  
5tc(LSPCLK)  
0.5tc(SPC)M  
ns  
ns  
Pulse duration, SPICLK first  
pulse  
2
3
tw(SPC1)M  
0.5tc(SPC)M – 10  
0.5tc(SPC)M + 10  
0.5tc(SPC)M + 10  
0.5tc(LSPCLK) – 10  
0.5tc(LSPCLK) + 10  
Pulse duration, SPICLK second  
pulse  
0.5tc(SPC)M  
+
0.5tc(SPC)M  
0.5tc(LSPCLK) + 10  
+
tw(SPC2)M  
td(SIMO)M  
tv(SIMO)M  
tsu(SOMI)M  
th(SOMI)M  
td(SPC)M  
td(STE)M  
0.5tc(SPC)M – 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5tc(LSPCLK) – 10  
Delay time, SPISIMO valid to  
SPICLK  
0.5tc(SPC)M  
+
6
0.5tc(SPC)M – 10  
0.5tc(LSPCLK) – 10  
Valid time, SPISIMO valid after  
SPICLK  
0.5tc(SPC)M  
7
0.5tc(SPC)M – 10  
0.5tc(LSPCLK) – 10  
Setup time, SPISOMI before  
SPICLK  
10  
11  
23  
24  
35  
0
35  
Hold time, SPISOMI valid after  
SPICLK  
0
Delay time, SPISTE active to  
SPICLK  
2tc(SPC)M  
2tc(SPC)M  
3tc(SYSCLK) – 10  
3tc(SYSCLK) – 10  
Delay time, SPICLK to SPISTE  
inactive  
0.5tc(SPC)  
0.5tc(SPC) – 10  
0.5tc(LSPCLK) – 10  
(1) The MASTER/SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is set.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25 MHz MAX, master mode receive 12.5 MHz MAX  
Slave mode transmit 12.5 MHz MAX, slave mode receive 12.5 MHz MAX.  
(4) tc(LCO) = LSPCLK cycle time  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
6
7
SPISIMO  
Master Out Data Is Valid  
10  
11  
Master In Data Must  
Be Valid  
SPISOMI  
SPISTE  
24  
23  
Figure 8-19. SPI Master Mode External Timing (Clock Phase = 1)  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.14.4.5.2 SPI Slave Mode Timing  
Section 8.14.4.5.2.1 lists the slave mode timing (clock phase = 0) and Section 8.14.4.5.2.2 lists the slave mode  
timing (clock phase = 1). Figure 8-20 and Figure 8-21 show the timing waveforms.  
8.14.4.5.2.1 SPI Slave Mode External Timing (Clock Phase = 0)  
NO.  
(1) (2)  
PARAMETER  
MIN  
MAX UNIT  
(4) (3)  
(5)  
12 tc(SPC)S  
13 tw(SPC1)S  
14 tw(SPC2)S  
15 td(SOMI)S  
16 tv(SOMI)S  
19 tsu(SIMO)S  
20 th(SIMO)S  
25 tsu(STE)S  
26 th(STE)S  
Cycle time, SPICLK  
4tc(SYSCLK)  
2tc(SYSCLK) – 1  
2tc(SYSCLK) – 1  
ns  
ns  
ns  
Pulse duration, SPICLK first pulse  
Pulse duration, SPICLK second pulse  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI data valid after SPICLK  
Setup time, SPISIMO valid before SPICLK  
Hold time, SPISIMO data valid after SPICLK  
Setup time, SPISTE active before SPICLK  
Hold time, SPISTE inactive after SPICLK  
35  
ns  
ns  
ns  
ns  
ns  
ns  
0
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
(1) The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) tc(LCO) = LSPCLK cycle time  
(4) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
16  
SPISOMI  
SPISOMI Data Is Valid  
19  
20  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
25  
26  
Figure 8-20. SPI Slave Mode External Timing (Clock Phase = 0)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.14.4.5.2.2 SPI Slave Mode External Timing (Clock Phase = 1)  
NO.  
(1) (2)  
PARAMETER  
MIN  
MAX UNIT  
(3) (4)  
12 tc(SPC)S  
13 tw(SPC1)S  
14 tw(SPC2)S  
17 td(SOMI)S  
18 tv(SOMI)S  
21 tsu(SIMO)S  
22 th(SIMO)S  
25 tsu(STE)S  
26 th(STE)S  
Cycle time, SPICLK  
4tc(SYSCLK)  
2tc(SYSCLK) – 1  
2tc(SYSCLK) – 1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Pulse duration, SPICLK first pulse  
Pulse duration, SPICLK second pulse  
Delay time, SPICLK to SPISOMI valid  
Valid time, SPISOMI data valid after SPICLK  
Setup time, SPISIMO valid before SPICLK  
Hold time, SPISIMO data valid after SPICLK  
Setup time, SPISTE active before SPICLK  
Hold time, SPISTE inactive after SPICLK  
35  
0
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
1.5tc(SYSCLK)  
(1) The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 25-MHz MAX, master mode receive 12.5-MHz MAX  
Slave mode transmit 12.5-MHz MAX, slave mode receive 12.5-MHz MAX.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
17  
SPISOMI  
SPISOMI Data Is Valid  
Data Valid  
Data Valid  
18  
21  
22  
SPISIMO Data  
Must Be Valid  
SPISIMO  
SPISTE  
26  
25  
Figure 8-21. SPI Slave Mode External Timing (Clock Phase = 1)  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.14.5 Emulator Connection Without Signal Buffering for the DSP  
Figure 8-22 shows the connection between the DSP and JTAG header for a single-processor configuration. If the  
distance between the JTAG header and the DSP is greater than 6 inches, the emulation signals must be  
buffered. If the distance is less than 6 inches, buffering is typically not needed. Figure 8-22 shows the simpler,  
no-buffering situation. For the pullup/pulldown resistor values, see Section 7.2.  
6 inches or less  
VDDIO  
VDDIO  
13  
5
EMU0  
EMU1  
TRST  
TMS  
TDI  
EMU0  
EMU1  
PD  
14  
2
4
6
8
GND  
GND  
GND  
GND  
GND  
TRST  
TMS  
1
3
TDI  
7
10  
12  
TDO  
TCK  
TDO  
11  
TCK  
9
TCK_RET  
DSP  
JTAG Header  
Figure 8-22. Emulator Connection Without Signal Buffering for the DSP  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.14.6 Flash Timing  
8.14.6.1 Flash Endurance for A and S Temperature Material  
ERASE/PROGRAM  
MIN  
TYP  
MAX  
UNIT  
TEMPERATURE(1)  
Nf  
Flash endurance for the array (write/erase cycles)  
0°C to 85°C (ambient)  
0°C to 85°C (ambient)  
20000  
50000  
cycles  
write  
NOTP OTP endurance for the array (write cycles)  
1
(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.  
8.14.6.2 Flash Endurance for Q Temperature Material  
ERASE/PROGRAM  
MIN  
TYP  
MAX  
UNIT  
TEMPERATURE(1)  
Nf  
Flash endurance for the array (write/erase cycles)  
–40°C to 125°C (ambient)  
–40°C to 125°C (ambient)  
20000  
50000  
cycles  
write  
NOTP OTP endurance for the array (write cycles)  
1
(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.  
8.14.6.3 Flash Parameters at 100-MHz SYSCLKOUT  
PARAMETER  
16-Bit Word  
TEST CONDITIONS  
MIN  
TYP  
50  
500  
250  
125  
2
MAX  
UNIT  
μs  
16K Sector  
8K Sector  
4K Sector  
16K Sector  
2000(2)  
2000(2)  
2000(2)  
15(2)  
ms  
ms  
ms  
s
Program  
Time(1)  
Erase Time(3) 8K Sector  
2
15(2)  
s
4K Sector  
2
15(2)  
s
Erase  
Program  
75  
35  
mA  
mA  
VDD3VFL current consumption during the Erase/  
Program cycle  
(4)  
IDD3VFLP  
VDD current consumption during Erase/  
Program cycle  
(4)  
IDDP  
140  
20  
mA  
mA  
VDDIO current consumption during Erase/  
Program cycle  
(4)  
IDDIOP  
(1) Program time is at the maximum device frequency. The programming time indicated in this table is applicable only when all the  
required code/data is available in the device RAM, ready for programming. Program time includes overhead of the flash state machine  
but does not include the time to transfer the following into RAM:  
the code that uses flash API to program the flash  
the Flash API itself  
Flash data to be programmed  
(2) The parameters mentioned in the MAX column are for the first 100 Erase/Program cycles.  
(3) The on-chip flash memory is in an erased state when the device is shipped from TI. As such, erasing the flash memory is not required  
before programming, when programming the device for the first time. However, the erase operation is needed on all subsequent  
programming operations.  
(4) Typical parameters as seen at room temperature including function call overhead, with all peripherals off. It is important to maintain a  
stable power supply during the entire flash programming process. It is conceivable that device current consumption during flash  
programming could be higher than normal operating conditions. The power supply used should ensure VMIN on the supply rails at all  
times, as specified in the Recommended Operating Conditions of the data sheet. Any brownout or interruption to power during erasing/  
programming could potentially corrupt the password locations and lock the device permanently. Powering a target board (during flash  
programming) through the USB port is not recommended, as the port may be unable to respond to the power demands placed during  
the programming process.  
8.14.6.4 Flash/OTP Access Timing  
PARAMETER  
MIN  
36  
MAX UNIT  
ta(fp)  
ta(fr)  
Paged flash access time  
Random flash access time  
ns  
ns  
36  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
PARAMETER  
MIN  
MAX UNIT  
ta(OTP)  
OTP access time  
60  
ns  
8.14.6.5 Flash Data Retention Duration  
PARAMETER  
TEST CONDITIONS  
TJ = 55°C  
MIN  
15  
MAX UNIT  
tretention  
Data retention duration  
years  
Table 8-2. Minimum Required Flash/OTP Wait-States at Different Frequencies  
SYSCLKOUT  
(MHz)  
FLASH PAGE  
WAIT-STATE  
FLASH RANDOM  
WAIT-STATE(1)  
SYSCLKOUT (ns)  
OTP WAIT-STATE  
100  
75  
60  
50  
30  
25  
15  
4
10  
13.33  
16.67  
20  
3
2
2
1
1
0
0
0
3
2
2
1
1
1
1
1
5
4
3
2
1
1
1
1
33.33  
40  
66.67  
250  
(1) Random wait-state must be greater than or equal to 1.  
Equations to compute the Flash page wait-state and random wait-state in Table 8-2 are as follows:  
ta(fp)  
Flash Page Wait-State  
+
ǒ Ǔ* 1  
ƪ ƫ(round up to the next highest integer) or 0, whichever is larger  
tc(SCO)  
ta(fr)  
(round up to the next highest integer) or 1, whichever is larger  
Flash Random Wait-State  
+
ǒ Ǔ* 1  
ƪ ƫ  
tc(SCO)  
Equation to compute the OTP wait-state in Table 8-2 is as follows:  
ta(OTP)  
OTP Wait-State  
+
ǒ Ǔ* 1  
ƪ ƫ(round up to the next highest integer) or 1, whichever is larger  
tc(SCO)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.15 On-Chip Analog-to-Digital Converter  
8.15.1 ADC Electrical Characteristics  
over recommended operating conditions  
PARAMETER(1) (2)  
MIN  
TYP  
MAX  
UNIT  
Bits  
DC SPECIFICATIONS  
Resolution  
12  
0.001  
0.001  
0.001  
60-MHz device  
7.5  
12.5  
25  
ADC clock  
100-MHz device  
MHz  
100-MHz device (F2809 only)  
ACCURACY  
1–12.5 MHz ADC clock (6.25 MSPS)  
12.5–25 MHz ADC clock (12.5 MSPS)  
±1.5  
±2  
INL (Integral nonlinearity)  
LSB  
DNL (Differential nonlinearity)(3)  
Offset error(4)  
±1  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
–60  
+60  
Offset error with hardware trimming  
Overall gain error with internal reference(5)  
Overall gain error with external reference  
Channel-to-channel offset variation  
Channel-to-channel gain variation  
ANALOG INPUT  
±4  
–60  
–60  
+60  
+60  
±4  
±4  
Analog input voltage (ADCINx to ADCLO)(6)  
0
3
5
V
ADCLO  
–5  
0
mV  
pF  
μA  
Input capacitance  
10  
Input leakage current  
±5  
INTERNAL VOLTAGE REFERENCE (5)  
VADCREFP - ADCREFP output voltage at the pin  
based on internal reference  
1.275  
0.525  
V
V
VADCREFM - ADCREFM output voltage at the pin  
based on internal reference  
Voltage difference, ADCREFP - ADCREFM  
0.75  
50  
V
Temperature coefficient  
PPM/°C  
EXTERNAL VOLTAGE REFERENCE (5) (7)  
ADCREFSEL[15:14] = 11b  
ADCREFSEL[15:14] = 10b  
ADCREFSEL[15:14] = 01b  
1.024  
1.500  
2.048  
V
V
V
VADCREFIN - External reference voltage input on  
ADCREFIN pin 0.2% or better accurate  
reference recommended  
AC SPECIFICATIONS  
SINAD (100 kHz) Signal-to-noise ratio +  
distortion  
67.5  
dB  
SNR (100 kHz) Signal-to-noise ratio  
68  
–79  
10.9  
83  
dB  
dB  
THD (100 kHz) Total harmonic distortion  
ENOB (100 kHz) Effective number of bits  
SFDR (100 kHz) Spurious free dynamic range  
Bits  
dB  
(1) Tested at 12.5 MHz ADCCLK.  
(2) All voltages listed in this table are with respect to VSSA2  
(3) TI specifies that the ADC will have no missing codes.  
(4) 1 LSB has the weighted value of 3.0/4096 = 0.732 mV.  
.
(5) A single internal/external band gap reference sources both ADCREFP and ADCREFM signals, and hence, these voltages track  
together. The ADC converter uses the difference between these two as its reference. The total gain error listed for the internal  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
reference is inclusive of the movement of the internal bandgap over temperature. Gain error over temperature for the external  
reference option will depend on the temperature profile of the source used.  
(6) Voltages above VDDA + 0.3 V or below VSS - 0.3 V applied to an analog input pin may temporarily affect the conversion of another pin.  
To avoid this, the analog inputs should be kept within these limits.  
(7) TI recommends using high precision external reference TI part REF3020/3120 or equivalent for 2.048-V reference.  
8.15.2 ADC Power-Up Control Bit Timing  
ADC Power Up Delay  
ADC Ready for Conversions  
PWDNBG  
PWDNREF  
t
d(BGR)  
PWDNADC  
t
d(PWD)  
Request for  
ADC  
Conversion  
Figure 8-23. ADC Power-Up Control Bit Timing  
8.15.2.1 ADC Power-Up Delays  
PARAMETER(1)  
MIN  
TYP  
MAX  
UNIT  
ms  
Delay time for band gap reference to be stable. Bits 7 and 6 of the ADCTRL3 register  
(ADCBGRFDN1/0) must be set to 1 before the PWDNADC bit is enabled.  
td(BGR)  
5
Delay time for power-down control to be stable. Bit delay time for band-gap reference  
to be stable. Bits 7 and 6 of the ADCTRL3 register (ADCBGRFDN1/0) must be set to  
1 before the PWDNADC bit is enabled. Bit 5 of the ADCTRL3 register  
20  
50  
μs  
td(PWD)  
1
ms  
(PWDNADC)must be set to 1 before any ADC conversions are initiated.  
(1) Timings maintain compatibility to the 281x ADC module. The 280x ADC also supports driving all 3 bits at the same time and waiting  
td(BGR) ms before first conversion.  
8.15.2.2 Current Consumption for Different ADC Configurations (at 12.5-MHz ADCCLK)  
ADC OPERATING MODE(1)  
CONDITIONS  
BG and REF enabled  
VDDA18  
VDDA3.3  
UNIT  
(2)  
Mode A (Operational Mode):  
30  
2
mA  
PWD disabled  
ADC clock enabled  
BG and REF enabled  
PWD enabled  
Mode B:  
Mode C:  
Mode D:  
9
5
5
0.5  
20  
15  
mA  
μA  
μA  
ADC clock enabled  
BG and REF disabled  
PWD enabled  
ADC clock disabled  
BG and REF disabled  
PWD enabled  
(1) Test Conditions:  
SYSCLKOUT = 100 MHz  
ADC module clock = 12.5 MHz  
ADC performing a continuous conversion of all 16 channels in Mode A  
(2) VDDA18 includes current into VDD1A18 and VDD2A18. VDDA3.3 includes current into VDDA2 and VDDAIO  
.
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
R
on  
Switch  
R
s
ADCIN0  
1 k  
C
C
h
p
Source  
Signal  
ac  
10 pF  
1.64 pF  
28x DSP  
Typical Values of the Input Circuit Components:  
Switch Resistance (R ):  
on  
Sampling Capacitor (C ):  
1 kΩ  
1.64 pF  
h
Parasitic Capacitance (C ): 10 pF  
p
Source Resistance (R ):  
s
50 Ω  
Figure 8-24. ADC Analog Input Impedance Model  
8.15.3 Definitions  
Reference Voltage  
The on-chip ADC has a built-in reference, which provides the reference voltages for the ADC.  
Analog Inputs  
The on-chip ADC consists of 16 analog inputs, which are sampled either one at a time or two channels at a time.  
These inputs are software-selectable.  
Converter  
The on-chip ADC uses a 12-bit four-stage pipeline architecture, which achieves a high sample rate with low  
power consumption.  
Conversion Modes  
The conversion can be performed in two different conversion modes:  
Sequential sampling mode (SMODE = 0)  
Simultaneous sampling mode (SMODE = 1)  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.15.4 Sequential Sampling Mode (Single-Channel) (SMODE = 0)  
In sequential sampling mode, the ADC can continuously convert input signals on any of the channels (Ax to Bx).  
The ADC can start conversions on event triggers from the ePWM, software trigger, or from an external ADCSOC  
signal. If the SMODE bit is 0, the ADC will do conversions on the selected channel on every Sample/Hold pulse.  
The conversion time and latency of the Result register update are explained below. The ADC interrupt flags are  
set a few SYSCLKOUT cycles after the Result register update. The selected channels will be sampled at every  
falling edge of the Sample/Hold pulse. The Sample/Hold pulse width can be programmed to be 1 ADC clock  
wide (minimum) or 16 ADC clocks wide (maximum).  
Sample n+2  
Sample n+1  
Analog Input on  
Sample n  
Channel Ax or Bx  
ADC Clock  
Sample and Hold  
SH Pulse  
SMODE Bit  
t
d(SH)  
t
dschx_n+1  
t
dschx_n  
ADC Event Trigger from  
ePWM or Other Sources  
t
SH  
Figure 8-25. Sequential Sampling Mode (Single-Channel) Timing  
8.15.4.1 Sequential Sampling Mode Timing  
AT 12.5 MHz  
ADC CLOCK,  
SAMPLE n  
SAMPLE n + 1  
REMARKS  
tc(ADCCLK) = 80 ns  
Delay time from event trigger to  
sampling  
td(SH)  
2.5tc(ADCCLK)  
Sample/Hold width/Acquisition  
Width  
(1 + Acqps) *  
tc(ADCCLK)  
Acqps value = 0–15  
ADCTRL1[8:11]  
tSH  
80 ns with Acqps = 0  
320 ns  
Delay time for first result to appear  
in Result register  
td(schx_n)  
td(schx_n+1)  
4tc(ADCCLK)  
Delay time for successive results to  
appear in Result register  
(2 + Acqps) *  
tc(ADCCLK)  
160 ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.15.5 Simultaneous Sampling Mode (Dual-Channel) (SMODE = 1)  
In simultaneous mode, the ADC can continuously convert input signals on any one pair of channels (A0/B0 to  
A7/B7). The ADC can start conversions on event triggers from the ePWM, software trigger, or from an external  
ADCSOC signal. If the SMODE bit is 1, the ADC will do conversions on two selected channels on every Sample/  
Hold pulse. The conversion time and latency of the result register update are explained below. The ADC interrupt  
flags are set a few SYSCLKOUT cycles after the Result register update. The selected channels will be sampled  
simultaneously at the falling edge of the Sample/Hold pulse. The Sample/Hold pulse width can be programmed  
to be 1 ADC clock wide (minimum) or 16 ADC clocks wide (maximum).  
Note  
In simultaneous mode, the ADCIN channel pair select has to be A0/B0, A1/B1, ..., A7/B7, and not in  
other combinations (such as A1/B3, and so forth).  
Sample n  
Sample n+2  
Sample n+1  
Analog Input on  
Channel Ax  
Analog Input on  
Channel Bx  
ADC Clock  
Sample and Hold  
SH Pulse  
SMODE Bit  
t
d(SH)  
t
dschA0_n+1  
t
SH  
ADC Event Trigger from  
ePWM or Other Sources  
t
t
dschA0_n  
dschB0_n+1  
t
dschB0_n  
Figure 8-26. Simultaneous Sampling Mode Timing  
8.15.5.1 Simultaneous Sampling Mode Timing  
AT 12.5 MHz  
ADC CLOCK,  
SAMPLE n  
SAMPLE n + 1  
REMARKS  
tc(ADCCLK) = 80 ns  
Delay time from event trigger to  
sampling  
td(SH)  
2.5tc(ADCCLK)  
Sample/Hold width/Acquisition  
Width  
(1 + Acqps) *  
tc(ADCCLK)  
Acqps value = 0–15  
ADCTRL1[8:11]  
tSH  
80 ns with Acqps = 0  
320 ns  
Delay time for first result to  
appear in Result register  
td(schA0_n)  
td(schB0_n )  
td(schA0_n+1)  
td(schB0_n+1 )  
4tc(ADCCLK)  
5tc(ADCCLK)  
Delay time for first result to  
appear in Result register  
400 ns  
Delay time for successive results  
to appear in Result register  
(3 + Acqps) * tc(ADCCLK)  
(3 + Acqps) * tc(ADCCLK)  
240 ns  
Delay time for successive results  
to appear in Result register  
240 ns  
8.15.6 Detailed Descriptions  
Integral Nonlinearity  
Integral nonlinearity refers to the deviation of each individual code from a line drawn from zero through full scale.  
The point used as zero occurs one-half LSB before the first code transition. The full-scale point is defined as  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
level one-half LSB beyond the last code transition. The deviation is measured from the center of each particular  
code to the true straight line between these two points.  
Differential Nonlinearity  
An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. A  
differential nonlinearity error of less than ±1 LSB ensures no missing codes.  
Zero Offset  
The major carry transition should occur when the analog input is at zero volts. Zero error is defined as the  
deviation of the actual transition from that point.  
Gain Error  
The first code transition should occur at an analog value one-half LSB above negative full scale. The last  
transition should occur at an analog value one and one-half LSB below the nominal full scale. Gain error is the  
deviation of the actual difference between first and last code transitions and the ideal difference between first  
and last code transitions.  
Signal-to-Noise Ratio + Distortion (SINAD)  
SINAD is the ratio of the rms value of the measured input signal to the rms sum of all other spectral components  
below the Nyquist frequency, including harmonics but excluding dc. The value for SINAD is expressed in  
decibels.  
Effective Number of Bits (ENOB)  
For a sine wave, SINAD can be expressed in terms of the number of bits. Using the following formula,  
(
)
SINAD * 1.76  
N +  
6.02  
it is possible to get a measure of performance expressed as N, the effective number of  
bits. Thus, effective number of bits for a device for sine wave inputs at a given input frequency can be calculated  
directly from its measured SINAD.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first nine harmonic components to the rms value of the measured input  
signal and is expressed as a percentage or in decibels.  
Spurious Free Dynamic Range (SFDR)  
SFDR is the difference in dB between the rms amplitude of the input signal and the peak spurious signal.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.16 Migrating From F280x Devices to C280x Devices  
8.16.1 Migration Issues  
The migration issues to be considered while migrating from the F280x devices to C280x devices are as follows:  
The 1K OTP memory available in F280x devices has been replaced by 1K ROM C280x devices.  
Current consumption differs for F280x and C280x devices for all four possible modes. See the appropriate  
electrical section for exact numbers.  
The VDD3VFL pin is the 3.3-V Flash core power pin in F280x devices but is a VDDIO pin in C280x devices.  
F280x and C280x devices are pin-compatible and code-compatible; however, they are electrically different  
with different EMI/ESD profiles. Before ramping production with C280x devices, evaluate performance of the  
hardware design with both devices.  
Addresses 0x3D 7BFC through 0x3D 7BFF in the OTP and addresses 0x3F 7FF0 through 0x3F 7FF5 in the  
main ROM array are reserved for ROM part-specific information and are not available for user applications.  
The paged and random wait-state specifications for the Flash and ROM parts are different. While migrating  
from Flash to ROM parts, the same wait-state values must be used for best-performance compatibility (for  
example, in applications that use software delay loops or where precise interrupt latencies are critical).  
The analog input switch resistance is smaller in C280x devices compared to F280x devices. While migrating  
from a Flash to a ROM device care should be taken to design the analog input circuits to meet the application  
performance required by the sampling network.  
The PART-ID register value is different for Flash and ROM parts.  
From a silicon functionality/errata standpoint, rev A ROM devices are equivalent to rev C flash devices. See  
the errata applicable to 280x devices for details.  
As part of the ROM code generation process, all unused memory locations in the customer application are  
automatically filled with 0xFFFF. Unused locations should not be manually filled with any other data.  
Note  
Requests for ROM versions of the F280x device are not accepted by TI anymore.  
For errata applicable to 280x devices, see the TMS320F280x, TMS320C280x, TMS320F2801x DSPs silicon  
errata.  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8.17 ROM Timing (C280x only)  
8.17.1 ROM/OTP Access Timing  
PARAMETER  
MIN  
19  
MAX  
UNIT  
ns  
ta(rp)  
Paged ROM access time  
ta(rr)  
Random ROM access time  
19  
ns  
ta(ROM)  
ROM (OTP area) access time (1)  
60  
ns  
(1) In C280x devices, a 1K X 16 ROM block replaces the OTP block found in Flash devices.  
Table 8-3. ROM/ROM (OTP area) Minimum Required  
Wait-States at Different Frequencies  
SYSCLKOUT  
(MHz)  
SYSCLKOUT  
(ns)  
PAGE WAIT- RANDOM WAIT-  
STATE  
STATE(1)  
100  
75  
50  
30  
25  
15  
4
10  
13.33  
20  
1
1
0
0
0
0
0
1
1
1
1
1
1
1
33.33  
40  
66.67  
250  
(1) Random wait-state must be greater than or equal to 1.  
Equations to compute the page wait-state and random wait-state in Table 8-3 are as follows:  
ta(rp)  
+
ǒ Ǔ* 1  
ROM Page Wait-State ƪ ƫ(round up to the next highest integer) or 0, whichever is larger  
tc(SCO)  
ta(rr)  
+
ǒ Ǔ* 1  
ƪ ƫ(round up to the next highest integer) or 1, whichever is larger  
ROM Random Wait-State  
tc(SCO)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9 Detailed Description  
9.1 Brief Descriptions  
9.1.1 C28x CPU  
The C28x DSP generation is the newest member of the TMS320C2000DSP platform. The C28x is a very  
efficient C/C++ engine, enabling users to develop not only their system control software in a high-level language,  
but also enables math algorithms to be developed using C/C++. The C28x is as efficient in DSP math tasks as it  
is in system control tasks that typically are handled by microcontroller devices. This efficiency removes the need  
for a second processor in many systems. The 32 x 32-bit MAC capabilities of the C28x and its 64-bit processing  
capabilities, enable the C28x to efficiently handle higher numerical resolution problems that would otherwise  
demand a more expensive floating-point processor solution. Add to this the fast interrupt response with  
automatic context save of critical registers, resulting in a device that is capable of servicing many asynchronous  
events with minimal latency. The C28x has an 8-level-deep protected pipeline with pipelined memory accesses.  
This pipelining enables the C28x to execute at high speeds without resorting to expensive high-speed memories.  
Special branch-look-ahead hardware minimizes the latency for conditional discontinuities. Special store  
conditional operations further improve performance.  
9.1.2 Memory Bus (Harvard Bus Architecture)  
As with many DSP type devices, multiple busses are used to move data between the memories and peripherals  
and the CPU. The C28x memory bus architecture contains a program read bus, data read bus and data write  
bus. The program read bus consists of 22 address lines and 32 data lines. The data read and write busses  
consist of 32 address lines and 32 data lines each. The 32-bit-wide data busses enable single cycle 32-bit  
operations. The multiple bus architecture, commonly termed Harvard Bus, enables the C28x to fetch an  
instruction, read a data value and write a data value in a single cycle. All peripherals and memories attached to  
the memory bus will prioritize memory accesses. Generally, the priority of memory bus accesses can be  
summarized as follows:  
Highest:  
Data Writes  
Program Writes  
Data Reads  
Program Reads  
Fetches  
(Simultaneous data and program writes cannot occur on the memory bus.)  
(Simultaneous data and program writes cannot occur on the memory bus.)  
(Simultaneous program reads and fetches cannot occur on the memory bus.)  
(Simultaneous program reads and fetches cannot occur on the memory bus.)  
Lowest:  
9.1.3 Peripheral Bus  
To enable migration of peripherals between various Texas Instruments (TI) DSP family of devices, the 280x  
devices adopt a peripheral bus standard for peripheral interconnect. The peripheral bus bridge multiplexes the  
various busses that make up the processor Memory Bus into a single bus consisting of 16 address lines and 16  
or 32 data lines and associated control signals. Two versions of the peripheral bus are supported on the 280x.  
One version only supports 16-bit accesses (called peripheral frame 2). The other version supports both 16- and  
32-bit accesses (called peripheral frame 1).  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.1.4 Real-Time JTAG and Analysis  
The 280x implements the standard IEEE 1149.1 JTAG interface. Additionally, the 280x supports real-time mode  
of operation whereby the contents of memory, peripheral and register locations can be modified while the  
processor is running and executing code and servicing interrupts. The user can also single step through non-  
time critical code while enabling time-critical interrupts to be serviced without interference. The 280x implements  
the real-time mode in hardware within the CPU. This is a unique feature to the 280x, no software monitor is  
required. Additionally, special analysis hardware is provided which allows the user to set hardware breakpoint or  
data/address watch-points and generate various user-selectable break events when a match occurs.  
9.1.5 Flash  
The F2809 contains 128K x 16 of embedded flash memory, segregated into eight 16K x 16 sectors. The F2808  
contains 64K x 16 of embedded flash memory, segregated into four 16K x 16 sectors. The F2806 and F2802  
have 32K x 16 of embedded flash, segregated into four 8K x 16 sectors. The F2801 device contains 16K x 16 of  
embedded flash, segregated into four 4K x 16 sectors. All five devices also contain a single 1K x 16 of OTP  
memory at address range 0x3D 7800 – 0x3D 7BFF. The user can individually erase, program, and validate a  
flash sector while leaving other sectors untouched. However, it is not possible to use one sector of the flash or  
the OTP to execute flash algorithms that erase/program other sectors. Special memory pipelining is provided to  
enable the flash module to achieve higher performance. The flash/OTP is mapped to both program and data  
space; therefore, it can be used to execute code or store data information. Note that addresses 0x3F7FF0 –  
0x3F7FF5 are reserved for data variables and should not contain program code.  
Note  
The F2809/F2808/F2806/F2802/F2801 Flash and OTP wait-states can be configured by the  
application. This allows applications running at slower frequencies to configure the flash to use fewer  
wait-states.  
Flash effective performance can be improved by enabling the flash pipeline mode in the Flash options  
register. With this mode enabled, effective performance of linear code execution will be much faster  
than the raw performance indicated by the wait-state configuration alone. The exact performance gain  
when using the Flash pipeline mode is application-dependent.  
For more information on the Flash options, Flash wait-state, and OTP wait-state registers, see the  
TMS320x280x, 2801x, 2804x DSP system control and interrupts reference guide.  
9.1.6 ROM  
The C2802 contains 32K x 16 of ROM, while the C2801 contains 16K x 16 of ROM.  
Note  
Requests for ROM devices are not accepted by TI anymore.  
9.1.7 M0, M1 SARAMs  
All 280x devices contain these two blocks of single-access memory, each 1K x 16 in size. The stack pointer  
points to the beginning of block M1 on reset. The M0 and M1 blocks, like all other memory blocks on C28x  
devices, are mapped to both program and data space. Hence, the user can use M0 and M1 to execute code or  
for data variables. The partitioning is performed within the linker. The C28x device presents a unified memory  
map to the programmer. This makes for easier programming in high-level languages.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.1.8 L0, L1, H0 SARAMs  
The F2809 and F2808 each contain an additional 16K x 16 of single-access RAM, divided into three blocks  
(L0-4K, L1-4K, H0-8K). The F2806 contains an additional 8K x 16 of single-access RAM, divided into two blocks  
(L0-4K, L1-4K). The F2802, F2801, C2802, and C2801 each contain an additional 4K x 16 of single-access RAM  
(L0-4K). Each block can be independently accessed to minimize CPU pipeline stalls. Each block is mapped to  
both program and data space.  
9.1.9 Boot ROM  
The Boot ROM is factory-programmed with boot-loading software. Boot-mode signals are provided to tell the  
bootloader software what boot mode to use on power up. The user can select to boot normally or to download  
new software from an external connection or to select boot software that is programmed in the internal Flash/  
ROM. The Boot ROM also contains standard tables, such as SIN/COS waveforms, for use in math related  
algorithms.  
Table 9-1. Boot Mode Selection  
GPIO18  
GPIO29  
MODE  
DESCRIPTION  
SPICLKA  
SCITXDB  
GPIO34  
SCITXDA  
Jump to Flash/ROM address 0x3F 7FF6  
Boot to Flash/ROM  
You must have programmed a branch instruction here prior  
to reset to redirect code execution as desired.  
1
1
1
SCI-A Boot  
SPI-A Boot  
Load a data stream from SCI-A  
1
1
1
0
0
1
Load from an external serial SPI EEPROM on SPI-A  
Load data from an external EEPROM at address 0x50 on  
the I2C bus  
I2C Boot  
1
0
0
eCAN-A Boot  
Call CAN_Boot to load from eCAN-A mailbox 1.  
Jump to M0 SARAM address 0x00 0000.  
Jump to OTP address 0x3D 7800  
0
0
0
0
1
1
0
0
1
0
1
0
Boot to M0 SARAM  
Boot to OTP  
Parallel I/O Boot  
Load data from GPIO0 - GPIO15  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.1.10 Security  
The 280x devices support high levels of security to protect the user firmware from being reverse engineered.  
The security features a 128-bit password (hardcoded for 16 wait-states), which the user programs into the flash.  
One code security module (CSM) is used to protect the flash/OTP and the L0/L1 SARAM blocks. The security  
feature prevents unauthorized users from examining the memory contents via the JTAG port, executing code  
from external memory or trying to boot-load some undesirable software that would export the secure memory  
contents. To enable access to the secure blocks, the user must write the correct 128-bit KEY value, which  
matches the value stored in the password locations within the Flash.  
Note  
The 128-bit password (at 0x3F 7FF8 – 0x3F 7FFF) must not be programmed to zeros. Doing so would  
permanently lock the device.  
Note  
Code Security Module Disclaimer  
THE CODE SECURITY MODULE (CSM) INCLUDED ON THIS DEVICE WAS DESIGNED TO  
PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED MEMORY (EITHER ROM OR  
FLASH) AND IS WARRANTED BY TEXAS INSTRUMENTS (TI), IN ACCORDANCE WITH ITS  
STANDARD TERMS AND CONDITIONS, TO CONFORM TO TI'S PUBLISHED SPECIFICATIONS  
FOR THE WARRANTY PERIOD APPLICABLE FOR THIS DEVICE.  
TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT BE  
COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED MEMORY  
CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER, EXCEPT AS SET FORTH  
ABOVE, TI MAKES NO WARRANTIES OR REPRESENTATIONS CONCERNING THE CSM OR  
OPERATION OF THIS DEVICE, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY  
OR FITNESS FOR A PARTICULAR PURPOSE.  
IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT,  
INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN ANY WAY OUT OF  
YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR NOT TI HAS BEEN ADVISED OF THE  
POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED  
TO LOSS OF DATA, LOSS OF GOODWILL, LOSS OF USE OR INTERRUPTION OF BUSINESS OR  
OTHER ECONOMIC LOSS.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.1.11 Peripheral Interrupt Expansion (PIE) Block  
The PIE block serves to multiplex numerous interrupt sources into a smaller set of interrupt inputs. The PIE block  
can support up to 96 peripheral interrupts. On the 280x, 43 of the possible 96 interrupts are used by peripherals.  
The 96 interrupts are grouped into blocks of 8 and each group is fed into 1 of 12 CPU interrupt lines (INT1 to  
INT12). Each of the 96 interrupts is supported by its own vector stored in a dedicated RAM block that can be  
overwritten by the user. The vector is automatically fetched by the CPU on servicing the interrupt. It takes 8 CPU  
clock cycles to fetch the vector and save critical CPU registers. Hence the CPU can quickly respond to interrupt  
events. Prioritization of interrupts is controlled in hardware and software. Each individual interrupt can be  
enabled/disabled within the PIE block.  
9.1.12 External Interrupts (XINT1, XINT2, XNMI)  
The 280x supports three masked external interrupts (XINT1, XINT2, XNMI). XNMI can be connected to the  
INT13 or NMI interrupt of the CPU. Each of the interrupts can be selected for negative, positive, or both negative  
and positive edge triggering and can also be enabled/disabled (including the XNMI). The masked interrupts also  
contain a 16-bit free running up counter, which is reset to zero when a valid interrupt edge is detected. This  
counter can be used to accurately time stamp the interrupt. Unlike the 281x devices, there are no dedicated pins  
for the external interrupts. Rather, any Port A GPIO pin can be configured to trigger any external interrupt.  
9.1.13 Oscillator and PLL  
The 280x can be clocked by an external oscillator or by a crystal attached to the on-chip oscillator circuit. A PLL  
is provided supporting up to 10 input-clock-scaling ratios. The PLL ratios can be changed on-the-fly in software,  
enabling the user to scale back on operating frequency if lower power operation is desired. See Section 8 for  
timing details. The PLL block can be set in bypass mode.  
9.1.14 Watchdog  
The 280x devices contain a watchdog timer. The user software must regularly reset the watchdog counter within  
a certain time frame; otherwise, the watchdog will generate a reset to the processor. The watchdog can be  
disabled if necessary.  
9.1.15 Peripheral Clocking  
The clocks to each individual peripheral can be enabled/disabled so as to reduce power consumption when a  
peripheral is not in use. Additionally, the system clock to the serial ports (except I2C and eCAN) and the ADC  
blocks can be scaled relative to the CPU clock. This enables the timing of peripherals to be decoupled from  
increasing CPU clock speeds.  
9.1.16 Low-Power Modes  
The 280x devices are full static CMOS devices. Three low-power modes are provided:  
IDLE:  
Place CPU into low-power mode. Peripheral clocks may be turned off selectively and only those peripherals that  
need to function during IDLE are left operating. An enabled interrupt from an active peripheral or the watchdog  
timer will wake the processor from IDLE mode.  
STANDBY:  
HALT:  
Turns off clock to CPU and peripherals. This mode leaves the oscillator and PLL functional. An external interrupt  
event will wake the processor and the peripherals. Execution begins on the next valid cycle after detection of the  
interrupt event  
Turns off the internal oscillator. This mode basically shuts down the device and places it in the lowest possible  
power consumption mode. A reset or external signal can wake the device from this mode.  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.1.17 Peripheral Frames 0, 1, 2 (PFn)  
The 280x segregate peripherals into three sections. The mapping of peripherals is as follows:  
PF0:  
PF1:  
PF2:  
PIE:  
PIE Interrupt Enable and Control Registers Plus PIE Vector Table  
Flash Control, Programming, Erase, Verify Registers  
CPU-Timers 0, 1, 2 Registers  
Flash:  
Timers:  
CSM:  
ADC:  
eCAN:  
GPIO:  
ePWM:  
eCAP:  
eQEP:  
SYS:  
Code Security Module KEY Registers  
ADC Result Registers (dual-mapped)  
eCAN Mailbox and Control Registers  
GPIO MUX Configuration and Control Registers  
Enhanced Pulse Width Modulator Module and Registers  
Enhanced Capture Module and Registers  
Enhanced Quadrature Encoder Pulse Module and Registers  
System Control Registers  
SCI:  
Serial Communications Interface (SCI) Control and RX/TX Registers  
Serial Port Interface (SPI) Control and RX/TX Registers  
ADC Status, Control, and Result Register  
SPI:  
ADC:  
I2C:  
Inter-Integrated Circuit Module and Registers  
9.1.18 General-Purpose Input/Output (GPIO) Multiplexer  
Most of the peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. This enables  
the user to use a pin as GPIO if the peripheral signal or function is not used. On reset, GPIO pins are configured  
as inputs. The user can individually program each pin for GPIO mode or peripheral signal mode. For specific  
inputs, the user can also select the number of input qualification cycles. This is to filter unwanted noise glitches.  
The GPIO signals can also be used to bring the device out of specific low-power modes.  
9.1.19 32-Bit CPU-Timers (0, 1, 2)  
CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock prescaling. The  
timers have a 32-bit count-down register, which generates an interrupt when the counter reaches zero. The  
counter is decremented at the CPU clock speed divided by the prescale value setting. When the counter reaches  
zero, it is automatically reloaded with a 32-bit period value. CPU-Timer 2 is reserved for the SYS/BIOS Real-  
Time OS, and is connected to INT14 of the CPU. If SYS/BIOS is not being used, CPU-Timer 2 is available for  
general use. CPU-Timer 1 is for general use and can be connected to INT13 of the CPU. CPU-Timer 0 is also for  
general use and is connected to the PIE block.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.1.20 Control Peripherals  
The 280x devices support the following peripherals which are used for embedded control and communication:  
ePWM:  
eCAP:  
eQEP:  
The enhanced PWM peripheral supports independent/complementary PWM generation, adjustable dead-band  
generation for leading/trailing edges, latched/cycle-by-cycle trip mechanism. Some of the PWM pins support  
HRPWM features.  
The enhanced capture peripheral uses a 32-bit time base and registers up to four programmable events in  
continuous/one-shot capture modes.  
This peripheral can also be configured to generate an auxiliary PWM signal.  
The enhanced QEP peripheral uses a 32-bit position counter, supports low-speed measurement using capture  
unit and high-speed measurement using a 32-bit unit timer.  
This peripheral has a watchdog timer to detect motor stall and input error detection logic to identify simultaneous  
edge transition in QEP signals.  
ADC:  
The ADC block is a 12-bit converter, single-ended, 16-channels. It contains two sample-and-hold units for  
simultaneous sampling.  
9.1.21 Serial Port Peripherals  
The 280x devices support the following serial communication peripherals:  
eCAN:  
This is the enhanced version of the CAN peripheral. It supports 32 mailboxes, time stamping of messages, and is  
compliant with ISO11898-1 (CAN 2.0B).  
SPI:  
The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of programmed length (one to  
sixteen bits) to be shifted into and out of the device at a programmable bit-transfer rate. Normally, the SPI is used  
for communications between the DSP controller and external peripherals or another processor. Typical  
applications include external I/O or peripheral expansion through devices such as shift registers, display drivers,  
and ADCs. Multi-device communications are supported by the master/slave operation of the SPI. On the 280x,  
the SPI contains a 16-level receive and transmit FIFO for reducing interrupt servicing overhead.  
SCI:  
I2C:  
The serial communications interface is a two-wire asynchronous serial port, commonly known as UART. On the  
280x, the SCI contains a 16-level receive and transmit FIFO for reducing interrupt servicing overhead.  
The inter-integrated circuit (I2C) module provides an interface between a DSP and other devices compliant with  
Philips Semiconductors Inter-IC bus (I2C-bus) specification version 2.1 and connected by way of an I2C-bus.  
External components attached to this 2-wire serial bus can transmit/receive up to 8-bit data to/from the DSP  
through the I2C module. On the 280x, the I2C contains a 16-level receive and transmit FIFO for reducing  
interrupt servicing overhead.  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.2 Peripherals  
The integrated peripherals of the 280x are described in the following subsections:  
Three 32-bit CPU-Timers  
Up to six enhanced PWM modules (ePWM1, ePWM2, ePWM3, ePWM4, ePWM5, ePWM6)  
Up to four enhanced capture modules (eCAP1, eCAP2, eCAP3, eCAP4)  
Up to two enhanced QEP modules (eQEP1, eQEP2)  
Enhanced analog-to-digital converter (ADC) module  
Up to two enhanced controller area network (eCAN) modules (eCAN-A, eCAN-B)  
Up to two serial communications interface modules (SCI-A, SCI-B)  
Up to four serial peripheral interface (SPI) modules (SPI-A, SPI-B, SPI-C, SPI-D)  
Inter-integrated circuit module (I2C)  
Digital I/O and shared pin functions  
9.2.1 32-Bit CPU-Timers 0/1/2  
There are three 32-bit CPU-timers on the 280x devices (CPU-TIMER0/1/2).  
CPU-Timer 0 and CPU-Timer 1 can be used in user applications. Timer 2 is reserved for SYS/BIOS. These  
timers are different from the timers that are present in the ePWM modules.  
Note  
If the application is not using SYS/BIOS, then CPU-Timer 2 can be used in the application.  
Reset  
Timer Reload  
16-Bit Timer Divide-Down  
32-Bit Timer Period  
TDDRH:TDDR  
PRDH:PRD  
16-Bit Prescale Counter  
PSCH:PSC  
SYSCLKOUT  
TCR.4  
(Timer Start Status)  
32-Bit Counter  
TIMH:TIM  
Borrow  
Borrow  
TINT  
Figure 9-1. CPU-Timers  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
In the 280x devices, the timer interrupt signals ( TINT0, TINT1, TINT2) are connected as shown in Figure 9-2.  
INT1  
to  
INT12  
TINT0  
PIE  
CPU-TIMER 0  
C28x  
TINT1  
INT13  
INT14  
CPU-TIMER 1  
XINT13  
CPU-TIMER 2  
(Reserved for  
SYS/BIOS)  
TINT2  
A. The timer registers are connected to the memory bus of the C28x processor.  
B. The timing of the timers is synchronized to SYSCLKOUT of the processor clock.  
Figure 9-2. CPU-Timer Interrupt Signals and Output Signal  
The general operation of the timer is as follows: The 32-bit counter register "TIMH:TIM" is loaded with the value  
in the period register "PRDH:PRD". The counter register decrements at the SYSCLKOUT rate of the C28x.  
When the counter reaches 0, a timer interrupt output signal generates an interrupt pulse. The registers listed in  
Table 9-2 are used to configure the timers. For more information, see the TMS320x280x, 2801x, 2804x DSP  
system control and interrupts reference guide.  
Table 9-2. CPU-Timers 0, 1, 2 Configuration and Control Registers  
NAME  
TIMER0TIM  
ADDRESS  
0x0C00  
0x0C01  
0x0C02  
0x0C03  
0x0C04  
0x0C05  
0x0C06  
0x0C07  
0x0C08  
0x0C09  
0x0C0A  
0x0C0B  
0x0C0C  
0x0C0D  
0x0C0E  
0x0C0F  
0x0C10  
0x0C11  
0x0C12  
0x0C13  
0x0C14  
0x0C15  
0x0C16  
SIZE (x16)  
DESCRIPTION  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CPU-Timer 0, Counter Register  
TIMER0TIMH  
TIMER0PRD  
TIMER0PRDH  
TIMER0TCR  
Reserved  
CPU-Timer 0, Counter Register High  
CPU-Timer 0, Period Register  
CPU-Timer 0, Period Register High  
CPU-Timer 0, Control Register  
Reserved  
TIMER0TPR  
TIMER0TPRH  
TIMER1TIM  
TIMER1TIMH  
TIMER1PRD  
TIMER1PRDH  
TIMER1TCR  
Reserved  
CPU-Timer 0, Prescale Register  
CPU-Timer 0, Prescale Register High  
CPU-Timer 1, Counter Register  
CPU-Timer 1, Counter Register High  
CPU-Timer 1, Period Register  
CPU-Timer 1, Period Register High  
CPU-Timer 1, Control Register  
Reserved  
TIMER1TPR  
TIMER1TPRH  
TIMER2TIM  
TIMER2TIMH  
TIMER2PRD  
TIMER2PRDH  
TIMER2TCR  
Reserved  
CPU-Timer 1, Prescale Register  
CPU-Timer 1, Prescale Register High  
CPU-Timer 2, Counter Register  
CPU-Timer 2, Counter Register High  
CPU-Timer 2, Period Register  
CPU-Timer 2, Period Register High  
CPU-Timer 2, Control Register  
Reserved  
TIMER2TPR  
CPU-Timer 2, Prescale Register  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-2. CPU-Timers 0, 1, 2 Configuration and Control Registers (continued)  
NAME  
ADDRESS  
SIZE (x16)  
DESCRIPTION  
TIMER2TPRH  
Reserved  
0x0C17  
1
CPU-Timer 2, Prescale Register High  
0x0C18 –  
0x0C3F  
40  
Reserved  
9.2.2 Enhanced PWM Modules (ePWM1/2/3/4/5/6)  
The 280x device contains up to six enhanced PWM modules (ePWM). Figure 9-3 shows a block diagram of  
multiple ePWM modules. Figure 9-4 shows the signal interconnections with the ePWM. See the TMS320x280x,  
2801x, 2804x Enhanced Pulse Width Modulator (ePWM) module reference guide for more details.  
EPWM1SYNCI  
EPWM1SYNCI  
EPWM1INT  
EPWM1A  
EPWM1SOC  
ePWM1 Module  
EPWM1B  
TZ1 to TZ6  
EPWM1SYNCO  
EPWM2SYNCI  
To eCAP1  
Module  
(Sync in)  
EPWM1SYNCO  
EPWM2INT  
EPWM2A  
EPWM2SOC  
PIE  
ePWM2 Module  
EPWM2SYNCO  
EPWM2B  
GPIO  
MUX  
TZ1 to TZ6  
EPWMxSYNCI  
ePWMx Module  
EPWMxSYNCO  
EPWMxINT  
EPWMxA  
EPWMxSOC  
EPWMxB  
TZ1 to TZ6  
ADCSOCx0  
Peripheral Bus  
ADC  
Copyright © 2016, Texas Instruments Incorporated  
Figure 9-3. Multiple PWM Modules in a 280x System  
Table 9-3 shows the complete ePWM register set per module.  
Table 9-3. ePWM Control and Status Registers  
SIZE (x16) /  
#SHADOW  
NAME  
ePWM1 ePWM2 ePWM3 ePWM4  
0x6800 0x6840 0x6880 0x68C0  
ePWM5  
ePWM6  
DESCRIPTION  
TBCTL  
0x6900  
0x6940  
1 / 0  
Time Base Control Register  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-3. ePWM Control and Status Registers (continued)  
SIZE (x16) /  
#SHADOW  
NAME  
ePWM1 ePWM2 ePWM3 ePWM4  
ePWM5  
0x6901  
N/A  
ePWM6  
0x6941  
N/A  
DESCRIPTION  
TBSTS  
0x6801  
0x6802  
0x6841  
0x6842  
0x6881  
0x6882  
0x68C1  
0x68C2  
1 / 0  
Time Base Status Register  
TBPHSH  
R
1 / 0  
Time Base Phase HRPWM Register  
TBPHS  
TBCTR  
TBPRD  
CMPCTL  
0x6803  
0x6804  
0x6805  
0x6807  
0x6843  
0x6844  
0x6845  
0x6847  
0x6848  
0x6849  
0x684A  
0x6883  
0x6884  
0x6885  
0x6887  
0x6888  
0x6889  
0x688A  
0x68C3  
0x68C4  
0x68C5  
0x68C7  
0x68C8  
0x68C9  
0x68CA  
0x6903  
0x6904  
0x6905  
0x6907  
N/A  
0x6943  
0x6944  
0x6945  
0x6947  
N/A  
1 / 0  
1 / 0  
1 / 1  
1 / 0  
1 / 1  
1 / 1  
1 / 1  
Time Base Phase Register  
Time Base Counter Register  
Time Base Period Register Set  
Counter Compare Control Register  
Time Base Compare A HRPWM Register  
Counter Compare A Register Set  
Counter Compare B Register Set  
CMPAHR 0x6808  
CMPA  
CMPB  
0x6809  
0x680A  
0x6909  
0x690A  
0x6949  
0x694A  
Action Qualifier Control Register For  
Output A  
AQCTLA  
AQCTLB  
0x680B  
0x680C  
0x684B  
0x688B  
0x68CB  
0x690B  
0x694B  
1 / 0  
Action Qualifier Control Register For  
Output B  
0x684C  
0x684D  
0x684E  
0x684F  
0x6850  
0x688C 0x68CC  
0x688D 0x68CD  
0x690C  
0x690D  
0x690E  
0x690F  
0x6910  
0x694C  
0x694D  
0x694E  
0x694F  
0x6950  
1 / 0  
1 / 0  
1 / 1  
1 / 1  
1 / 0  
AQSFRC 0x680D  
Action Qualifier Software Force Register  
AQCSFR  
0x680E  
C
Action Qualifier Continuous S/W Force  
Register Set  
0x688E  
0x688F  
0x6890  
0x68CE  
0x68CF  
0x68D0  
DBCTL  
DBRED  
0x680F  
0x6810  
Dead-Band Generator Control Register  
Dead-Band Generator Rising Edge Delay  
Count Register  
Dead-Band Generator Falling Edge Delay  
Count Register  
DBFED  
0x6811  
0x6851  
0x6891  
0x68D1  
0x6911  
0x6951  
1 / 0  
TZSEL  
TZCTL  
TZEINT  
TZFLG  
TZCLR  
TZFRC  
ETSEL  
ETPS  
0x6812  
0x6814  
0x6815  
0x6816  
0x6817  
0x6818  
0x6819  
0x681A  
0x681B  
0x681C  
0x681D  
0x681E  
0x6852  
0x6854  
0x6855  
0x6856  
0x6857  
0x6858  
0x6859  
0x685A  
0x685B  
0x685C  
0x685D  
0x685E  
0x6860  
0x6892  
0x6894  
0x6895  
0x6896  
0x6897  
0x6898  
0x6899  
0x689A  
0x689B  
0x68D2  
0x68D4  
0x68D5  
0x68D6  
0x68D7  
0x68D8  
0x68D9  
0x68DA  
0x68DB  
0x6912  
0x6914  
0x6915  
0x6916  
0x6917  
0x6918  
0x6919  
0x691A  
0x691B  
0x691C  
0x691D  
0x691E  
0x6952  
0x6954  
0x6955  
0x6956  
0x6957  
0x6958  
0x6959  
0x695A  
0x695B  
0x695C  
0x695D  
0x695E  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
Trip Zone Select Register(1)  
Trip Zone Control Register(1)  
Trip Zone Enable Interrupt Register(1)  
Trip Zone Flag Register  
Trip Zone Clear Register(1)  
Trip Zone Force Register(1)  
Event Trigger Selection Register  
Event Trigger Prescale Register  
Event Trigger Flag Register  
Event Trigger Clear Register  
Event Trigger Force Register  
PWM Chopper Control Register  
HRPWM Configuration Register(1)  
ETFLG  
ETCLR  
ETFRC  
PCCTL  
0x689C 0x68DC  
0x689D 0x68DD  
0x689E  
0x68A0  
0x68DE  
0x68E0  
HRCNFG 0x6820  
0x6920(2) 0x6960(2)  
(1) Registers that are EALLOW protected.  
(2) Applicable to F2809 only  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Time-Base (TB)  
Sync  
CTR = ZERO  
CTR = CMPB  
Disabled  
In/Out  
Select  
Mux  
TBPRD Shadow (16)  
TBPRD Active (16)  
EPWMxSYNCO  
CTR = PRD  
TBCTL[SYNCOSEL]  
TBCTL[PHSEN]  
EPWMxSYNCI  
Counter  
Up/Down  
(16-Bit)  
TBCTL[SWFSYNC]  
(Software-Forced Sync)  
CTR = ZERO  
CTR_Dir  
TBCNT  
Active (16)  
TBPHSHR (8)  
16  
8
CTR = PRD  
CTR = ZERO  
CTR = CMPA  
CTR = CMPB  
CTR_Dir  
Phase  
Control  
Event  
Trigger  
and  
Interrupt  
(ET)  
EPWMxINT  
TBPHS Active (24)  
EPWMxSOCA  
EPWMxSOCB  
Counter Compare (CC)  
Action  
Qualifier  
(AQ)  
CTR = CMPA  
CMPAHR (8)  
16  
8
HiRes PWM (HRPWM)  
CMPA Active (24)  
EPWMA  
EPWMxAO  
CMPA Shadow (24)  
Dead  
Band  
(DB)  
PWM  
Chopper  
(PC)  
Trip  
Zone  
(TZ)  
CTR = CMPB  
16  
EPWMB  
EPWMxBO  
CMPB Active (16)  
EPWMxTZINT  
TZ1 to TZ6  
CMPB Shadow (16)  
CTR = ZERO  
Copyright © 2016, Texas Instruments Incorporated  
Figure 9-4. ePWM Sub-Modules Showing Critical Internal Signal Interconnections  
9.2.3 Hi-Resolution PWM (HRPWM)  
The HRPWM module offers PWM resolution (time granularity) which is significantly better than what can be  
achieved using conventionally derived digital PWM methods. The key points for the HRPWM module are:  
Significantly extends the time resolution capabilities of conventionally derived digital PWM  
Typically used when effective PWM resolution falls below ~ 9–10 bits. This occurs at PWM frequencies  
greater than ~200 kHz when using a CPU/System clock of 100 MHz.  
This capability can be utilized in both duty cycle and phase-shift control methods.  
Finer time granularity control or edge positioning is controlled via extensions to the Compare A and Phase  
registers of the ePWM module.  
HRPWM capabilities are offered only on the A signal path of an ePWM module (that is, on the EPWMxA  
output). EPWMxB output has conventional PWM capabilities.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.2.4 Enhanced CAP Modules (eCAP1/2/3/4)  
The 280x device contains up to four enhanced capture (eCAP) modules. Figure 9-5 shows a functional block  
diagram of a module. See the TMS320x280x, 2801x, 2804x Enhanced Capture (eCAP) module reference guide  
for more details.  
CTRPHS  
(Phase Register - 32-bit)  
APWM Mode  
SYNCIn  
CTR_OVF  
OVF  
CTR [0-31]  
PRD [0-31]  
CMP [0-31]  
TSCTR  
(Counter - 32-bit)  
SYNCOut  
PWM  
Compare  
Logic  
Delta Mode  
RST  
32  
CTR=PRD  
CTR=CMP  
CTR [0-31]  
PRD [0-31]  
32  
32  
LD1  
CAP1  
(APRD Active)  
Polarity  
Select  
eCAPx  
LD  
APRD  
Shadow  
32  
CMP [0-31]  
32  
Polarity  
Select  
LD2  
32  
CAP2  
(ACMP Active)  
LD  
Event  
Qualifier  
ACMP  
Shadow  
Event  
Prescale  
32  
Polarity  
Select  
LD3  
LD4  
32  
32  
CAP3  
(APRD Shadow)  
LD  
CAP4  
(ACMP Shadow)  
Polarity  
Select  
LD  
4
Capture Events  
4
CEVT[1:4]  
Interrupt  
Trigger  
and  
Flag  
Control  
Continuous/  
One-Shot  
Capture Control  
to PIE  
CTR_OVF  
CTR=PRD  
CTR=CMP  
Copyright © 2016, Texas Instruments Incorporated  
Figure 9-5. eCAP Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
The eCAP modules are clocked at the SYSCLKOUT rate.  
The clock enable bits (ECAP1/2/3/4ENCLK) in the PCLKCR1 register are used to turn off the eCAP modules  
individually (for low power operation). Upon reset, ECAP1ENCLK, ECAP2ENCLK, ECAP3ENCLK, and  
ECAP4ENCLK are set to low, indicating that the peripheral clock is off.  
Table 9-4. eCAP Control and Status Registers  
SIZE  
(x16)  
NAME  
TSCTR  
eCAP1  
eCAP2  
eCAP3  
eCAP4  
DESCRIPTION  
Time-Stamp Counter  
0x6A00  
0x6A02  
0x6A04  
0x6A06  
0x6A08  
0x6A0A  
0x6A20  
0x6A22  
0x6A24  
0x6A26  
0x6A28  
0x6A2A  
0x6A40  
0x6A42  
0x6A44  
0x6A46  
0x6A48  
0x6A4A  
0x6A60  
0x6A62  
0x6A64  
0x6A66  
0x6A68  
0x6A6A  
2
2
2
2
2
2
CTRPHS  
CAP1  
Counter Phase Offset Value Register  
Capture 1 Register  
CAP2  
Capture 2 Register  
CAP3  
Capture 3 Register  
CAP4  
Capture 4 Register  
0x6A0C –  
0x6A12  
0x6A2C –  
0x6A32  
0x6A4C –  
0x6A52  
0x6A6C –  
0x6A72  
Reserved  
8
Reserved  
ECCTL1  
ECCTL2  
ECEINT  
ECFLG  
ECCLR  
ECFRC  
0x6A14  
0x6A15  
0x6A16  
0x6A17  
0x6A18  
0x6A19  
0x6A34  
0x6A35  
0x6A36  
0x6A37  
0x6A38  
0x6A39  
0x6A54  
0x6A55  
0x6A56  
0x6A57  
0x6A58  
0x6A59  
0x6A74  
0x6A75  
0x6A76  
0x6A77  
0x6A78  
0x6A79  
1
1
1
1
1
1
Capture Control Register 1  
Capture Control Register 2  
Capture Interrupt Enable Register  
Capture Interrupt Flag Register  
Capture Interrupt Clear Register  
Capture Interrupt Force Register  
0x6A1A –  
0x6A1F  
0x6A3A –  
0x6A3F  
0x6A5A –  
0x6A5F  
0x6A7A –  
0x6A7F  
Reserved  
6
Reserved  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.2.5 Enhanced QEP Modules (eQEP1/2)  
The 280x device contains up to two enhanced quadrature encoder (eQEP) modules. See the TMS320x280x,  
2801x, 2804x Enhanced Quadrature Encoder Pulse (eQEP) module reference guide for more details.  
System Control  
Registers  
To CPU  
EQEPxENCLK  
SYSCLKOUT  
QCPRD  
QCAPCTL  
16  
QCTMR  
16  
16  
Quadrature  
Capture  
Unit  
QCTMRLAT  
QCPRDLAT  
(QCAP)  
QUTMR  
QUPRD  
QWDTMR  
QWDPRD  
Registers  
Used by  
Multiple Units  
32  
16  
QEPCTL  
QEPSTS  
QFLG  
UTOUT  
QWDOG  
UTIME  
QDECCTL  
16  
WDTOUT  
EQEPxAIN  
EQEPxBIN  
EQEPxIIN  
EQEPxA/XCLK  
EQEPxB/XDIR  
EQEPxI  
QCLK  
QDIR  
QI  
EQEPxINT  
16  
PIE  
Position Counter/  
Control Unit  
(PCCU)  
EQEPxIOUT  
EQEPxIOE  
EQEPxSIN  
EQEPxSOUT  
EQEPxSOE  
Quadrature  
Decoder  
(QDU)  
QS  
GPIO  
MUX  
QPOSLAT  
QPOSSLAT  
QPOSILAT  
PHE  
PCSOUT  
EQEPxS  
32  
32  
16  
QPOSCNT  
QPOSINIT  
QPOSMAX  
QEINT  
QFRC  
QPOSCMP  
QCLR  
QPOSCTL  
Enhanced QEP (eQEP) Peripheral  
Copyright © 2016, Texas Instruments Incorporated  
Figure 9-6. eQEP Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-5 provides a summary of the eQEP registers.  
Table 9-5. eQEP Control and Status Registers  
eQEP1  
SIZE(x16)/  
#SHADOW  
eQEP1  
ADDRESS  
eQEP2  
ADDRESS  
NAME  
REGISTER DESCRIPTION  
QPOSCNT  
0x6B00  
0x6B02  
0x6B04  
0x6B06  
0x6B08  
0x6B0A  
0x6B0C  
0x6B0E  
0x6B10  
0x6B12  
0x6B13  
0x6B14  
0x6B15  
0x6B16  
0x6B17  
0x6B18  
0x6B19  
0x6B1A  
0x6B1B  
0x6B1C  
0x6B1D  
0x6B1E  
0x6B1F  
0x6B20  
0x6B40  
0x6B42  
0x6B44  
0x6B46  
0x6B48  
0x6B4A  
0x6B4C  
0x6B4E  
0x6B50  
0x6B52  
0x6B53  
0x6B54  
0x6B55  
0x6B56  
0x6B57  
0x6B58  
0x6B59  
0x6B5A  
0x6B5B  
0x6B5C  
0x6B5D  
0x6B5E  
0x6B5F  
0x6B60  
2/0  
2/0  
2/0  
2/1  
2/0  
2/0  
2/0  
2/0  
2/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
eQEP Position Counter  
QPOSINIT  
QPOSMAX  
QPOSCMP  
QPOSILAT  
QPOSSLAT  
QPOSLAT  
QUTMR  
eQEP Initialization Position Count  
eQEP Maximum Position Count  
eQEP Position-compare  
eQEP Index Position Latch  
eQEP Strobe Position Latch  
eQEP Position Latch  
eQEP Unit Timer  
QUPRD  
eQEP Unit Period Register  
eQEP Watchdog Timer  
QWDTMR  
QWDPRD  
QDECCTL  
QEPCTL  
QCAPCTL  
QPOSCTL  
QEINT  
eQEP Watchdog Period Register  
eQEP Decoder Control Register  
eQEP Control Register  
eQEP Capture Control Register  
eQEP Position-compare Control Register  
eQEP Interrupt Enable Register  
eQEP Interrupt Flag Register  
eQEP Interrupt Clear Register  
eQEP Interrupt Force Register  
eQEP Status Register  
QFLG  
QCLR  
QFRC  
QEPSTS  
QCTMR  
eQEP Capture Timer  
QCPRD  
eQEP Capture Period Register  
eQEP Capture Timer Latch  
eQEP Capture Period Latch  
QCTMRLAT  
QCPRDLAT  
0x6B21–  
0x6B3F  
0x6B61 –  
0x6B7F  
Reserved  
31/0  
Reserved  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.2.6 Enhanced Analog-to-Digital Converter (ADC) Module  
A simplified functional block diagram of the ADC module is shown in Figure 9-7. The ADC module consists of a  
12-bit ADC with a built-in sample-and-hold (S/H) circuit. Functions of the ADC module include:  
12-bit ADC core with built-in S/H  
Analog input: 0.0 V to 3.0 V (Voltages above 3.0 V produce full-scale conversion results.)  
Fast conversion rate: Up to 80 ns at 25-MHz ADC clock, 12.5 MSPS  
16-channel, MUXed inputs  
Autosequencing capability provides up to 16 "autoconversions" in a single session. Each conversion can be  
programmed to select anyone of 16 input channels  
Sequencer can be operated as two independent 8-channel sequencers or as one large 16-channel  
sequencer (that is, two cascaded 8-channel sequencers)  
Sixteen result registers (individually addressable) to store conversion values  
– The digital value of the input analog voltage is derived by:  
, when ADCIN £ ADCLO  
, when ADCLO < ADCIN < 3 V  
, when ADCIN ³ 3 V  
Digital Value = 0  
ADCIN - ADCLO  
4096 ´  
(
Digital Value = floor  
(
3
Digital Value = 4095  
A. All fractional values are truncated.  
Multiple triggers as sources for the start-of-conversion (SOC) sequence  
– S/W - software immediate start  
– ePWM start of conversion  
– XINT2 ADC start of conversion  
Flexible interrupt control allows interrupt request on every end-of-sequence (EOS) or every other EOS.  
Sequencer can operate in "start/stop" mode, allowing multiple "time-sequenced triggers" to synchronize  
conversions.  
SOCA and SOCB triggers can operate independently in dual-sequencer mode.  
Sample-and-hold (S/H) acquisition time window has separate prescale control.  
The ADC module in the 280x has been enhanced to provide flexible interface to ePWM peripherals. The ADC  
interface is built around a fast, 12-bit ADC module with a fast conversion rate of up to 80 ns at 25-MHz ADC  
clock. The ADC module has a 16-channel sequencer, configurable as two independent 8-channel sequencers.  
The two independent 8-channel sequencers can be cascaded to form a 16-channel sequencer. Although there  
are multiple input channels and two sequencers, there is only one converter in the ADC module. Figure 9-7  
shows the block diagram of the ADC module.  
The two 8-channel sequencer modules have the capability to autosequence a series of conversions, each  
module has the choice of selecting any one of the respective eight channels available through an analog MUX.  
In the cascaded mode, the autosequencer functions as a single 16-channel sequencer. On each sequencer,  
once the conversion is complete, the selected channel value is stored in its respective RESULT register.  
Autosequencing allows the system to convert the same channel multiple times, allowing the user to perform  
oversampling algorithms. This gives increased resolution over traditional single-sampled conversion results.  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
SYSCLKOUT  
System  
Control Block  
High-Speed  
Prescaler  
DSP  
ADCENCLK  
HALT  
HSPCLK  
Analog  
MUX  
Result Registers  
Result Reg 0  
Result Reg 1  
ADCINA0  
70A8h  
S/H  
ADCINA7  
ADCINB0  
ADCINB7  
12-Bit  
ADC  
Module  
Result Reg 7  
Result Reg 8  
70AFh  
70B0h  
S/H  
Result Reg 15  
70B7h  
ADC Control Registers  
S/W  
S/W  
Sequencer 1  
Sequencer 2  
EPWMSOCA  
SOC  
SOC  
EPWMSOCB  
GPIO/XINT2_  
ADCSOC  
Figure 9-7. Block Diagram of the ADC Module  
To obtain the specified accuracy of the ADC, proper board layout is very critical. To the best extent possible,  
traces leading to the ADCIN pins should not run in close proximity to the digital signal paths. This is to minimize  
switching noise on the digital lines from getting coupled to the ADC inputs. Furthermore, proper isolation  
techniques must be used to isolate the ADC module power pins (VDD1A18, VDD2A18, VDDA2, VDDAIO) from the  
digital supply. Figure 9-8 and Figure 9-9 show the ADC pin connections for the 280x devices.  
Note  
1. The ADC registers are accessed at the SYSCLKOUT rate. The internal timing of the ADC module  
is controlled by the high-speed peripheral clock (HSPCLK).  
2. The behavior of the ADC module based on the state of the ADCENCLK and HALT signals is as  
follows:  
ADCENCLK: On reset, this signal will be low. While reset is active-low ( XRS) the clock to the  
register will still function. This is necessary to make sure all registers and modes go into their  
default reset state. The analog module, however, will be in a low-power inactive state. As soon  
as reset goes high, then the clock to the registers will be disabled. When the user sets the  
ADCENCLK signal high, then the clocks to the registers will be enabled and the analog module  
will be enabled. There will be a certain time delay (ms range) before the ADC is stable and can  
be used.  
HALT: This mode only affects the analog module. It does not affect the registers. In this mode,  
the ADC module goes into low-power mode. This mode also will stop the clock to the CPU,  
which will stop the HSPCLK; therefore, the ADC register logic will be turned off indirectly.  
Figure 9-8 shows the ADC pin-biasing for internal reference and Figure 9-9 shows the ADC pin-biasing for  
external reference.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
ADCINA[7:0]  
ADCINB[7:0]  
ADCLO  
ADC 16-Channel Analog Inputs  
Analog input 0-3 V with respect to ADCLO  
Connect to analog ground  
Float or ground if internal reference is used  
ADCREFIN  
22 k  
ADC External Current Bias Resistor  
ADCRESEXT  
2.2 μF(A)  
2.2 μF(A)  
ADC Reference Positive Output  
ADC Reference Medium Output  
ADCREFP  
ADCREFM  
ADCREFP and ADCREFM should not  
be loaded by external circuitry  
VDD1A18  
VDD2A18  
VSS1AGND  
VSS2AGND  
ADC Analog Power Pin (1.8 V)  
ADC Analog Power Pin (1.8 V)  
ADC Analog Ground Pin  
ADC Power  
ADC Analog Ground Pin  
VDDA2  
VSSA2  
ADC Analog Power Pin (3.3 V)  
ADC Analog Ground Pin  
ADC Analog and Reference I/O Power  
VDDAIO  
VSSAIO  
ADC Analog Power Pin (3.3 V)  
ADC Analog I/O Ground Pin  
A. TAIYO YUDEN LMK212BJ225MG-T or equivalent  
B. External decoupling capacitors are recommended on all power pins.  
C. Analog inputs must be driven from an operational amplifier that does not degrade the ADC performance.  
Figure 9-8. ADC Pin Connections With Internal Reference  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
ADCINA[7:0]  
ADC 16-Channel Analog Inputs  
Analog input 0-3 V with respect to ADCLO  
ADCINB[7:0]  
ADCLO  
ADCREFIN  
Connect to Analog Ground  
Connect to 1.500, 1.024, or 2.048-V precision source(D)  
22 k  
ADC External Current Bias Resistor  
ADCRESEXT  
ADCREFP  
2.2 μF(A)  
2.2 μF(A)  
ADC Reference Positive Output  
ADC Reference Medium Output  
ADCREFP and ADCREFM should not  
be loaded by external circuitry  
ADCREFM  
VDD1A18  
VDD2A18  
VSS1AGND  
VSS2AGND  
ADC Analog Power Pin (1.8 V)  
ADC Analog Power Pin (1.8 V)  
ADC Analog Ground Pin  
ADC Analog Power  
ADC Analog Ground Pin  
VDDA2  
VSSA2  
ADC Analog Power Pin (3.3 V)  
ADC Analog Ground Pin  
VDDAIO  
VSSAIO  
ADC Analog Power Pin (3.3 V)  
ADC Analog I/O Ground Pin  
ADC Analog and Reference I/O Power  
A. TAIYO YUDEN LMK212BJ225MG-T or equivalent  
B. External decoupling capacitors are recommended on all power pins.  
C. Analog inputs must be driven from an operational amplifier that does not degrade the ADC performance.  
D. External voltage on ADCREFIN is enabled by changing bits 15:14 in the ADC Reference Select register depending on the voltage used  
on this pin. TI recommends TI part REF3020 or equivalent for 2.048-V generation. Overall gain accuracy will be determined by accuracy  
of this voltage source.  
Figure 9-9. ADC Pin Connections With External Reference  
Note  
The temperature rating of any recommended component must match the rating of the end product.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.2.6.1 ADC Connections if the ADC Is Not Used  
It is recommended to keep the connections for the analog power pins, even if the ADC is not used. Following is a  
summary of how the ADC pins should be connected, if the ADC is not used in an application:  
VDD1A18/VDD2A18 – Connect to VDD  
VDDA2, VDDAIO – Connect to VDDIO  
VSS1AGND/VSS2AGND, VSSA2, VSSAIO – Connect to VSS  
ADCLO – Connect to VSS  
ADCREFIN – Connect to VSS  
ADCREFP/ADCREFM – Connect a 100-nF cap to VSS  
ADCRESEXT – Connect a 20-kΩ resistor (very loose tolerance) to VSS  
ADCINAn, ADCINBn - Connect to VSS  
.
When the ADC is not used, be sure that the clock to the ADC module is not turned on to realize power savings.  
When the ADC module is used in an application, unused ADC input pins should be connected to analog ground  
(VSS1AGND/VSS2AGND  
)
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.2.6.2 ADC Registers  
The ADC operation is configured, controlled, and monitored by the registers listed in Table 9-6.  
Table 9-6. ADC Registers  
NAME(1)  
ADCTRL1  
ADDRESS(1) ADDRESS(2) SIZE (x16)  
DESCRIPTION  
0x7100  
0x7101  
0x7102  
0x7103  
0x7104  
0x7105  
0x7106  
0x7107  
0x7108  
0x7109  
0x710A  
0x710B  
0x710C  
0x710D  
0x710E  
0x710F  
0x7110  
0x7111  
0x7112  
0x7113  
0x7114  
0x7115  
0x7116  
0x7117  
0x7118  
0x7119  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
ADC Control Register 1  
ADC Control Register 2  
ADCTRL2  
ADCMAXCONV  
ADCCHSELSEQ1  
ADCCHSELSEQ2  
ADCCHSELSEQ3  
ADCCHSELSEQ4  
ADCASEQSR  
ADCRESULT0  
ADCRESULT1  
ADCRESULT2  
ADCRESULT3  
ADCRESULT4  
ADCRESULT5  
ADCRESULT6  
ADCRESULT7  
ADCRESULT8  
ADCRESULT9  
ADCRESULT10  
ADCRESULT11  
ADCRESULT12  
ADCRESULT13  
ADCRESULT14  
ADCRESULT15  
ADCTRL3  
ADC Maximum Conversion Channels Register  
ADC Channel Select Sequencing Control Register 1  
ADC Channel Select Sequencing Control Register 2  
ADC Channel Select Sequencing Control Register 3  
ADC Channel Select Sequencing Control Register 4  
ADC Auto-Sequence Status Register  
0x0B00  
0x0B01  
0x0B02  
0x0B03  
0x0B04  
0x0B05  
0x0B06  
0x0B07  
0x0B08  
0x0B09  
0x0B0A  
0x0B0B  
0x0B0C  
0x0B0D  
0x0B0E  
0x0B0F  
ADC Conversion Result Buffer Register 0  
ADC Conversion Result Buffer Register 1  
ADC Conversion Result Buffer Register 2  
ADC Conversion Result Buffer Register 3  
ADC Conversion Result Buffer Register 4  
ADC Conversion Result Buffer Register 5  
ADC Conversion Result Buffer Register 6  
ADC Conversion Result Buffer Register 7  
ADC Conversion Result Buffer Register 8  
ADC Conversion Result Buffer Register 9  
ADC Conversion Result Buffer Register 10  
ADC Conversion Result Buffer Register 11  
ADC Conversion Result Buffer Register 12  
ADC Conversion Result Buffer Register 13  
ADC Conversion Result Buffer Register 14  
ADC Conversion Result Buffer Register 15  
ADC Control Register 3  
ADCST  
ADC Status Register  
0x711A –  
0x711B  
Reserved  
2
Reserved  
ADCREFSEL  
ADCOFFTRIM  
0x711C  
0x711D  
1
1
ADC Reference Select Register  
ADC Offset Trim Register  
0x711E –  
0x711F  
Reserved  
2
Reserved  
(1) The registers in this column are Peripheral Frame 2 Registers.  
(2) The ADC result registers are dual mapped in the 280x DSP. Locations in Peripheral Frame 2 (0x7108-0x7117) are 2 wait-states and  
left justified. Locations in Peripheral frame 0 space (0x0B00-0x0B0F) are 0 wait sates and right justified. During high-speed/continuous  
conversion use of the ADC, use the 0 wait-state locations for fast transfer of ADC results to user memory.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.2.7 Enhanced Controller Area Network (eCAN) Modules (eCAN-A and eCAN-B)  
The CAN module has the following features:  
Fully compliant with CAN protocol, version 2.0B  
Supports data rates up to 1 Mbps  
Thirty-two mailboxes, each with the following properties:  
– Configurable as receive or transmit  
– Configurable with standard or extended identifier  
– Has a programmable receive mask  
– Supports data and remote frame  
– Composed of 0 to 8 bytes of data  
– Uses a 32-bit time stamp on receive and transmit message  
– Protects against reception of new message  
– Holds the dynamically programmable priority of transmit message  
– Employs a programmable interrupt scheme with two interrupt levels  
– Employs a programmable alarm on transmission or reception time-out  
Low-power mode  
Programmable wake-up on bus activity  
Automatic reply to a remote request message  
Automatic retransmission of a frame in case of loss of arbitration or error  
32-bit local network time counter synchronized by a specific message (communication in conjunction with  
mailbox 16)  
Self-test mode  
– Operates in a loopback mode receiving its own message. A "dummy" acknowledge is provided, thereby  
eliminating the need for another node to provide the acknowledge bit.  
Note  
For a SYSCLKOUT of 100 MHz, the smallest bit rate possible is 15.625 kbps.  
For a SYSCLKOUT of 60 MHz, the smallest bit rate possible is 9.375 kbps.  
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
eCAN0INT  
eCAN1INT  
Controls Address  
Data  
32  
Enhanced CAN Controller  
Message Controller  
Mailbox RAM  
(512 Bytes)  
Memory Management  
Unit  
eCAN Memory  
(512 Bytes)  
Registers and  
CPU Interface,  
Receive Control Unit,  
Timer Management Unit  
32-Message Mailbox  
of 4 x 32-Bit Words  
Message Objects Control  
32  
32  
32  
eCAN Protocol Kernel  
Receive Buffer  
Transmit Buffer  
Control Buffer  
Status Buffer  
SN65HVD23x  
3.3-V CAN Transceiver  
CAN Bus  
Figure 9-10. eCAN Block Diagram and Interface Circuit  
Table 9-7. 3.3-V eCAN Transceivers  
SUPPLY  
VOLTAGE  
LOW-POWER  
MODE  
SLOPE  
CONTROL  
PART NUMBER  
VREF  
OTHER  
TA  
SN65HVD230  
SN65HVD230Q  
SN65HVD231  
SN65HVD231Q  
SN65HVD232  
SN65HVD232Q  
SN65HVD233  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
Standby  
Standby  
Sleep  
Adjustable  
Adjustable  
Adjustable  
Adjustable  
None  
Yes  
Yes  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
Yes  
Sleep  
Yes  
None  
None  
None  
None  
None  
None  
Standby  
Adjustable  
Diagnostic  
Loopback  
SN65HVD234  
SN65HVD235  
3.3 V  
3.3 V  
Standby & Sleep  
Standby  
Adjustable  
Adjustable  
None  
None  
–40°C to 125°C  
–40°C to 125°C  
Autobaud  
Loopback  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
eCAN-A Control and Status Registers  
Mailbox Enable - CANME  
Mailbox Direction - CANMD  
Transmission Request Set - CANTRS  
Transmission Request Reset - CANTRR  
Transmission Acknowledge - CANTA  
Abort Acknowledge - CANAA  
eCAN-A Memory (512 Bytes)  
Control and Status Registers  
6000h  
Received Message Pending - CANRMP  
Received Message Lost - CANRML  
Remote Frame Pending - CANRFP  
Global Acceptance Mask - CANGAM  
603Fh  
6040h  
Local Acceptance Masks (LAM)  
(32 x 32-Bit RAM)  
607Fh  
6080h  
Master Control - CANMC  
Message Object Time Stamps (MOTS)  
(32 x 32-Bit RAM)  
Bit-Timing Configuration - CANBTC  
60BFh  
60C0h  
Error and Status - CANES  
Message Object Time-Out (MOTO)  
(32 x 32-Bit RAM)  
Transmit Error Counter - CANTEC  
Receive Error Counter - CANREC  
Global Interrupt Flag 0 - CANGIF0  
Global Interrupt Mask - CANGIM  
Global Interrupt Flag 1 - CANGIF1  
Mailbox Interrupt Mask - CANMIM  
Mailbox Interrupt Level - CANMIL  
60FFh  
eCAN-A Memory RAM (512 Bytes)  
6100h-6107h  
6108h-610Fh  
6110h-6117h  
6118h-611Fh  
6120h-6127h  
Mailbox 0  
Mailbox 1  
Mailbox 2  
Mailbox 3  
Mailbox 4  
Overwrite Protection Control - CANOPC  
TX I/O Control - CANTIOC  
RX I/O Control - CANRIOC  
Time Stamp Counter - CANTSC  
Time-Out Control - CANTOC  
Time-Out Status - CANTOS  
61E0h-61E7h  
61E8h-61EFh  
61F0h-61F7h  
61F8h-61FFh  
Mailbox 28  
Mailbox 29  
Mailbox 30  
Mailbox 31  
Reserved  
Message Mailbox (16 Bytes)  
Message Identifier - MSGID  
Message Control - MSGCTRL  
Message Data Low - MDL  
Message Data High - MDH  
61E8h-61E9h  
61EAh-61EBh  
61ECh-61EDh  
61EEh-61EFh  
Figure 9-11. eCAN-A Memory Map  
Note  
If the eCAN module is not used in an application, the RAM available (LAM, MOTS, MOTO, and  
mailbox RAM) can be used as general-purpose RAM. The CAN module clock should be enabled for  
this.  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
eCAN-B Control and Status Registers  
Mailbox Enable - CANME  
Mailbox Direction - CANMD  
Transmission Request Set - CANTRS  
Transmission Request Reset - CANTRR  
Transmission Acknowledge - CANTA  
eCAN-B Memory (512 Bytes)  
Control and Status Registers  
Abort Acknowledge - CANAA  
Received Message Pending - CANRMP  
Received Message Lost - CANRML  
Remote Frame Pending - CANRFP  
Global Acceptance Mask - CANGAM  
6200h  
623Fh  
6240h  
Local Acceptance Masks (LAM)  
(32 x 32-Bit RAM)  
627Fh  
6280h  
Master Control - CANMC  
Message Object Time Stamps (MOTS)  
(32 x 32-Bit RAM)  
Bit-Timing Configuration - CANBTC  
62BFh  
62C0h  
Error and Status - CANES  
Message Object Time-Out (MOTO)  
(32 x 32-Bit RAM)  
Transmit Error Counter - CANTEC  
Receive Error Counter - CANREC  
Global Interrupt Flag 0 - CANGIF0  
Global Interrupt Mask - CANGIM  
Global Interrupt Flag 1 - CANGIF1  
Mailbox Interrupt Mask - CANMIM  
Mailbox Interrupt Level - CANMIL  
62FFh  
eCAN-B Memory RAM (512 Bytes)  
6300h-6307h  
6308h-630Fh  
6310h-6317h  
6318h-631Fh  
6320h-6327h  
Mailbox 0  
Mailbox 1  
Mailbox 2  
Mailbox 3  
Mailbox 4  
Overwrite Protection Control - CANOPC  
TX I/O Control - CANTIOC  
RX I/O Control - CANRIOC  
Time Stamp Counter - CANTSC  
Time-Out Control - CANTOC  
Time-Out Status - CANTOS  
63E0h-63E7h  
63E8h-63EFh  
63F0h-63F7h  
63F8h-63FFh  
Mailbox 28  
Mailbox 29  
Mailbox 30  
Mailbox 31  
Reserved  
Message Mailbox (16 Bytes)  
Message Identifier - MSGID  
Message Control - MSGCTRL  
Message Data Low - MDL  
Message Data High - MDH  
63E8h-63E9h  
63EAh-63EBh  
63ECh-63EDh  
63EEh-63EFh  
Figure 9-12. eCAN-B Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
The CAN registers listed in Table 9-8 are used by the CPU to configure and control the CAN controller and the  
message objects. eCAN control registers only support 32-bit read/write operations. Mailbox RAM can be  
accessed as 16 bits or 32 bits. 32-bit accesses are aligned to an even boundary.  
Table 9-8. CAN Register Map  
REGISTER  
NAME(1)  
eCAN-A  
ADDRESS  
eCAN-B  
ADDRESS  
SIZE  
(x32)  
DESCRIPTION  
CANME  
CANMD  
0x6000  
0x6002  
0x6004  
0x6006  
0x6008  
0x600A  
0x600C  
0x600E  
0x6010  
0x6012  
0x6014  
0x6016  
0x6018  
0x601A  
0x601C  
0x601E  
0x6020  
0x6022  
0x6024  
0x6026  
0x6028  
0x602A  
0x602C  
0x602E  
0x6030  
0x6032  
0x6200  
0x6202  
0x6204  
0x6206  
0x6208  
0x620A  
0x620C  
0x620E  
0x6210  
0x6212  
0x6214  
0x6216  
0x6218  
0x621A  
0x621C  
0x621E  
0x6220  
0x6222  
0x6224  
0x6226  
0x6228  
0x622A  
0x622C  
0x622E  
0x6230  
0x6232  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Mailbox enable  
Mailbox direction  
CANTRS  
CANTRR  
CANTA  
Transmit request set  
Transmit request reset  
Transmission acknowledge  
Abort acknowledge  
CANAA  
CANRMP  
CANRML  
CANRFP  
CANGAM  
CANMC  
Receive message pending  
Receive message lost  
Remote frame pending  
Global acceptance mask  
Master control  
CANBTC  
CANES  
Bit-timing configuration  
Error and status  
CANTEC  
CANREC  
CANGIF0  
CANGIM  
CANGIF1  
CANMIM  
CANMIL  
CANOPC  
CANTIOC  
CANRIOC  
CANTSC  
CANTOC  
CANTOS  
Transmit error counter  
Receive error counter  
Global interrupt flag 0  
Global interrupt mask  
Global interrupt flag 1  
Mailbox interrupt mask  
Mailbox interrupt level  
Overwrite protection control  
TX I/O control  
RX I/O control  
Time stamp counter (Reserved in SCC mode)  
Time-out control (Reserved in SCC mode)  
Time-out status (Reserved in SCC mode)  
(1) These registers are mapped to Peripheral Frame 1.  
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.2.8 Serial Communications Interface (SCI) Modules (SCI-A, SCI-B)  
The 280x devices include two serial communications interface (SCI) modules. The SCI modules support digital  
communications between the CPU and other asynchronous peripherals that use the standard non-return-to-zero  
(NRZ) format. The SCI receiver and transmitter are double-buffered, and each has its own separate enable and  
interrupt bits. Both can be operated independently or simultaneously in the full-duplex mode. To ensure data  
integrity, the SCI checks received data for break detection, parity, overrun, and framing errors. The bit rate is  
programmable to over 65000 different speeds through a 16-bit baud-select register.  
Features of each SCI module include:  
Two external pins:  
– SCITXD: SCI transmit-output pin  
– SCIRXD: SCI receive-input pin  
Note  
NOTE: Both pins can be used as GPIO if not used for SCI.  
– Baud rate programmable to 64K different rates:  
LSPCLK  
Baud rate =  
Baud rate =  
when BRR ¹ 0  
when BRR = 0  
(BRR + 1) * 8  
LSPCLK  
16  
Data-word format  
– One start bit  
– Data-word length programmable from one to eight bits  
– Optional even/odd/no parity bit  
– One or two stop bits  
Four error-detection flags: parity, overrun, framing, and break detection  
Two wake-up multiprocessor modes: idle-line and address bit  
Half- or full-duplex operation  
Double-buffered receive and transmit functions  
Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms with  
status flags.  
– Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX EMPTY  
flag (transmitter-shift register is empty)  
– Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag (break  
condition occurred), and RX ERROR flag (monitoring four interrupt conditions)  
Separate enable bits for transmitter and receiver interrupts (except BRKDT)  
100 MHz  
Max bit rate =  
= 6.25 ´ 6 b/s (for 100 -MHz devices)  
10  
16  
60 MHz  
16  
Max bit rate =  
= 3.75 ´ 6 b/s (for 60 -MHz devices)  
10  
NRZ (non-return-to-zero) format  
Ten SCI module control registers located in the control register frame beginning at address 7050h  
Note  
All registers in this module are 8-bit registers that are connected to Peripheral Frame 2. When a  
register is accessed, the register data is in the lower byte (7–0), and the upper byte (15–8) is read  
as zeros. Writing to the upper byte has no effect.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Enhanced features:  
Auto baud-detect hardware logic  
16-level transmit/receive FIFO  
The SCI port operation is configured and controlled by the registers listed in Table 9-9 and Table 9-10.  
Table 9-9. SCI-A Registers  
NAME(1)  
SCICCRA  
ADDRESS  
0x7050  
0x7051  
0x7052  
0x7053  
0x7054  
0x7055  
0x7056  
0x7057  
0x7059  
0x705A  
0x705B  
0x705C  
0x705F  
SIZE (x16)  
DESCRIPTION  
SCI-A Communications Control Register  
SCI-A Control Register 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
SCICTL1A  
SCIHBAUDA  
SCILBAUDA  
SCICTL2A  
SCI-A Baud Register, High Bits  
SCI-A Baud Register, Low Bits  
SCI-A Control Register 2  
SCIRXSTA  
SCIRXEMUA  
SCIRXBUFA  
SCITXBUFA  
SCIFFTXA(2)  
SCIFFRXA(2)  
SCIFFCTA(2)  
SCIPRIA  
SCI-A Receive Status Register  
SCI-A Receive Emulation Data Buffer Register  
SCI-A Receive Data Buffer Register  
SCI-A Transmit Data Buffer Register  
SCI-A FIFO Transmit Register  
SCI-A FIFO Receive Register  
SCI-A FIFO Control Register  
SCI-A Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. 32-bit accesses produce  
undefined results.  
(2) These registers are new registers for the FIFO mode.  
Table 9-10. SCI-B Registers  
NAME(1) (2)  
SCICCRB  
ADDRESS  
0x7750  
0x7751  
0x7752  
0x7753  
0x7754  
0x7755  
0x7756  
0x7757  
0x7759  
0x775A  
0x775B  
0x775C  
0x775F  
SIZE (x16)  
DESCRIPTION  
SCI-B Communications Control Register  
SCI-B Control Register 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
SCICTL1B  
SCIHBAUDB  
SCILBAUDB  
SCICTL2B  
SCI-B Baud Register, High Bits  
SCI-B Baud Register, Low Bits  
SCI-B Control Register 2  
SCIRXSTB  
SCIRXEMUB  
SCIRXBUFB  
SCITXBUFB  
SCIFFTXB(2)  
SCIFFRXB(2)  
SCIFFCTB(2)  
SCIPRIB  
SCI-B Receive Status Register  
SCI-B Receive Emulation Data Buffer Register  
SCI-B Receive Data Buffer Register  
SCI-B Transmit Data Buffer Register  
SCI-B FIFO Transmit Register  
SCI-B FIFO Receive Register  
SCI-B FIFO Control Register  
SCI-B Priority Control Register  
(1) Registers in this table are mapped to peripheral bus 16 space. This space only allows 16-bit accesses. 32-bit accesses produce  
undefined results.  
(2) These registers are new registers for the FIFO mode.  
Figure 9-13 shows the SCI module block diagram.  
Copyright © 2021 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
SCICTL1.1  
SCITXD  
SCITXD  
TXSHF  
Register  
Frame Format and Mode  
Parity  
Even/Odd Enable  
TXENA  
TX EMPTY  
SCICTL2.6  
8
SCICCR.6 SCICCR.5  
TX INT ENA  
TXRDY  
Transmitter-Data  
Buffer Register  
SCICTL2.7  
SCICTL2.0  
8
TXWAKE  
TXINT  
TX FIFO _0  
SCICTL1.3  
TX Interrupt Logic  
TX FIFO _1  
- - - - -  
To CPU  
TX  
FIFO  
Interrupts  
1
SCI TX Interrupt Select Logic  
TX FIFO _15  
WUT  
SCITXBUF.7-0  
TX FIFO Registers  
SCIFFENA  
AutoBaud Detect Logic  
SCIRXD  
SCIFFTX.14  
SCIHBAUD. 15 - 8  
Baud Rate  
MSbyte  
Register  
SCIRXD  
RXSHF Register  
RXWAKE  
LSPCLK  
SCIRXST.1  
SCILBAUD. 7 - 0  
RXENA  
SCICTL1.0  
8
Baud Rate  
LSbyte  
Register  
SCICTL2.1  
RXRDY  
RX/BK INT ENA  
Receive-Data  
Buffer Register  
SCIRXBUF.7-0  
SCIRXST.6  
BRKDT  
8
SCIRXST.5  
RX FIFO _15  
- - - - -  
RX  
FIFO  
Interrupts  
RX FIFO _1  
RX FIFO _0  
RXINT  
To CPU  
RX Interrupt Logic  
SCIRXBUF.7-0  
RX FIFO Registers  
RXFFOVF  
SCIRXST.7 SCIRXST.4 - 2  
SCIFFRX.15  
RX Error  
FE OE PE  
RX Error  
RX ERR INT ENA  
SCI RX Interrupt Select Logic  
SCICTL1.6  
Figure 9-13. Serial Communications Interface (SCI) Module Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.2.9 Serial Peripheral Interface (SPI) Modules (SPI-A, SPI-B, SPI-C, SPI-D)  
The 280x devices include the four-pin serial peripheral interface (SPI) module. Up to four SPI modules (SPI-A,  
SPI-B, SPI-C, and SPI-D) are available. The SPI is a high-speed, synchronous serial I/O port that allows a serial  
bit stream of programmed length (one to sixteen bits) to be shifted into and out of the device at a programmable  
bit-transfer rate. Normally, the SPI is used for communications between the DSP controller and external  
peripherals or another processor. Typical applications include external I/O or peripheral expansion through  
devices such as shift registers, display drivers, and ADCs. Multidevice communications are supported by the  
master/slave operation of the SPI.  
The SPI module features include:  
Four external pins:  
– SPISOMI: SPI slave-output/master-input pin  
– SPISIMO: SPI slave-input/master-output pin  
– SPISTE: SPI slave transmit-enable pin  
– SPICLK: SPI serial-clock pin  
Note  
NOTE: All four pins can be used as GPIO, if the SPI module is not used.  
Two operational modes: master and slave  
Baud rate: 125 different programmable rates.  
LSPCLK  
Baud rate =  
when SPIBRR = 3 to127  
(SPIBRR + 1)  
LSPCLK  
4
when SPIBRR = 0,1, 2  
Baud rate =  
Data word length: one to sixteen data bits  
Four clocking schemes (controlled by clock polarity and clock phase bits) include:  
– Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the  
SPICLK signal and receives data on the rising edge of the SPICLK signal.  
– Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the falling  
edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.  
– Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the  
SPICLK signal and receives data on the falling edge of the SPICLK signal.  
– Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the rising  
edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Simultaneous receive and transmit operation (transmit function can be disabled in software)  
Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithms.  
Nine SPI module control registers: Located in control register frame beginning at address 7040h.  
Note  
All registers in this module are 16-bit registers that are connected to Peripheral Frame 2. When a  
register is accessed, the register data is in the lower byte (7–0), and the upper byte (15–8) is read  
as zeros. Writing to the upper byte has no effect.  
Enhanced feature:  
16-level transmit/receive FIFO  
Delayed transmit control  
Copyright © 2021 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
The SPI port operation is configured and controlled by the registers listed in Table 9-11 through Table 9-14 .  
Table 9-11. SPI-A Registers  
SIZE (x16)  
NAME  
SPICCR  
SPICTL  
ADDRESS  
0x7040  
0x7041  
0x7042  
0x7044  
0x7046  
0x7047  
0x7048  
0x7049  
0x704A  
0x704B  
0x704C  
0x704F  
DESCRIPTION(1)  
1
1
1
1
1
1
1
1
1
1
1
1
SPI-A Configuration Control Register  
SPI-A Operation Control Register  
SPI-A Status Register  
SPISTS  
SPIBRR  
SPIRXEMU  
SPIRXBUF  
SPITXBUF  
SPIDAT  
SPI-A Baud Rate Register  
SPI-A Receive Emulation Buffer Register  
SPI-A Serial Input Buffer Register  
SPI-A Serial Output Buffer Register  
SPI-A Serial Data Register  
SPIFFTX  
SPIFFRX  
SPIFFCT  
SPIPRI  
SPI-A FIFO Transmit Register  
SPI-A FIFO Receive Register  
SPI-A FIFO Control Register  
SPI-A Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined  
results.  
Table 9-12. SPI-B Registers  
SIZE (x16)  
NAME  
SPICCR  
SPICTL  
ADDRESS  
0x7740  
0x7741  
0x7742  
0x7744  
0x7746  
0x7747  
0x7748  
0x7749  
0x774A  
0x774B  
0x774C  
0x774F  
DESCRIPTION(1)  
1
1
1
1
1
1
1
1
1
1
1
1
SPI-B Configuration Control Register  
SPI-B Operation Control Register  
SPI-B Status Register  
SPISTS  
SPIBRR  
SPIRXEMU  
SPIRXBUF  
SPITXBUF  
SPIDAT  
SPI-B Baud Rate Register  
SPI-B Receive Emulation Buffer Register  
SPI-B Serial Input Buffer Register  
SPI-B Serial Output Buffer Register  
SPI-B Serial Data Register  
SPIFFTX  
SPIFFRX  
SPIFFCT  
SPIPRI  
SPI-B FIFO Transmit Register  
SPI-B FIFO Receive Register  
SPI-B FIFO Control Register  
SPI-B Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined  
results.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-13. SPI-C Registers  
SIZE (x16)  
NAME  
SPICCR  
SPICTL  
ADDRESS  
0x7760  
0x7761  
0x7762  
0x7764  
0x7766  
0x7767  
0x7768  
0x7769  
0x776A  
0x776B  
0x776C  
0x776F  
DESCRIPTION(1)  
1
1
1
1
1
1
1
1
1
1
1
1
SPI-C Configuration Control Register  
SPI-C Operation Control Register  
SPI-C Status Register  
SPISTS  
SPIBRR  
SPIRXEMU  
SPIRXBUF  
SPITXBUF  
SPIDAT  
SPI-C Baud Rate Register  
SPI-C Receive Emulation Buffer Register  
SPI-C Serial Input Buffer Register  
SPI-C Serial Output Buffer Register  
SPI-C Serial Data Register  
SPIFFTX  
SPIFFRX  
SPIFFCT  
SPIPRI  
SPI-C FIFO Transmit Register  
SPI-C FIFO Receive Register  
SPI-C FIFO Control Register  
SPI-C Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined  
results.  
Table 9-14. SPI-D Registers  
SIZE (x16)  
NAME  
SPICCR  
SPICTL  
ADDRESS  
0x7780  
0x7781  
0x7782  
0x7784  
0x7786  
0x7787  
0x7788  
0x7789  
0x778A  
0x778B  
0x778C  
0x778F  
DESCRIPTION(1)  
1
1
1
1
1
1
1
1
1
1
1
1
SPI-D Configuration Control Register  
SPI-D Operation Control Register  
SPI-D Status Register  
SPISTS  
SPIBRR  
SPIRXEMU  
SPIRXBUF  
SPITXBUF  
SPIDAT  
SPI-D Baud Rate Register  
SPI-D Receive Emulation Buffer Register  
SPI-D Serial Input Buffer Register  
SPI-D Serial Output Buffer Register  
SPI-D Serial Data Register  
SPIFFTX  
SPIFFRX  
SPIFFCT  
SPIPRI  
SPI-D FIFO Transmit Register  
SPI-D FIFO Receive Register  
SPI-D FIFO Control Register  
SPI-D Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined  
results.  
Figure 9-14 is a block diagram of the SPI in slave mode.  
Copyright © 2021 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
SPIFFENA  
SPIFFTX.14  
Overrun  
INT ENA  
Receiver  
Overrun Flag  
RX FIFO Registers  
SPIRXBUF  
RX FIFO _0  
RX FIFO _1  
- - - - -  
SPISTS.7  
SPICTL.4  
RX  
FIFO  
Interrupt  
RX FIFO _15  
SPIINT/SPIRXINT  
To CPU  
RX Interrupt  
Logic  
16  
SPIFFOVF  
FLAG  
SPIRXBUF Buffer Register  
SPIFFRX.15  
TX  
FIFO  
Interrupt  
TX FIFO Registers  
TX Interrupt  
Logic  
SPITXBUF  
SPITXINT  
TX FIFO _15  
- - - - -  
SPI  
INT FLAG  
SPI  
INT ENA  
TX FIFO _1  
16  
SPISTS.6  
TX FIFO _0  
SPICTL.0  
16  
SPITXBUF Buffer Register  
16  
M
S
M
S
SW1  
SW2  
SPIDAT Data Register  
SPISIMO  
M
S
M
S
SPIDAT.15 - 0  
SPISOMI  
Talk  
SPICTL.1  
SPISTE(A)  
State Control  
Master/Slave  
SPICTL.2  
SPI Char  
SPICCR.3 - 0  
S
3
2
1
0
SW3  
Clock  
Polarity  
Clock  
Phase  
M
S
SPI Bit Rate  
SPICCR.6  
SPICTL.3  
LSPCLK  
SPICLK  
SPIBRR.6 - 0  
M
6
5
4
3
2
1
0
A. SPISTE is driven low by the master for a slave device.  
Figure 9-14. SPI Module Block Diagram (Slave Mode)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.2.10 Inter-Integrated Circuit (I2C)  
The 280x device contains one I2C Serial Port. Figure 9-15 shows how the I2C peripheral module interfaces  
within the 280x device.  
The I2C module has the following features:  
Compliance with the Philips Semiconductors I2C-bus specification (version 2.1):  
– Support for 1-bit to 8-bit format transfers  
– 7-bit and 10-bit addressing modes  
– General call  
– START byte mode  
– Support for multiple master-transmitters and slave-receivers  
– Support for multiple slave-transmitters and master-receivers  
– Combined master transmit/receive and receive/transmit mode  
– Data transfer rate of from 10 kbps up to 400 kbps (I2C Fast-mode rate)  
One 16-word receive FIFO and one 16-word transmit FIFO  
One interrupt that can be used by the CPU. This interrupt can be generated as a result of one of the following  
conditions:  
– Transmit-data ready  
– Receive-data ready  
– Register-access ready  
– No-acknowledgment received  
– Arbitration lost  
– Stop condition detected  
– Addressed as slave  
An additional interrupt that can be used by the CPU when in FIFO mode  
Module enable/disable capability  
Free data format mode  
Copyright © 2021 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
System Control Block  
C28x CPU  
I2CAENCLK  
SYSCLKOUT  
SYSRS  
Control  
Data[16]  
Data[16]  
SDAA  
SCLA  
I2C-A  
Addr[16]  
I2CINT1A  
I2CINT2A  
GPIO  
MUX  
PIE  
Block  
A. The I2C registers are accessed at the SYSCLKOUT rate. The internal timing and signal waveforms of the I2C port are also at the  
SYSCLKOUT rate.  
B. The clock enable bit (I2CAENCLK) in the PCLKCRO register turns off the clock to the I2C port for low power operation. Upon reset,  
I2CAENCLK is clear, which indicates the peripheral internal clocks are off.  
Figure 9-15. I2C Peripheral Module Interfaces  
The registers in Table 9-15 configure and control the I2C port operation.  
Table 9-15. I2C-A Registers  
NAME  
I2COAR  
I2CIER  
ADDRESS  
0x7900  
0x7901  
0x7902  
0x7903  
0x7904  
0x7905  
0x7906  
0x7907  
0x7908  
0x7909  
0x790A  
0x790C  
0x7920  
0x7921  
-
DESCRIPTION  
I2C own address register  
I2C interrupt enable register  
I2C status register  
I2CSTR  
I2CCLKL  
I2CCLKH  
I2CCNT  
I2CDRR  
I2CSAR  
I2CDXR  
I2CMDR  
I2CISRC  
I2CPSC  
I2CFFTX  
I2CFFRX  
I2CRSR  
I2CXSR  
I2C clock low-time divider register  
I2C clock high-time divider register  
I2C data count register  
I2C data receive register  
I2C slave address register  
I2C data transmit register  
I2C mode register  
I2C interrupt source register  
I2C prescaler register  
I2C FIFO transmit register  
I2C FIFO receive register  
I2C receive shift register (not accessible to the CPU)  
I2C transmit shift register (not accessible to the CPU)  
-
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.2.11 GPIO MUX  
On the 280x, the GPIO MUX can multiplex up to three independent peripheral signals on a single GPIO pin in  
addition to providing individual pin bit-banging IO capability. The GPIO MUX block diagram per pin is shown in  
Figure 9-16. Because of the open-drain capabilities of the I2C pins, the GPIO MUX block diagram for these pins  
differ. See the TMS320x280x, 2801x, 2804x DSP system control and interrupts reference guide for details.  
GPIOXINT1SEL  
GPIOLMPSEL  
LPMCR0  
GPIOXINT2SEL  
GPIOXNMISEL  
Low-Power  
Modes Block  
External Interrupt  
MUX  
PIE  
GPxDAT (read)  
Asynchronous  
path  
GPxQSEL1/2  
GPxCTRL  
GPxPUD  
00  
01  
N/C  
Peripheral 1 Input  
Input  
Qualification  
Internal  
Pullup  
Peripheral 2 Input  
Peripheral 3 Input  
10  
11  
Asynchronous path  
GPxTOGGLE  
GPxCLEAR  
GPxSET  
GPIOx pin  
00  
01  
10  
11  
GPxDAT (latch)  
Peripheral 1 Output  
Peripheral 2 Output  
Peripheral 3 Output  
High-Impedance  
Output Control  
00  
01  
GPxDIR (latch)  
Peripheral 1 Output Enable  
0 = Input, 1 = Output  
XRS  
Peripheral 2 Output Enable  
Peripheral 3 Output Enable  
10  
11  
= Default at Reset  
GPxMUX1/2  
A. x stands for the port, either A or B. For example, GPxDIR refers to either the GPADIR and GPBDIR register depending on the particular  
GPIO pin selected.  
B. GPxDAT latch/read are accessed at the same memory location.  
Figure 9-16. GPIO MUX Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
The 280x supports 34 GPIO pins. The GPIO control and data registers are mapped to Peripheral Frame 1 to  
enable 32-bit operations on the registers (along with 16-bit operations). Table 9-16 shows the GPIO register  
mapping.  
Table 9-16. GPIO Registers  
NAME  
ADDRESS  
SIZE (x16)  
DESCRIPTION  
GPIO CONTROL REGISTERS (EALLOW PROTECTED)  
GPACTRL  
GPAQSEL1  
GPAQSEL2  
GPAMUX1  
GPAMUX2  
GPADIR  
0x6F80  
0x6F82  
0x6F84  
0x6F86  
0x6F88  
0x6F8A  
0x6F8C  
2
2
2
2
2
2
2
GPIO A Control Register (GPIO0 to 31)  
GPIO A Qualifier Select 1 Register (GPIO0 to 15)  
GPIO A Qualifier Select 2 Register (GPIO16 to 31)  
GPIO A MUX 1 Register (GPIO0 to 15)  
GPIO A MUX 2 Register (GPIO16 to 31)  
GPIO A Direction Register (GPIO0 to 31)  
GPIO A Pull Up Disable Register (GPIO0 to 31)  
GPAPUD  
0x6F8E –  
0x6F8F  
Reserved  
2
Reserved  
GPBCTRL  
GPBQSEL1  
GPBQSEL2  
GPBMUX1  
GPBMUX2  
GPBDIR  
0x6F90  
0x6F92  
0x6F94  
0x6F96  
0x6F98  
0x6F9A  
0x6F9C  
2
2
2
2
2
2
2
GPIO B Control Register (GPIO32 to 35)  
GPIO B Qualifier Select 1 Register (GPIO32 to 35)  
Reserved  
GPIO B MUX 1 Register (GPIO32 to 35)  
Reserved  
GPIO B Direction Register (GPIO32 to 35)  
GPIO B Pull Up Disable Register (GPIO32 to 35)  
GPBPUD  
0x6F9E –  
0x6F9F  
Reserved  
Reserved  
2
Reserved  
Reserved  
0x6FA0 –  
0x6FBF  
32  
GPIO DATA REGISTERS (NOT EALLOW PROTECTED)  
GPADAT  
GPASET  
0x6FC0  
0x6FC2  
0x6FC4  
0x6FC6  
0x6FC8  
0x6FCA  
0x6FCC  
0x6FCE  
2
2
2
2
2
2
2
2
GPIO Data Register (GPIO0 to 31)  
GPIO Data Set Register (GPIO0 to 31)  
GPIO Data Clear Register (GPIO0 to 31)  
GPIO Data Toggle Register (GPIO0 to 31)  
GPIO Data Register (GPIO32 to 35)  
GPACLEAR  
GPATOGGLE  
GPBDAT  
GPBSET  
GPIO Data Set Register (GPIO32 to 35)  
GPIO Data Clear Register (GPIO32 to 35)  
GPIO Data Toggle Register (GPIO32 to 35)  
GPBCLEAR  
GPBTOGGLE  
0x6FD0 –  
0x6FDF  
Reserved  
16  
Reserved  
GPIO INTERRUPT AND LOW POWER MODES SELECT REGISTERS (EALLOW PROTECTED)  
GPIOXINT1SEL  
GPIOXINT2SEL  
GPIOXNMISEL  
0x6FE0  
0x6FE1  
0x6FE2  
1
1
1
XINT1 GPIO Input Select Register (GPIO0 to 31)  
XINT2 GPIO Input Select Register (GPIO0 to 31)  
XNMI GPIO Input Select Register (GPIO0 to 31)  
0x6FE3 –  
0x6FE7  
Reserved  
GPIOLPMSEL  
Reserved  
5
2
Reserved  
0x6FE8  
LPM GPIO Select Register (GPIO0 to 31)  
Reserved  
0x6FEA –  
0x6FFF  
22  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-17. F2808 GPIO MUX Table  
DEFAULT AT RESET  
GPAMUX1/2(3)  
REGISTER  
BITS  
PRIMARY I/O  
FUNCTION  
(GPxMUX1/2  
BITS = 0,0)  
PERIPHERAL  
SELECTION 1(1)  
PERIPHERAL  
SELECTION 2  
PERIPHERAL  
SELECTION 3  
(GPxMUX1/2 BITS = 0,1)  
(GPxMUX1/2 BITS = 1,0)  
(GPxMUX1/2 BITS = 1,1)  
GPAMUX1  
1–0  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
EPWM1A (O)  
EPWM1B (O)  
EPWM2A (O)  
EPWM2B (O)  
EPWM3A (O)  
EPWM3B (O)  
EPWM4A (O)  
EPWM4B (O)  
EPWM5A (O)  
EPWM5B (O)  
EPWM6A (O)  
EPWM6B (O)  
TZ1 (I)  
Reserved(2)  
SPISIMOD (I/O)  
Reserved(2)  
Reserved(2)  
Reserved(2)  
3–2  
5–4  
Reserved(2)  
7–6  
SPISOMID (I/O)  
Reserved(2)  
Reserved(2)  
9–8  
Reserved(2)  
11–10  
13–12  
15–14  
17–16  
19–18  
21–20  
23–22  
25–24  
27–26  
29–28  
31–30  
SPICLKD (I/O)  
EPWMSYNCI (I)  
SPISTED (I/O)  
CANTXB (O)  
SCITXDB (O)  
CANRXB (I)  
ECAP1 (I/O)  
EPWMSYNCO (O)  
ECAP2 (I/O)  
ADCSOCAO (O)  
ECAP3 (I/O)  
ADCSOCBO (O)  
ECAP4 (I/O)  
SCIRXDB (I)  
CANTXB (O)  
CANRXB (I)  
SPISIMOB (I/O)  
SPISOMIB (I/O)  
SPICLKB (I/O)  
SPISTEB (I/O)  
TZ2 (I)  
TZ3 (I)  
SCITXDB (O)  
SCIRXDB (I)  
TZ4 (I)  
GPAMUX2  
1–0  
GPIO16  
GPIO17  
GPIO18  
GPIO19  
GPIO20  
GPIO21  
GPIO22  
GPIO23  
GPIO24  
GPIO25  
GPIO26  
GPIO27  
GPIO28  
GPIO29  
GPIO30  
GPIO31  
SPISIMOA (I/O)  
SPISOMIA (I/O)  
SPICLKA (I/O)  
SPISTEA (I/O)  
EQEP1A (I)  
CANTXB (O)  
CANRXB (I)  
SCITXDB (O)  
SCIRXDB (I)  
SPISIMOC (I/O)  
SPISOMIC (I/O)  
SPICLKC (I/O)  
SPISTEC (I/O)  
EQEP2A (I)  
TZ5 (I)  
TZ6 (I)  
3–2  
5–4  
Reserved(2)  
Reserved(2)  
CANTXB (O)  
CANRXB (I)  
SCITXDB (O)  
SCIRXDB (I)  
SPISIMOB (I/O)  
SPISOMIB (I/O)  
SPICLKB (I/O)  
SPISTEB (I/O)  
TZ5 (I)  
7–6  
9–8  
11–10  
13–12  
15–14  
17–16  
19–18  
21–20  
23–22  
25–24  
27–26  
29–28  
31–30  
EQEP1B (I)  
EQEP1S (I/O)  
EQEP1I (I/O)  
ECAP1 (I/O)  
ECAP2 (I/O)  
ECAP3 (I/O)  
ECAP4 (I/O)  
SCIRXDA (I)  
SCITXDA (O)  
CANRXA (I)  
EQEP2B (I)  
EQEP2I (I/O)  
EQEP2S (I/O)  
Reserved(2)  
Reserved(2)  
TZ6 (I)  
Reserved(2)  
Reserved(2)  
Reserved(2)  
CANTXA (O)  
Reserved(2)  
GPBMUX1  
1–0  
3–2  
5–4  
GPIO32  
GPIO33  
GPIO34  
SDAA (I/OC)  
SCLA (I/OC)  
Reserved(2)  
EPWMSYNCI (I)  
EPWMSYNCO (O)  
Reserved(2)  
ADCSOCAO (O)  
ADCSOCBO (O)  
Reserved(2)  
(1) This table pertains to the 2808 device. Some peripherals may not be available in the 2809, 2806, 2802, or 2801 devices. See the pin  
descriptions for more detail.  
(2) The word "Reserved" means that there is no peripheral assigned to this GPxMUX1/2 register setting. Should it be selected, the state of  
the pin will be undefined and the pin may be driven. This selection is a reserved configuration for future expansion.  
(3) GPxMUX1/2 refers to the appropriate MUX register for the pin; GPAMUX1, GPAMUX2 or GPBMUX1.  
Copyright © 2021 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
The user can select the type of input qualification for each GPIO pin via the GPxQSEL1/2 registers from four  
choices:  
Synchronization To SYSCLKOUT Only (GPxQSEL1/2 = 0,0): This is the default mode of all GPIO pins at  
reset and it simply synchronizes the input signal to the system clock (SYSCLKOUT).  
Qualification Using Sampling Window (GPxQSEL1/2 = 0,1 and 1,0): In this mode the input signal, after  
synchronization to the system clock (SYSCLKOUT), is qualified by a specified number of cycles before the  
input is allowed to change.  
Time Between Samples  
GPyCTRL Reg  
Input Signal  
Qualified by  
3 or 6 Samples  
Qualification  
GPIOx  
SYNC  
GPxQSEL  
SYSCLKOUT  
Number of Samples  
Figure 9-17. Qualification Using Sampling Window  
The sampling period is specified by the QUALPRD bits in the GPxCTRL register and is configurable in  
groups of 8 signals. It specifies a multiple of SYSCLKOUT cycles for sampling the input signal. The sampling  
window is either 3-samples or 6-samples wide and the output is only changed when ALL samples are the  
same (all 0s or all 1s) as shown in Figure 8-10 (for 6-sample mode).  
No Synchronization (GPxQSEL1/2 = 1,1): This mode is used for peripherals where synchronization is not  
required (synchronization is performed within the peripheral).  
Due to the multi-level multiplexing that is required on the 280x device, there may be cases where a peripheral  
input signal can be mapped to more then one GPIO pin. Also, when an input signal is not selected, the input  
signal will default to either a 0 or 1 state, depending on the peripheral.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.3 Memory Maps  
Block Start  
Address  
Prog Space  
Data Space  
0x00 0000  
M0 Vector − RAM (32 x 32)  
(Enabled if VMAP = 0)  
0x00 0040  
M0 SARAM (1K y 16)  
M1 SARAM (1K y 16)  
0x00 0400  
0x00 0800  
Peripheral Frame 0  
0x00 0D00  
PIE Vector − RAM  
(256 x 16)  
(Enabled if ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 6000  
Reserved  
Peripheral Frame 1  
(protected)  
Reserved  
0x00 7000  
0x00 8000  
Peripheral Frame 2  
(protected)  
L0 SARAM (0-wait)  
(4K y 16, Secure Zone, Dual-Mapped)  
0x00 9000  
0x00 A000  
0x00 C000  
L1 SARAM (0-wait)  
(4K y 16, Secure Zone, Dual-Mapped)  
H0 SARAM (0-wait)  
(8K y 16, Dual-Mapped)  
Reserved  
0x3D 7800  
OTP  
(1K y 16, Secure Zone)  
0x3D 7C00  
0x3D 8000  
Reserved  
FLASH  
(128K y 16, Secure Zone)  
0x3F 7FF8  
0x3F 8000  
128-bit Password  
L0 SARAM (0-wait)  
(4K y 16, Secure Zone, Dual-Mapped)  
0x3F 9000  
0x3F A000  
L1 SARAM (0-wait)  
(4K y 16, Secure Zone, Dual-Mapped)  
H0 SARAM (0-wait)  
(8K y 16, Dual-Mapped)  
0x3F C000  
0x3F F000  
Reserved  
Boot ROM (4K y 16)  
0x3F FFC0  
Vectors (32 y 32)  
(enabled if VMAP = 1, ENPIE = 0)  
A. Memory blocks are not to scale.  
B. Peripheral Frame 0, Peripheral Frame 1, and Peripheral Frame 2 memory maps are restricted to data memory only. User program  
cannot access these memory maps in program space.  
C. Protected means the order of Write followed by Read operations is preserved rather than the pipeline order.  
D. Certain memory ranges are EALLOW protected against spurious writes after configuration.  
Figure 9-18. F2809 Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Block Start  
Address  
Prog Space  
M0 Vector − RAM (32 x 32)  
Data Space  
0x00 0000  
(Enabled if VMAP = 0)  
0x00 0040  
0x00 0400  
0x00 0800  
M0 SARAM (1K y 16)  
M1 SARAM (1K y 16)  
Peripheral Frame 0  
0x00 0D00  
PIE Vector − RAM  
(256 x 16)  
(Enabled if ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 6000  
Reserved  
Peripheral Frame 1  
(protected)  
Reserved  
0x00 7000  
0x00 8000  
Peripheral Frame 2  
(protected)  
L0 SARAM (0-wait)  
(4K y 16, Secure Zone, Dual-Mapped)  
0x00 9000  
0x00 A000  
0x00 C000  
L1 SARAM (0-wait)  
(4K y 16, Secure Zone, Dual-Mapped)  
H0 SARAM (0-wait)  
(8K y 16, Dual-Mapped)  
Reserved  
0x3D 7800  
0x3D 7C00  
OTP  
(1K y 16, Secure Zone)  
Reserved  
0x3E 8000  
FLASH  
(64K y 16, Secure Zone)  
0x3F 7FF8  
0x3F 8000  
128-bit Password  
L0 SARAM (0-wait)  
(4K y 16, Secure Zone, Dual-Mapped)  
0x3F 9000  
0x3F A000  
L1 SARAM (0-wait)  
(4K y 16, Secure Zone, Dual-Mapped)  
H0 SARAM (0-wait)  
(8K y 16, Dual-Mapped)  
0x3F C000  
0x3F F000  
Reserved  
Boot ROM (4K y 16)  
0x3F FFC0  
Vectors (32 y 32)  
(enabled if VMAP = 1, ENPIE = 0)  
A. Memory blocks are not to scale.  
B. Peripheral Frame 0, Peripheral Frame 1, and Peripheral Frame 2 memory maps are restricted to data memory only. User program  
cannot access these memory maps in program space.  
C. Protected means the order of Write followed by Read operations is preserved rather than the pipeline order.  
D. Certain memory ranges are EALLOW protected against spurious writes after configuration.  
Figure 9-19. F2808 Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Block Start  
Address  
Data Space  
Prog Space  
0x00 0000  
M0 Vector − RAM (32 x 32)  
(Enabled if VMAP = 0)  
0x00 0040  
0x00 0400  
M0 SARAM (1K y 16)  
M1 SARAM (1K y 16)  
0x00 0800  
0x00 0D00  
Peripheral Frame 0  
PIE Vector − RAM  
(256 x 16)  
(Enabled if ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 6000  
Reserved  
Peripheral Frame 1  
(protected)  
0x00 7000  
0x00 8000  
Reserved  
Peripheral Frame 2  
(protected)  
L0 SARAM (0-wait)  
(4K y 16, Secure Zone, Dual-Mapped)  
0x00 9000  
0x00 A000  
L1 SARAM (0-wait)  
(4K y 16, Secure Zone, Dual-Mapped)  
Reserved  
0x3D 7800  
0x3D 7C00  
OTP  
(1K y 16, Secure Zone)  
Reserved  
0x3F 0000  
FLASH  
(32K y 16, Secure Zone)  
0x3F 7FF8  
0x3F 8000  
128-bit Password  
L0 SARAM (0-wait)  
(4K y 16, Secure Zone, Dual-Mapped)  
0x3F 9000  
0x3F A000  
L1 SARAM (0-wait)  
(4K y 16, Secure Zone, Dual-Mapped)  
Reserved  
0x3F F000  
0x3F FFC0  
Boot ROM (4K y 16)  
Vectors (32 y 32)  
(enabled if VMAP = 1, ENPIE = 0)  
A. Memory blocks are not to scale.  
B. Peripheral Frame 0, Peripheral Frame 1, and Peripheral Frame 2 memory maps are restricted to data memory only. User program  
cannot access these memory maps in program space.  
C. Protected means the order of Write followed by Read operations is preserved rather than the pipeline order.  
D. Certain memory ranges are EALLOW protected against spurious writes after configuration.  
Figure 9-20. F2806 Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Block Start  
Address  
Data Space  
Prog Space  
0x00 0000  
M0 Vector − RAM (32 x 32)  
(Enabled if VMAP = 0)  
M0 SARAM (1K y 16)  
M1 SARAM (1K y 16)  
0x00 0040  
0x00 0400  
0x00 0800  
Peripheral Frame 0  
0x00 0D00  
PIE Vector − RAM  
(256 x 16)  
(Enabled if ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 6000  
Reserved  
Peripheral Frame 1  
(protected)  
Reserved  
0x00 7000  
0x00 8000  
0x00 9000  
Peripheral Frame 2  
(protected)  
L0 SARAM (0-wait)  
(4K y 16, Secure Zone, Dual-Mapped)  
Reserved  
0x3D 7800  
0x3D 7C00  
(A)  
OTP (F2802 Only)  
(1K y 16, Secure Zone)  
Reserved  
0x3F 0000  
FLASH (F2802) or ROM (C2802)  
(32K y 16, Secure Zone)  
0x3F 7FF8  
0x3F 8000  
128-bit Password  
L0 (0-wait)  
(4K y 16, Secure Zone, Dual-Mapped)  
0x3F 9000  
Reserved  
0x3F F000  
0x3F FFC0  
Boot ROM (4K y 16)  
Vectors (32 y 32)  
(enabled if VMAP = 1, ENPIE = 0)  
A. The 1K x 16 OTP has been replaced with 1K x 16 ROM in C2802.  
B. Memory blocks are not to scale.  
C. Peripheral Frame 0, Peripheral Frame 1, and Peripheral Frame 2 memory maps are restricted to data memory only. User program  
cannot access these memory maps in program space.  
D. Protected means the order of Write followed by Read operations is preserved rather than the pipeline order.  
E. Certain memory ranges are EALLOW protected against spurious writes after configuration.  
F. Some locations in ROM are reserved for TI. See Table 9-22 for more information.  
Figure 9-21. F2802, C2802 Memory Map  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Block Start  
Address  
Data Space  
Prog Space  
0x00 0000  
M0 Vector − RAM (32 x 32)  
(Enabled if VMAP = 0)  
M0 SARAM (1K y 16)  
M1 SARAM (1K y 16)  
0x00 0040  
0x00 0400  
0x00 0800  
Peripheral Frame 0  
0x00 0D00  
PIE Vector − RAM  
(256 x 16)  
(Enabled if ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 6000  
Reserved  
Peripheral Frame 1  
(protected)  
Reserved  
0x00 7000  
0x00 8000  
0x00 9000  
Peripheral Frame 2  
(protected)  
L0 SARAM (0-wait)  
(4K y 16, Secure Zone, Dual-Mapped)  
Reserved  
0x3D 7800  
0x3D 7C00  
(A)  
OTP (F2801/F2801x Only)  
(1K y 16, Secure Zone)  
Reserved  
0x3F 4000  
FLASH (F2801) or ROM (C2801)  
(16K y 16, Secure Zone)  
0x3F 7FF8  
0x3F 8000  
128-bit Password  
L0 (0-wait)  
(4K y 16, Secure Zone, Dual-Mapped)  
0x3F 9000  
Reserved  
0x3F F000  
0x3F FFC0  
Boot ROM (4K y 16)  
Vectors (32 y 32)  
(enabled if VMAP = 1, ENPIE = 0)  
A. The 1K x 16 OTP has been replaced with 1K x 16 ROM in C2801.  
B. Memory blocks are not to scale.  
C. Peripheral Frame 0, Peripheral Frame 1, and Peripheral Frame 2 memory maps are restricted to data memory only. User program  
cannot access these memory maps in program space.  
D. Protected means the order of Write followed by Read operations is preserved rather than the pipeline order.  
E. Certain memory ranges are EALLOW protected against spurious writes after configuration.  
F. Some locations in ROM are reserved for TI. See Table 9-22 for more information.  
Figure 9-22. F2801, F28015, F28016, C2801 Memory Map  
Table 9-18. Addresses of Flash Sectors in F2809  
ADDRESS RANGE  
PROGRAM AND DATA SPACE  
0x3D 8000 – 0x3D BFFF  
Sector H (16K x 16)  
Copyright © 2021 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-18. Addresses of Flash Sectors in F2809 (continued)  
ADDRESS RANGE  
0x3D C000 – 0x3D FFFF  
0x3E 0000 – 0x3E 3FFF  
0x3E 4000 – 0x3E 7FFF  
0x3E 8000 – 0x3E BFFF  
0x3E C000 – 0x3E FFFF  
0x3F 0000 – 0x3F 3FFF  
0x3F 4000 – 0x3F 7F7F  
PROGRAM AND DATA SPACE  
Sector G (16K x 16)  
Sector F (16K x 16)  
Sector E (16K x 16)  
Sector D (16K x 16)  
Sector C (16K x 16)  
Sector B (16K x 16)  
Sector A (16K x 16)  
Program to 0x0000 when using the  
Code Security Module  
0x3F 7F80 – 0x3F 7FF5  
0x3F 7FF6 – 0x3F 7FF7  
0x3F 7FF8 – 0x3F 7FFF  
Boot-to-Flash Entry Point  
(program branch instruction here)  
Security Password (128-Bit)  
(Do not program to all zeros)  
Table 9-19. Addresses of Flash Sectors in F2808  
ADDRESS RANGE  
0x3E 8000 – 0x3E BFFF  
0x3E C000 – 0x3E FFFF  
0x3F 0000 – 0x3F 3FFF  
0x3F 4000 – 0x3F 7F7F  
PROGRAM AND DATA SPACE  
Sector D (16K x 16)  
Sector C (16K x 16)  
Sector B (16K x 16)  
Sector A (16K x 16)  
Program to 0x0000 when using the  
Code Security Module  
0x3F 7F80 – 0x3F 7FF5  
0x3F 7FF6 – 0x3F 7FF7  
0x3F 7FF8 – 0x3F 7FFF  
Boot-to-Flash Entry Point  
(program branch instruction here)  
Security Password (128-Bit)  
(Do not program to all zeros)  
Table 9-20. Addresses of Flash Sectors in F2806, F2802  
ADDRESS RANGE  
0x3F 0000 – 0x3F 1FFF  
0x3F 2000 – 0x3F 3FFF  
0x3F 4000 – 0x3F 5FFF  
0x3F 6000 – 0x3F 7F7F  
PROGRAM AND DATA SPACE  
Sector D (8K x 16)  
Sector C (8K x 16)  
Sector B (8K x 16)  
Sector A (8K x 16)  
Program to 0x0000 when using the  
Code Security Module  
0x3F 7F80 – 0x3F 7FF5  
0x3F 7FF6 – 0x3F 7FF7  
0x3F 7FF8 – 0x3F 7FFF  
Boot-to-Flash Entry Point  
(program branch instruction here)  
Security Password (128-Bit)  
(Do not program to all zeros)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-21. Addresses of Flash Sectors in F2801, F28015, F28016  
ADDRESS RANGE  
0x3F 4000 – 0x3F 4FFF  
0x3F 5000 – 0x3F 5FFF  
0x3F 6000 – 0x3F 6FFF  
0x3F 7000 – 0x3F 7F7F  
PROGRAM AND DATA SPACE  
Sector D (4K x 16)  
Sector C (4K x 16)  
Sector B (4K x 16)  
Sector A (4K x 16)  
Program to 0x0000 when using the  
Code Security Module  
0x3F 7F80 – 0x3F 7FF5  
0x3F 7FF6 – 0x3F 7FF7  
0x3F 7FF8 – 0x3F 7FFF  
Boot-to-Flash Entry Point  
(program branch instruction here)  
Security Password (128-Bit)  
(Do not program to all zeros)  
Note  
When the code-security passwords are programmed, all addresses between 0x3F7F80 and  
0x3F7FF5 cannot be used as program code or data. These locations must be programmed to  
0x0000.  
If the code security feature is not used, addresses 0x3F7F80 through 0x3F7FEF may be used for  
code or data. Addresses 0x3F7FF0 – 0x3F7FF5 are reserved for data and should not contain  
program code.  
On ROM devices, addresses 0x3F7FF0 – 0x3F7FF5 and 0x3D7BFC – 0x3D7BFF are reserved for  
TI, irrespective of whether code security has been used or not. User application should not use  
these locations in any way.  
Table 9-22 shows how to handle these memory locations.  
Table 9-22. Impact of Using the Code Security Module  
FLASH  
ROM  
ADDRESS  
Code security enabled Code security disabled Code security enabled Code security disabled  
0x3F 7F80 – 0x3F 7FEF  
0x3F 7FF0 – 0x3F 7FF5  
0x3D 7BFC – 0x3D 7BFF  
Application code and data  
Reserved for data only  
Fill with 0x0000  
Application code and data  
Fill with 0x0000  
Reserved for TI. Do not use.  
Application code and data  
Peripheral Frame 1 and Peripheral Frame 2 are grouped together so as to enable these blocks to be write/read  
peripheral block protected. The protected mode ensures that all accesses to these blocks happen as written.  
Because of the C28x pipeline, a write immediately followed by a read, to different memory locations, will appear  
in reverse order on the memory bus of the CPU. This can cause problems in certain peripheral applications  
where the user expected the write to occur first (as written). The C28x CPU supports a block protection mode  
where a region of memory can be protected so as to make sure that operations occur as written (the penalty is  
extra cycles are added to align the operations). This mode is programmable and by default, it will protect the  
selected zones.  
Copyright © 2021 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
The wait-states for the various spaces in the memory map area are listed in Table 9-23.  
Table 9-23. Wait-states  
AREA  
WAIT-STATES  
COMMENTS  
M0 and M1 SARAMs  
Peripheral Frame 0  
0-wait  
Fixed  
Fixed  
0-wait  
0-wait (writes) Fixed. The eCAN peripheral can extend a cycle as  
2-wait (reads) needed. Back-to-back writes will introduce a 1-cycle delay.  
Peripheral Frame 1  
0-wait (writes)  
Fixed  
Peripheral Frame 2  
L0 and L1 SARAMs  
2-wait (reads)  
0-wait  
Programmed via the Flash registers. 1-wait-state  
Programmable,  
OTP  
operation is possible at a reduced CPU frequency. See  
1-wait minimum  
Section 9.1.5 for more information.  
Programmed via the Flash registers. 0-wait-state  
Programmable, operation is possible at reduced CPU frequency. The CSM  
0-wait minimum password locations are hardwired for 16 wait-states. See  
Section 9.1.5 for more information.  
Flash  
H0 SARAM  
Boot-ROM  
0-wait  
1-wait  
Fixed  
Fixed  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.4 Register Map  
The 280x devices contain three peripheral register spaces. The spaces are categorized as follows:  
Peripheral  
Frame 0:  
These are peripherals that are mapped directly to the CPU memory bus.  
See Table 9-24.  
Peripheral  
Frame 1  
These are peripherals that are mapped to the 32-bit peripheral bus.  
See Table 9-25 .  
Peripheral  
Frame 2:  
These are peripherals that are mapped to the 16-bit peripheral bus.  
See Table 9-26 .  
Table 9-24. Peripheral Frame 0 Registers  
NAME(1) (2)  
ADDRESS RANGE  
SIZE (x16)  
ACCESS TYPE(3)  
Device Emulation Registers  
0x0880 – 0x09FF  
384  
EALLOW protected  
EALLOW protected  
CSM Protected  
FLASH Registers(4)  
0x0A80 – 0x0ADF  
96  
Code Security Module Registers  
ADC Result Registers (dual-mapped)  
CPU-TIMER0/1/2 Registers  
PIE Registers  
0x0AE0 – 0x0AEF  
0x0B00 – 0x0B0F  
0x0C00 – 0x0C3F  
0x0CE0 – 0x0CFF  
0x0D00 – 0x0DFF  
16  
16  
EALLOW protected  
Not EALLOW protected  
Not EALLOW protected  
Not EALLOW protected  
EALLOW protected  
64  
32  
PIE Vector Table  
256  
(1) Registers in Frame 0 support 16-bit and 32-bit accesses.  
(2) Missing segments of memory space are reserved and should not be used in applications.  
(3) If registers are EALLOW protected, then writes cannot be performed until the EALLOW instruction is executed. The EDIS instruction  
disables writes to prevent stray code or pointers from corrupting register contents.  
(4) The Flash Registers are also protected by the Code Security Module (CSM).  
Copyright © 2021 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-25. Peripheral Frame 1 Registers  
NAME(1) (2)  
ADDRESS RANGE  
0x6000 – 0x60FF  
0x6100 – 0x61FF  
0x6200 – 0x62FF  
SIZE (x16)  
ACCESS TYPE  
Some eCAN control registers (and selected  
bits in other eCAN control registers) are  
EALLOW-protected.  
eCANA Registers  
eCANA Mailbox RAM  
eCANB Registers  
256  
256  
Not EALLOW-protected  
Some eCAN control registers (and selected  
bits in other eCAN control registers) are  
EALLOW-protected.  
256  
eCANB Mailbox RAM  
ePWM1 Registers  
0x6300 – 0x63FF  
0x6800 – 0x683F  
0x6840 – 0x687F  
0x6880 – 0x68BF  
0x68C0 – 0x68FF  
0x6900 – 0x693F  
0x6940 – 0x697F  
0x6A00 – 0x6A1F  
0x6A20 – 0x6A3F  
0x6A40 – 0x6A5F  
0x6A60 – 0x6A7F  
0x6B00 – 0x6B3F  
0x6B40 – 0x6B7F  
0x6F80 – 0x6FBF  
0x6FC0 – 0x6FDF  
0x6FE0 – 0x6FFF  
256  
64  
64  
64  
64  
64  
64  
32  
32  
32  
32  
64  
64  
128  
32  
32  
Not EALLOW-protected  
ePWM2 Registers  
ePWM3 Registers  
Some ePWM registers are EALLOW  
protected. See Table 9-3.  
ePWM4 Registers  
ePWM5 Registers  
ePWM6 Registers  
eCAP1 Registers  
eCAP2 Registers  
eCAP3 Registers  
Not EALLOW protected  
eCAP4 Registers  
eQEP1 Registers  
eQEP2 Registers  
GPIO Control Registers  
GPIO Data Registers  
GPIO Interrupt and LPM Select Registers  
EALLOW protected  
Not EALLOW protected  
EALLOW protected  
(1) The eCAN control registers only support 32-bit read/write operations. All 32-bit accesses are aligned to even address boundaries.  
(2) Missing segments of memory space are reserved and should not be used in applications.  
Table 9-26. Peripheral Frame 2 Registers  
NAME(1) (2)  
System Control Registers  
SPI-A Registers  
ADDRESS RANGE  
0x7010 – 0x702F  
0x7040 – 0x704F  
0x7050 – 0x705F  
0x7070 – 0x707F  
0x7100 – 0x711F  
0x7740 – 0x774F  
0x7750 – 0x775F  
0x7760 – 0x776F  
0x7780 – 0x778F  
0x7900 – 0x792F  
SIZE (x16)  
ACCESS TYPE  
32  
16  
16  
16  
32  
16  
16  
16  
16  
48  
EALLOW Protected  
SCI-A Registers  
External Interrupt Registers  
ADC Registers  
SPI-B Registers  
Not EALLOW Protected  
SCI-B Registers  
SPI-C Registers  
SPI-D Registers  
I2C Registers  
(1) Peripheral Frame 2 only allows 16-bit accesses. All 32-bit accesses are ignored (invalid data may be returned or written).  
(2) Missing segments of memory space are reserved and should not be used in applications.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.4.1 Device Emulation Registers  
These registers are used to control the protection mode of the C28x CPU and to monitor some critical device  
signals. The registers are defined in Table 9-27.  
Table 9-27. Device Emulation Registers  
ADDRESS  
RANGE  
NAME  
SIZE (x16)  
DESCRIPTION  
0x0880  
0x0881  
DEVICECNF  
PARTID  
2
1
Device Configuration Register  
0x0882  
Part ID Register  
0x002C(1) - F2801  
0x0024 – F2802  
0x0034 – F2806  
0x003C – F2808  
0x00FE – F2809  
0x0014 – F28016  
0x001C – F28015  
0xFF2C – C2801  
0xFF24 – C2802  
REVID  
0x0883  
1
Revision ID Register  
Revision ID Register  
0x0000 – Silicon Rev. 0 – TMX  
0x0001 – Silicon Rev. A – TMX  
0x0002 – Silicon Rev. B – TMS  
0x0003 – Silicon Rev. C – TMS  
0x0000 – Silicon rev. 0 – TMS (F2809 only)  
0x0001 – Silicon rev. A – TMS (F2809 only)  
PROTSTART  
PROTRANGE  
0x0884  
0x0885  
1
1
Block Protection Start Address Register  
Block Protection Range Address Register  
(1) The first byte (00) denotes flash devices. FF denotes ROM devices. Other values are reserved for future devices.  
Copyright © 2021 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.5 Interrupts  
Figure 9-23 shows how the various interrupt sources are multiplexed within the 280x devices.  
Eight PIE block interrupts are grouped into one CPU interrupt. In total, 12 CPU interrupt groups, with 8 interrupts  
per group equals 96 possible interrupts. On the 280x, 43 of these are used by peripherals as shown in Table  
9-28.  
The TRAP #VectorNumber instruction transfers program control to the interrupt service routine corresponding to  
the vector specified. TRAP #0 attempts to transfer program control to the address pointed to by the reset vector.  
The PIE vector table does not, however, include a reset vector. Therefore, TRAP #0 should not be used when  
the PIE is enabled. Doing so will result in undefined behavior.  
When the PIE is enabled, TRAP #1 through TRAP #12 will transfer program control to the interrupt service  
routine corresponding to the first vector within the PIE group. For example: TRAP #1 fetches the vector from  
INT1.1, TRAP #2 fetches the vector from INT2.1 and so forth.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Peripherals  
(SPI, SCI, I2C, eCAN, ePWM, eCAP, eQEP, ADC)  
WDINT  
Watchdog  
Low-Power Modes  
WAKEINT  
LPMINT  
XINT1  
XINT1  
Interrupt Control  
XINT1CR(15:0)  
XINT1CTR(15:0)  
INT1  
to  
INT12  
GPIOXINT1SEL(4:0)  
XINT2SOC  
ADC  
XINT2  
XINT2  
Interrupt Control  
XINT2CR(15:0)  
XINT2CTR(15:0)  
C28x  
CPU  
GPIOXINT2SEL(4:0)  
TINT0  
TINT2  
TINT1  
CPU TIMER 0  
INT14  
INT13  
CPU TIMER 2 (Reserved for SYS/BIOS)  
CPU TIMER 1  
int13_select  
nmi_select  
GPIO0.int  
XNMI_XINT13  
GPIO  
MUX  
Interrupt Control  
XNMICR(15:0)  
XNMICTR(15:0)  
NMI  
GPIO31.int  
1
GPIOXNMISEL(4:0)  
Figure 9-23. External and PIE Interrupt Sources  
Copyright © 2021 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
IFR[12:1]  
IER[12:1]  
INTM  
INT1  
INT2  
1
CPU  
MUX  
0
INT11  
INT12  
Global  
Enable  
(Flag)  
(Enable)  
INTx.1  
INTx.2  
INTx.3  
INTx.4  
INTx.5  
From  
Peripherals  
or  
External  
Interrupts  
INTx  
MUX  
INTx.6  
INTx.7  
INTx.8  
PIEACKx  
(Enable)  
(Flag)  
(Enable/Flag)  
PIEIERx[8:1]  
PIEIFRx[8:1]  
Figure 9-24. Multiplexing of Interrupts Using the PIE Block  
Table 9-28. PIE Peripheral Interrupts  
CPU  
PIE INTERRUPTS  
INTERRUPTS  
(1)  
INTx.8  
INTx.7  
INTx.6  
INTx.5  
INTx.4  
INTx.3  
INTx.2  
INTx.1  
WAKEINT  
(LPM/WD)  
TINT0  
(TIMER 0)  
ADCINT(2)  
(ADC)  
SEQ2INT  
(ADC)  
SEQ1INT  
(ADC)  
INT1  
INT2  
INT3  
INT4  
INT5  
XINT2  
XINT1  
Reserved  
EPWM6_TZINT EPWM5_TZINT EPWM4_TZINT EPWM3_TZINT EPWM2_TZINT EPWM1_TZINT  
(ePWM6)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
(ePWM5)  
(ePWM4)  
(ePWM3)  
(ePWM2)  
(ePWM1)  
EPWM6_INT  
(ePWM6)  
EPWM5_INT  
(ePWM5)  
EPWM4_INT  
(ePWM4)  
EPWM3_INT  
(ePWM3)  
EPWM2_INT  
(ePWM2)  
EPWM1_INT  
(ePWM1)  
ECAP4_INT  
(eCAP4)  
ECAP3_INT  
(eCAP3)  
ECAP2_INT  
(eCAP2)  
ECAP1_INT  
(eCAP1)  
Reserved  
Reserved  
Reserved  
Reserved  
EQEP2_INT  
(eQEP2)  
EQEP1_INT  
(eQEP1)  
Reserved  
Reserved  
SPITXINTD  
(SPI-D)  
SPIRXINTD  
(SPI-D)  
SPITXINTC  
(SPI-C)  
SPIRXINTC  
(SPI-C)  
SPITXINTB  
(SPI-B)  
SPIRXINTB  
(SPI-B)  
SPITXINTA  
(SPI-A)  
SPIRXINTA  
(SPI-A)  
INT6  
INT7  
INT8  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
I2CINT2A  
(I2C-A)  
I2CINT1A  
(I2C-A)  
ECAN1_INTB  
(CAN-B)  
ECAN0_INTB  
(CAN-B)  
ECAN1_INTA  
(CAN-A)  
ECAN0_INTA  
(CAN-A)  
SCITXINTB  
(SCI-B)  
SCIRXINTB  
(SCI-B)  
SCITXINTA  
(SCI-A)  
SCIRXINTA  
(SCI-A)  
INT9  
INT10  
INT11  
INT12  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
(1) Out of the 96 possible interrupts, 43 interrupts are currently used. The remaining interrupts are reserved for future devices. These  
interrupts can be used as software interrupts if they are enabled at the PIEIFRx level, provided none of the interrupts within the group  
is being used by a peripheral. Otherwise, interrupts coming in from peripherals may be lost by accidentally clearing their flag while  
modifying the PIEIFR. To summarize, there are two safe cases when the reserved interrupts could be used as software interrupts:  
1) No peripheral within the group is asserting interrupts.  
2) No peripheral interrupts are assigned to the group (example PIE group 12).  
(2) ADCINT is sourced as a logical "OR" of both the SEQ1INT and SEQ2INT signals. This is to support backward compatibility with the  
implementation found on the TMS320F281x series of devices, where SEQ1INT and SEQ2INT did not exist, only ADCINT. For new  
implementations, TI recommends using SEQ1INT and SEQ2INT and not enabling ADCINT in the PIEIER register.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Table 9-29. PIE Configuration and Control Registers  
NAME  
PIECTRL  
ADDRESS  
0x0CE0  
0x0CE1  
0x0CE2  
0x0CE3  
0x0CE4  
0x0CE5  
0x0CE6  
0x0CE7  
0x0CE8  
0x0CE9  
0x0CEA  
0x0CEB  
0x0CEC  
0x0CED  
0x0CEE  
0x0CEF  
0x0CF0  
0x0CF1  
0x0CF2  
0x0CF3  
0x0CF4  
0x0CF5  
0x0CF6  
0x0CF7  
0x0CF8  
0x0CF9  
SIZE (x16)  
DESCRIPTION(1)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
PIE, Control Register  
PIEACK  
PIEIER1  
PIEIFR1  
PIEIER2  
PIEIFR2  
PIEIER3  
PIEIFR3  
PIEIER4  
PIEIFR4  
PIEIER5  
PIEIFR5  
PIEIER6  
PIEIFR6  
PIEIER7  
PIEIFR7  
PIEIER8  
PIEIFR8  
PIEIER9  
PIEIFR9  
PIEIER10  
PIEIFR10  
PIEIER11  
PIEIFR11  
PIEIER12  
PIEIFR12  
Reserved  
PIE, Acknowledge Register  
PIE, INT1 Group Enable Register  
PIE, INT1 Group Flag Register  
PIE, INT2 Group Enable Register  
PIE, INT2 Group Flag Register  
PIE, INT3 Group Enable Register  
PIE, INT3 Group Flag Register  
PIE, INT4 Group Enable Register  
PIE, INT4 Group Flag Register  
PIE, INT5 Group Enable Register  
PIE, INT5 Group Flag Register  
PIE, INT6 Group Enable Register  
PIE, INT6 Group Flag Register  
PIE, INT7 Group Enable Register  
PIE, INT7 Group Flag Register  
PIE, INT8 Group Enable Register  
PIE, INT8 Group Flag Register  
PIE, INT9 Group Enable Register  
PIE, INT9 Group Flag Register  
PIE, INT10 Group Enable Register  
PIE, INT10 Group Flag Register  
PIE, INT11 Group Enable Register  
PIE, INT11 Group Flag Register  
PIE, INT12 Group Enable Register  
PIE, INT12 Group Flag Register  
Reserved  
0x0CFA –  
0x0CFF  
(1) The PIE configuration and control registers are not protected by EALLOW mode. The PIE vector  
table is protected.  
Copyright © 2021 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.5.1 External Interrupts  
Table 9-30. External Interrupt Registers  
NAME  
XINT1CR  
XINT2CR  
Reserved  
XNMICR  
ADDRESS  
SIZE (x16)  
DESCRIPTION  
0x7070  
1
1
5
1
1
1
5
1
XINT1 control register  
0x7071  
XINT2 control register  
Reserved  
0x7072 – 0x7076  
0x7077  
XNMI control register  
XINT1 counter register  
XINT2 counter register  
Reserved  
XINT1CTR  
XINT2CTR  
Reserved  
XNMICTR  
0x7078  
0x7079  
0x707A – 0x707E  
0x707F  
XNMI counter register  
Each external interrupt can be enabled/disabled or qualified using positive, negative, or both positive and  
negative edge. For more information, see the TMS320x280x, 2801x, 2804x DSP system control and interrupts  
reference guide.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.6 System Control  
This section describes the 280x oscillator, PLL and clocking mechanisms, the watchdog function and the low  
power modes. Figure 9-25 shows the various clock and reset domains in the 280x devices that will be discussed.  
Reset  
XRS  
Watchdog  
Block  
SYSCLKOUT(A)  
Peripheral Reset  
CLKIN(A)  
X1  
28x  
CPU  
PLL  
OSC  
X2  
Power  
Modes  
Control  
XCLKIN  
Peripheral  
Registers  
CPU  
Timers  
System  
Control  
Registers  
Clock Enables  
Peripheral  
Registers  
ePWM 1/2/3/4/5/6  
eCAP 1/2/3/4 eQEP 1/2  
I/O  
I/O  
I/O  
Peripheral  
Registers  
eCAN-A/B  
I2C-A  
GPIO  
MUX  
GPIOs  
Low-Speed Prescaler  
LSPCLK  
Peripheral  
Registers  
Low-Speed Peripherals  
SCI-A/B, SPI-A/B/C/D  
High-Speed Prescaler  
HSPCLK  
ADC  
Registers  
12-Bit ADC  
16 ADC Inputs  
A. CLKIN is the clock into the CPU. It is passed out of the CPU as SYSCLKOUT (that is, CLKIN is the same frequency as SYSCLKOUT).  
Figure 9-25. Clock and Reset Domains  
Copyright © 2021 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
The PLL, clocking, watchdog and low-power modes, are controlled by the registers listed in Table 9-31.  
Table 9-31. PLL, Clocking, Watchdog, and Low-Power Mode Registers  
NAME(1)  
XCLK  
ADDRESS  
SIZE (x16)  
DESCRIPTION  
XCLKOUT Pin Control, X1 and XCLKIN Status Register  
PLL Status Register  
0x7010  
1
1
8
1
1
1
1
1
1
1
1
1
1
1
3
1
6
PLLSTS  
Reserved  
HISPCP  
LOSPCP  
PCLKCR0  
PCLKCR1  
LPMCR0  
Reserved  
PLLCR  
0x7011  
0x7012 – 0x7019  
0x701A  
Reserved  
High-Speed Peripheral Clock Prescaler Register (for HSPCLK)  
Low-Speed Peripheral Clock Prescaler Register (for LSPCLK)  
Peripheral Clock Control Register 0  
Peripheral Clock Control Register 1  
Low-Power Mode Control Register 0  
Reserved  
0x701B  
0x701C  
0x701D  
0x701E  
0x701F – 0x7020  
0x7021  
PLL Control Register  
SCSR  
0x7022  
System Control and Status Register  
Watchdog Counter Register  
Reserved  
WDCNTR  
Reserved  
WDKEY  
Reserved  
WDCR  
0x7023  
0x7024  
0x7025  
Watchdog Reset Key Register  
Reserved  
0x7026 – 0x7028  
0x7029  
Watchdog Control Register  
Reserved  
0x702A – 0x702F  
Reserved  
(1) All of the registers in this table are EALLOW protected.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.6.1 OSC and PLL Block  
Figure 9-26 shows the OSC and PLL block on the 280x.  
OSCCLK  
OSCCLK  
VCOCLK  
OSCCLK  
or  
VCOCLK  
XCLKIN  
(3.3-V Clock Input)  
0
n
XOR  
CLKIN  
PLLSTS[OSCOFF]  
PLLSTS[PLLOFF]  
PLL  
n
0
/2  
PLLSTS[CLKINDIV]  
X1  
On-Chip  
Oscillator  
4-bit PLL Select  
(PLLCR)  
X2  
Figure 9-26. OSC and PLL Block Diagram  
The on-chip oscillator circuit enables a crystal/resonator to be attached to the 280x devices using the X1 and X2  
pins. If the on-chip oscillator is not used, an external oscillator can be used in either one of the following  
configurations:  
1. A 3.3-V external oscillator can be directly connected to the XCLKIN pin. The X2 pin should be left  
unconnected and the X1 pin tied low. The logic-high level in this case should not exceed VDDIO  
2. A 1.8-V external oscillator can be directly connected to the X1 pin. The X2 pin should be left unconnected  
and the XCLKIN pin tied low. The logic-high level in this case should not exceed VDD  
The three possible input-clock configurations are shown in Figure 9-27 through Figure 9-29.  
.
.
XCLKIN  
X1  
X2  
NC  
External Clock Signal  
(Toggling 0-VDDIO  
)
Figure 9-27. Using a 3.3-V External Oscillator  
XCLKIN  
X1  
X2  
External Clock Signal  
)
NC  
(Toggling 0-VDD  
Figure 9-28. Using a 1.8-V External Oscillator  
XCLKIN  
X1  
X2  
CL1  
CL2  
Crystal  
Figure 9-29. Using the Internal Oscillator  
Copyright © 2021 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.6.1.1 External Reference Oscillator Clock Option  
The typical specifications for the external quartz crystal for a frequency of 20 MHz are listed below:  
Fundamental mode, parallel resonant  
CL (load capacitance) = 12 pF  
CL1 = CL2 = 24 pF  
Cshunt = 6 pF  
ESR range = 30 to 60 Ω  
TI recommends that customers have the resonator/crystal vendor characterize the operation of their device with  
the DSP chip. The resonator/crystal vendor has the equipment and expertise to tune the tank circuit. The vendor  
can also advise the customer regarding the proper tank component values that will produce proper start up and  
stability over the entire operating range.  
9.6.1.2 PLL-Based Clock Module  
The 280x devices have an on-chip, PLL-based clock module. This module provides all the necessary clocking  
signals for the device, as well as control for low-power mode entry. The PLL has a 4-bit ratio control PLLCR[DIV]  
to select different CPU clock rates. The watchdog module should be disabled before writing to the PLLCR  
register. It can be re-enabled (if need be) after the PLL module has stabilized, which takes 131072 OSCCLK  
cycles.  
Table 9-32. PLLCR Register Bit Definitions  
SYSCLKOUT  
PLLCR[DIV](1)  
(CLKIN)(2)  
0000 (PLL bypass)  
0001  
OSCCLK/n  
(OSCCLK*1)/n  
(OSCCLK*2)/n  
(OSCCLK*3)/n  
(OSCCLK*4)/n  
(OSCCLK*5)/n  
(OSCCLK*6)/n  
(OSCCLK*7)/n  
(OSCCLK*8)/n  
(OSCCLK*9)/n  
(OSCCLK*10)/n  
Reserved  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011–1111  
(1) This register is EALLOW protected.  
(2) CLKIN is the input clock to the CPU. SYSCLKOUT is the output  
clock from the CPU. The frequency of SYSCLKOUT is the same  
as CLKIN. If CLKINDIV = 0, n = 2; if CLKINDIV = 1, n = 1.  
Note  
PLLSTS[CLKINDIV] enables or bypasses the divide-by-two block before the clock is fed to the core.  
This bit must be 0 before writing to the PLLCR and must only be set after PLLSTS[PLLLOCKS] = 1.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
The PLL-based clock module provides two modes of operation:  
Crystal-operation - This mode allows the use of an external crystal/resonator to provide the time base to the  
device.  
External clock source operation - This mode allows the internal oscillator to be bypassed. The device clocks  
are generated from an external clock source input on the X1 or the XCLKIN pin.  
Table 9-33. Possible PLL Configuration Modes  
PLLSTS[CLKINDIV  
]
SYSCLKOUT  
(CLKIN)  
PLL MODE  
REMARKS  
Invoked by the user setting the PLLOFF bit in the PLLSTS register. The PLL block  
is disabled in this mode. This can be useful to reduce system noise and for low  
power operation. The PLLCR register must first be set to 0x0000 (PLL Bypass)  
before entering this mode. The CPU clock (CLKIN) is derived directly from the  
input clock on either X1/X2, X1 or XCLKIN.  
0
OSCCLK/2  
PLL Off  
1
OSCCLK  
PLL Bypass is the default PLL configuration upon power-up or after an external  
reset ( XRS). This mode is selected when the PLLCR register is set to 0x0000 or  
while the PLL locks to a new frequency after the PLLCR register has been  
modified. In this mode, the PLL itself is bypassed but the PLL is not turned off.  
0
1
OSCCLK/2  
OSCCLK  
PLL Bypass  
PLL Enable  
Achieved by writing a non-zero value n into the PLLCR register. Upon writing to the  
PLLCR the device will switch to PLL Bypass mode until the PLL locks.  
0
OSCCLK*n/2  
9.6.1.3 Loss of Input Clock  
In PLL-enabled and PLL-bypass mode, if the input clock OSCCLK is removed or absent, the PLL will still issue a  
limp-mode clock. The limp-mode clock continues to clock the CPU and peripherals at a typical frequency of 1–  
5 MHz. Limp mode is not specified to work from power-up, only after input clocks have been present initially. In  
PLL bypass mode, the limp mode clock from the PLL is automatically routed to the CPU if the input clock is  
removed or absent.  
Normally, when the input clocks are present, the watchdog counter decrements to initiate a watchdog reset or  
WDINT interrupt. However, when the external input clock fails, the watchdog counter stops decrementing (that is,  
the watchdog counter does not change with the limp-mode clock). In addition to this, the device will be reset and  
the “Missing Clock Status” (MCLKSTS) bit will be set. These conditions could be used by the application  
firmware to detect the input clock failure and initiate necessary shut-down procedure for the system.  
Note  
Applications in which the correct CPU operating frequency is absolutely critical should implement a  
mechanism by which the DSP will be held in reset, should the input clocks ever fail. For example, an  
R-C circuit may be used to trigger the XRS pin of the DSP, should the capacitor ever get fully charged.  
An I/O pin may be used to discharge the capacitor on a periodic basis to prevent it from getting fully  
charged. Such a circuit would also help in detecting failure of the flash memory and the VDD3VFL rail.  
Copyright © 2021 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.6.2 Watchdog Block  
The watchdog block on the 280x is similar to the one used on the 240x and 281x devices. The watchdog module  
generates an output pulse, 512 oscillator clocks wide (OSCCLK), whenever the 8-bit watchdog up counter has  
reached its maximum value. To prevent this, the user disables the counter or the software must periodically write  
a 0x55 + 0xAA sequence into the watchdog key register which will reset the watchdog counter. Figure 9-30  
shows the various functional blocks within the watchdog module.  
WDCR (WDPS[2:0])  
WDCR (WDDIS)  
WDCNTR[7:0]  
OSCCLK  
WDCLK  
Watchdog  
Prescaler  
8-Bit  
Watchdog  
Counter  
CLR  
/512  
Clear Counter  
Internal  
Pullup  
WDKEY[7:0]  
WDRST  
WDINT  
Generate  
Output Pulse  
(512 OSCCLKs)  
Watchdog  
55 + AA  
Key Detector  
Good Key  
XRS  
Bad  
WDCHK  
Key  
Core-reset  
SCSR (WDENINT)  
WDCR (WDCHK[2:0])  
WDRST(A)  
A. The WDRST signal is driven low for 512 OSCCLK cycles.  
1
0
1
Figure 9-30. Watchdog Module  
The WDINT signal enables the watchdog to be used as a wakeup from IDLE/STANDBY mode.  
In STANDBY mode, all peripherals are turned off on the device. The only peripheral that remains functional is  
the watchdog. The WATCHDOG module will run off OSCCLK. The WDINT signal is fed to the LPM block so that  
it can wake the device from STANDBY (if enabled). See Section 9.7, Low-Power Modes Block, for more details.  
In IDLE mode, the WDINT signal can generate an interrupt to the CPU, via the PIE, to take the CPU out of IDLE  
mode.  
In HALT mode, this feature cannot be used because the oscillator (and PLL) are turned off and hence so is the  
WATCHDOG.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.7 Low-Power Modes Block  
The low-power modes on the 280x are similar to the 240x devices. Table 9-34 summarizes the various modes.  
Table 9-34. Low-Power Modes  
MODE  
LPMCR0(1:0)  
OSCCLK  
CLKIN  
SYSCLKOUT  
EXIT(1)  
XRS, Watchdog interrupt, any enabled  
interrupt, XNMI  
IDLE  
00  
On  
On  
On(2)  
On  
XRS, Watchdog interrupt, GPIO Port A  
signal, debugger(3), XNMI  
STANDBY  
HALT  
01  
1X  
Off  
Off  
Off  
Off  
(watchdog still running)  
Off  
XRS, GPIO Port A signal, XNMI,  
debugger(3)  
(oscillator and PLL turned off,  
watchdog not functional)  
(1) The Exit column lists which signals or under what conditions the low power mode will be exited. A low signal, on any of the signals, will  
exit the low power condition. This signal must be kept low long enough for an interrupt to be recognized by the device. Otherwise the  
IDLE mode will not be exited and the device will go back into the indicated low power mode.  
(2) The IDLE mode on the C28x behaves differently than on the 24x/240x. On the C28x, the clock output from the CPU (SYSCLKOUT) is  
still functional while on the 24x/240x the clock is turned off.  
(3) On the C28x, the JTAG port can still function even if the CPU clock (CLKIN) is turned off.  
The various low-power modes operate as follows:  
IDLE Mode:  
This mode is exited by any enabled interrupt or an XNMI that is recognized by the processor. The  
LPM block performs no tasks during this mode as long as the LPMCR0(LPM) bits are set to 0,0.  
STANDBY Mode:  
Any GPIO port A signal (GPIO[31:0]) can wake the device from STANDBY mode. The user must  
select which signal(s) will wake the device in the GPIOLPMSEL register. The selected signal(s) are  
also qualified by the OSCCLK before waking the device. The number of OSCCLKs is specified in the  
LPMCR0 register.  
HALT Mode:  
Only the XRS and any GPIO port A signal (GPIO[31:0]) can wake the device from HALT mode. The  
user selects the signal in the GPIOLPMSEL register.  
Note  
The low-power modes do not affect the state of the output pins (PWM pins included). They will be in  
whatever state the code left them in when the IDLE instruction was executed. See the TMS320x280x,  
2801x, 2804x DSP system control and interrupts reference guide for more details.  
Copyright © 2021 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
10 Applications, Implementation, and Layout  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
10.1 TI Design or Reference Design  
TI Designs Reference Design Library is a robust reference design library spanning analog, embedded processor,  
and connectivity. Created by TI experts to help you jump start your system design, all TI Designs include  
schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download  
designs at TIDesigns.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
11 Device and Documentation Support  
11.1 Getting Started  
This section gives a brief overview of the steps to take when first developing for a C28x device. For more detail  
on each of these steps, see the following:  
C2000 Real-Time Control MCUs – Getting started  
C2000 Real-Time Control MCUs – Tools & software  
Step 1. Acquire the appropriate development tools  
The quickest way to begin working with a C28x device is to acquire an eZdspkit for initial development, which,  
in one package, includes:  
On-board JTAG emulation via USB or parallel port  
Appropriate emulation driver  
Code Composer StudioIDE for eZdsp  
Once you have become familiar with the device and begin developing on your own hardware, purchase Code  
Composer StudioIDE separately for software development and a JTAG emulation tool to get started on your  
project.  
Step 2. Download starter software  
To simplify programming for C28x devices, it is recommended that users download and use the C/C++ Header  
Files and Example(s) to begin developing software for the C28x devices and their various peripherals.  
After downloading the appropriate header file package for your device, refer to the following resources for step-  
by-step instructions on how to run the peripheral examples and use the header file structure for your own  
software  
The Quick Start Readme in the /doc directory to run your first application.  
Programming TMS320x28xx and 28xxx peripherals in C/C++ application report  
Step 3. Download flash programming software  
Many C28x devices include on-chip flash memory and tools that allow you to program the flash with your  
software IP.  
Flash Tools: C28x Flash Tools  
TMS320F281x™ flash programming solutions  
Running an application from internal flash memory on the TMS320F28xxx DSP  
Step 4. Move on to more advanced topics  
For more application software and other advanced topics, visit C2000 real-time control MCUs – Tools &  
software.  
Copyright © 2021 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
11.2 Device and Development Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
TMS320DSP devices and support tools. Each TMS320™ DSP commercial family member has one of three  
prefixes: TMX, TMP, or TMS (for example, TMS 320F2808). Texas Instruments recommends two of three  
possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages  
of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/  
tools (TMS/TMDS).  
Device development evolutionary flow:  
TMX  
TMP  
Experimental device that is not necessarily representative of the final device's electrical specifications  
Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability  
verification  
TMS  
Fully qualified production device  
Support tool development evolutionary flow:  
TMDX  
TMDS  
Development-support product that has not yet completed Texas Instruments internal qualification testing  
Fully qualified development-support product  
TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability  
of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, PZ) and temperature range (for example, S). Figure 11-1 provides a legend for reading the  
complete device name for any family member.  
For device part numbers and further ordering information, see the Package Option Addendum of this document,  
the TI website (www.ti.com), or contact your TI sales representative.  
For additional description of the device nomenclature markings on the die, see the TMS320F280x,  
TMS320C280x, TMS320F2801x DSPs silicon errata.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Figure 11-1. Example of TMS320x280x/2801x Device Nomenclature  
Copyright © 2021 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
11.3 Tools and Software  
TI offers an extensive line of development tools. Some of the tools and software to evaluate the performance of  
the device, generate code, and develop solutions are listed below. To view all available tools and software, visit  
the Tools & software page for each device.  
Software  
C28x IQMath Library - A Virtual Floating Point Engine  
Texas Instruments TMS320C28x IQmath Library is collection of highly optimized and high precision  
mathematical Function Library for C/C++ programmers to seamlessly port the floating-point algorithm into fixed  
point code on TMS320C28x devices. These routines are typically used in computationally intensive real-time  
applications where optimal execution speed & high accuracy is critical. By using these routines you can achieve  
execution speeds considerable faster than equivalent code written in standard ANSI C language. In addition, by  
providing ready-to-use high precision functions, TI IQmath library can shorten significantly your DSP application  
development time. (Please find the IQ Math User's Guide in the /docs folder once the file is extracted and  
installed).  
C280x, C2801x C/C++ Header Files and Peripheral Examples  
This utility contains Hardware Abstraction Layer (HAL) for TMS320x280x and TMS320x280xx DSP devices. This  
HAL facilitates peripheral configuration using "C". It also contains a simple test program for each peripheral to  
exemplify the usage of HAL to control & configure the on-chip peripheral.  
Development Tools  
C2000 Gang Programmer  
The C2000 Gang Programmer is a C2000 device programmer that can program up to eight identical C2000  
devices at the same time. The C2000 Gang Programmer connects to a host PC using a standard RS-232 or  
USB connection and provides flexible programming options that allow the user to fully customize the process.  
Code Composer Studio(CCS) Integrated Development Environment (IDE) for C2000 Microcontrollers  
Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller and  
Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug  
embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment,  
debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking the user  
through each step of the application development flow. Familiar tools and interfaces allow users to get started  
faster than ever before. Code Composer Studio combines the advantages of the Eclipse software framework  
with advanced embedded debug capabilities from TI resulting in a compelling feature-rich development  
environment for embedded developers.  
Uniflash Standalone Flash Tool  
CCS Uniflash is a standalone tool used to program on-chip flash memory on TI MCUs.  
Models  
Various models are available for download from the product Tools & Software pages. These include I/O Buffer  
Information Specification (IBIS) Models and Boundary-Scan Description Language (BSDL) Models. To view all  
available models, visit the Models section of the Tools & Software page for each device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
11.4 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
The current documentation that describes the processor, related peripherals, and other technical collateral is  
listed below.  
Errata  
TMS320F280x, TMS320C280x, TMS320F2801x DSPs silicon errata describes the advisories and usage notes  
for different versions of silicon.  
CPU User's Guides  
TMS320C28x CPU and instruction set reference guide describes the central processing unit (CPU) and the  
assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). It also  
describes emulation features available on these DSPs.  
TMS320x280x, 2801x, 2804x DSP system control and interrupts reference guide describes the various interrupts  
and system control features of the 280x digital signal processors (DSPs).  
Peripheral Guides  
C2000 real-time control peripherals reference guide describes the peripheral reference guides of the 28x digital  
signal processors (DSPs).  
TMS320x280x, 2801x, 2804x DSP Analog-to-Digital Converter (ADC) reference guide describes how to  
configure and use the on-chip ADC module, which is a 12-bit pipelined ADC.  
TMS320x280x, 2801x, 2804x Enhanced Pulse Width Modulator (ePWM) module reference guide describes the  
main areas of the enhanced pulse width modulator that include digital motor control, switch mode power supply  
control, UPS (uninterruptible power supplies), and other forms of power conversion.  
TMS320x280x, 2801x, 2804x Enhanced Quadrature Encoder Pulse (eQEP) module reference guide describes  
the eQEP module, which is used for interfacing with a linear or rotary incremental encoder to get position,  
direction, and speed information from a rotating machine in high performance motion and position control  
systems. It includes the module description and registers.  
TMS320x280x, 2801x, 2804x Enhanced Capture (eCAP) module reference guide describes the enhanced  
capture module. It includes the module description and registers.  
TMS320x280x, 2801x, 2804x High Resolution Pulse Width Modulator (HRPWM) reference guide describes the  
operation of the high-resolution extension to the pulse width modulator (HRPWM).  
TMS320x280x/2801x Enhanced Controller Area Network (eCAN) reference guide describes the enhanced  
controller area network (eCAN) on the x280x and x2801x devices.  
TMS320x280x, 2801x, 2804x Serial Communications Interface (SCI) reference guide describes the features and  
operation of the serial communication interface (SCI) module that is available on the TMS320x280x, 2801x,  
2804x devices.  
TMS320x280x, 2801x, 2804x Serial Peripheral Interface reference guide describes how the serial peripheral  
interface works.  
TMS320x280x, 2801x, 2804x Inter-Integrated Circuit (I2C) module reference guide describes the features and  
operation of the inter-integrated circuit (I2C) module.  
TMS320x280x, 2801x, 2804x Boot ROM reference guide describes the purpose and features of the bootloader  
(factory-programmed boot-loading software). It also describes other contents of the device on-chip boot ROM  
and identifies where all of the information is located within that memory.  
Copyright © 2021 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Tools Guides  
TMS320C28x Assembly language tools v18.12.0.LTS user's guide describes the assembly language tools  
(assembler and other tools used to develop assembly language code), assembler directives, macros, common  
object file format, and symbolic debugging directives for the TMS320C28x device.  
TMS320C28x optimizing C/C++ compiler v18.12.0.LTS user's guide describes the TMS320C28x C/C++  
compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly  
language source code for the TMS320C28x device.  
TMS320C28x DSP/BIOS 5.x Application Programming Interface (API) reference guide describes development  
using DSP/BIOS.  
Application Reports  
TMS320x281x to TMS320x2833x or 2823x migration overview describes how to migrate from the 281x device  
design to 2833x or 2823x designs.  
TMS320x280x to TMS320x2833x or 2823x migration overview describes how to migrate from a 280x device  
design to 2833x or 2823x designs.  
TMS320C28x FPU primer provides an overview of the floating-point unit (FPU) in the C2000™ Delfino  
microcontroller devices.  
Running an application from internal flash memory on the TMS320F28xxx DSP covers the requirements needed  
to properly configure application software for execution from on-chip flash memory. Requirements for both DSP/  
BIOS and non-DSP/BIOS projects are presented. Example code projects are included.  
Programming TMS320x28xx and 28xxx peripherals in C/C++ explores a hardware abstraction layer  
implementation to make C/C++ coding easier on 28x DSPs. This method is compared to traditional #define  
macros and topics of code efficiency and special case registers are also addressed.  
Using PWM output as a Digital-to-Analog Converter on a TMS320F280x Digital Signal Controller presents a  
method for using the on-chip pulse width modulated (PWM) signal generators on the TMS320F280x family of  
digital signal controllers as a digital-to-analog converter (DAC).  
TMS320F280x digital signal controller USB connectivity using the TUSB3410 USB-to-UART bridge chip  
presents hardware connections as well as software preparation and operation of the development system using  
a simple communication echo program.  
Using the Enhanced Quadrature Encoder Pulse (eQEP) module in TMS320x280x, 28xxx as a dedicated capture  
provides a guide for the use of the eQEP module as a dedicated capture unit and is applicable to the  
TMS320x280x, 28xxx family of processors.  
Using the ePWM module for 0% - 100% duty cycle control provides a guide for the use of the ePWM module to  
provide 0% to 100% duty cycle control and is applicable to the TMS320x280x family of processors.  
TMS320x280x and TMS320F2801x ADC calibration describes a method for improving the absolute accuracy of  
the 12-bit ADC found on the TMS320x280x and TMS320F2801x devices. Inherent gain and offset errors affect  
the absolute accuracy of the ADC. The methods described in this report can improve the absolute accuracy of  
the ADC to levels better than 0.5%. This application report has an option to download an example program that  
executes from RAM on the F2808 EzDSP.  
Online stack overflow detection on the TMS320C28x DSP presents the methodology for online stack overflow  
detection on the TMS320C28x DSP. C-source code is provided that contains functions for implementing the  
overflow detection on both DSP/BIOS and non-DSP/BIOS applications.  
TMS320x281x to TMS320x280x migration overview describes differences between the Texas Instruments  
TMS320x281x and the TMS320x280x/2801x/2804x DSPs to assist in application migration.  
Semiconductor packing methodology describes the packing methodologies employed to prepare semiconductor  
devices for shipment to end users.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
An introduction to IBIS (I/O Buffer Information Specification) modeling discusses various aspects of IBIS  
including its history, advantages, compatibility, model generation flow, data requirements in modeling the input/  
output structures and future trends.  
Calculating useful lifetimes of embedded processors provides a methodology for calculating the useful lifetime of  
TI embedded processors (EPs) under power when used in electronic systems. It is aimed at general engineers  
who wish to determine if the reliability of the TI EP meets the end system reliability requirement.  
Semiconductor and IC package thermal metrics describes traditional and new thermal metrics and puts their  
application in perspective with respect to system-level junction temperature estimation.  
Calculating FIT for a mission profile explains how use TI’s reliability de-rating tools to calculate a component  
level FIT under power on conditions for a system mission profile.  
Serial flash programming of C2000™ microcontrollers discusses using a flash kernel and ROM loaders for serial  
programming a device.  
11.5 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.6 Trademarks  
Code Composer Studio, MicroStar BGA, Delfino, TMS320C2000, TMS320, TI E2Eare trademarks of  
Texas Instruments.  
eZdspis a trademark of Spectrum Digital.  
All trademarks are the property of their respective owners.  
11.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.8 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
 
 
TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802,  
TMS320C2801, TMS320F28016, TMS320F28015  
SPRS230P – OCTOBER 2003 – REVISED FEBRUARY 2021  
www.ti.com  
12 Mechanical, Packaging, and Orderable Information  
12.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: TMS320F2809 TMS320F2808 TMS320F2806 TMS320F2802 TMS320F2801  
TMS320C2802 TMS320C2801 TMS320F28016 TMS320F28015  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Feb-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMS320C2801PZA  
TMS320C2802PZA  
TMS320F28015NMFA  
NRND  
NRND  
LQFP  
LQFP  
PZ  
PZ  
100  
100  
100  
TBD  
TBD  
Call TI  
Call TI  
SNAGCU  
Call TI  
Call TI  
ACTIVE  
NFBGA  
NMF  
184  
90  
RoHS & Green  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 85  
-40 to 85  
-40 to 125  
-40 to 125  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 125  
-40 to 125  
-40 to 125  
TMS320  
F28015NMFA  
TMS320F28015PZA  
TMS320F28015PZQ  
TMS320F28015PZS  
TMS320F28015PZSR  
TMS320F28015ZGMA  
TMS320F28016PZA  
TMS320F28016PZQ  
TMS320F28016PZS  
TMS320F2801NMFA  
TMS320F2801PZA  
TMS320F2801PZA-60  
TMS320F2801PZQ  
TMS320F2801PZS  
TMS320F2801PZS-60  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LIFEBUY  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
LQFP  
LQFP  
PZ  
PZ  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
320F28015PZA  
TMS  
90  
320F28015PZQ  
TMS  
PZ  
90  
320F28015PZS  
TMS  
PZ  
1000 RoHS & Green  
320F28015PZS  
TMS  
BGA  
MICROSTAR  
ZGM  
PZ  
184  
90  
90  
90  
184  
90  
90  
90  
90  
90  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
F28015ZGMA  
TMS320  
LQFP  
LQFP  
LQFP  
NFBGA  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
320F28016PZA  
TMS  
PZ  
320F28016PZQ  
TMS  
PZ  
320F28016PZS  
TMS  
NMF  
PZ  
TMS320  
F2801NMFA  
320F2801PZA  
TMS  
PZ  
320F2801PZA-60  
TMS  
PZ  
320F2801PZQ  
TMS  
PZ  
320F2801PZS  
TMS  
PZ  
320F2801PZS-60  
TMS  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Feb-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
ZGM  
PZ  
Qty  
184  
90  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMS320F2801ZGMA  
TMS320F2802PZA  
TMS320F2802PZA-60  
TMS320F2802PZQ  
TMS320F2802PZS  
TMS320F2802PZS-60  
TMS320F2802ZGMS  
TMS320F2806NMFA  
TMS320F2806NMFS  
TMS320F2806PZA  
TMS320F2806PZQ  
TMS320F2806PZS  
TMS320F2806ZGMA  
TMS320F2806ZGMS  
TMS320F2808GBAA  
TMS320F2808GBAS  
TMS320F2808GGMA  
LIFEBUY  
BGA  
MICROSTAR  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 85  
-40 to 125  
-40 to 85  
-40 to 125  
-40 to 125  
-40 to 85  
-40 to 125  
-40 to 85  
-40 to 125  
-40 to 85  
F2801ZGMA  
TMS320  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LIFEBUY  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LIFEBUY  
LIFEBUY  
ACTIVE  
ACTIVE  
LIFEBUY  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
SNAGCU  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
SNPB  
320F2802PZA  
TMS  
PZ  
90  
320F2802PZA-60  
TMS  
PZ  
90  
320F2802PZQ  
TMS  
PZ  
90  
320F2802PZS  
TMS  
PZ  
90  
320F2802PZS-60  
TMS  
BGA  
MICROSTAR  
ZGM  
NMF  
NMF  
PZ  
184  
184  
184  
90  
F2802ZGMS  
TMS320  
NFBGA  
NFBGA  
LQFP  
TMS320  
F2806NMFA  
TMS320  
F2806NMFS  
320F2806PZA  
TMS  
LQFP  
PZ  
90  
320F2806PZQ  
TMS  
LQFP  
PZ  
90  
320F2806PZS  
TMS  
BGA  
MICROSTAR  
ZGM  
ZGM  
GBA  
GBA  
GGM  
184  
184  
184  
184  
184  
F2806ZGMA  
TMS320  
BGA  
MICROSTAR  
F2806ZGMS  
TMS320  
NFBGA  
Non-RoHS  
& Green  
TMS320  
F2808GBAA  
NFBGA  
Non-RoHS  
& Green  
SNPB  
TMS320  
F2808GBAS  
BGA  
Non-RoHS  
& Green  
SNPB  
F2808GGMA  
TMS320  
MICROSTAR  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Feb-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
GGM  
NMF  
NMF  
PZ  
Qty  
184  
184  
184  
90  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMS320F2808GGMS  
TMS320F2808NMFA  
TMS320F2808NMFS  
TMS320F2808PZA  
TMS320F2808PZAR  
TMS320F2808PZQ  
TMS320F2808PZS  
TMS320F2808ZGMA  
TMS320F2808ZGMS  
TMS320F2809GGMA  
TMS320F2809GGMS  
TMS320F2809NMFA  
TMS320F2809PZA  
TMS320F2809PZQ  
TMS320F2809PZS  
TMS320F2809ZGMA  
TMS320F2809ZGMS  
LIFEBUY  
BGA  
MICROSTAR  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
Non-RoHS  
& Green  
SNPB  
Level-3-220C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 85  
-40 to 125  
-40 to 85  
-40 to 85  
-40 to 125  
-40 to 125  
-40 to 85  
-40 to 125  
-40 to 85  
-40 to 125  
-40 to 85  
-40 to 85  
-40 to 125  
-40 to 125  
-40 to 85  
-40 to 125  
F2808GGMS  
TMS320  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LIFEBUY  
LIFEBUY  
LIFEBUY  
LIFEBUY  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LIFEBUY  
LIFEBUY  
NFBGA  
NFBGA  
LQFP  
RoHS & Green  
RoHS & Green  
RoHS & Green  
SNAGCU  
SNAGCU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
SNPB  
TMS320  
F2808NMFA  
TMS320  
F2808NMFS  
320F2808PZA  
TMS  
LQFP  
PZ  
1000 RoHS & Green  
320F2808PZA  
TMS  
LQFP  
PZ  
90  
90  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
320F2808PZQ  
TMS  
LQFP  
PZ  
320F2808PZS  
TMS  
BGA  
MICROSTAR  
ZGM  
ZGM  
GGM  
GGM  
NMF  
PZ  
184  
184  
184  
184  
184  
90  
F2808ZGMA  
TMS320  
BGA  
MICROSTAR  
F2808ZGMS  
TMS320  
BGA  
MICROSTAR  
Non-RoHS  
& Green  
F2809GGMA  
TMS320  
BGA  
MICROSTAR  
Non-RoHS  
& Green  
SNPB  
F2809GGMS  
TMS320  
NFBGA  
LQFP  
LQFP  
LQFP  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
SNAGCU  
NIPDAU  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
TMS320  
F2809NMFA  
320F2809PZA  
TMS  
PZ  
90  
320F2809PZQ  
TMS  
PZ  
90  
320F2809PZS  
TMS  
BGA  
MICROSTAR  
ZGM  
ZGM  
184  
184  
F2809ZGMA  
TMS320  
BGA  
F2809ZGMS  
TMS320  
MICROSTAR  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Feb-2021  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TMS320F2801, TMS320F2801-Q1, TMS320F28015, TMS320F28015-Q1, TMS320F28016, TMS320F28016-Q1, TMS320F2802, TMS320F2802-  
Q1, TMS320F2806, TMS320F2806-Q1, TMS320F2808, TMS320F2808-Q1, TMS320F2809, TMS320F2809-Q1 :  
Catalog: TMS320F2801, TMS320F28015, TMS320F28016, TMS320F2802, TMS320F2806, TMS320F2808, TMS320F2809  
Automotive: TMS320F2801-Q1, TMS320F28015-Q1, TMS320F28016-Q1, TMS320F2802-Q1, TMS320F2806-Q1, TMS320F2808-Q1, TMS320F2809-Q1  
NOTE: Qualified Version Definitions:  
Addendum-Page 4  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Feb-2021  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 5  
PACKAGE OUTLINE  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
NMF0100A  
10.1  
9.9  
B
A
BALL A1 CORNER  
10.1  
9.9  
1.4 MAX  
C
SEATING PLANE  
0.12 C  
0.45  
0.35  
(1.4) TYP  
(1.4) TYP  
7.2 TYP  
K
J
H
G
F
SYMM  
7.2  
TYP  
E
D
C
0.55  
100X Ø  
0.45  
B
A
0.15  
0.05  
C A B  
C
0.8 TYP  
1
2
3
4
5
6
7
8
9
10  
0.8 TYP  
SYMM  
4225038/A 08/2019  
NOTES:  
NanoFree is a trademark of Texas Instruments.  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
NMF0100A  
SYMM  
(0.8) TYP  
A
B
(0.8) TYP  
C
D
E
F
SYMM  
G
H
J
100X (Ø 0.4)  
K
1
2
3
4
5
6
7
8
9
10  
LAND PATTERN EXAMPLE  
SCALE: 8X  
0.05 MIN  
0.05 MAX  
ALL AROUND  
ALL AROUND  
EXPOSED  
METAL  
METAL UNDER  
SOLDER MASK  
(Ø 0.40)  
SOLDER MASK  
OPENING  
(Ø 0.40)  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225038/A 08/2019  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments  
Literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
NMF0100A  
SYMM  
(0.8) TYP  
A
B
(0.8) TYP  
C
D
E
F
SYMM  
G
H
J
100X (Ø 0.4)  
K
1
2
3
4
5
6
7
8
9
10  
SOLDER PASTE EXAMPLE  
BASED ON 0.150 mm THICK STENCIL  
SCALE: 8X  
4225038/A 08/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
MECHANICAL DATA  
MPBG028B FEBRUARY 1997 – REVISED MAY 2002  
GGM (S–PBGA–N100)  
PLASTIC BALL GRID ARRAY  
10,10  
9,90  
SQ  
7,20 TYP  
0,80  
0,40  
K
J
H
G
F
E
D
C
B
A
A1 Corner  
1
2
3
4
5
6
7
8
9
10  
Bottom View  
0,95  
0,85  
1,40 MAX  
Seating Plane  
0,10  
0,55  
0,45  
0,08  
0,45  
0,35  
4145257–3/C 12/01  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice  
C. MicroStar BGA configuration.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OUTLINE  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
GBA0100A  
A
10.1  
9.9  
B
BALL A1 CORNER  
10.1  
9.9  
1.4 MAX  
C
SEATING PLANE  
0.12 C  
0.45  
0.35  
BALL TYP  
7.2 TYP  
(1.4) TYP  
K
(1.4) TYP  
J
H
G
F
SYMM  
7.2  
TYP  
E
D
C
0.55  
100X Ø  
0.45  
B
A
0.8 TYP  
0.15  
0.05  
C A B  
C
1
2
3
4
5
6
7
8
9 10  
0.8 TYP  
SYMM  
4224887/A 05/2019  
NanoFree is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
GBA0100A  
(0.8) TYP  
1
2
3
4
5
6
7
8
9
10  
A
B
(0.8) TYP  
C
D
E
F
SYMM  
G
H
J
100X (Ø0.4)  
K
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 8X  
0.05 MIN  
0.05 MAX  
ALL AROUND  
ALL AROUND  
EXPOSED  
METAL  
METAL UNDER  
SOLDER MASK  
(Ø 0.25)  
SOLDER MASK  
OPENING  
(Ø 0.25)  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4224887/A 05/2019  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments  
Literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
GBA0100A  
(0.8) TYP  
1
2
3
4
5
6
7
8
9
10  
A
B
(0.8) TYP  
C
D
E
F
SYMM  
G
H
J
100X (Ø0.4)  
K
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.150 mm THICK STENCIL  
SCALE: 8X  
4224887/A 05/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
MECHANICAL DATA  
MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996  
PZ (S-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
75  
M
0,08  
51  
50  
76  
26  
100  
0,13 NOM  
1
25  
12,00 TYP  
Gage Plane  
14,20  
SQ  
13,80  
0,25  
16,20  
SQ  
0,05 MIN  
0°7°  
15,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040149/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TMS320F28015

Digital Signal Processors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28015-Q1

TMS320F280x, TMS320C280x, TMS320F2801x digital signal processors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28015GGM

TMS320F280x, TMS320C280x, TMS320F2801x digital signal processors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28015NMFA

TMS320F280x, TMS320C280x, TMS320F2801x digital signal processors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28015PZ

TMS320F280x, TMS320C280x, TMS320F2801x digital signal processors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28015PZA

Digital Signal Processors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28015PZQ

Digital Signal Processors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28015PZS

Digital Signal Processors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28015PZSR

具有 60MHz 频率、32KB 闪存、8 通道 PWM 的 C2000™ 32 位 MCU | PZ | 100 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28015ZGM

TMS320F280x, TMS320C280x, TMS320F2801x digital signal processors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320F28015ZGMA

Digital Signal Processors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI