TMS320F28053PNQ [TI]

Piccolo Microcontrollers; Piccolo微处理器
TMS320F28053PNQ
型号: TMS320F28053PNQ
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Piccolo Microcontrollers
Piccolo微处理器

微处理器 微控制器
文件: 总143页 (文件大小:1522K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Piccolo Microcontrollers  
Check for Samples: TMS320F28055, TMS320F28054, TMS320F28053, TMS320F28052, TMS320F28051, TMS320F28050  
1 TMS320F2805x ( Piccolo™) MCUs  
1.1 Features  
123  
• Highlights  
• Programmable Control Law Accelerator (CLA)  
– 32-Bit Floating-Point Math Accelerator  
– High-Efficiency 32-Bit CPU ( TMS320C28x™)  
– 60-MHz Device  
– Single 3.3-V Supply  
– Executes Code Independently of the Main  
CPU  
• Low Device and System Cost:  
– Single 3.3-V Supply  
– Integrated Power-on and Brown-out Resets  
– Two Internal Zero-pin Oscillators  
– Up to 42 Multiplexed GPIO Pins  
– Three 32-Bit CPU Timers  
– On-Chip Flash, SARAM, Message RAM, OTP,  
CLA Data ROM, Boot ROM, Secure ROM  
Memory  
– No Power Sequencing Requirement  
– Integrated Power-on Reset and Brown-out  
Reset  
– Low Power  
– No Analog Support Pins  
• Clocking:  
– Dual-Zone Security Module  
– Serial Port Peripherals (SCI/SPI/I2C/eCAN)  
– Enhanced Control Peripherals  
– Two Internal Zero-pin Oscillators  
– On-Chip Crystal Oscillator/External Clock  
Input  
– Dynamic PLL Ratio Changes Supported  
– Watchdog Timer Module  
– Missing Clock Detection Circuitry  
Enhanced Pulse Width Modulator (ePWM)  
Enhanced Capture (eCAP)  
Enhanced Quadrature Encoder Pulse  
(eQEP)  
– Analog Peripherals  
• Up to 42 Individually Programmable,  
Multiplexed GPIO Pins With Input Filtering  
One 12-Bit Analog-to-Digital Converter  
(ADC)  
• Peripheral Interrupt Expansion (PIE) Block That  
Supports All Peripheral Interrupts  
One On-Chip Temperature Sensor  
• Three 32-Bit CPU Timers  
• Independent 16-Bit Timer in Each ePWM  
Module  
Up to Seven Comparators With up to  
Three Integrated Digital-to-Analog  
Converters (DACs)  
One Buffered Reference DAC  
Up to Four Programmable Gain  
Amplifiers (PGAs)  
• On-Chip Memory  
– Flash, SARAM, Message RAM, OTP, CLA  
Data ROM, Boot ROM, Secure ROM Available  
Up to Four Digital Filters  
• 128-Bit Security Key and Lock  
– Protects Secure Memory Blocks  
– Prevents Firmware Reverse Engineering  
• Serial Port Peripherals  
– 80-Pin Package  
• High-Efficiency 32-Bit CPU ( TMS320C28x™)  
– 60 MHz (16.67-ns Cycle Time)  
– 16 x 16 and 32 x 32 MAC Operations  
– 16 x 16 Dual MAC  
– Three SCI (UART) Modules  
– One SPI Module  
– Harvard Bus Architecture  
– One Inter-Integrated-Circuit (I2C) Bus  
– Atomic Operations  
– One Enhanced Controller Area Network  
(eCAN) Bus  
• Advanced Emulation Features  
– Fast Interrupt Response and Processing  
– Unified Memory Programming Model  
– Code-Efficient (in C/C++ and Assembly)  
• Endianness: Little Endian  
– Analysis and Breakpoint Functions  
– Real-Time Debug via Hardware  
• 80-Pin PN Low-Profile Quad Flatpack (LQFP)  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Piccolo, TMS320C28x, C28x, TMS320C2000, Code Composer Studio, XDS510, XDS560 are trademarks of Texas  
2
Instruments.  
All other trademarks are the property of their respective owners.  
3
ADVANCE INFORMATION concerns new products in the sampling or preproduction  
phase of development. Characteristic data and other specifications are subject to change  
without notice.  
Copyright © 2012, Texas Instruments Incorporated  
 
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
1.2 Description  
The F2805x Piccolo™ family of microcontrollers provides the power of the C28x™ core and Control Law  
Accelerator (CLA) coupled with highly integrated control peripherals in low pin-count devices. This family  
is code-compatible with previous C28x-based code, as well as providing a high level of analog integration.  
An internal voltage regulator allows for single rail operation. Analog comparators with internal 6-bit  
references have been added and can be routed directly to control the PWM outputs. The ADC converts  
from 0 to 3.3-V fixed full scale range and supports ratio-metric VREFHI/VREFLO references. The ADC  
interface has been optimized for low overhead/latency.  
The Analog Front End (AFE) contains up to seven comparators with up to three integrated Digital-to-  
Analog Converters (DACs), one VREFOUT-buffered DAC, up to four Programmable Gain Amplifiers  
(PGAs), and up to four digital filters. The Programmable Gain Amplifiers (PGAs) are capable of amplifying  
the input signal in three discrete gain modes. The actual gain itself depends on the resistors defined by  
the user at the bipolar input end. The actual number of AFE peripherals will depend upon the 2805x  
device number. See Table 2-1 for more details.  
2
TMS320F2805x ( Piccolo™) MCUs  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
1.3 Functional Block Diagram  
Z1/Z2 User OTP  
Secure  
M0  
SARAM 1Kx16  
(0-wait)  
L0 SARAM (2Kx16)  
(0-wait, Secure)  
CLA Data RAM2  
FLASH  
M1  
SARAM 1Kx16  
(0-wait)  
L1 DPSARAM (1Kx16)  
(0-wait, Secure)  
CLA Data RAM0  
28055, 28054: 64K x 16, 10 Sectors  
Dual-  
Zone  
Security  
Module  
+
ECSL  
28053, 28052, 28051: 32K x 16, 5 Sectors  
L2 DPSARAM (1Kx16)  
(0-wait, Secure)  
CLA Data RAM1  
28050: 16K x 16, 3 Sectors  
Boot ROM  
12Kx16  
Secure  
L3 DPSARAM (4Kx16)  
(0-wait, Secure)  
CLA Program RAM  
(0-wait)  
Non-Secure  
PUMP  
Secure ROM(A)  
2Kx16  
OTP/Flash Wrapper  
PSWD  
CLA Data ROM  
(4Kx16)  
(0-wait)  
Secure  
Memory Bus  
TRST  
TCK  
CLA +  
Message RAMs  
C28x CPU  
(60 MHz)  
TDI  
TMS  
TDO  
GPIO  
Mux  
GPIO  
CTRIPnOUT  
MUX  
X1  
X2  
COMP  
+
CPU Timer 0  
OSC1,  
OSC2,  
Ext,  
XRS  
Digital  
Filter  
COMPAn  
COMPBn  
CPU Timer 1  
POR/  
BOR  
PLL,  
LPM,  
WD  
VREG  
Program-  
mable  
Gain  
CPU Timer 2  
PIE  
(up to 96 interrupts)  
XCLKIN  
Amps  
ADC  
0-wait  
Result  
Regs  
LPM Wakeup  
GPIO  
Mux  
3 External Interrupts  
ADC  
3.75  
MSPS  
Memory Bus  
32-bit Peripheral Bus  
(CLA-accessible)  
32-bit Peripheral Bus  
(CLA-accessible)  
32-Bit  
Peripheral Bus  
16-bit Peripheral Bus  
SCI-A,  
SCI-B, SCI-C  
(4L FIFO)  
eCAN-A  
SPI-A  
I2C-A  
eCAP  
eQEP  
ePWM1–ePWM7  
(4L FIFO)  
(4L FIFO)  
(32-mbox)  
GPIO MUX  
A. Stores Secure Copy Code Functions on all devices.  
B. Not all peripheral pins are available at the same time due to multiplexing.  
Figure 1-1. Functional Block Diagram  
Copyright © 2012, Texas Instruments Incorporated  
TMS320F2805x ( Piccolo™) MCUs  
3
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
1
2
TMS320F2805x ( Piccolo™) MCUs .................. 1  
1.1 Features ............................................. 1  
1.2 Description ........................................... 2  
1.3 Functional Block Diagram ........................... 3  
Device Overview ........................................ 5  
2.1 Device Characteristics ............................... 5  
2.2 Memory Maps ........................................ 8  
2.3 Brief Descriptions ................................... 15  
2.4 Register Map ....................................... 26  
2.5 Device Emulation Registers ........................ 28  
2.6 VREG, BOR, POR .................................. 30  
2.7 System Control ..................................... 32  
2.8 Low-power Modes Block ........................... 40  
2.9 Thermal Design Considerations .................... 40  
Device Pins ............................................. 41  
3.1 Pin Assignments .................................... 41  
3.2 Terminal Functions ................................. 42  
Device Operating Conditions ....................... 50  
4.1 Absolute Maximum Ratings ........................ 50  
4.2 Recommended Operating Conditions .............. 50  
5.1 Power Sequencing ................................. 58  
5.2 Clocking ............................................ 60  
5.3 Interrupts ............................................ 63  
Peripheral Information and Timings ............... 68  
6.1 Parameter Information .............................. 68  
6.2 Control Law Accelerator (CLA) ..................... 69  
6.3 Analog Block ........................................ 72  
6.4 Serial Peripheral Interface (SPI) .................... 91  
6
6.5  
Serial Communications Interface (SCI) ........... 100  
Enhanced Controller Area Network (eCAN) ...... 103  
6.6  
6.7 Inter-Integrated Circuit (I2C) ...................... 107  
Enhanced Pulse Width Modulator (ePWM) ....... 110  
6.8  
6.9 Enhanced Capture Module (eCAP) ............... 118  
6.10 Enhanced Quadrature Encoder Pulse (eQEP) .... 120  
6.11 JTAG Port ......................................... 123  
6.12 General-Purpose Input/Output (GPIO) ............ 125  
Device and Documentation Support ............. 136  
7.1 Device Support .................................... 136  
7.2 Documentation Support ........................... 138  
7.3 Community Resources ............................ 138  
Mechanical Packaging and Orderable  
Information ............................................ 139  
8.1 Thermal Data for Package ........................ 139  
8.2 Packaging Information ............................ 139  
3
4
7
8
4.3  
Electrical Characteristics Over Recommended  
Operating Conditions (Unless Otherwise Noted) ... 51  
4.4 Current Consumption ............................... 52  
4.5 Flash Timing ........................................ 56  
Power, Reset, Clocking, and Interrupts ........... 58  
5
4
Contents  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
2 Device Overview  
2.1 Device Characteristics  
Table 2-1 lists the features of the TMS320F2805x devices.  
Copyright © 2012, Texas Instruments Incorporated  
Device Overview  
5
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
Table 2-1. TMS320F2805x Hardware Features  
28055  
28054  
28053  
28052  
28051  
28050  
FEATURE  
(60 MHz)  
(60 MHz)  
(60 MHz)  
(60 MHz)  
(60 MHz)  
(60 MHz)  
80-Pin PN  
LQFP  
80-Pin PN  
LQFP  
80-Pin PN  
LQFP  
80-Pin PN  
LQFP  
80-Pin PN  
LQFP  
80-Pin PN  
LQFP  
Package Type  
Instruction cycle  
16.67 ns  
Yes  
16.67 ns  
No  
16.67 ns  
Yes  
16.67 ns  
No  
16.67 ns  
No  
16.67 ns  
No  
Control Law Accelerator (CLA)  
On-chip flash (16-bit word)  
On-chip SARAM (16-bit word)  
64K  
64K  
32K  
32K  
32K  
16K  
10K  
10K  
10K  
10K  
8K  
6K  
Dual-zone security for on-chip Flash, SARAM, OTP,  
and Secure ROM blocks  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Boot ROM (12K x 16)  
One-time programmable (OTP) ROM  
(16-bit word)  
ePWM outputs  
eCAP inputs  
eQEP modules  
Watchdog timer  
MSPS  
14  
1
14  
1
14  
1
14  
1
14  
1
14  
1
1
1
1
1
1
1
Yes  
3.75  
267 ns  
16  
Yes  
3.75  
267 ns  
16  
Yes  
3.75  
267 ns  
16  
Yes  
3.75  
267 ns  
16  
Yes  
2
Yes  
2
Conversion Time  
500 ns  
16  
500 ns  
16  
12-Bit ADC  
Channels  
Temperature Sensor  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Dual  
Sample-and-Hold  
Yes  
4
Yes  
4
Yes  
4
Yes  
4
Yes  
4
Yes  
3
Programmable Gain Amplifier (PGA)  
(Gains = ~3, ~6, ~11)  
Fixed Gain Amplifier  
(Gain = ~3)  
3
3
3
3
3
4
Comparators  
7
7
7
7
7
6
Internal Comparator Reference DACs  
Buffered Reference DAC  
3
3
3
3
3
2
1
1
1
1
1
1
32-Bit CPU timers  
3
1
3
1
3
1
3
1
3
1
3
1
Inter-integrated circuit (I2C)  
Enhanced Controller Area Network (eCAN)  
Serial Peripheral Interface (SPI)  
Serial Communications Interface (SCI)  
0-pin Oscillators  
1
1
1
1
1
1
1
1
1
1
1
1
3
3
3
3
3
3
2
2
2
2
2
2
I/O pins (shared)  
GPIO  
42  
3
42  
3
42  
3
42  
3
42  
3
42  
3
External interrupts  
Supply voltage (nominal)  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
6
Device Overview  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Table 2-1. TMS320F2805x Hardware Features (continued)  
28055  
(60 MHz)  
28054  
(60 MHz)  
28053  
(60 MHz)  
28052  
(60 MHz)  
28051  
(60 MHz)  
28050  
(60 MHz)  
FEATURE  
T: –40ºC to 105ºC  
S: –40ºC to 125ºC  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Temperature options  
Product status(1)  
TMX  
TMX  
TMX  
TMX  
TMX  
TMX  
(1) See Section 7.1.2, Device and Development Support Tool Nomenclature, for descriptions of device stages. The "TMX" product status denotes an experimental device that is not  
necessarily representative of the final device's electrical specifications.  
Copyright © 2012, Texas Instruments Incorporated  
Device Overview  
7
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
2.2 Memory Maps  
In Figure 2-1, Figure 2-2, Figure 2-3, and Figure 2-4, the following apply:  
Memory blocks are not to scale.  
Peripheral Frame 0, Peripheral Frame 1, Peripheral Frame 2, and Peripheral Frame 3 memory maps  
are restricted to data memory only. A user program cannot access these memory maps in program  
space.  
Protected means the order of Write-followed-by-Read operations is preserved rather than the pipeline  
order.  
Certain memory ranges are EALLOW protected against spurious writes after configuration.  
8
Device Overview  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K x 16, 0-Wait)  
M1 SARAM (1K x 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 x 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 1400  
Peripheral Frame 0  
CLA Registers  
0x00 1480  
0x00 1500  
0x00 1580  
0x00 2000  
0x00 6000  
CLA-to-CPU Message RAM  
CPU-to-CLA Message RAM  
Peripheral Frame 0  
Reserved  
Peripheral Frame 1  
(1K x 16, Protected)  
0x00 6400  
0x00 6A00  
0x00 7000  
0x00 8000  
0x00 8800  
0x00 8C00  
0x00 9000  
Peripheral Frame 3  
(1.5K x 16, Protected)  
Reserved  
Peripheral Frame 1  
(1.5K x 16, Protected)  
Peripheral Frame 2  
(4K x 16, Protected)  
L0 DPSARAM (2K x 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL, CLA Data RAM 2)  
L1 DPSARAM (1K x 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL, CLA Data RAM 0)  
L2 DPSARAM (1K x 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL, CLA Data RAM 1)  
L3 DPSARAM (4K x 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL, CLA Prog RAM)  
0x00 A000  
0x00 F000  
0x01 0000  
Reserved  
CLA Data ROM (4K x 16)  
Reserved  
0x3D 7800  
0x3D 7A00  
0x3D 7C00  
User OTP, Zone 2 Passwords (512 x 16)  
User OTP, Zone 1 Passwords (512 x 16)  
Reserved  
0x3D 7E00  
0x3D 7FCB  
Calibration Data  
Configuration Data  
Reserved  
0x3D 7FF0  
0x3E 8000  
FLASH  
(64K x 16, 10 Sectors, Dual Secure Zone + ECSL)  
(Z1/Z2 User-Selectable Security Zone Per Sector)  
0x3F 7FFF  
0x3F 8000  
Zone 1 Secure Copy Code ROM  
(1K x 16)  
0x3F 8400  
Zone 2 Secure Copy Code ROM  
(1K x 16)  
0x3F 8800  
0x3F D000  
0x3F FFC0  
Reserved  
Boot ROM (12K x 16, 0-Wait)  
Vector (32 Vectors, Enabled if VMAP = 1)  
A. CLA-specific registers and RAM apply to the 28055 device only.  
Figure 2-1. 28055 and 28054 Memory Map  
Copyright © 2012, Texas Instruments Incorporated  
Device Overview  
9
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
Data Space  
0x00 0000  
Prog Space  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K x 16, 0-Wait)  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M1 SARAM (1K x 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 x 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 1400  
Peripheral Frame 0  
CLA Registers  
0x00 1480  
0x00 1500  
0x00 1580  
0x00 2000  
0x00 6000  
CLA-to-CPU Message RAM  
CPU-to-CLA Message RAM  
Peripheral Frame 0  
Reserved  
Peripheral Frame 1  
(1K x 16, Protected)  
0x00 6400  
0x00 6A00  
0x00 7000  
0x00 8000  
0x00 8800  
0x00 8C00  
0x00 9000  
Peripheral Frame 3  
(1.5K x 16, Protected)  
Reserved  
Peripheral Frame 1  
(1.5K x 16, Protected)  
Peripheral Frame 2  
(4K x 16, Protected)  
L0 DPSARAM (2K x 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL, CLA Data RAM 2)  
L1 DPSARAM (1K x 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL, CLA Data RAM 0)  
L2 DPSARAM (1K x 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL, CLA Data RAM 1)  
L3 DPSARAM (4K x 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL, CLA Prog RAM)  
0x00 A000  
0x00 F000  
0x01 0000  
Reserved  
CLA Data ROM (4K x 16)  
Reserved  
0x3D 7800  
0x3D 7A00  
0x3D 7C00  
User OTP, Zone 2 Passwords (512 x 16)  
User OTP, Zone 1 Passwords (512 x 16)  
Reserved  
0x3D 7E00  
0x3D 7FCB  
Calibration Data  
Configuration Data  
Reserved  
0x3D 7FF0  
0x3F 0000  
FLASH  
(32K x 16, 5 Sectors, Dual Secure Zone + ECSL)  
(Z1/Z2 User-Selectable Security Zone Per Sector)  
0x3F 7FFF  
0x3F 8000  
Zone 1 Secure Copy Code ROM  
(1K x 16)  
0x3F 8400  
Zone 2 Secure Copy Code ROM  
(1K x 16)  
0x3F 8800  
0x3F D000  
0x3F FFC0  
Reserved  
Boot ROM (12K x 16, 0-Wait)  
Vector (32 Vectors, Enabled if VMAP = 1)  
A. CLA-specific registers and RAM apply to the 28053 device only.  
Figure 2-2. 28053 and 28052 Memory Map  
10  
Device Overview  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K x 16, 0-Wait)  
M1 SARAM (1K x 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 x 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 1400  
Peripheral Frame 0  
CLA Registers  
0x00 1480  
0x00 1500  
0x00 1580  
0x00 2000  
0x00 6000  
CLA-to-CPU Message RAM  
CPU-to-CLA Message RAM  
Peripheral Frame 0  
Reserved  
Peripheral Frame 1  
(1K x 16, Protected)  
0x00 6400  
0x00 6A00  
0x00 7000  
0x00 8000  
0x00 8800  
0x00 8C00  
0x00 9000  
Peripheral Frame 3  
(1.5K x 16, Protected)  
Reserved  
Peripheral Frame 1  
(1.5K x 16, Protected)  
Peripheral Frame 2  
(4K x 16, Protected)  
Reserved  
L1 DPSARAM (1K x 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL, CLA Data RAM 0)  
L2 DPSARAM (1K x 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL, CLA Data RAM 1)  
L3 DPSARAM (4K x 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL, CLA Prog RAM)  
0x00 A000  
0x00 F000  
0x01 0000  
Reserved  
CLA Data ROM (4K x 16)  
Reserved  
0x3D 7800  
0x3D 7A00  
0x3D 7C00  
User OTP, Zone 2 Passwords (512 x 16)  
User OTP, Zone 1 Passwords (512 x 16)  
Reserved  
0x3D 7E00  
0x3D 7FCB  
Calibration Data  
Configuration Data  
Reserved  
0x3D 7FF0  
0x3F 0000  
FLASH  
(32K x 16, 5 Sectors, Dual Secure Zone + ECSL)  
(Z1/Z2 User-Selectable Security Zone Per Sector)  
0x3F 7FFF  
0x3F 8000  
Zone 1 Secure Copy Code ROM  
(1K x 16)  
0x3F 8400  
Zone 2 Secure Copy Code ROM  
(1K x 16)  
0x3F 8800  
0x3F D000  
0x3F FFC0  
Reserved  
Boot ROM (12K x 16, 0-Wait)  
Vector (32 Vectors, Enabled if VMAP = 1)  
Figure 2-3. 28051 Memory Map  
Copyright © 2012, Texas Instruments Incorporated  
Device Overview  
11  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
Data Space  
0x00 0000  
Prog Space  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K x 16, 0-Wait)  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M1 SARAM (1K x 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 x 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 1400  
Peripheral Frame 0  
Reserved  
0x00 1580  
0x00 2000  
0x00 6000  
Peripheral Frame 0  
Reserved  
Peripheral Frame 1  
(1K x 16, Protected)  
0x00 6400  
0x00 6A00  
0x00 7000  
0x00 8000  
0x00 8800  
0x00 8C00  
0x00 9000  
Peripheral Frame 3  
(1.5K x 16, Protected)  
Reserved  
Peripheral Frame 1  
(1.5K x 16, Protected)  
Peripheral Frame 2  
(4K x 16, Protected)  
L0 DPSARAM (2K x 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL)  
L1 DPSARAM (1K x 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL)  
L2 DPSARAM (1K x 16)  
(0-Wait, Z1 or Z2 Secure Zone + ECSL)  
Reserved  
0x00 A000  
0x00 F000  
0x01 0000  
Reserved  
Reserved  
Reserved  
0x3D 7800  
0x3D 7A00  
0x3D 7C00  
User OTP, Zone 2 Passwords (512 x 16)  
User OTP, Zone 1 Passwords (512 x 16)  
Reserved  
0x3D 7E00  
0x3D 7FCB  
Calibration Data  
Configuration Data  
Reserved  
0x3D 7FF0  
0x3F 4000  
FLASH  
(16K x 16, 3 Sectors, Dual Secure Zone + ECSL)  
(Z1/Z2 User-Selectable Security Zone Per Sector)  
0x3F 7FFF  
0x3F 8000  
Zone 1 Secure Copy Code ROM  
(1K x 16)  
0x3F 8400  
Zone 2 Secure Copy Code ROM  
(1K x 16)  
0x3F 8800  
0x3F D000  
0x3F FFC0  
Reserved  
Boot ROM (12K x 16, 0-Wait)  
Vector (32 Vectors, Enabled if VMAP = 1)  
Figure 2-4. 28050 Memory Map  
12  
Device Overview  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Table 2-2. Addresses of Flash Sectors in F28055 and F28054  
ADDRESS RANGE  
0x3E 8000 – 0x3E 8FFF  
0x3E 9000 – 0x3E 9FFF  
0x3E A000 – 0x3E BFFF  
0x3E C000 – 0x3E DFFF  
0x3E E000 – 0x3E FFFF  
0x3F 0000 – 0x3F 1FFF  
0x3F 2000 – 0x3F 3FFF  
0x3F 4000 – 0x3F 5FFF  
0x3F 6000 – 0x3F 6FFF  
0x3F 7000 – 0x3F 7FFF  
PROGRAM AND DATA SPACE  
Sector J (4K x 16)  
Sector I (4K x 16)  
Sector H (8K x 16)  
Sector G (8K x 16)  
Sector F (8K x 16)  
Sector E (8K x 16)  
Sector D (8K x 16)  
Sector C (8K x 16)  
Sector B (4K x 16)  
Sector A (4K x 16)  
Table 2-3. Addresses of Flash Sectors in F28053, F28052, and F28051  
ADDRESS RANGE  
0x3F 0000 – 0x3F 1FFF  
0x3F 2000 – 0x3F 3FFF  
0x3F 4000 – 0x3F 5FFF  
0x3F 6000 – 0x3F 6FFF  
0x3F 7000 – 0x3F 7FFF  
PROGRAM AND DATA SPACE  
Sector E (8K x 16)  
Sector D (8K x 16)  
Sector C (8K x 16)  
Sector B (4K x 16)  
Sector A (4K x 16)  
Table 2-4. Addresses of Flash Sectors in F28050  
ADDRESS RANGE  
0x3F 4000 – 0x3F 5FFF  
0x3F 6000 – 0x3F 6FFF  
0x3F 7000 – 0x3F 7FFF  
PROGRAM AND DATA SPACE  
Sector C (8K x 16)  
Sector B (4K x 16)  
Sector A (4K x 16)  
Copyright © 2012, Texas Instruments Incorporated  
Device Overview  
13  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
Peripheral Frame 1, Peripheral Frame 2, and Peripheral Frame 3 are grouped together to enable these  
blocks to be write/read peripheral block protected. The protected mode makes sure that all accesses to  
these blocks happen as written. Because of the pipeline, a write immediately followed by a read to  
different memory locations will appear in reverse order on the memory bus of the CPU. This action can  
cause problems in certain peripheral applications where the user expected the write to occur first (as  
written). The CPU supports a block protection mode where a region of memory can be protected so that  
operations occur as written (the penalty is extra cycles are added to align the operations). This mode is  
programmable, and by default, it protects the selected zones.  
The wait-states for the various spaces in the memory map area are listed in Table 2-5.  
Table 2-5. Wait-States  
AREA  
WAIT-STATES (CPU)  
0-wait  
COMMENTS  
M0 and M1 SARAMs  
Peripheral Frame 0  
Peripheral Frame 1  
Fixed  
0-wait  
0-wait (writes)  
2-wait (reads)  
Cycles can be extended by peripheral generated ready.  
Back-to-back write operations to Peripheral Frame 1 registers will incur  
a 1-cycle stall (1-cycle delay).  
Peripheral Frame 2  
Peripheral Frame 3  
0-wait (writes)  
2-wait (reads)  
Fixed. Cycles cannot be extended by the peripheral.  
0-wait (writes)  
Assumes no conflict between CPU and CLA.  
Cycles can be extended by peripheral-generated ready.  
Assumes no CPU conflicts  
2-wait (reads)  
L0 SARAM  
L1 SARAM  
L2 SARAM  
L3 SARAM  
OTP  
0-wait data and program  
0-wait data and program  
0-wait data and program  
0-wait data and program  
Programmable  
Assumes no CPU conflicts  
Assumes no CPU conflicts  
Assumes no CPU conflicts  
Programmed via the Flash registers.  
1-wait is minimum number of wait states allowed.  
Programmed via the Flash registers.  
1-wait minimum  
FLASH  
Programmable  
0-wait Paged min  
1-wait Random min  
Random Paged  
FLASH Password  
Boot-ROM  
16-wait fixed  
0-wait  
Wait states of password locations are fixed.  
14  
Device Overview  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
2.3 Brief Descriptions  
2.3.1 CPU  
The 2805x (C28x) family is a member of the TMS320C2000™ microcontroller (MCU) platform. The C28x-  
based controllers have the same 32-bit fixed-point architecture as existing C28x MCUs. Each C28x-based  
controller, including the 2805x device, is a very efficient C/C++ engine, enabling users to develop not only  
their system control software in a high-level language, but also enabling development of math algorithms  
using C/C++. The device is as efficient at MCU math tasks as it is at system control tasks. This efficiency  
removes the need for a second processor in many systems. The 32 x 32-bit MAC 64-bit processing  
capabilities enable the controller to handle higher numerical resolution problems efficiently. Add to this  
feature the fast interrupt response with automatic context save of critical registers, resulting in a device  
that is capable of servicing many asynchronous events with minimal latency. The device has an 8-level-  
deep protected pipeline with pipelined memory accesses. This pipelining enables the device to execute at  
high speeds without resorting to expensive high-speed memories. Special branch-look-ahead hardware  
minimizes the latency for conditional discontinuities. Special store conditional operations further improve  
performance.  
2.3.2 Control Law Accelerator (CLA)  
The C28x control law accelerator is a single-precision (32-bit) floating-point unit that extends the  
capabilities of the C28x CPU by adding parallel processing. The CLA is an independent processor with its  
own bus structure, fetch mechanism, and pipeline. Eight individual CLA tasks, or routines, can be  
specified. Each task is started by software or a peripheral such as the ADC, ePWM, eCAP, eQEP, or CPU  
Timer 0. The CLA executes one task at a time to completion. When a task completes the main CPU is  
notified by an interrupt to the PIE and the CLA automatically begins the next highest-priority pending task.  
The CLA can directly access the ADC Result registers, ePWM, eCAP, eQEP, and the Comparator and  
DAC registers. Dedicated message RAMs provide a method to pass additional data between the main  
CPU and the CLA.  
2.3.3 Memory Bus (Harvard Bus Architecture)  
As with many MCU-type devices, multiple busses are used to move data between the memories and  
peripherals and the CPU. The memory bus architecture contains a program read bus, data read bus, and  
data write bus. The program read bus consists of 22 address lines and 32 data lines. The data read and  
write busses consist of 32 address lines and 32 data lines each. The 32-bit-wide data busses enable  
single cycle 32-bit operations. The multiple bus architecture, commonly termed Harvard Bus, enables the  
C28x to fetch an instruction, read a data value and write a data value in a single cycle. All peripherals and  
memories attached to the memory bus prioritize memory accesses. Generally, the priority of memory bus  
accesses can be summarized as follows:  
Highest:  
Data Writes  
(Simultaneous data and program writes cannot occur on the  
memory bus.)  
Program Writes  
(Simultaneous data and program writes cannot occur on the  
memory bus.)  
Data Reads  
Program Reads  
(Simultaneous program reads and fetches cannot occur on the  
memory bus.)  
Lowest:  
Fetches  
(Simultaneous program reads and fetches cannot occur on the  
memory bus.)  
Copyright © 2012, Texas Instruments Incorporated  
Device Overview  
15  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
2.3.4 Peripheral Bus  
To enable migration of peripherals between various Texas Instruments (TI) MCU family of devices, the  
devices adopt a peripheral bus standard for peripheral interconnect. The peripheral bus bridge multiplexes  
the various busses that make up the processor Memory Bus into a single bus consisting of 16 address  
lines and 16 or 32 data lines and associated control signals. Three versions of the peripheral bus are  
supported. One version supports only 16-bit accesses (called peripheral frame 2). Another version  
supports both 16- and 32-bit accesses (called peripheral frame 1). The third version supports CLA access  
and both 16- and 32-bit accesses (called peripheral frame 3).  
2.3.5 Real-Time JTAG and Analysis  
(1)  
The devices implement the standard IEEE 1149.1 JTAG  
interface for in-circuit based debug.  
Additionally, the devices support real-time mode of operation allowing modification of the contents of  
memory, peripheral, and register locations while the processor is running and executing code and  
servicing interrupts. The user can also single step through non-time-critical code while enabling time-  
critical interrupts to be serviced without interference. The device implements the real-time mode in  
hardware within the CPU. This feature is unique to the 28x family of devices, and requires no software  
monitor. Additionally, special analysis hardware is provided that allows setting of hardware breakpoint or  
data/address watch-points and generating various user-selectable break events when a match occurs.  
These devices do not support boundary scan; however, IDCODE and BYPASS features are available if  
the following considerations are taken into account. The IDCODE does not come by default. The user  
needs to go through a sequence of SHIFT IR and SHIFT DR state of JTAG to get the IDCODE. For  
BYPASS instruction, the first shifted DR value would be 1.  
2.3.6 Flash  
The F28055 and F28054 devices contain 64K x 16 of embedded flash memory, segregated into six  
8K x 16 sectors and four 4K x 16 sectors. The F28053, F28052, and F28051 devices contain 32K x 16 of  
embedded flash memory, segregated into three 8K x 16 sectors and two 4K x 16 sectors. The F28050  
device contains 16K x 16 of embedded flash memory, segregated into one 8K x 16 sector and two 4K x  
16 sectors. The devices also contain a single 1K x 16 of OTP memory at address range 0x3D 7800 –  
0x3D 7BFF. The user can individually erase, program, and validate a flash sector while leaving other  
sectors untouched. However, it is not possible to use one sector of the flash or the OTP to execute flash  
algorithms that erase or program other sectors. Special memory pipelining is provided to enable the flash  
module to achieve higher performance. The flash/OTP is mapped to both program and data space;  
therefore, the flash/OTP can be used to execute code or store data information.  
NOTE  
The Flash and OTP wait-states can be configured by the application. This feature allows  
applications running at slower frequencies to configure the flash to use fewer wait-states.  
Flash effective performance can be improved by enabling the flash pipeline mode in the  
Flash options register. With this mode enabled, effective performance of linear code  
execution will be much faster than the raw performance indicated by the wait-state  
configuration alone. The exact performance gain when using the Flash pipeline mode is  
application-dependent.  
For more information on the Flash options, Flash wait-state, and OTP wait-state registers,  
see the System Control and Interrupts chapter of the TMS320x2805x Piccolo Technical  
Reference Manual (literature number SPRUHE5).  
(1) IEEE Standard 1149.1-1990 Standard Test Access Port and Boundary Scan Architecture  
16  
Device Overview  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
2.3.7 M0, M1 SARAMs  
All devices contain these two blocks of single access memory, each 1K x 16 in size. The stack pointer  
points to the beginning of block M1 on reset. The M0 and M1 blocks, like all other memory blocks on C28x  
devices, are mapped to both program and data space. Hence, the user can use M0 and M1 to execute  
code or for data variables. The partitioning is performed within the linker. The C28x device presents a  
unified memory map to the programmer, which makes for easier programming in high-level languages.  
2.3.8 L0 SARAM, and L1, L2, and L3 DPSARAMs  
The device contains up to 8K x 16 of single-access RAM. To ascertain the exact size for a given device,  
see the device-specific memory map figures in Section 2.2. This block is mapped to both program and  
data space. Block L0 is 2K in size and is dual mapped to both program and data space. Blocks L1 and L2  
are both 1K in size, and together with L0, are shared with the CLA which can ultilize these blocks for its  
data space. Block L3 is 4K in size and is shared with the CLA which can ultilize this block for its program  
space. DPSARAM refers to the dual-port configuration of these blocks.  
2.3.9 Boot ROM  
The Boot ROM is factory-programmed with boot-loading software. Boot-mode signals are provided to tell  
the bootloader software what boot mode to use on power up. The user can select to boot normally or to  
download new software from an external connection or to select boot software that is programmed in the  
internal Flash/ROM. The Boot ROM also contains standard tables, such as SIN/COS waveforms, for use  
in math-related algorithms.  
Table 2-6. Boot Mode Selection  
GPIO34/COMP2OUT/  
MODE  
GPIO37/TDO  
TRST  
MODE  
COMP3OUT  
3
2
1
1
0
0
x
1
0
1
0
x
0
0
0
0
1
GetMode  
Wait (see Section 2.3.10 for description)  
1
SCI  
0
Parallel IO  
Emulation Boot  
EMU  
2.3.9.1 Emulation Boot  
When the emulator is connected, the GPIO37/TDO pin cannot be used for boot mode selection. In this  
case, the boot ROM detects that an emulator is connected and uses the contents of two reserved SARAM  
locations in the PIE vector table to determine the boot mode. If the content of either location is invalid,  
then the Wait boot option is used. All boot mode options can be accessed in emulation boot.  
2.3.9.2 GetMode  
The default behavior of the GetMode option is to boot to flash. This behavior can be changed to another  
boot option by programming two locations in the OTP. If the content of either OTP location is invalid, then  
boot to flash is used. One of the following loaders can be specified: SCI, SPI, I2C, CAN, or OTP.  
Copyright © 2012, Texas Instruments Incorporated  
Device Overview  
17  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
2.3.9.3 Peripheral Pins Used by the Bootloader  
Table 2-7 shows which GPIO pins are used by each peripheral bootloader. Refer to the GPIO mux table  
to see if these conflict with any of the peripherals you would like to use in your application.  
Table 2-7. Peripheral Bootload Pins  
BOOTLOADER  
PERIPHERAL LOADER PINS  
SCIRXDA (GPIO28)  
SCI  
SCITXDA (GPIO29)  
Parallel Boot  
SPI  
Data (GPIO31,30,5:0)  
28x Control (GPIO26)  
Host Control (GPIO27)  
SPISIMOA (GPIO16)  
SPISOMIA (GPIO17)  
SPICLKA (GPIO18)  
SPISTEA (GPIO19)  
I2C  
SDAA (GPIO28)  
SCLA (GPIO29)  
CAN  
CANRXA (GPIO30)  
CANTXA (GPIO31)  
2.3.10 Security  
The TMS320F2805x device supports high levels of security with a dual-zone (Z1/Z2) feature to protect  
user's firmware from being reverse-engineered. The dual-zone feature enables the user to co-develop  
application software with a third-party or sub-contractor by preventing visibility into each other's software  
IP. The security features a 128-bit password (hardcoded for 16 wait states) for each zone, which the user  
programs into the USER-OTP. Each zone has its own dedicated USER-OTP, which needs to be  
programmed by the user with the required security settings, including the 128-bit password. Since OTP  
cannot be erased, in order to provide the user with the flexibility of changing security-related settings and  
passwords multiple times, a 32-bit link pointer is stored at the beginning of each USER-OTP. Considering  
the fact that user can only flip a ‘1’ in USER-OTP to ‘0’, the most significant bit position in the link pointer,  
programmed as 0, defines the USER-OTP region (zone-select) for each zone in which security-related  
settings and passwords are stored.  
Table 2-8. Location of Zone-Select Block Based on Link Pointer  
Zx LINK POINTER VALUE  
ADDRESS OFFSET FOR ZONE-SELECT  
32’bxx111111111111111111111111111111  
32’bxx111111111111111111111111111110  
32’bxx11111111111111111111111111110x  
32’bxx1111111111111111111111111110xx  
32’bxx111111111111111111111111110xxx  
32’bxx11111111111111111111111110xxxx  
32’bxx1111111111111111111111110xxxxx  
32’bxx111111111111111111111110xxxxxx  
32’bxx11111111111111111111110xxxxxxx  
32’bxx1111111111111111111110xxxxxxxx  
32’bxx111111111111111111110xxxxxxxxx  
32’bxx11111111111111111110xxxxxxxxxx  
32’bxx1111111111111111110xxxxxxxxxxx  
32’bxx111111111111111110xxxxxxxxxxxx  
32’bxx11111111111111110xxxxxxxxxxxxx  
0x10  
0x20  
0x30  
0x40  
0x50  
0x60  
0x70  
0x80  
0x90  
0xa0  
0xb0  
0xc0  
0xd0  
0xe0  
0xf0  
18  
Device Overview  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Table 2-8. Location of Zone-Select Block Based on Link Pointer (continued)  
Zx LINK POINTER VALUE  
ADDRESS OFFSET FOR ZONE-SELECT  
32’bxx1111111111111110xxxxxxxxxxxxxx  
32’bxx111111111111110xxxxxxxxxxxxxxx  
32’bxx11111111111110xxxxxxxxxxxxxxxx  
32’bxx1111111111110xxxxxxxxxxxxxxxxx  
32’bxx111111111110xxxxxxxxxxxxxxxxxx  
32’bxx11111111110xxxxxxxxxxxxxxxxxxx  
32’bxx1111111110xxxxxxxxxxxxxxxxxxxx  
32’bxx111111110xxxxxxxxxxxxxxxxxxxxx  
32’bxx11111110xxxxxxxxxxxxxxxxxxxxxx  
32’bxx1111110xxxxxxxxxxxxxxxxxxxxxxx  
32’bxx111110xxxxxxxxxxxxxxxxxxxxxxxx  
32’bxx11110xxxxxxxxxxxxxxxxxxxxxxxxx  
32’bxx1110xxxxxxxxxxxxxxxxxxxxxxxxxx  
32’bxx110xxxxxxxxxxxxxxxxxxxxxxxxxxx  
32’bxx10xxxxxxxxxxxxxxxxxxxxxxxxxxxx  
32’bxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx  
0x100  
0x110  
0x120  
0x130  
0x140  
0x150  
0x160  
0x170  
0x180  
0x190  
0x1a0  
0x1b0  
0x1c0  
0x1d0  
0x1e0  
0x1f0  
Table 2-9. Zone-Select Block Organization in USER-OTP  
16-BIT ADDRESS OFFSET  
(WITH RESPECT TO OFFSET OF ZONE-SELECT)  
CONTENT  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xa  
0xb  
0xc  
0xd  
0xe  
0xf  
Zx-EXEONLYRAM  
Zx-EXEONLYSECT  
Zx-GRABRAM  
Zx-GRABSECT  
Zx-CSMPSWD0  
Zx-CSMPSWD1  
Zx-CSMPSWD2  
Zx-CSMPSWD3  
The Dual Code Security Module (DCSM) is used to protect the Flash/OTP/Lx SARAM blocks/CLA/Secure  
ROM content. Individual flash sectors and SARAM blocks can be attached to any of the secure zone at  
start-up time. Secure ROM and the CLA are always attached to Z1. Resources attached to (owned by)  
one zone do not have any access to code running in the other zone when it is secured. Individual flash  
sectors, as well as SARAM blocks, can be further protected by enabling the EXEONLY protection.  
EXEONLY flash sectors or SARAM blocks do not have READ/WRITE access. Only code execution is  
allowed from such memory blocks.  
Copyright © 2012, Texas Instruments Incorporated  
Device Overview  
19  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
The security feature prevents unauthorized users from examining memory contents via the JTAG port,  
executing code from external memory, or trying to boot load an undesirable software that would export the  
secure memory contents. To enable access to the secure blocks of a particular zone, the user must write  
a 128-bit value in the zone’s CSMKEY registers that matches the values stored in the password locations  
in USER-OTP. If the 128 bits of the password locations in USER-OTP of a particular zone are all ones  
(un-programmed), then the security for that zone gets UNLOCKED as soon as a dummy read is done to  
the password locations in USER-OTP (the value in the CSMKEY register becomes "Don’t care" in this  
case).  
In addition to the DCSM, the Emulation Code Security Logic (ECSL) has been implemented for each zone  
to prevent unauthorized users from stepping through secure code. A halt inside secure code will trip the  
ECSL and break the emulation connection. To allow emulation of secure code while maintaining DCSM  
protection against secure memory reads, the user must write the lower 64 bits of the USER-OTP  
password into the zone's CSMKEY register to disable the ECSL. Note that dummy reads of all 128 bits of  
the password for that particular zone in USER-OTP must still be performed. If the lower 64 bits of the  
password locations of a particular zone are all zeros, then the ECSL for that zone gets disabled as soon  
as a dummy read is done to the password locations in USER-OTP (the value in the CSMKEY register  
becomes "Don’t care" in this case).  
When initially debugging a device with the password locations in OTP (that is, secured), the CPU will start  
running and may execute an instruction that performs an access to ECSL-protected area. If the CPU  
execution is halted when the program counter belongs to the secure code region, the ECSL will trip and  
cause the emulator connection to be cut. The solution is to use the Wait boot option. The Wait boot option  
will sit in a loop around a software breakpoint to allow an emulator to be connected without tripping  
security. The user can then exit this mode once the emulator is connected by using one of the emulation  
boot options as described in the Boot ROM chapter of the TMS320x2805x Piccolo Technical Reference  
Manual (literature number SPRUHE5). 2805x devices do not support hardware wait-in-reset mode.  
To prevent reverse-engineering of the code in secure zone, unauthorized users are prevented from  
looking at the CPU registers in the CCS Expressions Window. The values in the Expressions Window for  
all of these registers, except for PC and some status bits, display false values when code is running from  
a secure zone. This feature gets disabled if the zone is unlocked.  
NOTE  
The USER-OTP contains security-related settings for their respective zone. Execution is  
not allowed from the USER-OTP; therefore, the user should not keep any code/data in  
this region.  
The 128-bit password must not be programmed to zeros. Doing so would permanently  
lock the device.  
The user must try not to write into the CPU registers through the debugger watch window  
when code is running/halted from/inside secure zone. This may corrupt the execution of  
the actual program.  
20  
Device Overview  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Disclaimer  
Dual Code Security Module Disclaimer  
THE DUAL CODE SECURITY MODULE (DCSM) INCLUDED ON THIS DEVICE WAS  
DESIGNED TO PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED  
MEMORY (EITHER ROM OR FLASH) AND IS WARRANTED BY TEXAS INSTRUMENTS  
(TI), IN ACCORDANCE WITH ITS STANDARD TERMS AND CONDITIONS, TO CONFORM  
TO TI'S PUBLISHED SPECIFICATIONS FOR THE WARRANTY PERIOD APPLICABLE  
FOR THIS DEVICE.  
TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE DCSM CANNOT BE  
COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED  
MEMORY CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER, EXCEPT  
AS SET FORTH ABOVE, TI MAKES NO WARRANTIES OR REPRESENTATIONS  
CONCERNING THE DCSM OR OPERATION OF THIS DEVICE, INCLUDING ANY IMPLIED  
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.  
IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT,  
INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN ANY WAY  
OUT OF YOUR USE OF THE DCSM OR THIS DEVICE, WHETHER OR NOT TI HAS BEEN  
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE,  
BUT ARE NOT LIMITED TO LOSS OF DATA, LOSS OF GOODWILL, LOSS OF USE OR  
INTERRUPTION OF BUSINESS OR OTHER ECONOMIC LOSS.  
2.3.11 Peripheral Interrupt Expansion (PIE) Block  
The PIE block serves to multiplex numerous interrupt sources into a smaller set of interrupt inputs. The  
PIE block can support up to 96 peripheral interrupts. On the F2805x devices, 54 of the possible 96  
interrupts are used by peripherals. The 96 interrupts are grouped into blocks of 8 and each group is fed  
into 1 of 12 CPU interrupt lines (INT1 to INT12). Each of the 96 interrupts is supported by its own vector  
stored in a dedicated RAM block that can be overwritten by the user. The vector is automatically fetched  
by the CPU on servicing the interrupt. Eight CPU clock cycles are needed to fetch the vector and save  
critical CPU registers. Hence the CPU can quickly respond to interrupt events. Prioritization of interrupts is  
controlled in hardware and software. Each individual interrupt can be enabled or disabled within the PIE  
block.  
Copyright © 2012, Texas Instruments Incorporated  
Device Overview  
21  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
2.3.12 External Interrupts (XINT1–XINT3)  
The devices support three masked external interrupts (XINT1–XINT3). Each of the interrupts can be  
selected for negative, positive, or both negative and positive edge triggering and can also be enabled or  
disabled. These interrupts also contain a 16-bit free running up counter, which is reset to zero when a  
valid interrupt edge is detected. This counter can be used to accurately time stamp the interrupt. There are  
no dedicated pins for the external interrupts. XINT1, XINT2, and XINT3 interrupts can accept inputs from  
GPIO0–GPIO31 pins.  
2.3.13 Internal Zero-Pin Oscillators, Oscillator, and PLL  
The device can be clocked by either of the two internal zero-pin oscillators, an external oscillator, or by a  
crystal attached to the on-chip oscillator circuit. A PLL is provided supporting up to 12 input-clock-scaling  
ratios. The PLL ratios can be changed on-the-fly in software, enabling the user to scale back on operating  
frequency if lower power operation is desired. Refer to Section 5.2 for timing details. The PLL block can  
be set in bypass mode.  
2.3.14 Watchdog  
Each device contains two watchdogs: CPU-Watchdog that monitors the core and NMI-Watchdog that is a  
missing clock-detect circuit. The user software must regularly reset the CPU-watchdog counter within a  
certain time frame; otherwise, the CPU-watchdog generates a reset to the processor. The CPU-watchdog  
can be disabled if necessary. The NMI-Watchdog engages only in case of a clock failure and can either  
generate an interrupt or a device reset.  
2.3.15 Peripheral Clocking  
The clocks to each individual peripheral can be enabled or disabled to reduce power consumption when a  
peripheral is not in use. Additionally, the system clock to the serial ports (except I2C) can be scaled  
relative to the CPU clock.  
2.3.16 Low-power Modes  
The devices are full-static CMOS devices. Three low-power modes are provided:  
IDLE:  
Place CPU in low-power mode. Peripheral clocks may be turned off selectively and  
only those peripherals that need to function during IDLE are left operating. An  
enabled interrupt from an active peripheral or the watchdog timer will wake the  
processor from IDLE mode.  
STANDBY: Turns off clock to CPU and peripherals. This mode leaves the oscillator and PLL  
functional. An external interrupt event will wake the processor and the peripherals.  
Execution begins on the next valid cycle after detection of the interrupt event  
HALT:  
This mode basically shuts down the device and places the device in the lowest  
possible power consumption mode. If the internal zero-pin oscillators are used as the  
clock source, the HALT mode turns them off, by default. To keep these oscillators  
from shutting down, the INTOSCnHALTI bits in CLKCTL register may be used. The  
zero-pin oscillators may thus be used to clock the CPU-watchdog in this mode. If the  
on-chip crystal oscillator is used as the clock source, the crystal oscillator is shut  
down in this mode. A reset or an external signal (through a GPIO pin) or the CPU-  
watchdog can wake the device from this mode.  
The CPU clock (OSCCLK) and WDCLK should be from the same clock source before attempting to put  
the device into HALT or STANDBY.  
22  
Device Overview  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
2.3.17 Peripheral Frames 0, 1, 2, 3 (PFn)  
The device segregates peripherals into four sections. The mapping of peripherals is as follows:  
PF0:  
PIE:  
PIE Interrupt Enable and Control Registers Plus PIE Vector Table  
Flash Waitstate Registers  
Flash:  
Timers:  
DCSM:  
ADC:  
CLA  
CPU-Timers 0, 1, 2 Registers  
Dual Zone Security Module Registers  
ADC Result Registers  
Control Law Accelrator Registers and Message RAMs  
GPIO MUX Configuration and Control Registers  
Enhanced Control Area Network Configuration and Control Registers  
Enhanced Capture Module and Registers  
PF1:  
PF2:  
GPIO:  
eCAN:  
eCAP:  
eQEP:  
SYS:  
Enhanced Quadrature Encoder Pulse Module and Registers  
System Control Registers  
SCI:  
Serial Communications Interface (SCI) Control and RX/TX Registers  
Serial Port Interface (SPI) Control and RX/TX Registers  
ADC Status, Control, and Configuration Registers  
Inter-Integrated Circuit Module and Registers  
External Interrupt Registers  
SPI:  
ADC:  
I2C:  
XINT:  
ePWM:  
PF3:  
Enhanced Pulse Width Modulator Module and Registers  
Comparators and Comparator Modules  
Digital Filters:  
eCAP:  
eQEP:  
ADC:  
ADC:  
DAC:  
Enhanced Capture Module and Registers  
Enhanced Quadrature Encoder Pulse Module and Registers  
ADC Status, Control, and Configuration Registers  
ADC Result Registers  
DAC Control Registers  
2.3.18 General-Purpose Input/Output (GPIO) Multiplexer  
Most of the peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. This  
muxing enables the user to use a pin as GPIO if the peripheral signal or function is not used. On reset,  
GPIO pins are configured as inputs. The user can individually program each pin for GPIO mode or  
peripheral signal mode. For specific inputs, the user can also select the number of input qualification  
cycles. This selection is to filter unwanted noise glitches. The GPIO signals can also be used to bring the  
device out of specific low-power modes.  
Copyright © 2012, Texas Instruments Incorporated  
Device Overview  
23  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
2.3.19 32-Bit CPU-Timers (0, 1, 2)  
CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock  
prescaling. The timers have a 32-bit count-down register, which generates an interrupt when the counter  
reaches zero. The counter is decremented at the CPU clock speed divided by the prescale value setting.  
When the counter reaches zero, the counter is automatically reloaded with a 32-bit period value.  
CPU-Timer 0 is for general use and is connected to the PIE block. CPU-Timer 1 is also for general use  
and can be connected to INT13 of the CPU. CPU-Timer 2 is reserved for DSP/BIOS. CPU-Timer 2 is  
connected to INT14 of the CPU. If DSP/BIOS is not being used, CPU-Timer 2 is available for general use.  
CPU-Timer 2 can be clocked by any one of the following:  
SYSCLKOUT (default)  
Internal zero-pin oscillator 1 (INTOSC1)  
Internal zero-pin oscillator 2 (INTSOC2)  
External clock source  
2.3.20 Control Peripherals  
The devices support the following peripherals that are used for embedded control and communication:  
ePWM:  
The enhanced PWM peripheral supports independent/complementary  
PWM generation, adjustable dead-band generation for leading/trailing  
edges, latched/cycle-by-cycle trip mechanism. The type 1 module found on  
2805x devices also supports increased dead-band resolution, enhanced  
SOC and interrupt generation, and advanced triggering including trip  
functions based on comparator outputs.  
eCAP:  
eQEP:  
The enhanced capture peripheral uses a 32-bit time base and registers up  
to four programmable events in continuous/one-shot capture modes.  
This peripheral can also be configured to generate an auxiliary PWM  
signal.  
The enhanced QEP peripheral uses a 32-bit position counter, supports  
low-speed measurement using capture unit and high-speed measurement  
using a 32-bit unit timer. This peripheral has a watchdog timer to detect  
motor stall and input error detection logic to identify simultaneous edge  
transition in QEP signals.  
ADC:  
The ADC block is a 12-bit converter. The ADC has up to 16 single-ended  
channels pinned out, depending on the device. The ADC also contains two  
sample-and-hold units for simultaneous sampling.  
Comparator and  
Digital Filter  
Subsystems:  
Each comparator block consists of one analog comparator along with an  
internal 6-bit reference for supplying one input of the comparator. The  
comparator output signal filtering is achieved using the Digital Filter  
present on each input line and qualifies the output of the COMP/DAC  
subsystem. The filtered or unfiltered output of the COMP/DAC subsystem  
can be configured to be an input to the Digital Compare submodule of the  
ePWM peripheral. There is also a configurable option to bring the output of  
the COMP/DAC subsystem onto the GPIO’s.  
24  
Device Overview  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
2.3.21 Serial Port Peripherals  
The devices support the following serial communication peripherals:  
SPI:  
The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream  
of programmed length (one to sixteen bits) to be shifted into and out of the device  
at a programmable bit-transfer rate. Normally, the SPI is used for communications  
between the MCU and external peripherals or another processor. Typical  
applications include external I/O or peripheral expansion through devices such as  
shift registers, display drivers, and ADCs. Multi-device communications are  
supported by the master/slave operation of the SPI. The SPI contains a 4-level  
receive and transmit FIFO for reducing interrupt servicing overhead.  
SCI:  
I2C:  
The serial communications interface is a two-wire asynchronous serial port,  
commonly known as UART. The SCI contains a 4-level receive and transmit FIFO  
for reducing interrupt servicing overhead.  
The inter-integrated circuit (I2C) module provides an interface between an MCU  
and other devices compliant with Philips Semiconductors Inter-IC bus (I2C-bus)  
specification version 2.1 and connected by way of an I2C-bus. External  
components attached to this 2-wire serial bus can transmit and receive up to 8-bit  
data to and from the MCU through the I2C module. The I2C contains a 4-level  
receive and transmit FIFO for reducing interrupt servicing overhead.  
eCAN:  
The eCAN is the enhanced version of the CAN peripheral. The eCAN supports 32  
mailboxes, time stamping of messages, and is CAN 2.0B-compliant.  
Copyright © 2012, Texas Instruments Incorporated  
Device Overview  
25  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
2.4 Register Map  
The devices contain four peripheral register spaces. The spaces are categorized as follows:  
Peripheral Frame 0: These are peripherals that are mapped directly to the CPU memory bus.  
See Table 2-10.  
Peripheral Frame 1: These are peripherals that are mapped to the 32-bit peripheral bus. See  
Table 2-11.  
Peripheral Frame 2: These are peripherals that are mapped to the 16-bit peripheral bus. See  
Table 2-12.  
Peripheral Frame 3: These are peripherals that are mapped to CLA in addition to their respective  
Peripheral Frame. See Table 2-13.  
Table 2-10. Peripheral Frame 0 Registers(1)  
NAME  
Device Emulation Registers  
System Power Control Registers  
FLASH Registers(3)  
ADDRESS RANGE  
0x00 0880 – 0x00 0984  
0x00 0985 – 0x00 0987  
0x00 0A80 – 0x00 0ADF  
0x00 0B00 – 0x00 0B0F  
0x00 0B80 – 0x00 0BBF  
0x00 0BC0 – 0x00 0BEF  
0x00 0C00 – 0x00 0C3F  
SIZE (×16)  
EALLOW PROTECTED(2)  
261  
3
Yes  
Yes  
Yes  
No  
96  
16  
64  
48  
64  
ADC registers (0 wait read only)  
DCSM Zone 1 Registers  
Yes  
Yes  
No  
DCSM Zone 2 Registers  
CPU-TIMER0, CPU-TIMER1, CPU-TIMER2  
Registers  
PIE Registers  
0x00 0CE0 – 0x00 0CFF  
0x00 0D00 – 0x00 0DFF  
0x00 1400 – 0x00 147F  
0x00 1480 – 0x00 14FF  
0x00 1500 – 0x00 157F  
32  
No  
No  
PIE Vector Table  
256  
128  
128  
128  
CLA Registers  
Yes  
NA  
NA  
CLA to CPU Message RAM (CPU writes ignored)  
CPU to CLA Message RAM (CLA writes ignored)  
(1) Registers in Frame 0 support 16-bit and 32-bit accesses.  
(2) If registers are EALLOW protected, then writes cannot be performed until the EALLOW instruction is executed. The EDIS instruction  
disables writes to prevent stray code or pointers from corrupting register contents.  
(3) The Flash Registers are also protected by the Dual Code Security Module (DCSM).  
Table 2-11. Peripheral Frame 1 Registers  
NAME  
ADDRESS RANGE  
0x00 6000 – 0x00 61FF  
0x00 6A00 – 0x00 6A1F  
0x00 6B00 – 0x00 6B3F  
0x00 6F80 – 0x00 6FFF  
SIZE (×16)  
EALLOW PROTECTED  
(1)  
eCAN-A Registers  
eCAP1 Registers  
eQEP1 Registers  
GPIO Registers  
512  
32  
No  
(1)  
64  
(1)  
128  
(1) Some registers are EALLOW protected. See the module reference guide for more information.  
26  
Device Overview  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Table 2-12. Peripheral Frame 2 Registers  
NAME  
ADDRESS RANGE  
0x00 7010 – 0x00 702F  
0x00 7040 – 0x00 704F  
0x00 7050 – 0x00 705F  
0x00 7060 – 0x00 706F  
0x00 7070 – 0x00 707F  
0x00 7100 – 0x00 717F  
0x00 7900 – 0x00 793F  
SIZE (×16)  
EALLOW PROTECTED  
System Control Registers  
SPI-A Registers  
32  
16  
Yes  
No  
SCI-A Registers  
16  
No  
NMI Watchdog Interrupt Registers  
External Interrupt Registers  
ADC Registers  
16  
Yes  
16  
Yes  
(1)  
128  
64  
(1)  
I2C-A Registers  
(1) Some registers are EALLOW protected. See the module reference guide for more information.  
Table 2-13. Peripheral Frame 3 Registers  
NAME  
ADDRESS RANGE  
SIZE (×16)  
EALLOW PROTECTED  
ADC registers  
0x00 0B00 – 0x00 0B0F  
16  
No  
(0 wait read only)  
DAC Control Registers  
0x00 6400 – 0x00 640F  
0x00 6410 – 0x00 641F  
16  
16  
Yes  
Yes  
DAC, PGA, Comparator, and Filter Enable  
Registers  
SWITCH Registers  
Digital Filter and Comparator Control Registers  
LOCK Registers  
0x00 6420 – 0x00 642F  
0x00 6430 – 0x00 647F  
0x00 64F0 – 0x00 64FF  
0x00 6800 – 0x00 683F  
0x00 6840 – 0x00 687F  
0x00 6880 – 0x00 68BF  
0x00 68C0 – 0x00 68FF  
0x00 6900 – 0x00 693F  
0x00 6940 – 0x00 697F  
0x00 6980 – 0x00 69BF  
0x00 6A00 – 0x00 6A1F  
0x00 6B00 – 0x00 6B3F  
16  
80  
16  
64  
64  
64  
64  
64  
64  
64  
32  
64  
Yes  
Yes  
Yes  
(1)  
ePWM1 registers  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
ePWM2 registers  
ePWM3 registers  
ePWM4 registers  
ePWM5 registers  
ePWM6 registers  
ePWM7 registers  
eCAP1 Registers  
No  
(1)  
eQEP1 Registers  
(1) Some registers are EALLOW protected. See the module reference guide for more information.  
Copyright © 2012, Texas Instruments Incorporated  
Device Overview  
27  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
2.5 Device Emulation Registers  
These registers are used to control the protection mode of the C28x CPU and to monitor some critical  
device signals. The registers are defined in Table 2-14.  
Table 2-14. Device Emulation Registers  
ADDRESS  
RANGE  
EALLOW  
PROTECTED  
NAME  
SIZE (x16)  
DESCRIPTION  
Device Configuration Register  
0x0880 –  
0x0881  
DEVICECNF  
PARTID  
2
1
Yes  
0x0882  
PARTID Register  
TMS320F28055  
TMS320F28054  
TMS320F28053  
TMS320F28052  
TMS320F28051  
TMS320F28050  
0x0105  
0x0104  
0x0103  
0x0102  
0x0101  
0x0100  
No  
REVID  
DC1  
0x0883  
1
2
Revision ID  
Register  
0x0000 - Silicon Rev. 0 - TMX  
No  
0x0886 –  
0x0887  
Device Capability Register 1.  
The Device Capability Register is predefined by the part and  
can be used to verify features. If any bit is “zero” in this  
register, the module is not present. See Table 2-15.  
Yes  
DC2  
DC3  
0x0888 –  
0x0889  
2
2
Device Capability Register 2.  
The Device Capability Register is predefined by the part and  
can be used to verify features. If any bit is “zero” in this  
register, the module is not present. See Table 2-16.  
Yes  
Yes  
0x088A –  
0x088B  
Device Capability Register 3.  
The Device Capability Register is predefined by the part and  
can be used to verify features. If any bit is “zero” in this  
register, the module is not present. See Table 2-17.  
Table 2-15. Device Capability Register 1 (DC1) Field Descriptions(1)  
BIT  
FIELD  
RSVD  
TYPE  
R = 0  
R
DESCRIPTION  
31–30  
29–22  
Reserved  
PARTNO  
These 8 bits set the PARTNO field value in the PARTID register for the device. They  
are readable in the PARTID[7:0] register bits.  
21–14  
RSVD  
CLA  
RSVD  
L3  
R = 0  
R
Reserved  
13  
12–7  
6
CLA is present when this bit is set.  
Reserved  
R = 0  
R
L3 is present when this bit is set.  
L2 is present when this bit is set.  
L1 is present when this bit is set.  
L0 is present when this bit is set.  
Reserved  
5
L2  
R
4
L1  
R
3
L0  
R
2
RSVD  
RSVD  
R = 0  
R = 0  
1–0  
Reserved  
(1) All reserved bits should not be written to but if any use case demands that they must be written to, then software must write the same  
value that is read back from the reserved bits. These bits are reserved for future enhancements.  
28  
Device Overview  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Table 2-16. Device Capability Register 2 (DC2) Field Descriptions(1)  
BIT  
31–28  
27  
FIELD  
RSVD  
TYPE  
R = 0  
R
DESCRIPTION  
Reserved  
eCAN-A  
RSVD  
EQEP-1  
RSVD  
ECAP-1  
RSVD  
I2C-A  
eCAN-A is present when this bit is set.  
Reserved  
26–17  
16  
R = 0  
R
eQEP-1 is present when this bit is set.  
Reserved  
15–13  
12  
R = 0  
R
eCAP-1 is present when this bit is set.  
Reserved  
11–9  
8
R = 0  
R
I2C-A is present when this bit is set.  
Reserved  
7–5  
4
RSVD  
SPI-A  
R = 0  
R
SPI-A is present when this bit is set.  
Reserved  
3
RSVD  
SCI-C  
SCI-B  
SCI-A  
R = 0  
R
2
SCI-C is present when this bit is set.  
SCI-B is present when this bit is set.  
SCI-A is present when this bit is set.  
1
R
0
R
(1) All reserved bits should not be written to but if any use case demands that they must be written to, then software must write the same  
value that is read back from the reserved bits. These bits are reserved for future enhancements.  
Table 2-17. Device Capability Register 3 (DC3) Field Descriptions(1)  
BIT  
31–20  
19  
18  
17  
16  
15  
14  
13  
12–8  
7
FIELD  
RSVD  
TYPE  
DESCRIPTION  
R = 0  
R
Reserved  
CTRIPFIL7  
CTRIPFIL6  
CTRIPFIL5  
CTRIPFIL4  
CTRIPFIL3  
CTRIPFIL2  
CTRIPFIL1  
RSVD  
CTRIPFIL7(B7) is present when this bit is set.  
CTRIPFIL6(B6) is present when this bit is set.  
CTRIPFIL5(B4) is present when this bit is set.  
CTRIPFIL4(A6) is present when this bit is set.  
CTRIPFIL3(B1) is present when this bit is set.  
CTRIPFIL2(A3) is present when this bit is set.  
CTRIPFIL1(A1) is present when this bit is set.  
Reserved  
R
R
R
R
R
R
R = 0  
R = 0  
R
RSVD  
Reserved  
6
ePWM7  
ePWM7 is present when this bit is set.  
ePWM6 is present when this bit is set.  
ePWM5 is present when this bit is set.  
ePWM4 is present when this bit is set.  
ePWM3 is present when this bit is set.  
ePWM2 is present when this bit is set.  
ePWM1 is present when this bit is set.  
5
ePWM6  
R
4
ePWM5  
R
3
ePWM4  
R
2
ePWM3  
R
1
ePWM2  
R
0
ePWM1  
R
(1) All reserved bits should not be written to but if any use case demands that they must be written to, then software must write the same  
value that is read back from the reserved bits. These bits are reserved for future enhancements.  
Copyright © 2012, Texas Instruments Incorporated  
Device Overview  
29  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
2.6 VREG, BOR, POR  
Although the core and I/O circuitry operate on two different voltages, these devices have an on-chip  
voltage regulator (VREG) to generate the VDD voltage from the VDDIO supply. This feature eliminates the  
cost and space of a second external regulator on an application board. Additionally, internal power-on  
reset (POR) and brown-out reset (BOR) circuits monitor both the VDD and VDDIO rails during power-up and  
run mode.  
2.6.1 On-chip Voltage Regulator (VREG)  
A linear regulator generates the core voltage (VDD) from the VDDIO supply. Therefore, although capacitors  
are required on each VDD pin to stabilize the generated voltage, power need not be supplied to these pins  
to operate the device. Conversely, the VREG can be disabled, should power or redundancy be the  
primary concern of the application.  
2.6.1.1 Using the On-chip VREG  
To utilize the on-chip VREG, the VREGENZ pin should be tied low and the appropriate recommended  
operating voltage should be supplied to the VDDIO and VDDA pins. In this case, the VDD voltage needed by  
the core logic will be generated by the VREG. Each VDD pin requires on the order of 1.2 μF (minimum)  
capacitance for proper regulation of the VREG. These capacitors should be located as close as possible  
to the VDD pins.  
2.6.1.2 Disabling the On-chip VREG  
To conserve power, it is also possible to disable the on-chip VREG and supply the core logic voltage to  
the VDD pins with a more efficient external regulator. To enable this option, the VREGENZ pin must be tied  
high.  
30  
Device Overview  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
2.6.2 On-chip Power-On Reset (POR) and Brown-Out Reset (BOR) Circuit  
The purpose of the POR is to create a clean reset throughout the device during the entire power-up  
procedure. The trip point is a looser, lower trip point than the BOR, which watches for dips in the VDD or  
VDDIO rail during device operation. The POR function is present on both VDD and VDDIO rails at all times.  
After initial device power-up, the BOR function is present on VDDIO at all times, and on VDD when the  
internal VREG is enabled (VREGENZ pin is tied low). Both functions tie the XRS pin low when one of the  
voltages is below their respective trip point. Additionally, when the internal voltage regulator is enabled, an  
over-voltage protection circuit will tie XRS low if the VDD rail rises above its trip point. See Section 4.3 for  
the various trip points as well as the delay time for the device to release the XRS pin after the under-  
voltage or over-voltage condition is removed. Figure 2-5 shows the VREG, POR, and BOR. To disable  
both the VDD and VDDIO BOR functions, a bit is provided in the BORCFG register. See the System Control  
and Interrupts chapter of the TMS320x2805x Piccolo Technical Reference Manual (literature number  
SPRUHE5) for details.  
In  
I/O Pin  
Out  
(Force Hi-Z When High)  
DIR (0 = Input, 1 = Output)  
SYSRS  
Internal  
Weak PU  
SYSCLKOUT  
Deglitch  
XRS  
Filter  
Sync  
RS  
C28x  
Core  
MCLKRS  
PLL  
JTAG  
TCK  
Detect  
Logic  
XRS  
Pin  
+
Clocking  
Logic  
VREGHALT  
WDRST(A)  
PBRS(B)  
POR/BOR  
Generating  
Module  
On-Chip  
Voltage  
Regulator  
(VREG)  
VREGENZ  
A. WDRST is the reset signal from the CPU-watchdog.  
B. PBRS is the reset signal from the POR/BOR module.  
Figure 2-5. VREG + POR + BOR + Reset Signal Connectivity  
Copyright © 2012, Texas Instruments Incorporated  
Device Overview  
31  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
2.7 System Control  
This section describes the oscillator and clocking mechanisms, the watchdog function and the low power  
modes.  
Table 2-18. PLL, Clocking, Watchdog, and Low-Power Mode Registers  
NAME  
BORCFG  
ADDRESS  
0x00 0985  
0x00 7010  
0x00 7011  
0x00 7012  
0x00 7013  
0x00 7014  
0x00 7016  
0x00 701B  
0x00 701C  
0x00 701D  
0x00 701E  
0x00 7020  
0x00 7021  
0x00 7022  
0x00 7023  
0x00 7024  
0x00 7025  
0x00 7029  
SIZE (x16)  
DESCRIPTION(1)  
BOR Configuration Register  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
XCLK  
XCLKOUT Control  
PLLSTS  
PLL Status Register  
CLKCTL  
Clock Control Register  
PLLLOCKPRD  
INTOSC1TRIM  
INTOSC2TRIM  
LOSPCP  
PCLKCR0  
PCLKCR1  
LPMCR0  
PCLKCR3  
PLLCR  
PLL Lock Period  
Internal Oscillator 1 Trim Register  
Internal Oscillator 2 Trim Register  
Low-Speed Peripheral Clock Prescaler Register  
Peripheral Clock Control Register 0  
Peripheral Clock Control Register 1  
Low Power Mode Control Register 0  
Peripheral Clock Control Register 3  
PLL Control Register  
SCSR  
System Control and Status Register  
Watchdog Counter Register  
Peripheral Clock Control Register 4  
Watchdog Reset Key Register  
Watchdog Control Register  
WDCNTR  
PCLKCR4  
WDKEY  
WDCR  
(1) All registers in this table are EALLOW protected.  
32  
Device Overview  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Figure 2-6 shows the various clock domains that are discussed. Figure 2-7 shows the various clock  
sources (both internal and external) that can provide a clock for device operation.  
SYSCLKOUT  
PCLKCR0/1/3/4  
(System Ctrl Regs)  
LOSPCP  
(System Ctrl Regs)  
C28x Core  
CLKIN  
Clock Enables  
LSPCLK  
Peripheral  
Registers  
SPI-A, SCI-A, SCI-B, SCI-C  
Clock Enables  
I/O  
I/O  
I/O  
I/O  
I/O  
Peripheral  
Registers  
eCAP1, eQEP1  
/2  
Peripheral  
Registers  
GPIO  
Mux  
eCAN-A  
Clock Enables  
ePWM1, ePWM2,  
ePWM3, ePWM4,  
ePWM5, ePWM6, ePWM7  
Peripheral  
Registers  
Clock Enables  
I2C-A  
Peripheral  
Registers  
Clock Enables  
ADC  
Registers  
9 Ch  
12-Bit ADC  
Analog  
Clock Enables  
AFE  
AFE  
Registers  
7 Ch  
A. CLKIN is the clock into the CPU. CLKIN is passed out of the CPU as SYSCLKOUT (that is, CLKIN is the same  
frequency as SYSCLKOUT).  
Figure 2-6. Clock and Reset Domains  
Copyright © 2012, Texas Instruments Incorporated  
Device Overview  
33  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
CLKCTL[WDCLKSRCSEL]  
Internal  
0
OSC1CLK  
INTOSC1TRIM Reg(A)  
OSC 1  
OSCCLKSRC1  
(10 MHz)  
WDCLK  
CPU-Watchdog  
(OSC1CLK on XRS reset)  
OSCE  
1
CLKCTL[INTOSC1OFF]  
1 = Turn OSC Off  
CLKCTL[OSCCLKSRCSEL]  
OSCCLK  
CLKCTL[INTOSC1HALT]  
WAKEOSC  
1 = Ignore HALT  
0
1
Internal  
OSC 2  
(10 MHz)  
OSC2CLK  
INTOSC2TRIM Reg(A)  
PLL  
Missing-Clock-Detect Circuit(B)  
(OSC1CLK on XRS reset)  
OSCE  
CLKCTL[TRM2CLKPRESCALE]  
CLKCTL[TMR2CLKSRCSEL]  
1 = Turn OSC Off  
10  
11  
CLKCTL[INTOSC2OFF]  
Prescale  
/1, /2, /4,  
/8, /16  
SYNC  
Edge  
Detect  
01, 10, 11  
CPUTMR2CLK  
1 = Ignore HALT  
01  
1
0
00  
CLKCTL[INTOSC2HALT]  
SYSCLKOUT  
OSCCLKSRC2  
CLKCTL[OSCCLKSRC2SEL]  
0 = GPIO38  
1 = GPIO19  
XCLK[XCLKINSEL]  
CLKCTL[XCLKINOFF]  
0
1
0
GPIO19  
or  
XCLKIN  
GPIO38  
XCLKIN  
X1  
X2  
EXTCLK  
(Crystal)  
OSC  
XTAL  
WAKEOSC  
(Oscillators enabled when this signal is high)  
0 = OSC on (default on reset)  
1 = Turn OSC off  
CLKCTL[XTALOSCOFF]  
A. Register loaded from TI OTP-based calibration function.  
B. See Section 2.7.4 for details on missing clock detection.  
Figure 2-7. Clock Tree  
34  
Device Overview  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
2.7.1 Internal Zero-Pin Oscillators  
The F2805x devices contain two independent internal zero-pin oscillators. By default both oscillators are  
turned on at power up, and internal oscillator 1 is the default clock source at this time. For power savings,  
unused oscillators may be powered down by the user. The center frequency of these oscillators is  
determined by their respective oscillator trim registers, written to in the calibration routine as part of the  
boot ROM execution. See Section 5.2.1 for more information on these oscillators.  
2.7.2 Crystal Oscillator Option  
The typical specifications for the external quartz crystal (fundamental mode, parallel resonant) are listed in  
Table 2-19. Furthermore, ESR range = 30 to 150 .  
Table 2-19. Typical Specifications for External Quartz Crystal(1)  
FREQUENCY (MHz)  
Rd ()  
2200  
470  
0
CL1 (pF)  
18  
CL2 (pF)  
18  
5
10  
15  
20  
15  
15  
15  
15  
0
12  
12  
(1) Cshunt should be less than or equal to 5 pF.  
XCLKIN/GPIO19/38  
X1  
X2  
Rd  
Turn off  
XCLKIN path  
in CLKCTL  
register  
CL1  
Crystal  
CL2  
Figure 2-8. Using the On-chip Crystal Oscillator  
NOTE  
1. CL1 and CL2 are the total capacitance of the circuit board and components excluding the  
IC and crystal. The value is usually approximately twice the value of the crystal's load  
capacitance.  
2. The load capacitance of the crystal is described in the crystal specifications of the  
manufacturers.  
3. TI recommends that customers have the resonator/crystal vendor characterize the  
operation of their device with the MCU chip. The resonator/crystal vendor has the  
equipment and expertise to tune the tank circuit. The vendor can also advise the  
customer regarding the proper tank component values that will produce proper start up  
and stability over the entire operating range.  
XCLKIN/GPIO19/38  
X1  
X2  
NC  
External Clock Signal  
(Toggling 0−V  
)
DDIO  
Figure 2-9. Using a 3.3-V External Oscillator  
Copyright © 2012, Texas Instruments Incorporated  
Device Overview  
35  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
2.7.3 PLL-Based Clock Module  
The devices have an on-chip, PLL-based clock module. This module provides all the necessary clocking  
signals for the device, as well as control for low-power mode entry. The PLL has a 4-bit ratio control  
PLLCR[DIV] to select different CPU clock rates. The watchdog module should be disabled before writing  
to the PLLCR register. The watchdog module can be re-enabled (if need be) after the PLL module has  
stabilized, which takes 1 ms. The input clock and PLLCR[DIV] bits should be chosen in such a way that  
the output frequency of the PLL (VCOCLK) is at least 50 MHz.  
Table 2-20. PLL Settings  
SYSCLKOUT (CLKIN)  
PLLCR[DIV] VALUE(1) (2)  
PLLSTS[DIVSEL] = 0 or 1(3)  
OSCCLK/4 (Default)(1)  
(OSCCLK * 1)/4  
PLLSTS[DIVSEL] = 2  
OSCCLK/2  
PLLSTS[DIVSEL] = 3  
OSCCLK  
0000 (PLL bypass)  
0001  
(OSCCLK * 1)/2  
(OSCCLK * 2)/2  
(OSCCLK * 3)/2  
(OSCCLK * 4)/2  
(OSCCLK * 5)/2  
(OSCCLK * 6)/2  
(OSCCLK * 7)/2  
(OSCCLK * 8)/2  
(OSCCLK * 9)/2  
(OSCCLK * 10)/2  
(OSCCLK * 11)/2  
(OSCCLK * 12)/2  
(OSCCLK * 1)/1  
(OSCCLK * 2)/1  
(OSCCLK * 3)/1  
(OSCCLK * 4)/1  
(OSCCLK * 5)/1  
(OSCCLK * 6)/1  
(OSCCLK * 7)/1  
(OSCCLK * 8)/1  
(OSCCLK * 9)/1  
(OSCCLK * 10)/1  
(OSCCLK * 11)/1  
(OSCCLK * 12)/1  
0010  
(OSCCLK * 2)/4  
0011  
(OSCCLK * 3)/4  
0100  
(OSCCLK * 4)/4  
0101  
(OSCCLK * 5)/4  
0110  
(OSCCLK * 6)/4  
0111  
(OSCCLK * 7)/4  
1000  
(OSCCLK * 8)/4  
1001  
(OSCCLK * 9)/4  
1010  
(OSCCLK * 10)/4  
(OSCCLK * 11)/4  
(OSCCLK * 12)/4  
1011  
1100  
(1) The PLL control register (PLLCR) and PLL Status Register (PLLSTS) are reset to their default state by the XRS signal or a watchdog  
reset only. A reset issued by the debugger or the missing clock detect logic has no effect.  
(2) This register is EALLOW protected. See the System Control and Interrupts chapter of the TMS320x2805x Piccolo Technical Reference  
Manual (literature number SPRUHE5) for more information.  
(3) By default, PLLSTS[DIVSEL] is configured for /4. (The boot ROM changes the PLLSTS[DIVSEL] configuration to /1.) PLLSTS[DIVSEL]  
must be 0 before writing to the PLLCR and should be changed only after PLLSTS[PLLLOCKS] = 1.  
Table 2-21. CLKIN Divide Options  
PLLSTS [DIVSEL]  
CLKIN DIVIDE  
0
1
2
3
/4  
/4  
/2  
/1  
36  
Device Overview  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
The PLL-based clock module provides four modes of operation:  
INTOSC1 (Internal Zero-pin Oscillator 1): INTOSC1 is the on-chip internal oscillator 1. INTOSC1 can  
provide the clock for the Watchdog block, core and CPU-Timer 2.  
INTOSC2 (Internal Zero-pin Oscillator 2): INTOSC2 is the on-chip internal oscillator 2. INTOSC2 can  
provide the clock for the Watchdog block, core and CPU-Timer 2. Both INTOSC1 and INTOSC2 can  
be independently chosen for the Watchdog block, core and CPU-Timer 2.  
Crystal/Resonator Operation: The on-chip (crystal) oscillator enables the use of an external  
crystal/resonator attached to the device to provide the time base. The crystal/resonator is connected to  
the X1/X2 pins. Some devices may not have the X1/X2 pins. See Table 3-1 for details.  
External Clock Source Operation: If the on-chip (crystal) oscillator is not used, this mode allows the  
on-chip (crystal) oscillator to be bypassed. The device clocks are generated from an external clock  
source input on the XCLKIN pin. Note that the XCLKIN is multiplexed with GPIO19 or GPIO38 pin. The  
XCLKIN input can be selected as GPIO19 or GPIO38 via the XCLKINSEL bit in XCLK register. The  
CLKCTL[XCLKINOFF] bit disables this clock input (forced low). If the clock source is not used or the  
respective pins are used as GPIOs, the user should disable at boot time.  
Before changing clock sources, ensure that the target clock is present. If a clock is not present, then that  
clock source must be disabled (using the CLKCTL register) before switching clocks.  
Table 2-22. Possible PLL Configuration Modes  
CLKIN AND  
SYSCLKOUT  
PLL MODE  
REMARKS  
PLLSTS[DIVSEL]  
Invoked by the user setting the PLLOFF bit in the PLLSTS register. The PLL block  
is disabled in this mode. The PLL block being disabled can be useful in reducing  
system noise and for low-power operation. The PLLCR register must first be set to  
0x0000 (PLL Bypass) before entering this mode. The CPU clock (CLKIN) is  
derived directly from the input clock on either X1/X2, X1 or XCLKIN.  
0, 1  
2
3
OSCCLK/4  
OSCCLK/2  
OSCCLK/1  
PLL Off  
PLL Bypass is the default PLL configuration upon power-up or after an external  
reset (XRS). This mode is selected when the PLLCR register is set to 0x0000 or  
while the PLL locks to a new frequency after the PLLCR register has been  
modified. In this mode, the PLL itself is bypassed but the PLL is not turned off.  
0, 1  
2
3
OSCCLK/4  
OSCCLK/2  
OSCCLK/1  
PLL Bypass  
PLL Enable  
0, 1  
2
3
OSCCLK * n/4  
OSCCLK * n/2  
OSCCLK * n/1  
Achieved by writing a non-zero value n into the PLLCR register. Upon writing to the  
PLLCR the device will switch to PLL Bypass mode until the PLL locks.  
2.7.4 Loss of Input Clock (NMI Watchdog Function)  
The 2805x devices may be clocked from either one of the internal zero-pin oscillators (INTOSC1 or  
INTOSC2), the on-chip crystal oscillator, or from an external clock input. Regardless of the clock source,  
in PLL-enabled and PLL-bypass mode, if the input clock to the PLL vanishes, the PLL will issue a limp-  
mode clock at its output. This limp-mode clock continues to clock the CPU and peripherals at a typical  
frequency of 1–5 MHz.  
When the limp mode is activated, a CLOCKFAIL signal is generated that is latched as an NMI interrupt.  
Depending on how the NMIRESETSEL bit has been configured, a reset to the device can be fired  
immediately or the NMI watchdog counter can issue a reset when the counter overflows. In addition to this  
action, the Missing Clock Status (MCLKSTS) bit is set. The NMI interrupt could be used by the application  
to detect the input clock failure and initiate necessary corrective action such as switching over to an  
alternative clock source (if available) or initiate a shut-down procedure for the system.  
If the software does not respond to the clock-fail condition, the NMI watchdog triggers a reset after a  
preprogrammed time interval. Figure 2-10 shows the interrupt mechanisms involved.  
Copyright © 2012, Texas Instruments Incorporated  
Device Overview  
37  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
NMIFLG[NMINT]  
NMIFLGCLR[NMINT]  
Clear  
Latch  
Set  
Clear  
XRS  
Generate  
Interrupt  
Pulse  
When  
Input = 1  
NMIFLG[CLOCKFAIL]  
Clear  
Latch  
1
0
0
NMIFLGCLR[CLOCKFAIL]  
CLOCKFAIL  
NMINT  
SYNC?  
Set  
Clear  
SYSCLKOUT  
NMICFG[CLOCKFAIL]  
NMIFLGFRC[CLOCKFAIL]  
XRS  
SYSCLKOUT  
SYSRS  
NMIWDPRD[15:0]  
NMIWDCNT[15:0]  
See System  
Control Section  
NMI Watchdog  
NMIRS  
Figure 2-10. NMI-watchdog  
2.7.5 CPU-Watchdog Module  
The CPU-watchdog module on the 2805x device is similar to the one used on the 281x, 280x, and 283xx  
devices. This module generates an output pulse, 512 oscillator clocks wide (OSCCLK), whenever the 8-bit  
watchdog up counter has reached its maximum value. To prevent this occurrence, the user must disable  
the counter or the software must periodically write a 0x55 + 0xAA sequence into the watchdog key register  
that resets the watchdog counter. Figure 2-11 shows the various functional blocks within the watchdog  
module.  
Normally, when the input clocks are present, the CPU-watchdog counter decrements to initiate a CPU-  
watchdog reset or WDINT interrupt. However, when the external input clock fails, the CPU-watchdog  
counter stops decrementing (that is, the watchdog counter does not change with the limp-mode clock).  
NOTE  
The CPU-watchdog is different from the NMI watchdog. The CPU-watchdog is the legacy  
watchdog that is present in all 28x devices.  
NOTE  
Applications in which the correct CPU operating frequency is absolutely critical should  
implement a mechanism by which the MCU will be held in reset, should the input clocks ever  
fail. For example, an R-C circuit may be used to trigger the XRS pin of the MCU, should the  
capacitor ever get fully charged. An I/O pin may be used to discharge the capacitor on a  
periodic basis to prevent the capacitor from getting fully charged. Such a circuit would also  
help in detecting failure of the flash memory.  
38  
Device Overview  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
WDCR (WDPS[2:0])  
WDCR (WDDIS)  
WDCNTR(7:0)  
WDCLK  
WDCLK  
8-Bit  
Watchdog  
Counter  
CLR  
Watchdog  
Prescaler  
/512  
Clear Counter  
Internal  
Pullup  
WDKEY(7:0)  
WDRST  
WDINT  
Generate  
Watchdog  
55 + AA  
Key Detector  
Output Pulse  
(512 OSCCLKs)  
Good Key  
XRS  
Bad  
WDCHK  
Key  
Core-reset  
SCSR (WDENINT)  
WDCR (WDCHK[2:0])  
1
0
1
(A)  
WDRST  
A. The WDRST signal is driven low for 512 OSCCLK cycles.  
Figure 2-11. CPU-watchdog Module  
The WDINT signal enables the watchdog to be used as a wakeup from IDLE/STANDBY mode.  
In STANDBY mode, all peripherals are turned off on the device. The only peripheral that remains  
functional is the CPU-watchdog. This module will run off OSCCLK. The WDINT signal is fed to the LPM  
block so that the signal can wake the device from STANDBY (if enabled). See Section 2.8, Low-power  
Modes Block, for more details.  
In IDLE mode, the WDINT signal can generate an interrupt to the CPU, via the PIE, to take the CPU out of  
IDLE mode.  
In HALT mode, the CPU-watchdog can be used to wake up the device through a device reset.  
Copyright © 2012, Texas Instruments Incorporated  
Device Overview  
39  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
2.8 Low-power Modes Block  
Table 2-23 summarizes the various modes.  
Table 2-23. Low-power Modes  
MODE  
LPMCR0(1:0)  
OSCCLK  
CLKIN  
SYSCLKOUT  
EXIT(1)  
XRS, CPU-watchdog interrupt, any  
enabled interrupt  
IDLE  
00  
On  
On  
On  
On  
XRS, CPU-watchdog interrupt, GPIO  
Port A signal, debugger(2)  
STANDBY  
HALT(3)  
01  
Off  
Off  
(CPU-watchdog still running)  
Off  
(on-chip crystal oscillator and  
PLL turned off, zero-pin oscillator  
and CPU-watchdog state  
dependent on user code.)  
XRS, GPIO Port A signal, debugger(2)  
CPU-watchdog  
,
1X  
Off  
Off  
(1) The Exit column lists which signals or under what conditions the low power mode is exited. A low signal, on any of the signals, exits the  
low power condition. This signal must be kept low long enough for an interrupt to be recognized by the device. Otherwise, the low-power  
mode will not be exited and the device will go back into the indicated low power mode.  
(2) The JTAG port can still function even if the CPU clock (CLKIN) is turned off.  
(3) The WDCLK must be active for the device to go into HALT mode.  
The various low-power modes operate as follows:  
IDLE Mode:  
This mode is exited by any enabled interrupt that is recognized by the  
processor. The LPM block performs no tasks during this mode as long as  
the LPMCR0(LPM) bits are set to 0,0.  
STANDBY Mode:  
Any GPIO port A signal (GPIO[31:0]) can wake the device from STANDBY  
mode. The user must select which signals will wake the device in the  
GPIOLPMSEL register. The selected signals are also qualified by the  
OSCCLK before waking the device. The number of OSCCLKs is specified in  
the LPMCR0 register.  
HALT Mode:  
CPU-watchdog, XRS, and any GPIO port A signal (GPIO[31:0]) can wake  
the device from HALT mode. The user selects the signal in the  
GPIOLPMSEL register.  
NOTE  
The low-power modes do not affect the state of the output pins (PWM pins included). They  
will be in whatever state the code left them in when the IDLE instruction was executed. See  
the System Control and Interrupts chapter of the TMS320x2805x Piccolo Technical  
Reference Manual (literature number SPRUHE5) for more details.  
2.9 Thermal Design Considerations  
Based on the end application design and operational profile, the IDD and IDDIO currents could vary.  
Systems that exceed the recommended maximum power dissipation in the end product may require  
additional thermal enhancements. Ambient temperature (TA) varies with the end application and product  
design. The critical factor that affects reliability and functionality is TJ, the junction temperature, not the  
ambient temperature. Hence, care should be taken to keep TJ within the specified limits. Tcase should be  
measured to estimate the operating junction temperature TJ. Tcase is normally measured at the center of  
the package top-side surface. The thermal application reports IC Package Thermal Metrics (literature  
number SPRA953) and Reliability Data for TMS320LF24xx and TMS320F28xx Devices (literature number  
SPRA963) help to understand the thermal metrics and definitions.  
40  
Device Overview  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
3 Device Pins  
3.1 Pin Assignments  
Figure 3-1 shows the 80-pin PN Low-Profile Quad Flatpack (LQFP) pin assignments.  
GPIO11/EPWM6B/SCIRXDB  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
GPIO26/SCIRXDC  
TEST2  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
GPIO5/EPWM3B/SPISIMOA/ECAP1  
GPIO4/EPWM3A  
V
DDIO  
V
GPIO40/EPWM7A  
SS  
GPIO10/EPWM6A/ADCSOCBO  
GPIO3/EPWM2B/SPISOMIA/CTRIPM2OUT (COMP2OUT)  
GPIO2/EPWM2A  
GPIO9/EPWM5B/SCITXDB  
GPIO30/CANRXA/SCIRXDB/EPWM7A  
GPIO31/CANTXA/SCITXDB/EPWM7B  
GPIO27/SCITXDC  
PFCGND  
GPIO1/EPWM1B/CTRIPM1OUT (COMP1OUT)  
GPIO0/EPWM1A  
V
ADCINB7 (op-amp)  
ADCINB0  
DDIO  
VREGENZ  
V
V
ADCINB6 (op-amp)  
ADCINB5  
SS  
DD  
GPIO34/CTRIPM2OUT (COMP2OUT)/CTRIPPFCOUT (COMP3OUT)  
GPIO15/TZ1/CTRIPM1OUT/SCIRXDB  
M2GND  
ADCINB4 (op-amp)  
ADCINB3  
GPIO13/TZ2/CTRIPM2OUT  
GPIO14/TZ3/CTRIPPFCOUT/SCITXDB  
ADCINA7  
GPIO20/EQEP1A/EPWM7A/CTRIPM1OUT (COMP1OUT)  
GPIO21/EQEP1B/EPWM7B/CTRIPM2OUT (COMP2OUT)  
GPIO23/EQEP1I/SCIRXDB  
ADCINA6 (op-amp)  
V
V
REFLO  
SSA  
Figure 3-1. 2805x 80-Pin PN LQFP (Top View)  
Copyright © 2012, Texas Instruments Incorporated  
Device Pins  
41  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
3.2 Terminal Functions  
Table 3-1 describes the signals. With the exception of the JTAG pins, the GPIO function is the default at  
reset, unless otherwise mentioned. The peripheral signals that are listed under them are alternate  
functions. Some peripheral functions may not be available in all devices. See Table 2-1 for details. Inputs  
are not 5-V tolerant. All GPIO pins are I/O/Z and have an internal pullup, which can be selectively enabled  
or disabled on a per-pin basis. This feature only applies to the GPIO pins. The pullups on the PWM pins  
are not enabled at reset. The pullups on other GPIO pins are enabled upon reset.  
NOTE: When the on-chip VREG is used, the GPIO19, GPIO34, GPIO35, GPIO36, GPIO37, and GPIO38  
pins could glitch during power up. If this behavior is unacceptable in an application, 1.8 V could be  
supplied externally. There is no power-sequencing requirement when using an external 1.8-V supply.  
However, if the 3.3-V transistors in the level-shifting output buffers of the I/O pins are powered prior to the  
1.9-V transistors, it is possible for the output buffers to turn on, causing a glitch to occur on the pin during  
power up. To avoid this behavior, power the VDD pins prior to or simultaneously with the VDDIO pins,  
ensuring that the VDD pins have reached 0.7 V before the VDDIO pins reach 0.7 V.  
Table 3-1. Terminal Functions(1)  
TERMINAL  
I/O/Z  
DESCRIPTION  
PN  
PIN NO.  
NAME  
JTAG  
JTAG test reset with internal pulldown. TRST, when driven high, gives the scan system control  
of the operations of the device. If this signal is not connected or driven low, the device  
operates in its functional mode, and the test reset signals are ignored. NOTE: TRST is an  
active high test pin and must be maintained low at all times during normal device operation.  
An external pull-down resistor is required on this pin. The value of this resistor should be  
based on drive strength of the debugger pods applicable to the design. A 2.2-kresistor  
generally offers adequate protection. Since the value of the resistor is application-specific, TI  
recommends that each target board be validated for proper operation of the debugger and the  
application. ()  
TRST  
9
I
See  
GPIO38  
TCK  
TMS  
TDI  
I
See GPIO38. JTAG test clock with internal pullup. ()  
See  
GPIO36  
See GPIO36. JTAG test-mode select (TMS) with internal pullup. This serial control input is  
clocked into the TAP controller on the rising edge of TCK.. ()  
I
I
See  
GPIO35  
See GPIO35. JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected  
register (instruction or data) on a rising edge of TCK. ()  
See  
GPIO37  
See GPIO37. JTAG scan out, test data output (TDO). The contents of the selected register  
(instruction or data) are shifted out of TDO on the falling edge of TCK. (8 mA drive)  
TDO  
O/Z  
FLASH  
TEST2  
39  
I/O  
Test Pin. Reserved for TI. Must be left unconnected.  
(1) I = Input, O = Output, Z = High Impedance, OD = Open Drain, = Pullup, = Pulldown  
42  
Device Pins  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Table 3-1. Terminal Functions(1) (continued)  
TERMINAL  
NAME  
I/O/Z  
DESCRIPTION  
PN  
PIN NO.  
CLOCK  
See GPIO18. Output clock derived from SYSCLKOUT. XCLKOUT is either the same  
frequency, one-half the frequency, or one-fourth the frequency of SYSCLKOUT. The value of  
XCLKOUT is controlled by bits 1:0 (XCLKOUTDIV) in the XCLK register. At reset, XCLKOUT  
= SYSCLKOUT/4. The XCLKOUT signal can be turned off by setting XCLKOUTDIV to 3. The  
mux control for GPIO18 must also be set to XCLKOUT for this signal to propogate to the pin.  
See  
GPIO18  
XCLKOUT  
O/Z  
See GPIO19 and GPIO38. External oscillator input. Pin source for the clock is controlled by  
the XCLKINSEL bit in the XCLK register, GPIO38 is the default selection. This pin feeds a  
clock from an external 3.3-V oscillator. In this case, the X1 pin, if available, must be tied to  
GND and the on-chip crystal oscillator must be disabled via bit 14 in the CLKCTL register. If a  
crystal/resonator is used, the XCLKIN path must be disabled by bit 13 in the CLKCTL register.  
NOTE: Designs that use the GPIO38/TCK/XCLKIN pin to supply an external clock for normal  
device operation may need to incorporate some hooks to disable this path during debug using  
the JTAG connector. This action is to prevent contention with the TCK signal, which is active  
during JTAG debug sessions. The zero-pin internal oscillators may be used during this time to  
clock the device.  
See  
GPIO19  
and  
XCLKIN  
I
GPIO38  
On-chip crystal-oscillator input. To use this oscillator, a quartz crystal or a ceramic resonator  
must be connected across X1 and X2. In this case, the XCLKIN path must be disabled by bit  
13 in the CLKCTL register. If this pin is not used, this pin must be tied to GND. (I)  
X1  
X2  
52  
51  
I
On-chip crystal-oscillator output. A quartz crystal or a ceramic resonator must be connected  
across X1 and X2. If X2 is not used, X2 must be left unconnected. (O)  
O
RESET  
Device Reset (in) and Watchdog Reset (out). The device has a built-in power-on-reset (POR)  
and brown-out-reset (BOR) circuitry. As such, no external circuitry is needed to generate a  
reset pulse. During a power-on or brown-out condition, this pin is driven low by the device.  
See Section 4.3, Electrical Characteristics, for thresholds of the POR/BOR block. This pin is  
also driven low by the MCU when a watchdog reset occurs. During watchdog reset, the XRS  
pin is driven low for the watchdog reset duration of 512 OSCCLK cycles. If need be, an  
external circuitry may also drive this pin to assert a device reset. In this case, TI recommends  
that this pin be driven by an open-drain device. An R-C circuit must be connected to this pin  
for noise immunity reasons. Regardless of the source, a device reset causes the device to  
terminate execution. The program counter points to the address contained at the location  
0x3FFFC0. When reset is deactivated, execution begins at the location designated by the  
program counter. The output buffer of this pin is an open-drain with an internal pullup. (I/OD)  
XRS  
8
I/O  
Copyright © 2012, Texas Instruments Incorporated  
Device Pins  
43  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
Table 3-1. Terminal Functions(1) (continued)  
TERMINAL  
NAME  
I/O/Z  
DESCRIPTION  
PN  
PIN NO.  
ADC, COMPARATOR, ANALOG I/O  
ADCINA7  
24  
23  
I
I
ADC Group A, Channel 7 input  
ADC Group A, Channel 6 input  
ADC Group A, Channel 5 input  
ADCINA6  
(op-amp)  
ADCINA5  
10  
11  
I
O
I
ADCBGOUT  
ADCINA4  
ADC Group A, Channel 4 input  
ADC Group A, Channel 3 input  
ADC Group A, Channel 2 input  
ADC Group A, Channel 1 input  
ADCINA3  
(op-amp)  
12  
13  
14  
18  
I
I
I
I
ADCINA2  
ADCINA1  
(op-amp)  
ADCINA0  
VREFOUT  
ADC Group A, Channel 0 input  
Voltage Reference out from buffered DAC  
ADC External Reference – used when in ADC external reference mode and used as VREFOUT  
reference  
VREFHI  
19  
31  
I
I
ADCINB7  
(op-amp)  
ADC Group B, Channel 7 input  
ADCINB6  
(op-amp)  
29  
28  
26  
I
I
I
ADC Group B, Channel 6 input  
ADC Group B, Channel 5 input  
ADC Group B, Channel 4 input  
ADCINB5  
ADCINB4  
(op-amp)  
ADCINB3  
ADCINB2  
25  
16  
I
I
ADC Group B, Channel 3 input  
ADC Group B, Channel 2 input  
ADCINB1  
(op-amp)  
17  
I
ADC Group B, Channel 1 input  
ADCINB0  
VREFLO  
30  
22  
I
I
ADC Group B, Channel 0 input  
ADC Low Reference (always tied to ground)  
44  
Device Pins  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Table 3-1. Terminal Functions(1) (continued)  
TERMINAL  
NAME  
I/O/Z  
DESCRIPTION  
PN  
PIN NO.  
CPU AND I/O POWER  
VDDA  
VSSA  
VDD  
20  
21  
6
Analog Power Pin. Tie with a 2.2-μF capacitor (typical) close to the pin.  
Analog Ground Pin  
CPU and Logic Digital Power Pins – no supply source needed when using internal VREG. Tie  
with 1.2 µF (minimum) ceramic capacitor (10% tolerance) to ground when using internal  
VREG. Higher value capacitors may be used, but could impact supply-rail ramp-up time.  
VDD  
54  
73  
38  
70  
7
VDD  
VDDIO  
VDDIO  
VSS  
Digital I/O and Flash Power Pin – Single Supply source when VREG is enabled  
VSS  
37  
53  
72  
15  
27  
32  
Digital Ground Pins  
VSS  
VSS  
M1GND  
M2GND  
PFCGND  
Ground pin for M1 channel  
Ground pin for M2 channel  
Ground pin for PFC channel  
VOLTAGE REGULATOR CONTROL SIGNAL  
Internal VREG Enable/Disable – pull low to enable VREG, pull high to disable VREG  
VREGENZ  
71  
69  
68  
I
(1)  
GPIO AND PERIPHERAL SIGNALS  
GPIO0  
I/O/Z  
O
General-purpose input/output 0  
Enhanced PWM1 Output A  
General-purpose input/output 1  
Enhanced PWM1 Output B  
EPWM1A  
GPIO1  
I/O/Z  
O
EPWM1B  
CTRIPM1OUT  
(COMP1OUT)  
CTRIPM1 CTRIPxx output  
(Direct output of Comparator 1)  
O
GPIO2  
67  
66  
I/O/Z  
O
General-purpose input/output 2  
Enhanced PWM2 Output A  
General-purpose input/output 3  
Enhanced PWM2 Output B  
SPI-A slave out, master in  
EPWM2A  
GPIO3  
I/O/Z  
O
EPWM2B  
SPISOMIA  
I/O  
CTRIPM2OUT  
(COMP2OUT)  
CTRIPM2 CTRIPxx output  
(Direct output of Comparator 2)  
O
GPIO4  
63  
62  
I/O/Z  
O
General-purpose input/output 4  
Enhanced PWM3 output A  
General-purpose input/output 5  
Enhanced PWM3 output B  
SPI-A slave in, master out  
EPWM3A  
GPIO5  
I/O/Z  
O
EPWM3B  
SPISIMOA  
ECAP1  
I/O  
I/O  
Enhanced Capture input/output 1  
(1) The GPIO function (shown in bold italics) is the default at reset. The peripheral signals that are listed under them are alternate functions.  
For JTAG pins that have the GPIO functionality multiplexed, the input path to the GPIO block is always valid. The output path from the  
GPIO block and the path to the JTAG block from a pin is enabled or disabled based on the condition of the TRST signal. See the  
System Control and Interrupts chapter of the TMS320x2805x Piccolo Technical Reference Manual (literature number SPRUHE5) for  
details.  
Copyright © 2012, Texas Instruments Incorporated  
Device Pins  
45  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
Table 3-1. Terminal Functions(1) (continued)  
TERMINAL  
NAME  
I/O/Z  
DESCRIPTION  
PN  
PIN NO.  
GPIO6  
EPWM4A  
50  
I/O/Z  
General-purpose input/output 6  
Enhanced PWM4 output A  
External ePWM sync pulse input  
External ePWM sync pulse output  
General-purpose input/output 7  
Enhanced PWM4 output B  
SCI-A receive data  
O
EPWMSYNCI  
EPWMSYNCO  
GPIO7  
I
O
49  
45  
36  
65  
61  
48  
I/O/Z  
O
EPWM4B  
SCIRXDA  
GPIO8  
I
I/O/Z  
O
General-purpose input/output 8  
Enhanced PWM5 output A  
ADC start-of-conversion A  
General-purpose input/output 9  
Enhanced PWM5 output B  
SCI-B transmit data  
EPWM5A  
ADCSOCAO  
GPIO9  
O
I/O/Z  
O
EPWM5B  
SCITXDB  
GPIO10  
O
I/O/Z  
O
General-purpose input/output 10  
Enhanced PWM6 output A  
ADC start-of-conversion B  
General-purpose input/output 11  
Enhanced PWM6 output B  
SCI-B receive data  
EPWM6A  
ADCSOCBO  
GPIO11  
O
I/O/Z  
O
EPWM6B  
SCIRXDB  
GPIO12  
I
I/O/Z  
I
General-purpose input/output 12  
Trip Zone input 1  
TZ1  
CTRIPM1OUT  
SCITXDA  
GPIO13  
O
CTRIPM1 CTRIPxx output  
SCI-A transmit data  
O
76  
77  
I/O/Z  
I
General-purpose input/output 13  
Trip zone input 2  
TZ2  
CTRIPM2OUT  
GPIO14  
O
CTRIPM2 CTRIPxx output  
General-purpose input/output 14  
Trip zone input 3  
I/O/Z  
I
TZ3  
CTRIPPFCOUT  
SCITXDB  
GPIO15  
O
CTRIPPFC output  
O
SCI-B transmit data  
75  
47  
I/O/Z  
I
General-purpose input/output 15  
Trip zone input 1  
TZ1  
CTRIPM1OUT  
SCIRXDB  
GPIO16  
O
CTRIPM1 CTRIPxx output  
SCI-B receive data  
I
I/O/Z  
I/O  
I/O  
I
General-purpose input/output 16  
SPI-A slave in, master out  
Enhanced QEP1 strobe  
Trip Zone input 2  
SPISIMOA  
EQEP1S  
TZ2  
CTRIPM2OUT  
GPIO17  
O
CTRIPM2 CTRIPxx output  
General-purpose input/output 17  
SPI-A slave out, master in  
Enhanced QEP1 index  
44  
I/O/Z  
I/O  
I/O  
I
SPISOMIA  
EQEP1I  
TZ3  
Trip zone input 3  
CTRIPPFCOUT  
O
CTRIPPFC output  
46  
Device Pins  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Table 3-1. Terminal Functions(1) (continued)  
TERMINAL  
NAME  
GPIO18  
I/O/Z  
DESCRIPTION  
PN  
PIN NO.  
43  
I/O/Z  
I/O  
General-purpose input/output 18  
SPI-A clock input/output  
SCI-B transmit data  
SPICLKA  
SCITXDB  
XCLKOUT  
O
O/Z  
Output clock derived from SYSCLKOUT. XCLKOUT is either the same frequency, one-half the  
frequency, or one-fourth the frequency of SYSCLKOUT. The value of XCLKOUT is controlled  
by bits 1:0 (XCLKOUTDIV) in the XCLK register. At reset, XCLKOUT = SYSCLKOUT/4. The  
XCLKOUT signal can be turned off by setting XCLKOUTDIV to 3. The mux control for GPIO18  
must also be set to XCLKOUT for this signal to propogate to the pin.  
GPIO19  
55  
I/O/Z  
I
General-purpose input/output 19  
XCLKIN  
External Oscillator Input. The path from this pin to the clock block is not gated by the mux  
function of this pin. Care must be taken not to enable this path for clocking if this path is being  
used for the other periperhal functions  
SPISTEA  
SCIRXDB  
ECAP1  
I/O  
SPI-A slave transmit enable input/output  
SCI-B receive data  
I
I/O  
I/O/Z  
I
Enhanced Capture input/output 1  
General-purpose input/output 20  
Enhanced QEP1 input A  
GPIO20  
78  
79  
EQEP1A  
EPWM7A  
O
Enhanced PWM7 output A  
CTRIPM1OUT  
(COMP1OUT)  
CTRIPM1 CTRIPxx output  
(Direct output of Comparator 1)  
O
GPIO21  
I/O/Z  
General-purpose input/output 21  
Enhanced QEP1 input B  
EQEP1B  
EPWM7B  
I
O
Enhanced PWM7 output B  
CTRIPM2OUT  
(COMP2OUT)  
CTRIPM2 CTRIPxx output  
(Direct output of Comparator 2)  
O
GPIO22  
EQEP1S  
SCITXDB  
GPIO23  
EQEP1I  
SCIRXDB  
GPIO24  
ECAP1  
1
80  
4
I/O/Z  
I/O  
O
General-purpose input/output 22  
Enhanced QEP1 strobe  
SCI-B transmit data  
I/O/Z  
I/O  
I
General-purpose input/output 23  
Enhanced QEP1 index  
SCI-B receive data  
I/O/Z  
I/O  
O
General-purpose input/output 24  
Enhanced Capture input/output 1  
Enhanced PWM7 output A  
General-purpose input/output 25  
General-purpose input/output 26  
SCI-C receive data  
EPWM7A  
GPIO25  
GPIO26  
SCIRXDC  
GPIO27  
SCITXDC  
GPIO28  
SCIRXDA  
SDAA  
46  
40  
I/O/Z  
I/O/Z  
I
33  
42  
I/O/Z  
O
General-purpose input/output 27  
SCI-C transmit data  
I/O/Z  
I
General-purpose input/output 28  
SCI-A receive data  
I/OD  
I
I2C data open-drain bidirectional port  
Trip zone input 2  
TZ2  
CTRIPM2OUT  
O
CTRIPM2 CTRIPxx output  
Copyright © 2012, Texas Instruments Incorporated  
Device Pins  
47  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
Table 3-1. Terminal Functions(1) (continued)  
TERMINAL  
NAME  
GPIO29  
I/O/Z  
DESCRIPTION  
PN  
PIN NO.  
41  
I/O/Z  
O
General-purpose input/output 29  
SCI-A transmit data  
SCITXDA  
SCLA  
I/OD  
I
I2C clock open-drain bidirectional port  
Trip zone input 3  
TZ3  
CTRIPPFCOUT  
GPIO30  
O
CTRIPPFC output  
35  
34  
2
I/O/Z  
I
General-purpose input/output 30  
CAN receive  
CANRXA  
SCIRXDB  
EPWM7A  
GPIO31  
I
SCI-B receive data  
O
Enhanced PWM7 output A  
General-purpose input/output 31  
CAN transmit  
I/O/Z  
O
CANTXA  
SCITXDB  
EPWM7B  
GPIO32  
O
SCI-B transmit data  
O
Enhanced PWM7 output B  
General-purpose input/output 32  
I2C data open-drain bidirectional port  
I/O/Z  
I/OD  
I
SDAA  
EPWMSYNCI  
EQEP1S  
GPIO33  
Enhanced PWM external sync pulse input  
Enhanced QEP1 strobe  
I/O  
I/O/Z  
I/OD  
O
3
General-Purpose Input/Output 33  
I2C clock open-drain bidirectional port  
Enhanced PWM external synch pulse output  
Enhanced QEP1 index  
SCLA  
EPWMSYNCO  
EQEP1I  
I/O  
I/O/Z  
GPIO34  
74  
General-Purpose Input/Output 34  
CTRIPM2OUT  
(COMP2OUT)  
CTRIPM2 CTRIPxx output  
(Direct output of Comparator 2)  
O
O
CTRIPPFCOUT  
(COMP3OUT)  
CTRIPPFC output  
(Direct output of Comparator 3)  
GPIO35  
TDI  
59  
60  
58  
57  
I/O/Z  
I
General-Purpose Input/Output 35  
JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register  
(instruction or data) on a rising edge of TCK  
GPIO36  
TMS  
I/O/Z  
I
General-Purpose Input/Output 36  
JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the  
TAP controller on the rising edge of TCK.  
GPIO37  
TDO  
I/O/Z  
O/Z  
General-Purpose Input/Output 37  
JTAG scan out, test data output (TDO). The contents of the selected register (instruction or  
data) are shifted out of TDO on the falling edge of TCK (8 mA drive)  
GPIO38  
TCK  
I/O/Z  
General-Purpose Input/Output 38  
JTAG test clock with internal pullup  
I
I
XCLKIN  
External Oscillator Input. The path from this pin to the clock block is not gated by the mux  
function of this pin. Care must be taken to not enable this path for clocking if this path is being  
used for the other functions.  
48  
Device Pins  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Table 3-1. Terminal Functions(1) (continued)  
TERMINAL  
NAME  
GPIO39  
I/O/Z  
DESCRIPTION  
PN  
PIN NO.  
56  
I/O/Z  
I
General-Purpose Input/Output 39  
SCI-C receive data  
SCIRXDC  
CTRIPPFCOUT  
GPIO40  
O
CTRIPPFC output  
64  
5
I/O/Z  
O
General-Purpose Input/Output 40  
Enhanced PWM7 output A  
General-Purpose Input/Output 42  
Enhanced PWM7 output B  
SCI-C transmit data  
EPWM7A  
GPIO42  
I/O/Z  
O
EPWM7B  
SCITXDC  
O
CTRIPM1OUT  
(COMP1OUT)  
CTRIPM1 CTRIPxx output  
(Direct output of Comparator 1)  
O
Copyright © 2012, Texas Instruments Incorporated  
Device Pins  
49  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
4 Device Operating Conditions  
4.1 Absolute Maximum Ratings(1) (2)  
Supply voltage range, VDDIO (I/O and Flash)  
Supply voltage range, VDD  
with respect to VSS  
–0.3 V to 4.6 V  
–0.3 V to 2.5 V  
–0.3 V to 4.6 V  
–0.3 V to 4.6 V  
–0.3 V to 4.6 V  
±20 mA  
with respect to VSS  
with respect to VSSA  
Analog voltage range, VDDA  
Input voltage range, VIN (3.3 V)  
Output voltage range, VO  
(3)  
Input clamp current, IIK (VIN < 0 or VIN > VDDIO  
)
Output clamp current, IOK (VO < 0 or VO > VDDIO  
)
±20 mA  
(4)  
Junction temperature range, TJ  
–40°C to 150°C  
–65°C to 150°C  
(4)  
Storage temperature range, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Section 4.2 is not implied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
(3) Continuous clamp current per pin is ± 2 mA.  
(4) Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device life.  
For additional information, see IC Package Thermal Metrics Application Report (literature number SPRA953) and Reliability Data for  
TMS320LF24xx and TMS320F28xx Devices Application Report (literature number SPRA963).  
4.2 Recommended Operating Conditions  
MIN  
2.97  
1.71  
NOM  
3.3  
MAX  
3.63  
UNIT  
(1)  
Device supply voltage, I/O, VDDIO  
V
Device supply voltage CPU, VDD (When internal  
VREG is disabled and 1.8 V is supplied externally)  
1.8  
1.995  
V
Supply ground, VSS  
0
3.3  
0
V
V
(1)  
Analog supply voltage, VDDA  
2.97  
3.63  
Analog ground, VSSA  
V
Device clock frequency (system clock)  
High-level input voltage, VIH (3.3 V)  
Low-level input voltage, VIL (3.3 V)  
High-level output source current, VOH = VOH(MIN) , IOH All GPIO pins  
Group 2(2)  
2
2
60  
MHz  
V
VDDIO + 0.3  
VSS – 0.3  
0.8  
–4  
–8  
4
V
mA  
mA  
mA  
mA  
Low-level output sink current, VOL = VOL(MAX), IOL  
All GPIO pins  
Group 2(2)  
T version  
8
Junction temperature, TJ  
–40  
–40  
105  
125  
°C  
S version  
(1) VDDIO and VDDA should be maintained within approximately 0.3 V of each other.  
(2) Group 2 pins are as follows: GPIO16, GPIO17, GPIO18, GPIO28, GPIO29, GPIO30, GPIO31, GPIO36, GPIO37  
50  
Device Operating Conditions  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
4.3 Electrical Characteristics Over Recommended Operating Conditions (Unless  
Otherwise Noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.4  
TYP  
MAX UNIT  
IOH = IOH MAX  
IOH = 50 μA  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
V
VDDIO – 0.2  
IOL = IOL MAX  
0.4  
–205  
–375  
V
All GPIO pins  
XRS pin  
–80  
–140  
–300  
Pin with pullup  
VDDIO = 3.3 V, VIN = 0 V  
enabled  
Input current  
(low level)  
–230  
IIL  
μA  
Pin with pulldown  
enabled  
VDDIO = 3.3 V, VIN = 0 V  
VDDIO = 3.3 V, VIN = VDDIO  
VDDIO = 3.3 V, VIN = VDDIO  
VO = VDDIO or 0 V  
±2  
±2  
80  
Pin with pullup  
enabled  
Input current  
(high level)  
IIH  
μA  
Pin with pulldown  
enabled  
28  
50  
Output current, pullup or  
pulldown disabled  
IOZ  
CI  
±2 μA  
Input capacitance  
2
2.78  
35  
pF  
V
VDDIO BOR trip point  
VDDIO BOR hysteresis  
Falling VDDIO  
mV  
Supervisor reset release delay  
time  
Time after BOR/POR/OVR event is removed to XRS  
release  
400  
800 μs  
VREG VDD output  
Internal VREG on  
1.9  
V
(1) When the on-chip VREG is used, its output is monitored by the POR/BOR circuit, which will reset the device should the core voltage  
(VDD) go out of range.  
Copyright © 2012, Texas Instruments Incorporated  
Device Operating Conditions  
51  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
4.4 Current Consumption  
Table 4-1. TMS320F2805x Current Consumption at 60-MHz SYSCLKOUT  
VREG ENABLED  
VREG DISABLED  
(1)  
(2)  
(1)  
(2)  
MODE  
TEST CONDITIONS  
IDDIO  
IDDA  
TYP(3)  
IDD  
IDDIO  
IDDA  
TYP(3)  
MAX  
MAX  
TYP(3)  
MAX  
TYP(3)  
MAX  
TYP(3)  
MAX  
The following peripheral clocks are  
enabled:  
ePWM1, ePWM2, ePWM3,  
ePWM4, ePWM5, ePWM6,  
ePWM7  
eCAP1  
eQEP1  
eCAN-A  
CLA  
SCI-A, SCI-B, SCI-C  
SPI-A  
Operational  
(Flash)  
100 mA(6)  
40 mA  
90 mA(6)  
17 mA  
40 mA  
ADC  
I2C-A  
COMPA1, COMPA3,  
COMPB1, COMPA6,  
COMPB4, COMPB5,  
COMPB7  
CPU-TIMER0,  
CPU-TIMER1,  
CPU-TIMER2  
All PWM pins are toggled at 60 kHz.  
All I/O pins are left unconnected.(4)(5)  
Code is running out of flash with  
2 wait-states.  
XCLKOUT is turned off.  
Flash is powered down.  
IDLE  
XCLKOUT is turned off.  
All peripheral clocks are turned off.  
13 mA  
4 mA  
15 μA  
15 μA  
15 μA  
13 mA  
4 mA  
300 μA  
300 μA  
150 μA  
15 μA  
15 μA  
15 μA  
Flash is powered down.  
Peripheral clocks are off.  
STANDBY  
HALT  
Flash is powered down.  
Peripheral clocks are off.  
Input clock is disabled.(7)  
30 μA  
15 μA  
(1) IDDIO current is dependent on the electrical loading on the I/O pins.  
(2) In order to realize the IDDA currents shown for IDLE, STANDBY, and HALT, clock to the ADC module must be turned off explicitly by  
writing to the PCLKCR0 register.  
(3) The TYP numbers are applicable over room temperature and nominal voltage.  
(4) The following is done in a loop:  
Data is continuously transmitted out of SPI-A, SCI-A, SCI-B, SCI-C, eCAN-A, and I2C-A ports.  
The hardware multiplier is exercised.  
Watchdog is reset.  
ADC is performing continuous conversion.  
GPIO17 is toggled.  
(5) CLA is continuously performing polynomial calculations.  
(6) For F2805x devices that do not have CLA, subtract the IDD current number for CLA (see Table 4-2) from the IDD (VREG disabled)/IDDIO  
(VREG enabled) current numbers shown in Table 4-1 for operational mode.  
(7) If a quartz crystal or ceramic resonator is used as the clock source, the HALT mode shuts down the on-chip crystal oscillator.  
NOTE  
The peripheral-I/O multiplexing implemented in the device prevents all available peripherals  
from being used at the same time because more than one peripheral function may share an  
I/O pin. It is, however, possible to turn on the clocks to all the peripherals at the same time,  
although such a configuration is not useful. If the clocks to all the peripherals are turned on  
at the same time, the current drawn by the device will be more than the numbers specified in  
the current consumption tables.  
52  
Device Operating Conditions  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
4.4.1 Reducing Current Consumption  
The 2805x devices incorporate a method to reduce the device current consumption. Since each peripheral  
unit has an individual clock-enable bit, significant reduction in current consumption can be achieved by  
turning off the clock to any peripheral module that is not used in a given application. Furthermore, any one  
of the three low-power modes could be taken advantage of to reduce the current consumption even  
further. Table 4-2 indicates the typical reduction in current consumption achieved by turning off the clocks.  
Table 4-2. Typical Current Consumption by Various  
Peripherals (at 60 MHz)(1)  
PERIPHERAL  
MODULE(2)  
IDD CURRENT  
REDUCTION (mA)  
ADC  
2(3)  
I2C  
3
ePWM  
2
eCAP  
2
eQEP  
2
SCI  
2
SPI  
COMP/DAC  
PGA  
2
1
2
CPU-TIMER  
Internal zero-pin oscillator  
CAN  
1
0.5  
2.5  
20  
CLA  
(1) All peripheral clocks (except CPU Timer clock) are disabled upon  
reset. Writing to or reading from peripheral registers is possible only  
after the peripheral clocks are turned on.  
(2) For peripherals with multiple instances, the current quoted is per  
module. For example, the 2 mA value quoted for ePWM is for one  
ePWM module.  
(3) This number represents the current drawn by the digital portion of  
the ADC module. Turning off the clock to the ADC module results in  
the elimination of the current drawn by the analog portion of the ADC  
(IDDA) as well.  
NOTE  
IDDIO current consumption is reduced by 15 mA (typical) when XCLKOUT is turned off.  
NOTE  
The baseline IDD current (current when the core is executing a dummy loop with no  
peripherals enabled) is 40 mA, typical. To arrive at the IDD current for a given application, the  
current-drawn by the peripherals (enabled by that application) must be added to the baseline  
IDD current.  
Following are other methods to reduce power consumption further:  
The flash module may be powered down if code is run off SARAM. This method results in a current  
reduction of 18 mA (typical) in the VDD rail and 13 mA (typical) in the VDDIO rail.  
Savings in IDDIO may be realized by disabling the pullups on pins that assume an output function.  
Copyright © 2012, Texas Instruments Incorporated  
Device Operating Conditions  
53  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
4.4.2 Current Consumption Graphs (VREG Enabled)  
Operational Current vs Frequency  
140  
120  
100  
80  
60  
40  
20  
0
0
10  
20  
30  
40  
50  
60  
70  
SYSCLKOUT (MHz)  
IDDIO IDDA  
Figure 4-1. Typical Operational Current Versus Frequency (F2805x)  
Operational Power vs Frequency  
500  
450  
400  
350  
300  
250  
200  
0
10  
20  
30  
40  
50  
60  
70  
SYSCLKOUT (MHz)  
Figure 4-2. Typical Operational Power Versus Frequency (F2805x)  
54  
Device Operating Conditions  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Typical CLA operational current vs SYSCLKOUT  
25  
20  
15  
10  
5
0
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
SYSCLKOUT (MHz)  
Figure 4-3. Typical CLA Operational Current Versus SYSCLKOUT  
Copyright © 2012, Texas Instruments Incorporated  
Device Operating Conditions  
55  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
4.5 Flash Timing  
Table 4-3. Flash/OTP Endurance for T Temperature Material(1)  
ERASE/PROGRAM  
TEMPERATURE  
MIN  
TYP  
MAX  
UNIT  
Nf  
Flash endurance for the array (write/erase cycles)  
OTP endurance for the array (write cycles)  
0°C to 105°C (ambient)  
0°C to 30°C (ambient)  
20000  
50000  
cycles  
write  
NOTP  
1
(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.  
Table 4-4. Flash/OTP Endurance for S Temperature Material(1)  
ERASE/PROGRAM  
MIN  
TYP  
MAX  
UNIT  
TEMPERATURE  
0°C to 125°C (ambient)  
0°C to 30°C (ambient)  
Nf  
Flash endurance for the array (write/erase cycles)  
OTP endurance for the array (write cycles)  
20000  
50000  
cycles  
write  
NOTP  
1
(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.  
Table 4-5. Flash Parameters at 60-MHz SYSCLKOUT  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Program Time 16-Bit Word  
8K Sector  
50  
250  
125  
2
μs  
ms  
ms  
s
4K Sector  
Erase Time(1) 8K Sector  
4K Sector  
2
s
(2)  
IDDP  
VDD current consumption during Erase/Program cycle  
VDDIO current consumption during Erase/Program cycle  
VDDIO current consumption during Erase/Program cycle  
VREG disabled  
VREG enabled  
80  
mA  
(2)  
(2)  
IDDIOP  
IDDIOP  
60  
120  
mA  
(1) The on-chip flash memory is in an erased state when the device is shipped from TI. As such, erasing the flash memory is not required  
prior to programming, when programming the device for the first time. However, the erase operation is needed on all subsequent  
programming operations.  
(2) Typical parameters as seen at room temperature including function call overhead, with all peripherals off.  
Table 4-6. Flash/OTP Access Timing  
PARAMETER  
MIN  
40  
MAX UNIT  
ta(fp)  
Paged Flash access time  
Random Flash access time  
OTP access time  
ns  
ns  
ns  
ta(fr)  
40  
ta(OTP)  
60  
Table 4-7. Flash Data Retention Duration  
PARAMETER  
TEST CONDITIONS  
TJ = 55°C  
MIN  
15  
MAX UNIT  
tretention  
Data retention duration  
years  
56  
Device Operating Conditions  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Table 4-8. Minimum Required Flash/OTP Wait-States at Different Frequencies  
SYSCLKOUT  
SYSCLKOUT  
(ns)  
PAGE  
RANDOM  
OTP  
WAIT-STATE  
(MHz)  
WAIT-STATE(1)  
WAIT-STATE(1)  
60  
16.67  
18.18  
20  
2
2
1
1
1
1
1
2
2
1
1
1
1
1
3
3
2
2
2
2
1
55  
50  
45  
22.22  
25  
40  
35  
28.57  
33.33  
30  
(1) Page and random wait-state must be 1.  
The equations to compute the Flash page wait-state and random wait-state in Table 4-8 are as follows:  
é
ê
ë
ù
æ
ç
ç
è
ö
÷
÷
ø
ta(f ·p)  
Flash Page Wait State =  
-1 round up to the next highest integer  
ú
tc(SCO)  
ê
ú
û
é
ê
ë
ù
æ
ç
ç
è
ö
÷
÷
ø
ta(f ×r)  
Flash Random Wait State =  
-1 round up to the next highest integer, or 1, whichever is larger  
ú
tc(SCO)  
ê
ú
û
The equation to compute the OTP wait-state in Table 4-8 is as follows:  
é
ê
ë
ù
æ
ç
ç
è
ö
÷
÷
ø
ta(OTP)  
OTP Wait State =  
-1 round up to the next highest integer, or 1, whichever is larger  
ú
tc(SCO)  
ê
ú
û
Copyright © 2012, Texas Instruments Incorporated  
Device Operating Conditions  
57  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
5 Power, Reset, Clocking, and Interrupts  
5.1 Power Sequencing  
There is no power sequencing requirement needed to ensure the device is in the proper state after reset  
or to prevent the I/Os from glitching during power up or power down (GPIO19, GPIO34–38 do not have  
glitch-free I/Os). No voltage larger than a diode drop (0.7 V) above VDDIO should be applied to any digital  
pin (for analog pins, this value is 0.7 V above VDDA) prior to powering up the device. Voltages applied to  
pins on an unpowered device can bias internal p-n junctions in unintended ways and produce  
unpredictable results.  
VDDIO, VDDA  
(3.3 V)  
VDD (1.8 V)  
INTOSC1  
tINTOSCST  
X1/X2  
tOSCST  
(B)  
(A)  
XCLKOUT  
User-code dependent  
t
w(RSL1)  
XRS(D)  
Address/data valid, internal boot-ROM code execution phase  
Address/Data/  
Control  
(Internal)  
User-code execution phase  
User-code dependent  
t
d(EX)  
(C)  
h(boot-mode)  
t
Boot-Mode  
Pins  
GPIO pins as input  
Peripheral/GPIO function  
Boot-ROM execution starts  
(E)  
Based on boot code  
GPIO pins as input (state depends on internal PU/PD)  
I/O Pins  
User-code dependent  
A. Upon power up, SYSCLKOUT is OSCCLK/4. Since the XCLKOUTDIV bits in the XCLK register come up with a reset  
state of 0, SYSCLKOUT is further divided by 4 before SYSCLKOUT appears at XCLKOUT. XCLKOUT = OSCCLK/16  
during this phase.  
B. Boot ROM configures the DIVSEL bits for /1 operation. XCLKOUT = OSCCLK/4 during this phase. Note that  
XCLKOUT will not be visible at the pin until explicitly configured by user code.  
C. After reset, the boot ROM code samples Boot Mode pins. Based on the status of the Boot Mode pin, the boot code  
branches to destination memory or boot code function. If boot ROM code executes after power-on conditions (in  
debugger environment), the boot code execution time is based on the current SYSCLKOUT speed. The SYSCLKOUT  
will be based on user environment and could be with or without PLL enabled.  
D. Using the XRS pin is optional due to the on-chip power-on reset (POR) circuitry.  
E. The internal pullup or pulldown will take effect when BOR is driven high.  
Figure 5-1. Power-on Reset  
58  
Power, Reset, Clocking, and Interrupts  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Table 5-1. Reset (XRS) Timing Requirements  
MIN  
1000tc(SCO)  
32tc(OSCCLK)  
MAX  
UNIT  
cycles  
cycles  
th(boot-mode)  
tw(RSL2)  
Hold time for boot-mode pins  
Pulse duration, XRS low on warm reset  
Table 5-2. Reset (XRS) Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
μs  
tw(RSL1)  
tw(WDRS)  
td(EX)  
Pulse duration, XRS driven by device  
600  
Pulse duration, reset pulse generated by watchdog  
Delay time, address/data valid after XRS high  
Start up time, internal zero-pin oscillator  
On-chip crystal-oscillator start-up time  
512tc(OSCCLK)  
cycles  
cycles  
μs  
32tc(OSCCLK)  
tINTOSCST  
3
(1)  
tOSCST  
1
10  
ms  
(1) Dependent on crystal/resonator and board design.  
INTOSC1  
X1/X2  
XCLKOUT  
User-Code Dependent  
t
w(RSL2)  
XRS  
User-Code Execution Phase  
t
d(EX)  
Address/Data/  
User-Code Execution  
Control  
(Internal)  
(A)  
t
Boot-ROM Execution Starts  
GPIO Pins as Input  
h(boot-mode)  
Boot-Mode  
Pins  
Peripheral/GPIO Function  
User-Code Dependent  
Peripheral/GPIO Function  
User-Code Execution Starts  
I/O Pins  
GPIO Pins as Input (State Depends on Internal PU/PD)  
User-Code Dependent  
A. After reset, the Boot ROM code samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code  
branches to destination memory or boot code function. If Boot ROM code executes after power-on conditions (in  
debugger environment), the Boot code execution time is based on the current SYSCLKOUT speed. The  
SYSCLKOUT will be based on user environment and could be with or without PLL enabled.  
Figure 5-2. Warm Reset  
Copyright © 2012, Texas Instruments Incorporated  
Power, Reset, Clocking, and Interrupts  
59  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
Figure 5-3 shows an example for the effect of writing into PLLCR register. In the first phase, PLLCR =  
0x0004 and SYSCLKOUT = OSCCLK x 2. The PLLCR is then written with 0x0008. Right after the PLLCR  
register is written, the PLL lock-up phase begins. During this phase, SYSCLKOUT = OSCCLK/2. After the  
PLL lock-up is complete, SYSCLKOUT reflects the new operating frequency, OSCCLK x 4.  
OSCCLK  
Write to PLLCR  
SYSCLKOUT  
OSCCLK * 2  
OSCCLK/2  
OSCCLK * 4  
(CPU frequency while PLL is stabilizing  
with the desired frequency. This period  
(PLL lock-up time tp) is 1 ms long.)  
(Current CPU  
Frequency)  
(Changed CPU frequency)  
Figure 5-3. Example of Effect of Writing Into PLLCR Register  
5.2 Clocking  
5.2.1 Device Clock Table  
This section provides the timing requirements and switching characteristics for the various clock options  
available on the 2805x MCUs. Table 5-3 lists the cycle times of various clocks.  
Table 5-3. 2805x Clock Table and Nomenclature (60-MHz Devices)  
MIN  
16.67  
2
NOM  
MAX UNIT  
tc(SCO), Cycle time  
Frequency  
500  
60  
ns  
MHz  
ns  
SYSCLKOUT  
LSPCLK(1)  
ADC clock  
tc(LCO), Cycle time  
Frequency  
16.67  
66.67(2)  
15(2)  
60  
60  
MHz  
ns  
tc(ADCCLK), Cycle time  
Frequency  
16.67  
MHz  
(1) Lower LSPCLK will reduce device power consumption.  
(2) This value is the default reset value if SYSCLKOUT = 60 MHz.  
Table 5-4. Device Clocking Requirements/Characteristics  
MIN  
NOM  
MAX UNIT  
tc(OSC), Cycle time  
Frequency  
50  
5
200  
20  
ns  
MHz  
ns  
On-chip oscillator (X1/X2 pins)  
(Crystal/Resonator)  
tc(CI), Cycle time (C8)  
Frequency  
33.3  
5
200  
30  
External oscillator/clock source  
(XCLKIN pin) — PLL Enabled  
MHz  
ns  
tc(CI), Cycle time (C8)  
Frequency  
33.33  
4
250  
30  
External oscillator/clock source  
(XCLKIN pin) — PLL Disabled  
MHz  
Limp mode SYSCLKOUT  
(with /2 enabled)  
Frequency range  
1 to 5  
MHz  
tc(XCO), Cycle time (C1)  
66.67  
0.5  
2000  
15  
ns  
MHz  
ms  
XCLKOUT  
Frequency  
tp  
PLL lock time(1)  
1
(1) The PLLLOCKPRD register must be updated based on the number of OSCCLK cycles. If the zero-pin internal oscillators (10 MHz) are  
used as the clock source, then the PLLLOCKPRD register must be written with a value of 10,000 (minimum).  
60  
Power, Reset, Clocking, and Interrupts  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Table 5-5. Internal Zero-Pin Oscillator (INTOSC1, INTOSC2) Characteristics  
PARAMETER  
MIN  
TYP  
10.000  
10.000  
55  
MAX UNIT  
MHz  
Internal zero-pin oscillator 1 (INTOSC1) at 30°C(1)(2)  
Internal zero-pin oscillator 2 (INTOSC2) at 30°C(1)(2)  
Step size (coarse trim)  
Frequency  
Frequency  
MHz  
kHz  
Step size (fine trim)  
14  
kHz  
Temperature drift(3)  
Voltage (VDD) drift(3)  
3.03  
4.85 kHz/°C  
Hz/mV  
175  
(1) In order to achieve better oscillator accuracy (10 MHz ± 1% or better) than shown, see the Oscillator Compensation Guide Application  
Report (literature number SPRAB84). Refer to Figure 5-4 for TYP and MAX values.  
(2) Frequency range ensured only when VREG is enabled, VREGENZ = VSS  
.
(3) Output frequency of the internal oscillators follows the direction of both the temperature gradient and voltage (VDD) gradient. For  
example:  
Increase in temperature will cause the output frequency to increase per the temperature coefficient.  
Decrease in voltage (VDD) will cause the output frequency to decrease per the voltage coefficient.  
Zero-Pin Oscillator Frequency Movement With Temperature  
10.6  
10.5  
10.4  
10.3  
10.2  
10.1  
10  
9.9  
9.8  
9.7  
9.6  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
Typical  
Max  
Temperature (°C)  
Figure 5-4. Zero-Pin Oscillator Frequency Movement With Temperature  
Copyright © 2012, Texas Instruments Incorporated  
Power, Reset, Clocking, and Interrupts  
61  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
5.2.2 Clock Requirements and Characteristics  
Table 5-6. XCLKIN Timing Requirements - PLL Enabled  
NO.  
MIN  
MAX UNIT  
C9  
tf(CI)  
Fall time, XCLKIN  
6
6
ns  
ns  
%
%
C10 tr(CI)  
Rise time, XCLKIN  
C11 tw(CIL)  
C12 tw(CIH)  
Pulse duration, XCLKIN low as a percentage of tc(OSCCLK)  
Pulse duration, XCLKIN high as a percentage of tc(OSCCLK)  
45  
45  
55  
55  
Table 5-7. XCLKIN Timing Requirements - PLL Disabled  
NO.  
MIN  
MAX UNIT  
C9  
tf(CI)  
Fall time, XCLKIN  
Rise time, XCLKIN  
Up to 20 MHz  
6
2
ns  
20 MHz to 30 MHz  
Up to 20 MHz  
C10 tr(CI)  
6
ns  
20 MHz to 30 MHz  
2
C11 tw(CIL)  
C12 tw(CIH)  
Pulse duration, XCLKIN low as a percentage of tc(OSCCLK)  
Pulse duration, XCLKIN high as a percentage of tc(OSCCLK)  
45  
45  
55  
55  
%
%
The possible configuration modes are shown in Table 2-22.  
Table 5-8. XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)(1) (2)  
over recommended operating conditions (unless otherwise noted)  
NO.  
C3  
C4  
C5  
C6  
PARAMETER  
MIN  
MAX  
5
UNIT  
ns  
tf(XCO)  
Fall time, XCLKOUT  
Rise time, XCLKOUT  
tr(XCO)  
5
ns  
tw(XCOL)  
tw(XCOH)  
Pulse duration, XCLKOUT low  
Pulse duration, XCLKOUT high  
H – 2  
H – 2  
H + 2  
H + 2  
ns  
ns  
(1) A load of 40 pF is assumed for these parameters.  
(2) H = 0.5tc(XCO)  
C10  
C9  
C8  
(A)  
XCLKIN  
C6  
C3  
C1  
C4  
C5  
(B)  
XCLKOUT  
A. The relationship of XCLKIN to XCLKOUT depends on the divide factor chosen. The waveform relationship shown is  
intended to illustrate the timing parameters only and may differ based on actual configuration.  
B. XCLKOUT configured to reflect SYSCLKOUT.  
Figure 5-5. Clock Timing  
62  
Power, Reset, Clocking, and Interrupts  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
5.3 Interrupts  
Figure 5-6 shows how the various interrupt sources are multiplexed.  
Peripherals  
(SPI, SCI, ePWM, I2C,  
eCAP, ADC, eQEP, CLA, eCAN)  
WDINT  
Watchdog  
Low Power Modes  
WAKEINT  
Sync  
LPMINT  
XINT1  
SYSCLKOUT  
XINT1  
Interrupt Control  
XINT1CR(15:0)  
XINT2CTR(15:0)  
GPIOXINT1SEL(4:0)  
XINT2SOC  
ADC  
INT1  
to  
INT12  
XINT2  
XINT2  
Interrupt Control  
XINT2CR(15:0)  
XINT3CTR(15:0)  
C28  
Core  
GPIOXINT2SEL(4:0)  
GPIO0.int  
XINT3  
TINT0  
XINT3  
GPIO  
MUX  
Interrupt Control  
XINT3CR(15:0)  
XINT3CTR(15:0)  
GPIO31.int  
GPIOXINT3SEL(4:0)  
CPU TIMER 0  
CPU TIMER 1  
CPU TIMER 2  
TINT1  
TINT2  
INT13  
INT14  
CPUTMR2CLK  
CLOCKFAIL  
NMIRS  
System Control  
(See the System  
Control section.)  
NMI interrupt with watchdog function  
(See the NMI Watchdog section.)  
NMI  
Figure 5-6. External and PIE Interrupt Sources  
Copyright © 2012, Texas Instruments Incorporated  
Power, Reset, Clocking, and Interrupts  
63  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
Eight PIE block interrupts are grouped into one CPU interrupt. In total, 12 CPU interrupt groups, with  
8 interrupts per group equals 96 possible interrupts. Table 5-9 shows the interrupts used by 2805x  
devices.  
The TRAP #VectorNumber instruction transfers program control to the interrupt service routine  
corresponding to the vector specified. TRAP #0 attempts to transfer program control to the address  
pointed to by the reset vector. The PIE vector table does not, however, include a reset vector. Therefore,  
TRAP #0 should not be used when the PIE is enabled. Doing so will result in undefined behavior.  
When the PIE is enabled, TRAP #1 through TRAP #12 will transfer program control to the interrupt service  
routine corresponding to the first vector within the PIE group. For example: TRAP #1 fetches the vector  
from INT1.1, TRAP #2 fetches the vector from INT2.1, and so forth.  
IFR[12:1]  
IER[12:1]  
INTM  
INT1  
INT2  
1
CPU  
MUX  
0
INT11  
INT12  
Global  
Enable  
(Flag)  
(Enable)  
INTx.1  
INTx.2  
INTx.3  
INTx.4  
INTx.5  
From  
Peripherals  
or  
External  
Interrupts  
INTx  
MUX  
INTx.6  
INTx.7  
INTx.8  
PIEACKx  
(Enable)  
(Flag)  
(Enable/Flag)  
PIEIERx[8:1]  
PIEIFRx[8:1]  
Figure 5-7. Multiplexing of Interrupts Using the PIE Block  
64  
Power, Reset, Clocking, and Interrupts  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Table 5-9. PIE MUXed Peripheral Interrupt Vector Table(1)  
INTx.8  
WAKEINT  
(LPM/WD)  
0xD4E  
Reserved  
INTx.7  
TINT0  
INTx.6  
ADCINT9  
(ADC)  
INTx.5  
XINT2  
INTx.4  
XINT1  
INTx.3  
Reserved  
INTx.2  
ADCINT2  
(ADC)  
INTx.1  
ADCINT1  
(ADC)  
INT1.y  
INT2.y  
INT3.y  
INT4.y  
INT5.y  
INT6.y  
INT7.y  
INT8.y  
INT9.y  
INT10.y  
(TIMER 0)  
0xD4C  
EPWM7_TZINT  
(ePWM7)  
0xD5C  
EPWM7_INT  
(ePWM7)  
0xD6C  
Reserved  
Ext. int. 2  
0xD48  
Ext. int. 1  
0xD46  
0xD4A  
0xD44  
0xD42  
0xD40  
EPWM6_TZINT  
(ePWM6)  
0xD5A  
EPWM5_TZINT  
(ePWM5)  
0xD58  
EPWM4_TZINT  
(ePWM4)  
0xD56  
EPWM3_TZINT  
(ePWM3)  
0xD54  
EPWM2_TZINT  
(ePWM2)  
0xD52  
EPWM1_TZINT  
(ePWM1)  
0xD50  
0xD5E  
Reserved  
EPWM6_INT  
(ePWM6)  
0xD6A  
EPWM5_INT  
(ePWM5)  
0xD68  
EPWM4_INT  
(ePWM4)  
0xD66  
EPWM3_INT  
(ePWM3)  
0xD64  
EPWM2_INT  
(ePWM2)  
0xD62  
EPWM1_INT  
(ePWM1)  
0xD60  
0xD6E  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
ECAP1_INT  
(eCAP1)  
0xD70  
0xD7E  
Reserved  
0xD7C  
Reserved  
0xD7A  
0xD78  
0xD76  
0xD74  
0xD72  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
EQEP1_INT  
(eQEP1)  
0xD80  
0xD8E  
Reserved  
0xD8C  
Reserved  
0xD8A  
0xD88  
0xD86  
0xD84  
0xD82  
Reserved  
Reserved  
Reserved  
Reserved  
SPITXINTA  
(SPI-A)  
0xD92  
SPIRXINTA  
(SPI-A)  
0xD9E  
Reserved  
0xD9C  
Reserved  
0xD9A  
0xD98  
0xD96  
0xD94  
0xD90  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0xDAE  
Reserved  
0xDAC  
Reserved  
0xDAA  
0xDA8  
0xDA6  
0xDA4  
Reserved  
0xDA2  
0xDA0  
SCITXINTC  
(SCI-C)  
0xDBA  
SCIRXINTC  
(SCI-C)  
0xDB8  
Reserved  
I2CINT2A  
(I2C-A)  
0xDB2  
I2CINT1A  
(I2C-A)  
0xDBE  
Reserved  
0xDBC  
Reserved  
0xDB6  
0xDB4  
SCIRXINTB  
(SCI-B)  
0xDC4  
ADCINT3  
(ADC)  
0xDB0  
ECAN1_INTA  
(CAN-A)  
0xDCA  
ECAN0_INTA  
(CAN-A)  
0xDC8  
SCITXINTB  
(SCI-B)  
0xDC6  
ADCINT4  
(ADC)  
SCITXINTA  
(SCI-A)  
0xDC2  
SCIRXINTA  
(SCI-A)  
0xDCE  
ADCINT8  
(ADC)  
(ePWM16)  
0xDDE  
CLA1_INT8  
(CLA)  
0xDCC  
ADCINT7  
(ADC)  
0xDC0  
ADCINT6  
(ADC)  
ADCINT5  
(ADC)  
ADCINT2  
(ADC)  
ADCINT1  
(ADC)  
(ePWM15)  
0xDDC  
CLA1_INT7  
(CLA)  
(ePWM14)  
0xDDA  
(ePWM13)  
0xDD8  
(ePWM12)  
0xDD6  
CLA1_INT4  
(CLA)  
(ePWM11)  
0xDD4  
CLA1_INT3  
(CLA)  
(ePWM10)  
0xDD2  
(ePWM9)  
0xDD0  
INT11.y  
INT12.y  
CLA1_INT6  
(CLA)  
CLA1_INT5  
(CLA)  
CLA1_INT2  
(CLA)  
CLA1_INT1  
(CLA)  
(ePWM16)  
0xDEE  
LUF  
(ePWM15)  
0xDEC  
LVF  
(ePWM14)  
0xDEA  
(ePWM13)  
0xDE8  
(ePWM12)  
0xDE6  
(ePWM11)  
0xDE4  
Reserved  
(ePWM10)  
0xDE2  
(ePWM9)  
0xDE0  
Reserved  
Reserved  
Reserved  
Reserved  
XINT3  
(CLA)  
(CLA)  
Ext. Int. 3  
0xDF0  
0xDFE  
0xDFC  
0xDFA  
0xDF8  
0xDF6  
0xDF4  
0xDF2  
(1) Out of 96 possible interrupts, some interrupts are not used. These interrupts are reserved for future devices. These interrupts can be  
used as software interrupts if they are enabled at the PIEIFRx level, provided none of the interrupts within the group is being used by a  
peripheral. Otherwise, interrupts coming in from peripherals may be lost by accidentally clearing their flag while modifying the PIEIFR.  
To summarize, there are two safe cases when the reserved interrupts could be used as software interrupts:  
No peripheral within the group is asserting interrupts.  
No peripheral interrupts are assigned to the group (for example, PIE group 7).  
Copyright © 2012, Texas Instruments Incorporated  
Power, Reset, Clocking, and Interrupts  
65  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
Table 5-10. PIE Configuration and Control Registers  
NAME  
PIECTRL  
PIEACK  
PIEIER1  
PIEIFR1  
PIEIER2  
PIEIFR2  
PIEIER3  
PIEIFR3  
PIEIER4  
PIEIFR4  
PIEIER5  
PIEIFR5  
PIEIER6  
PIEIFR6  
PIEIER7  
PIEIFR7  
PIEIER8  
PIEIFR8  
PIEIER9  
PIEIFR9  
PIEIER10  
PIEIFR10  
PIEIER11  
PIEIFR11  
PIEIER12  
PIEIFR12  
Reserved  
ADDRESS  
0x0CE0  
0x0CE1  
0x0CE2  
0x0CE3  
0x0CE4  
0x0CE5  
0x0CE6  
0x0CE7  
0x0CE8  
0x0CE9  
0x0CEA  
0x0CEB  
0x0CEC  
0x0CED  
0x0CEE  
0x0CEF  
0x0CF0  
0x0CF1  
0x0CF2  
0x0CF3  
0x0CF4  
0x0CF5  
0x0CF6  
0x0CF7  
0x0CF8  
0x0CF9  
SIZE (x16)  
DESCRIPTION(1)  
PIE, Control Register  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
PIE, Acknowledge Register  
PIE, INT1 Group Enable Register  
PIE, INT1 Group Flag Register  
PIE, INT2 Group Enable Register  
PIE, INT2 Group Flag Register  
PIE, INT3 Group Enable Register  
PIE, INT3 Group Flag Register  
PIE, INT4 Group Enable Register  
PIE, INT4 Group Flag Register  
PIE, INT5 Group Enable Register  
PIE, INT5 Group Flag Register  
PIE, INT6 Group Enable Register  
PIE, INT6 Group Flag Register  
PIE, INT7 Group Enable Register  
PIE, INT7 Group Flag Register  
PIE, INT8 Group Enable Register  
PIE, INT8 Group Flag Register  
PIE, INT9 Group Enable Register  
PIE, INT9 Group Flag Register  
PIE, INT10 Group Enable Register  
PIE, INT10 Group Flag Register  
PIE, INT11 Group Enable Register  
PIE, INT11 Group Flag Register  
PIE, INT12 Group Enable Register  
PIE, INT12 Group Flag Register  
Reserved  
0x0CFA –  
0x0CFF  
(1) The PIE configuration and control registers are not protected by EALLOW mode. The PIE vector table  
is protected.  
66  
Power, Reset, Clocking, and Interrupts  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
5.3.1 External Interrupts  
Table 5-11. External Interrupt Registers  
NAME  
XINT1CR  
XINT2CR  
XINT3CR  
XINT1CTR  
XINT2CTR  
XINT3CTR  
ADDRESS  
0x00 7070  
0x00 7071  
0x00 7072  
0x00 7078  
0x00 7079  
0x00 707A  
SIZE (x16)  
DESCRIPTION  
XINT1 configuration register  
XINT2 configuration register  
XINT3 configuration register  
XINT1 counter register  
1
1
1
1
1
1
XINT2 counter register  
XINT3 counter register  
Each external interrupt can be enabled, disabled, or qualified using positive, negative, or both positive and  
negative edge. For more information, see the System Control and Interrupts chapter of the  
TMS320x2805x Piccolo Technical Reference Manual (literature number SPRUHE5).  
5.3.1.1 External Interrupt Electrical Data/Timing  
Table 5-12. External Interrupt Timing Requirements(1)  
TEST CONDITIONS  
Synchronous  
MIN  
1tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
(2)  
tw(INT)  
Pulse duration, INT input low/high  
With qualifier  
1tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 6-45.  
(2) This timing is applicable to any GPIO pin configured for ADCSOC functionality.  
Table 5-13. External Interrupt Switching Characteristics(1)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
tw(IQSW) + 12tc(SCO)  
UNIT  
td(INT)  
Delay time, INT low/high to interrupt-vector fetch  
cycles  
(1) For an explanation of the input qualifier parameters, see Table 6-45.  
t
w(INT)  
XINT1, XINT2, XINT3  
t
d(INT)  
Address bus  
(internal)  
Interrupt Vector  
Figure 5-8. External Interrupt Timing  
Copyright © 2012, Texas Instruments Incorporated  
Power, Reset, Clocking, and Interrupts  
67  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
6 Peripheral Information and Timings  
6.1 Parameter Information  
6.1.1 Timing Parameter Symbology  
Timing parameter symbols used are created in accordance with JEDEC Standard 100. To shorten the  
symbols, some of the pin names and other related terminology have been abbreviated as follows:  
Lowercase subscripts and their  
meanings:  
Letters and symbols and their  
meanings:  
a
c
d
access time  
H
L
High  
Low  
cycle time (period)  
delay time  
V
Valid  
Unknown, changing, or don't care  
level  
f
fall time  
X
Z
h
r
hold time  
High impedance  
rise time  
su  
t
setup time  
transition time  
valid time  
v
w
pulse duration (width)  
6.1.1.1 General Notes on Timing Parameters  
All output signals from the 28x devices (including XCLKOUT) are derived from an internal clock such that  
all output transitions for a given half-cycle occur with a minimum of skewing relative to each other.  
The signal combinations shown in the following timing diagrams may not necessarily represent actual  
cycles. For actual cycle examples, see the appropriate cycle description section of this document.  
6.1.2 Test Load Circuit  
This test load circuit is used to measure all switching characteristics provided in this document.  
Tester Pin Electronics  
Data Sheet Timing Reference Point  
W
3.5 nH  
Output  
Under  
Test  
42  
Transmission Line  
(A)  
Z0 = 50 W  
Device Pin(B)  
4.0 pF  
1.85 pF  
A. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the  
device pin.  
B. The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its  
transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to  
produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to  
add or subtract the transmission line delay (2 ns or longer) from the data sheet timing.  
Figure 6-1. 3.3-V Test Load Circuit  
68  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
6.2 Control Law Accelerator (CLA)  
6.2.1 Control Law Accelerator Device-Specific Information  
The control law accelerator extends the capabilities of the C28x CPU by adding parallel processing. Time-  
critical control loops serviced by the CLA can achieve low ADC sample to output delay. Thus, the CLA  
enables faster system response and higher frequency control loops. Utilizing the CLA for time-critical tasks  
frees up the main CPU to perform other system and communication functions concurently. The following is  
a list of major features of the CLA.  
Clocked at the same rate as the main CPU (SYSCLKOUT).  
An independent architecture allowing CLA algorithm execution independent of the main C28x CPU.  
Complete bus architecture:  
Program address bus and program data bus  
Data address bus, data read bus, and data write bus  
Independent eight-stage pipeline.  
12-bit program counter (MPC)  
Four 32-bit result registers (MR0–MR3)  
Two 16-bit auxillary registers (MAR0, MAR1)  
Status register (MSTF)  
Instruction set includes:  
IEEE single-precision (32-bit) floating-point math operations  
Floating-point math with parallel load or store  
Floating-point multiply with parallel add or subtract  
1/X and 1/sqrt(X) estimations  
Data type conversions.  
Conditional branch and call  
Data load and store operations  
The CLA program code can consist of up to eight tasks or interrupt service routines.  
The start address of each task is specified by the MVECT registers.  
No limit on task size as long as the tasks fit within the CLA program memory space.  
One task is serviced at a time through to completion. There is no nesting of tasks.  
Upon task completion, a task-specific interrupt is flagged within the PIE.  
When a task finishes, the next highest-priority pending task is automatically started.  
Task trigger mechanisms:  
C28x CPU via the IACK instruction  
Task1 to Task7: the corresponding ADC, ePWM, eQEP, or eCAP module interrupt. For example:  
Task1: ADCINT1 or EPWM1_INT  
Task2: ADCINT2 or EPWM2_INT  
Task4: ADCINT4 or EPWM4_INT or EQEPx_INT or ECAPx_INT  
Task7: ADCINT7 or EPWM7_INT or EQEPx_INT or ECAPx_INT  
Task8: ADCINT8 or by CPU Timer 0 or EQEPx_INT or ECAPx_INT  
Memory and Shared Peripherals:  
Two dedicated message RAMs for communication between the CLA and the main CPU.  
The C28x CPU can map CLA program and data memory to the main CPU space or CLA space.  
The CLA has direct access to the CLA Data ROM that stores the math tables required by the  
routines in the CLA Math Library.  
The CLA has direct access to the ADC Result registers, comparator and DAC registers, eCAP,  
eQEP, and ePWM registers.  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
69  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
Peripheral Interrupts  
IACK  
CLA Control  
Registers  
ADCINT1 to ADCINT8  
EPWM1_INT to EPWM7_INT  
ECAP1_INT  
CLA_INT1 to CLA_INT8  
MIFR  
MIOVF  
MICLR  
MICLROVF  
MIFRC  
MIER  
Main  
28x  
CPU  
INT11  
INT12  
MPERINT1  
to  
MPERINT8  
PIE  
EQEP1_INT  
LVF  
LUF  
CPU Timer 0  
MIRUN  
Main CPU Read/Write Data Bus  
MPISRCSEL1  
MVECT1  
MVECT2  
MVECT3  
MVECT4  
MVECT5  
MVECT6  
MVECT7  
MVECT8  
CLA Program Address Bus  
CLA Program Data Bus  
CLA  
Program  
Memory  
CLA  
Data  
Memory  
Map to CLA or  
CPU Space  
Map to CLA or  
CPU Space  
MMEMCFG  
MCTL  
SYSCLKOUT  
CLAENCLK  
SYSRS  
CLA  
Data  
ROM  
CLA  
Shared  
Message  
RAMs  
MEALLOW  
CLA Execution  
Registers  
CLA Data Read Address Bus  
ADC  
Result  
Registers  
MPC(12)  
MSTF(32)  
MR0(32)  
MR1(32)  
MR2(32)  
MR3(32)  
CLA Data Read Data Bus  
CLA Data Write Address Bus  
CLA Data Write Data Bus  
Main CPU Read Data Bus  
eCAP  
Registers  
MAR0(32)  
MAR1(32)  
eQEP  
Registers  
ePWM  
Registers  
Comparator  
+ DAC  
Registers  
Figure 6-2. CLA Block Diagram  
70  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
6.2.2 Control Law Accelerator Register Descriptions  
Table 6-1. CLA Control Registers  
CLA1  
ADDRESS  
EALLOW  
PROTECTED  
REGISTER NAME  
SIZE (x16)  
DESCRIPTION(1)  
MVECT1  
MVECT2  
MVECT3  
MVECT4  
MVECT5  
MVECT6  
MVECT7  
MVECT8  
MCTL  
0x1400  
0x1401  
0x1402  
0x1403  
0x1404  
0x1405  
0x1406  
0x1407  
0x1410  
0x1411  
0x1414  
0x1420  
0x1421  
0x1422  
0x1423  
0x1424  
0x1425  
0x1426  
0x1428  
0x142A  
0x142B  
0x142E  
0x1430  
0x1434  
0x1438  
0x143C  
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
CLA Interrupt/Task 1 Start Address  
CLA Interrupt/Task 2 Start Address  
CLA Interrupt/Task 3 Start Address  
CLA Interrupt/Task 4 Start Address  
CLA Interrupt/Task 5 Start Address  
CLA Interrupt/Task 6 Start Address  
CLA Interrupt/Task 7 Start Address  
CLA Interrupt/Task 8 Start Address  
CLA Control Register  
MMEMCFG  
MPISRCSEL1  
MIFR  
CLA Memory Configure Register  
Peripheral Interrupt Source Select Register 1  
Interrupt Flag Register  
MIOVF  
Interrupt Overflow Register  
Interrupt Force Register  
MIFRC  
MICLR  
Interrupt Clear Register  
MICLROVF  
MIER  
Interrupt Overflow Clear Register  
Interrupt Enable Register  
Interrupt RUN Register  
MIRUN  
MPC(2)  
MAR0(2)  
MAR1(2)  
MSTF(2)  
MR0(2)  
MR1(2)  
MR2(2)  
MR3(2)  
CLA Program Counter  
CLA Aux Register 0  
CLA Aux Register 1  
CLA STF Register  
CLA R0H Register  
CLA R1H Register  
CLA R2H Register  
CLA R3H Register  
(1) All registers in this table are DCSM protected  
(2) The main C28x CPU has read only access to this register for debug purposes. The main CPU cannot perform CPU or debugger writes  
to this register.  
Table 6-2. CLA Message RAM  
ADDRESS RANGE  
0x1480 – 0x14FF  
0x1500 – 0x157F  
SIZE (x16)  
128  
DESCRIPTION  
CLA to CPU Message RAM  
CPU to CLA Message RAM  
128  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
71  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
6.3 Analog Block  
6.3.1 Analog-to-Digital Converter (ADC)  
6.3.1.1 Analog-to-Digital Converter Device-Specific Information  
The core of the ADC contains a single 12-bit converter fed by two sample-and-hold circuits. The sample-  
and-hold circuits can be sampled simultaneously or sequentially. These, in turn, are fed by a total of up to  
16 analog input channels. The converter can be configured to run with an internal bandgap reference to  
create true-voltage based conversions or with a pair of external voltage references (VREFHI/VREFLO) to  
create ratiometric-based conversions.  
Contrary to previous ADC types, this ADC is not sequencer-based. The user can easily create a series of  
conversions from a single trigger. However, the basic principle of operation is centered around the  
configurations of individual conversions, called SOCs, or Start-Of-Conversions.  
Functions of the ADC module include:  
12-bit ADC core with built-in dual sample-and-hold (S/H)  
Simultaneous sampling or sequential sampling modes  
Full range analog input: 0 V to 3.3 V fixed, or VREFHI/VREFLO ratiometric. The digital value of the input  
analog voltage is derived by:  
Internal Reference (VREFLO = VSSA. VREFHI must not exceed VDDA when using either internal or  
external reference modes.)  
Digital Value = 0,  
when input £ 0 V  
Input Analog Voltage -  
VREFLO  
Digital Value = 4096 ´  
when 0 V < input < 3.3 V  
3.3  
Digital Value = 4095,  
when input ³ 3.3 V  
External Reference (VREFHI/VREFLO connected to external references. VREFHI must not exceed VDDA  
when using either internal or external reference modes.)  
Digital Value = 0,  
when input £ 0 V  
Input Analog Voltage -  
VREFLO  
Digital Value = 4096 ´  
when 0 V < input <  
VREFHI  
-
VREFHI VREFLO  
Digital Value = 4095,  
when input ³  
VREFHI  
Runs at full system clock, no prescaling required  
Up to 16-channel, multiplexed inputs  
16 SOCs, configurable for trigger, sample window, and channel  
16 result registers (individually addressable) to store conversion values  
Multiple trigger sources  
S/W – software immediate start  
ePWM 1–7  
GPIO XINT2  
CPU Timer 0, CPU Timer 1, CPU Timer 2  
ADCINT1, ADCINT2  
9 flexible PIE interrupts, can configure interrupt request after any conversion  
72  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Table 6-3. ADC Configuration and Control Registers  
SIZE  
(x16)  
EALLOW  
PROTECTED  
REGISTER NAME  
ADDRESS  
DESCRIPTION  
ADCCTL1  
0x7100  
0x7101  
0x7104  
0x7105  
0x7106  
0x7107  
0x7108  
0x7109  
0x710A  
0x710B  
0x710C  
0x7110  
0x7112  
0x7114  
0x7115  
0x7118  
0x711A  
0x711C  
0x711E  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Yes  
Yes  
No  
Control 1 Register  
ADCCTL2  
Control 2 Register  
ADCINTFLG  
Interrupt Flag Register  
ADCINTFLGCLR  
ADCINTOVF  
No  
Interrupt Flag Clear Register  
No  
Interrupt Overflow Register  
ADCINTOVFCLR  
INTSEL1N2  
No  
Interrupt Overflow Clear Register  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Interrupt 1 and 2 Selection Register  
Interrupt 3 and 4 Selection Register  
Interrupt 5 and 6 Selection Register  
Interrupt 7 and 8 Selection Register  
Interrupt 9 Selection Register (reserved Interrupt 10 Selection)  
SOC Priority Control Register  
INTSEL3N4  
INTSEL5N6  
INTSEL7N8  
INTSEL9N10  
SOCPRICTL  
ADCSAMPLEMODE  
ADCINTSOCSEL1  
ADCINTSOCSEL2  
ADCSOCFLG1  
ADCSOCFRC1  
ADCSOCOVF1  
ADCSOCOVFCLR1  
Sampling Mode Register  
Interrupt SOC Selection 1 Register (for 8 channels)  
Interrupt SOC Selection 2 Register (for 8 channels)  
SOC Flag 1 Register (for 16 channels)  
SOC Force 1 Register (for 16 channels)  
SOC Overflow 1 Register (for 16 channels)  
SOC Overflow Clear 1 Register (for 16 channels)  
SOC0 Control Register to SOC15 Control Register  
No  
No  
No  
ADCSOC0CTL to  
ADCSOC15CTL  
0x7120 –  
0x712F  
Yes  
ADCREFTRIM  
ADCOFFTRIM  
COMPHYSTCTL  
ADCREV  
0x7140  
0x7141  
0x714C  
0x714F  
1
1
1
1
Yes  
Yes  
Yes  
No  
Reference Trim Register  
Offset Trim Register  
Comparator Hysteresis Control Register  
Revision Register  
Table 6-4. ADC Result Registers (Mapped to PF0)  
SIZE  
(x16)  
EALLOW  
PROTECTED  
REGISTER NAME  
ADDRESS  
DESCRIPTION  
ADCRESULT0 to  
ADCRESULT15  
0xB00 –  
0xB0F  
1
No  
ADC Result 0 Register to ADC Result 15 Register  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
73  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
0-Wait  
Result  
Registers  
PF0 (CPU)  
PF2 (CPU)  
SYSCLKOUT  
ADCENCLK  
ADCINT 1  
ADCINT 9  
PIE  
TINT 0  
TINT 1  
TINT 2  
CPUTIMER 0  
CPUTIMER 1  
CPUTIMER 2  
ADCTRIG 1  
ADCTRIG 2  
ADCTRIG 3  
ADC  
Core  
12-Bit  
ADC  
Channels  
XINT 2SOC  
XINT 2  
EPWM 1  
EPWM 2  
EPWM 3  
EPWM 4  
EPWM 5  
EPWM 6  
EPWM 7  
ADCTRIG 4  
SOCA 1  
SOCB 1  
SOCA 2  
SOCB 2  
SOCA 3  
SOCB 3  
SOCA 4  
SOCB 4  
SOCA 5  
SOCB 5  
SOCA 6  
SOCB 6  
SOCA 7  
SOCB 7  
ADCTRIG 5  
ADCTRIG 6  
ADCTRIG 7  
ADCTRIG 8  
ADCTRIG 9  
ADCTRIG 10  
ADCTRIG 11  
ADCTRIG 12  
ADCTRIG 13  
ADCTRIG 14  
ADCTRIG 15  
ADCTRIG 16  
ADCTRIG 17  
ADCTRIG 18  
Figure 6-3. ADC Connections  
ADC Connections if the ADC is Not Used  
TI recommends that the connections for the analog power pins be kept, even if the ADC is not used.  
Following is a summary of how the ADC pins should be connected, if the ADC is not used in an  
application:  
VDDA – Connect to VDDIO  
VSSA – Connect to VSS  
VREFLO – Connect to VSS  
ADCINAn, ADCINBn, VREFHI – Connect to VSSA  
When the ADC module is used in an application, unused ADC input pins should be connected to analog  
ground (VSSA).  
When the ADC is not used, be sure that the clock to the ADC module is not turned on to realize power  
savings.  
74  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
6.3.1.2 Analog-to-Digital Converter Electrical Data/Timing  
Table 6-5. ADC Electrical Characteristics  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
DC SPECIFICATIONS  
Resolution  
12  
0.5  
10  
Bits  
ADC clock  
60  
63  
MHz  
Sample Window (see Table 6-6)  
28055, 28054, 28053,  
28052  
ADC  
Clocks  
28051, 28050  
24  
63  
ACCURACY  
INL (Integral nonlinearity)(1)  
–4  
–1  
4
1.5  
20  
LSB  
LSB  
LSB  
DNL (Differential nonlinearity), no missing codes  
(2)  
Offset error  
Executing a single self-  
recalibration(3)  
–20  
0
0
Executing periodic self-  
recalibration(4)  
–4  
4
Overall gain error with internal reference  
Overall gain error with external reference  
Channel-to-channel offset variation  
Channel-to-channel gain variation  
ADC temperature coefficient with internal reference  
ADC temperature coefficient with external reference  
VREFLO  
–60  
–40  
–4  
60  
40  
4
LSB  
LSB  
LSB  
–4  
4
LSB  
–50  
–20  
ppm/°C  
ppm/°C  
µA  
–100  
100  
VREFHI  
µA  
ANALOG INPUT  
Analog input voltage with internal reference  
Analog input voltage with external reference  
VREFLO input voltage  
0
VREFLO  
VSSA  
3.3  
VREFHI  
0.66  
V
V
V
V
VREFHI input voltage(5)  
2.64  
VDDA  
VDDA  
with VREFLO = VSSA  
1.98  
Input capacitance  
5
pF  
Input leakage current  
±2  
μA  
(1) INL will degrade when the ADC input voltage goes above VDDA  
.
(2) 1 LSB has the weighted value of full-scale range (FSR)/4096. FSR is 3.3 V with internal reference and VREFHI - VREFLO for external  
reference.  
(3) For more details, see the TMS320F28055, TMS320F28054, TMS320F28053, TMS320F28052, TMS320F28051, TMS320F28050  
Piccolo MCU Silicon Errata (literature number SPRZ362).  
(4) Periodic self-recalibration will remove system-level and temperature dependencies on the ADC zero offset error. This can be performed  
as needed in the application without sacrificing an ADC channel by using the procedure listed in the "ADC Zero Offset Calibration"  
section in the Analog-to-Digital Converter and Comparator chapter of the TMS320x2805x Piccolo Technical Reference Manual (literature  
number SPRUHE5).  
(5) VREFHI must not exceed VDDA when using either internal or external reference modes.  
Table 6-6. ACQPS Values(1)  
OVERLAP MODE  
{9, 10, 23, 36, 49, 62}  
{23, 36, 49, 62}  
NONOVERLAP MODE  
{15, 16, 28, 29, 41, 42, 54, 55}  
{15, 16, 28, 29, 41, 42, 54, 55}  
Non-PGA  
PGA  
(1) ACQPS = 6 can be used for the first sample if it is thrown away.  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
75  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
Table 6-7. ADC Power Modes  
ADC OPERATING MODE  
Mode A – Operating Mode  
CONDITIONS  
IDDA  
UNITS  
ADC Clock Enabled  
13  
mA  
Bandgap On (ADCBGPWD = 1)  
Reference On (ADCREFPWD = 1)  
ADC Powered Up (ADCPWDN = 1)  
Mode B – Quick Wake Mode  
Mode C – Comparator-Only Mode  
Mode D – Off Mode  
ADC Clock Enabled  
4
mA  
mA  
mA  
Bandgap On (ADCBGPWD = 1)  
Reference On (ADCREFPWD = 1)  
ADC Powered Up (ADCPWDN = 0)  
ADC Clock Enabled  
1.5  
Bandgap On (ADCBGPWD = 1)  
Reference On (ADCREFPWD = 0)  
ADC Powered Up (ADCPWDN = 0)  
ADC Clock Enabled  
0.075  
Bandgap On (ADCBGPWD = 0)  
Reference On (ADCREFPWD = 0)  
ADC Powered Up (ADCPWDN = 0)  
6.3.1.2.1 External ADC Start-of-Conversion Electrical Data/Timing  
Table 6-8. External ADC Start-of-Conversion Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
tw(ADCSOCL)  
Pulse duration, ADCSOCxO low  
32tc(HCO )  
cycles  
tw(ADCSOCL)  
ADCSOCAO  
or  
ADCSOCBO  
Figure 6-4. ADCSOCAO or ADCSOCBO Timing  
6.3.1.2.2 Internal Temperature Sensor  
Table 6-9. Temperature Sensor Coefficient(1)  
PARAMETER(2)  
MIN  
TYP  
MAX  
UNIT  
TSLOPE  
Degrees C of temperature movement per measured ADC LSB change  
of the temperature sensor  
0.18(3)(4)  
°C/LSB  
TOFFSET  
ADC output at 0°C of the temperature sensor  
1750  
LSB  
(1) The accuracy of the temperature sensor for sensing absolute temperature (temperature in degrees) is not specified. The primary use of  
the temperature sensor should be to compensate the internal oscillator for temperature drift (this operation is assured as per Table 5-5).  
(2) The temperature sensor slope and offset are given in terms of ADC LSBs using the internal reference of the ADC. Values must be  
adjusted accordingly in external reference mode to the external reference voltage.  
(3) ADC temperature coeffieicient is accounted for in this specification  
(4) Output of the temperature sensor (in terms of LSBs) is sign-consistent with the direction of the temperature movement. Increasing  
temperatures will give increasing ADC values relative to an initial value; decreasing temperatures will give decreasing ADC values  
relative to an initial value.  
76  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
6.3.1.2.3 ADC Power-Up Control Bit Timing  
Table 6-10. ADC Power-Up Delays  
PARAMETER(1)  
MIN  
MAX  
UNIT  
td(PWD)  
Delay time for the ADC to be stable after power up  
1
ms  
(1) Timings maintain compatibility to the ADC module. The 2805x ADC supports driving all 3 bits at the same time td(PWD) ms before first  
conversion.  
ADCPWDN/  
ADCBGPWD/  
ADCREFPWD/  
ADCENABLE  
td(PWD)  
Request for ADC  
Conversion  
Figure 6-5. ADC Conversion Timing  
Ron  
3.4 kW  
Switch  
Rs  
ADCIN  
Cp  
Ch  
Source  
Signal  
ac  
5 pF  
1.6 pF  
28x DSP  
Typical Values of the Input Circuit Components:  
Switch Resistance (Ron): 3.4 kW  
Sampling Capacitor (Ch): 1.6 pF  
Parasitic Capacitance (Cp): 5 pF  
Source Resistance (Rs): 50 W  
Figure 6-6. ADC Input Impedance Model  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
77  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
6.3.1.2.4 ADC Sequential and Simultaneous Timings  
Analog Input  
SOC0 Sample  
Window  
SOC1 Sample  
Window  
SOC2 Sample  
Window  
0
2
9
15  
22 24  
37  
ADCCLK  
ADCCTL 1.INTPULSEPOS  
ADCSOCFLG 1.SOC0  
ADCSOCFLG 1.SOC1  
ADCSOCFLG 1.SOC2  
S/H Window Pulse to Core  
ADCRESULT 0  
SOC0  
SOC1  
SOC2  
Result 0 Latched  
2 ADCCLKs  
ADCRESULT 1  
EOC0 Pulse  
EOC1 Pulse  
ADCINTFLG.ADCINTx  
Minimum  
7 ADCCLKs  
Conversion 0  
13 ADC Clocks  
1 ADCCLK  
6
Minimum  
ADCCLKs 7 ADCCLKs  
Conversion 1  
13 ADC Clocks  
A. This diagram uses ACQPS = 6 timings. These particular timings are not valid on this device (except for a throw-away  
sample to meet the first sample issue in the device errata), but they correctly demonstrate the operation of the  
converter.  
Figure 6-7. Timing Example for Sequential Mode / Late Interrupt Pulse  
78  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Analog Input  
SOC0 Sample  
Window  
SOC1 Sample  
Window  
SOC2 Sample  
Window  
0
2
9
15  
22 24  
37  
ADCCLK  
ADCCTL1.INTPULSEPOS  
ADCSOCFLG 1.SOC0  
ADCSOCFLG 1.SOC1  
ADCSOCFLG 1.SOC2  
S/H Window Pulse to Core  
ADCRESULT 0  
SOC0  
SOC1  
SOC2  
Result 0 Latched  
ADCRESULT 1  
EOC0 Pulse  
EOC1 Pulse  
EOC2 Pulse  
ADCINTFLG.ADCINTx  
Minimum  
7 ADCCLKs  
Conversion 0  
13 ADC Clocks  
2 ADCCLKs  
6
Minimum  
ADCCLKs 7 ADCCLKs  
Conversion 1  
13 ADC Clocks  
A. This diagram uses ACQPS = 6 timings. These particular timings are not valid on this device (except for a throw-away  
sample to meet the first sample issue in the device errata), but they correctly demonstrate the operation of the  
converter.  
Figure 6-8. Timing Example for Sequential Mode / Early Interrupt Pulse  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
79  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
Analog Input A  
SOC0 Sample  
A Window  
SOC2 Sample  
A Window  
Analog Input B  
SOC0 Sample  
B Window  
SOC2 Sample  
B Window  
0
2
9
22 24  
37  
50  
ADCCLK  
ADCCTL1.INTPULSEPOS  
ADCSOCFLG 1.SOC0  
ADCSOCFLG 1.SOC1  
ADCSOCFLG 1.SOC2  
S/H Window Pulse to Core  
ADCRESULT 0  
SOC0 (A/B)  
SOC2 (A/B)  
2 ADCCLKs  
Result 0 (A) Latched  
ADCRESULT 1  
Result 0 (B) Latched  
ADCRESULT 2  
EOC0 Pulse  
EOC1 Pulse  
1 ADCCLK  
EOC2 Pulse  
ADCINTFLG .ADCINTx  
Minimum  
7 ADCCLKs  
Conversion 0 (A)  
13 ADC Clocks  
Conversion 0 (B)  
13 ADC Clocks  
2 ADCCLKs  
19  
ADCCLKs  
Minimum  
7 ADCCLKs  
Conversion 1 (A)  
13 ADC Clocks  
A. This diagram uses ACQPS = 6 timings. These particular timings are not valid on this device (except for a throw-away  
sample to meet the first sample issue in the device errata), but they correctly demonstrate the operation of the  
converter.  
Figure 6-9. Timing Example for Simultaneous Mode / Late Interrupt Pulse  
80  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Analog Input A  
Analog Input B  
SOC0 Sample  
A Window  
SOC2 Sample  
A Window  
SOC0 Sample  
B Window  
SOC2 Sample  
B Window  
0
2
9
22 24  
37  
50  
ADCCLK  
ADCCTL1.INTPULSEPOS  
ADCSOCFLG1.SOC0  
ADCSOCFLG1.SOC1  
ADCSOCFLG1.SOC2  
S/H Window Pulse to Core  
ADCRESULT 0  
SOC0 (A/B)  
SOC2 (A/B)  
Result 0 (A) Latched  
2 ADCCLKs  
Result 0 (B) Latched  
ADCRESULT 1  
ADCRESULT 2  
EOC0 Pulse  
EOC1 Pulse  
EOC2 Pulse  
ADCINTFLG.ADCINTx  
Conversion 0 (A)  
13 ADC Clocks  
Conversion 0 (B)  
13 ADC Clocks  
Minimum  
2 ADCCLKs  
7 ADCCLKs  
19  
Minimum  
7 ADCCLKs  
Conversion 1 (A)  
13 ADC Clocks  
ADCCLKs  
A. This diagram uses ACQPS = 6 timings. These particular timings are not valid on this device (except for a throw-away  
sample to meet the first sample issue in the device errata), but they correctly demonstrate the operation of the  
converter.  
Figure 6-10. Timing Example for Simultaneous Mode / Early Interrupt Pulse  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
81  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
6.3.1.2.5 Detailed Descriptions  
Integral Nonlinearity  
Integral nonlinearity refers to the deviation of each individual code from a line drawn from zero through full  
scale. The point used as zero occurs one-half LSB before the first code transition. The full-scale point is  
defined as level one-half LSB beyond the last code transition. The deviation is measured from the center  
of each particular code to the true straight line between these two points.  
Differential Nonlinearity  
An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal  
value. A differential nonlinearity error of less than ±1 LSB ensures no missing codes.  
Zero Offset  
Zero error is the difference between the ideal input voltage and the actual input voltage that just causes a  
transition from an output code of zero to an output code of one.  
Gain Error  
The first code transition should occur at an analog value one-half LSB above negative full scale. The last  
transition should occur at an analog value one and one-half LSB below the nominal full scale. Gain error is  
the deviation of the actual difference between first and last code transitions and the ideal difference  
between first and last code transitions.  
Signal-to-Noise Ratio + Distortion (SINAD)  
SINAD is the ratio of the rms value of the measured input signal to the rms sum of all other spectral  
components below the Nyquist frequency, including harmonics but excluding dc. The value for SINAD is  
expressed in decibels.  
Effective Number of Bits (ENOB)  
For a sine wave, SINAD can be expressed in terms of the number of bits. Using the following formula,  
(SINAD -1.76)  
N =  
6.02  
it is possible to get a measure of performance expressed as N, the effective number of  
bits. Thus, effective number of bits for a device for sine wave inputs at a given input frequency can be  
calculated directly from its measured SINAD.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first nine harmonic components to the rms value of the measured  
input signal and is expressed as a percentage or in decibels.  
Spurious Free Dynamic Range (SFDR)  
SFDR is the difference in dB between the rms amplitude of the input signal and the peak spurious signal.  
82  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
6.3.2 Analog Front End (AFE)  
6.3.2.1 Analog Front End Device-Specific Information  
The Analog Front End (AFE) contains up to seven comparators with up to three integrated Digital-to-  
Analog Converters (DACs), one VREFOUT-buffered DAC, up to four Programmable Gain Amplifiers  
(PGAs), and up to four digital filters. Figure 6-11 and Figure 6-12 show the AFE.  
The comparator output signal filtering is achieved using the Digital Filter present on selective input line  
and qualifies the output of the COMP/DAC subsystem (see Figure 6-13). The filtered or unfiltered output  
of the COMP/DAC subsystem can be configured to be an input to the Digital Compare submodule of the  
ePWM peripheral. Note: The Analog inputs are brought in through the AFE subsystem rather than through  
an AIO Mux, which is not present.  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
83  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
VREFHI  
VREFHI  
A0  
VREFOUT/A0  
_
_
VREFOUT  
COMPB7  
DFSS  
Cmp1  
+
Cmp1  
+
Buffered  
DAC Output  
DAC6 6-bit  
B7  
B7  
PGA  
G~ = 3, 6, 11  
DAC5 6-bit  
PFCGND  
B0  
A2  
A4  
B2  
B0  
A2  
A4  
B2  
DAC1 6-bit  
COMPA1H  
_
_
COMPA1L  
DFSS  
Cmp2  
Cmp3  
+
+
ADCIN-  
SWITCH  
A1  
DFSS  
PGA  
G~ = 3, 6, 11  
A1  
A3  
M1GND  
_
_
COMPA3H  
DFSS  
COMPA3L  
DFSS  
Cmp4  
Cmp5  
+
+
A3  
B1  
PGA  
G~ = 3, 6, 11  
_
_
M1GND  
M1GND  
COMPB1H  
DFSS  
COMPB1L  
DFSS  
Cmp6  
Cmp7  
+
+
PGA  
G~ = 3, 6, 11  
B1  
ADCIN-  
SWITCH  
ADC  
DAC2 6-bit  
Temp Sensor  
A5  
A5  
ADCCTL1.TEMPCONV  
ADCCTL1.REFLOCONV  
VREFLO  
VREFLO  
B5  
B5  
A7  
B3  
A7  
B3  
GAIN AMP  
G~ = 3  
A6  
A6  
B4  
B6  
M2GND  
M2GND  
M2GND  
GAIN AMP  
G~ = 3  
B4  
GAIN AMP  
G~ = 3  
B6  
Legend  
Cmp - Comparator  
DFSS - Comparator Trip/Digital Filter Subsystem Block  
GAIN AMP - Fixed Gain Amplifier  
PGA - Programmable Gain Amplifier  
Figure 6-11. 28055, 28054, 28053, 28052, and 28051 Analog Front End (AFE)  
84  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
VREFHI  
VREFHI  
A0  
VREFOUT/A0  
_
VREFOUT  
Cmp1  
+
Buffered  
DAC Output  
DAC6 6-bit  
GAIN AMP  
G~ = 3  
B7  
B7  
PFCGND  
B0  
A2  
A4  
B2  
B0  
A2  
A4  
B2  
DAC1 6-bit  
COMPA1H  
_
_
COMPA1L  
DFSS  
Cmp2  
Cmp3  
+
+
ADCIN-  
SWITCH  
A1  
DFSS  
PGA  
G~ = 3, 6, 11  
A1  
A3  
M1GND  
_
_
COMPA3H  
DFSS  
COMPA3L  
DFSS  
Cmp4  
Cmp5  
+
+
A3  
B1  
PGA  
G~ = 3, 6, 11  
_
_
M1GND  
M1GND  
COMPB1H  
DFSS  
COMPB1L  
DFSS  
Cmp6  
Cmp7  
+
+
PGA  
G~ = 3, 6, 11  
B1  
A5  
ADCIN-  
SWITCH  
ADC  
DAC2 6-bit  
Temp Sensor  
A5  
ADCCTL1.TEMPCONV  
ADCCTL1.REFLOCONV  
VREFLO  
VREFLO  
B5  
B5  
A7  
B3  
A7  
B3  
GAIN AMP  
G~ = 3  
A6  
A6  
B4  
B6  
M2GND  
M2GND  
M2GND  
GAIN AMP  
G~ = 3  
B4  
GAIN AMP  
G~ = 3  
B6  
Legend  
Cmp - Comparator  
DFSS - Comparator Trip/Digital Filter Subsystem Block  
GAIN AMP - Fixed Gain Amplifier  
PGA - Programmable Gain Amplifier  
Figure 6-12. 28050 Analog Front End (AFE)  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
85  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
ePWM 1-7  
DCAH  
DCAL  
COMPxINPEN  
D
CTRIPxx0CTLREGISTER  
CTRIPEN  
C
T
R
I
P
S
E
L
ENABLES  
COMPxxPOL  
CTRIPFILCTRL  
REGISTER  
COMPxxH  
1
0
0
1
Digital Filter  
(to all ePWM modules)  
DCBH  
DCBL  
COMPxxPOL  
COMPxxL  
CTRIPBYP  
SYSCLK  
0
CTRIPxxOUTEN  
CTRIPOUTxxSTS  
CTRIPOUTxxFLG  
CTRIPOUTLATEN  
1
0
CTRIPOUTBYP  
1
0
1
GPIO  
MUX  
CTRIPOUTPOL  
Figure 6-13. Comparator Trip/Digital Filter Subsystem  
86  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
6.3.2.2 Analog Front End Register Descriptions  
Table 6-11. DAC Control Registers  
SIZE  
(x16)  
EALLOW  
PROTECTED  
REGISTER NAME  
DAC1CTL  
ADDRESS  
DESCRIPTION  
0x6400  
0x6401  
0x6402  
0x6403  
0x6404  
0x6405  
1
1
1
1
1
1
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
DAC1 Control Register  
DAC2 Control Register  
DAC3 Control Register  
DAC4 Control Register  
DAC5 Control Register  
VREFOUT DAC Control Register  
DAC2CTL  
DAC3CTL  
DAC4CTL  
DAC5CTL  
VREFOUTCTL  
Table 6-12. DAC, PGA, Comparator, and Filter Enable Registers  
SIZE  
(x16)  
EALLOW  
PROTECTED  
REGISTER NAME  
ADDRESS  
DESCRIPTION  
DACEN  
0x6410  
0x6411  
0x6412  
0x6413  
0x6414  
0x6415  
0x6416  
1
1
1
1
1
1
1
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
DAC Enables Register  
VREFOUTEN  
PGAEN  
VREFOUT Enable Register  
Programmable Gain Amplifier Enable Register  
Comparator Enable Register  
COMPEN  
AMPM1_GAIN  
AMPM2_GAIN  
AMP_PFC_GAIN  
Motor Unit 1 PGA Gain Controls Register  
Motor Unit 2 PGA Gain Controls Register  
PFC PGA Gain Controls Register  
Table 6-13. SWITCH Registers  
SIZE  
(x16)  
EALLOW  
PROTECTED  
REGISTER NAME  
ADDRESS  
DESCRIPTION  
ADCINSWITCH  
Reserved  
0x6421  
1
7
Yes  
Yes  
ADC Input-Select Switch Control Register  
Reserved  
0x6422 –  
0x6428  
COMPHYSTCTL  
0x6429  
1
Yes  
Comparator Hysteresis Control Register  
Table 6-14. Digital Filter and Comparator Control Registers  
SIZE  
(x16)  
EALLOW  
PROTECTED  
REGISTER NAME  
ADDRESS  
DESCRIPTION  
CTRIPA1ICTL  
CTRIPA1FILCTL  
CTRIPA1FILCLKCTL  
Reserved  
0x6430  
0x6431  
0x6432  
0x6433  
0x6434  
0x6435  
0x6436  
0x6437  
0x6438  
0x6439  
0x643A  
0x643B  
0x643C  
0x643D  
0x643E  
0x643F  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
CTRIPA1 Filter Input and Function Control Register  
CTRIPA1 Filter Parameters Register  
CTRIPA1 Filter Sample Clock Control Register  
Reserved  
CTRIPA3ICTL  
CTRIPA3FILCTL  
CTRIPA3FILCLKCTL  
Reserved  
CTRIPA3 Filter Input and Function Control Register  
CTRIPA3 Filter Parameters Register  
CTRIPA3 Filter Sample Clock Control Register  
Reserved  
CTRIPB1ICTL  
CTRIPB1FILCTL  
CTRIPB1FILCLKCTL  
Reserved  
CTRIPB1 Filter Input and Function Control Register  
CTRIPB1 Filter Parameters Register  
CTRIPB1 Filter Sample Clock Control Register  
Reserved  
Reserved  
Reserved  
CTRIPM1OCTL  
CTRIPM1STS  
CTRIPM1FLGCLR  
CTRIPM1 CTRIP Filter Output Control Register  
CTRIPM1 CTRIPxx Outputs Status Register  
CTRIPM1 CTRIPxx Flag Clear Register  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
87  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
Table 6-14. Digital Filter and Comparator Control Registers (continued)  
SIZE  
(x16)  
EALLOW  
PROTECTED  
REGISTER NAME  
Reserved  
ADDRESS  
DESCRIPTION  
0x6440 –  
0x644F  
16  
Yes  
Reserved  
CTRIPA6ICTL  
CTRIPA6FILCTL  
CTRIPA6FILCLKCTL  
Reserved  
0x6450  
0x6451  
0x6452  
0x6453  
0x6454  
0x6455  
0x6456  
0x6457  
0x6458  
0x6459  
0x645A  
0x645B  
0x645C  
0x645D  
0x645E  
0x645F  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
16  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
CTRIPA6 Filter Input and Function Control Register  
CTRIPA6 Filter Parameters Register  
CTRIPA6 Filter Sample Clock Control Register  
Reserved  
CTRIPB4ICTL  
CTRIPB4FILCTL  
CTRIPB4FILCLKCTL  
Reserved  
CTRIPB4 Filter Input and Function Control Register  
CTRIPB4 Filter Parameters Register  
CTRIPB4 Filter Sample Clock Control Register  
Reserved  
CTRIPB6ICTL  
CTRIPB6FILCTL  
CTRIPB6FILCLKCTL  
Reserved  
CTRIPB6 Filter Input and Function Control Register  
CTRIPB6 Filter Parameters Register  
CTRIPB6 Filter Sample Clock Control Register  
Reserved  
Reserved  
Reserved  
CTRIPM2OCTL  
CTRIPM2STS  
CTRIPM2FLGCLR  
Reserved  
CTRIPM2 CTRIP Filter Output Control Register  
CTRIPM2 CTRIPxx Outputs Status Register  
CTRIPM2 CTRIPxx Flag Clear Register  
Reserved  
0x6460 –  
0x646F  
CTRIPB7ICTL  
CTRIPB7FILCTL  
CTRIPB7FILCLKCTL  
Reserved  
0x6470  
0x6471  
0x6472  
1
1
1
9
Yes  
Yes  
Yes  
Yes  
CTRIPB7 Filter Input and Function Control Register  
CTRIPB7 Filter Parameters Register  
CTRIPB7 Filter Sample Clock Control Register  
Reserved  
0x6473 –  
0x647B  
Reserved  
0x647C  
0x647D  
0x647E  
0x647F  
1
1
1
1
Yes  
Yes  
Yes  
Yes  
Reserved  
CTRIPPFCOCTL  
CTRIPPFCSTS  
CTRIPPFCFLGCLR  
CTRIPPFC CTRIPxx Outputs Status Register  
CTRIPPFC CTRIPxx Flag Clear Register  
CTRIPPFC COMP Test Control Register  
Table 6-15. LOCK Registers  
SIZE  
(x16)  
EALLOW  
PROTECTED  
REGISTER NAME  
ADDRESS  
DESCRIPTION  
LOCKCTRIP  
Reserved  
0x64F0  
0x64F1  
0x64F2  
0x64F3  
0x64F4  
0x64F5  
0x64F6  
1
1
1
1
1
1
1
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Lock Register for CTRIP Filters Register  
Reserved  
LOCKDAC  
Lock Register for DACs Register  
Reserved  
Reserved  
LOCKAMPCOMP  
Reserved  
Lock Register for Amplifiers and Comparators Register  
Reserved  
LOCKSWITCH  
Lock Register for Switches Register  
88  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
6.3.2.3 Programmable Gain Amplifier Electrical Data/Timing  
Table 6-16. Op-Amp Linear Output and ADC Sampling Time Across Gain Settings  
MINIMUM  
EQUIVALENT GAIN FROM  
INPUT TO OUTPUT  
LINEAR OUTPUT RANGE  
OF OP-AMP  
ADC SAMPLING TIME  
TO ACHIEVE SETTLING  
ACCURACY  
INTERNAL RESISTOR RATIO  
10  
5
11  
6
0.6 V to VDDA – 0.6 V  
0.6 V to VDDA – 0.6 V  
0.6 V to VDDA – 0.6 V  
384 ns (ACQPS = 23)  
384 ns (ACQPS = 23)  
384 ns (ACQPS = 23)  
2
3
Table 6-17. PGA Gain Stage: DC Accuracy Across Gain Settings  
COMPENSATED  
GAIN-ERROR DRIFT ACROSS  
COMPENSATED INPUT  
OFFSET-ERROR ACROSS  
EQUIVALENT GAIN FROM  
INPUT TO OUTPUT  
INTERNAL RESISTOR RATIO  
TEMPERATURE AND SUPPLY TEMPERATURE AND SUPPLY  
VARIATIONS  
VARIATIONS IN mV  
10  
5
11  
6
< ±2.5%  
< ±8 mV  
< ±1.5%  
< ±8 mV  
2
3
< ±1.0%  
< ±8 mV  
6.3.2.4 Comparator Block Electrical Data/Timing  
Table 6-18. Electrical Characteristics of the Comparator/DAC  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
Comparator  
Comparator Input Range  
Comparator response time to PWM Trip Zone (Async)  
VSSA – VDDA  
V
65  
95  
ns  
Comparator large step response time to PWM Trip Zone (Async)  
ns  
Input Offset  
Input Hysteresis(1)  
TBD  
TBD  
mV  
mV  
DAC  
DAC Output Range  
DAC resolution  
DAC Gain  
VDDA / 26 – VDDA  
V
6
–1.5  
10  
bits  
%
DAC Offset  
Monotonic  
mV  
Yes  
0.2  
INL  
LSB  
(1) Hysteresis on the comparator inputs is achieved with a Schmidt trigger configuration, which results in an effective 100-kΩ feedback  
resistance between the output of the comparator and the non-inverting input of the comparator. There is an option to disable the  
hysteresis and, with it, the feedback resistance; see the Analog-to-Digital Converter and Comparator chapter of the TMS320x2805x  
Piccolo Technical Reference Manual (literature number SPRUHE5) for more information on this option if needed in your system.  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
89  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
6.3.2.5 VREFOUT Buffered DAC Electrical Data  
Table 6-19. Electrical Characteristics of VREFOUT Buffered DAC  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
LSB  
bits  
VREFOUT Programmable Range  
VREFOUT resolution  
VREFOUT Gain  
VREFOUT Offset  
Monotonic  
6
56  
6
–1.5  
10  
%
mV  
Yes  
±0.2  
INL  
LSB  
kΩ  
Load  
3
100  
pF  
90  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
6.4 Serial Peripheral Interface (SPI)  
6.4.1 Serial Peripheral Interface Device-Specific Information  
The device includes the four-pin serial peripheral interface (SPI) module. The SPI is a high-speed,  
synchronous serial I/O port that allows a serial bit stream of programmed length (one to sixteen bits) to be  
shifted into and out of the device at a programmable bit-transfer rate. Normally, the SPI is used for  
communications between the MCU and external peripherals or another processor. Typical applications  
include external I/O or peripheral expansion through devices such as shift registers, display drivers, and  
ADCs. Multidevice communications are supported by the master/slave operation of the SPI.  
The SPI module features include:  
Four external pins:  
SPISOMI: SPI slave-output/master-input pin  
SPISIMO: SPI slave-input/master-output pin  
SPISTE: SPI slave transmit-enable pin  
SPICLK: SPI serial-clock pin  
NOTE: All four pins can be used as GPIO if the SPI module is not used.  
Two operational modes: master and slave  
Baud rate: 125 different programmable rates.  
LSPCLK  
Baud rate =  
when SPIBRR = 3 to127  
when SPIBRR = 0,1, 2  
(SPIBRR + 1)  
LSPCLK  
Baud rate =  
4
Data word length: one to sixteen data bits  
Four clocking schemes (controlled by clock polarity and clock phase bits) include:  
Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the  
SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the  
falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.  
Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the  
SPICLK signal and receives data on the falling edge of the SPICLK signal.  
Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the  
falling edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Simultaneous receive and transmit operation (transmit function can be disabled in software)  
Transmitter and receiver operations are accomplished through either interrupt-driven or polled  
algorithms.  
Nine SPI module control registers: Located in control register frame beginning at address 7040h.  
NOTE  
All registers in this module are 16-bit registers that are connected to Peripheral Frame 2.  
When a register is accessed, the register data is in the lower byte (7–0), and the upper byte  
(15–8) is read as zeros. Writing to the upper byte has no effect.  
Enhanced feature:  
4-level transmit/receive FIFO  
Delayed transmit control  
Bi-directional 3-wire SPI mode support  
Audio data receive support via SPISTE inversion  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
91  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
Figure 6-14 is a block diagram of the SPI in slave mode.  
SPIFFENA  
Overrun  
INT ENA  
Receiver  
Overrun Flag  
SPIFFTX.14  
RX FIFO Registers  
SPIRXBUF  
SPISTS.7  
SPICTL.4  
RX FIFO _0  
RX FIFO _1  
-----  
SPIINT  
RX FIFO Interrupt  
RX Interrupt  
Logic  
RX FIFO _3  
16  
SPIRXBUF  
Buffer Register  
SPIFFOVF  
FLAG  
SPIFFRX.15  
To CPU  
TX FIFO Registers  
SPITXBUF  
TX FIFO _3  
TX Interrupt  
Logic  
TX FIFO Interrupt  
-----  
TX FIFO _1  
SPITX  
TX FIFO _0  
16  
SPI INT  
ENA  
16  
SPI INT FLAG  
SPITXBUF  
Buffer Register  
SPISTS.6  
SPICTL.0  
TRIWIRE  
SPIPRI.0  
16  
M
S
M
SPIDAT  
Data Register  
TW  
S
SW1  
SW2  
SPISIMO  
SPISOMI  
M
S
TW  
SPIDAT.15 - 0  
M
S
TW  
STEINV  
SPIPRI.1  
Talk  
STEINV  
SPICTL.1  
SPISTE  
State Control  
Master/Slave  
SPICTL.2  
SPI Char  
LSPCLK  
SPICCR.3 - 0  
S
SW3  
3
2
1
0
Clock  
Polarity  
Clock  
Phase  
M
S
SPI Bit Rate  
SPIBRR.6 - 0  
SPICCR.6  
SPICTL.3  
SPICLK  
M
6
5
4
3
2
1
0
A. SPISTE is driven low by the master for a slave device.  
Figure 6-14. SPI Module Block Diagram (Slave Mode)  
92  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
6.4.2 Serial Peripheral Interface Register Descriptions  
The SPI port operation is configured and controlled by the registers listed in Table 6-20.  
Table 6-20. SPI-A Registers  
NAME  
SPICCR  
SPICTL  
ADDRESS  
0x7040  
0x7041  
0x7042  
0x7044  
0x7046  
0x7047  
0x7048  
0x7049  
0x704A  
0x704B  
0x704C  
0x704F  
SIZE (x16) EALLOW PROTECTED  
DESCRIPTION(1)  
SPI-A Configuration Control Register  
SPI-A Operation Control Register  
SPI-A Status Register  
1
1
1
1
1
1
1
1
1
1
1
1
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
SPISTS  
SPIBRR  
SPIRXEMU  
SPIRXBUF  
SPITXBUF  
SPIDAT  
SPI-A Baud Rate Register  
SPI-A Receive Emulation Buffer Register  
SPI-A Serial Input Buffer Register  
SPI-A Serial Output Buffer Register  
SPI-A Serial Data Register  
SPIFFTX  
SPIFFRX  
SPIFFCT  
SPIPRI  
SPI-A FIFO Transmit Register  
SPI-A FIFO Receive Register  
SPI-A FIFO Control Register  
SPI-A Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined  
results.  
6.4.3 Serial Peripheral Interface Master Mode Electrical Data/Timing  
Table 6-21 lists the master mode timing (clock phase = 0) and Table 6-22 lists the timing (clock  
phase = 1). Figure 6-15 and Figure 6-16 show the timing waveforms.  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
93  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
Table 6-21. SPI Master Mode External Timing (Clock Phase = 0)(1)(2)(3)(4)(5)  
SPI WHEN (SPIBRR + 1) IS EVEN OR  
SPIBRR = 0 OR 2  
SPI WHEN (SPIBRR + 1) IS ODD  
AND SPIBRR > 3  
NO.  
UNIT  
MIN  
4tc(LCO)  
MAX  
MIN  
MAX  
1
2
tc(SPC)M  
Cycle time, SPICLK  
128tc(LCO)  
0.5tc(SPC)M  
5tc(LCO)  
127tc(LCO)  
ns  
ns  
tw(SPCH)M  
Pulse duration, SPICLK high  
(clock polarity = 0)  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 0.5tc(LCO) – 10  
0.5tc(SPC)M – 0.5tc(LCO) – 10  
0.5tc(SPC)M + 0.5tc(LCO) – 10  
0.5tc(SPC)M + 0.5tc(LCO) – 10  
0.5tc(SPC)M – 0.5tc(LCO)  
0.5tc(SPC)M – 0.5tc(LCO)  
0.5tc(SPC)M + 0.5tc(LCO)  
0.5tc(SPC)M + 0.5tc(LCO)  
10  
tw(SPCL)M  
Pulse duration, SPICLK low  
(clock polarity = 1)  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M  
0.5tc(SPC)M  
0.5tc(SPC)M  
10  
3
4
5
8
9
tw(SPCL)M  
Pulse duration, SPICLK low  
(clock polarity = 0)  
ns  
ns  
ns  
ns  
ns  
tw(SPCH)M  
Pulse duration, SPICLK high  
(clock polarity = 1)  
td(SPCH-SIMO)M  
td(SPCL-SIMO)M  
tv(SPCL-SIMO)M  
tv(SPCH-SIMO)M  
tsu(SOMI-SPCL)M  
tsu(SOMI-SPCH)M  
tv(SPCL-SOMI)M  
tv(SPCH-SOMI)M  
Delay time, SPICLK high to SPISIMO  
valid (clock polarity = 0)  
Delay time, SPICLK low to SPISIMO  
valid (clock polarity = 1)  
10  
10  
Valid time, SPISIMO data valid after  
SPICLK low (clock polarity = 0)  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
26  
0.5tc(SPC)M + 0.5tc(LCO) – 10  
0.5tc(SPC)M + 0.5tc(LCO) – 10  
26  
Valid time, SPISIMO data valid after  
SPICLK high (clock polarity = 1)  
Setup time, SPISOMI before SPICLK  
low (clock polarity = 0)  
Setup time, SPISOMI before SPICLK  
high (clock polarity = 1)  
26  
26  
Valid time, SPISOMI data valid after  
SPICLK low (clock polarity = 0)  
0.25tc(SPC)M – 10  
0.25tc(SPC)M – 10  
0.5tc(SPC)M – 0.5tc(LCO) – 10  
0.5tc(SPC)M – 0.5tc(LCO) – 10  
Valid time, SPISOMI data valid after  
SPICLK high (clock polarity = 1)  
(1) The MASTER / SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR +1)  
(3) tc(LCO) = LSPCLK cycle time  
(4) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 15-MHz MAX, master mode receive 10-MHz MAX  
Slave mode transmit 10-MHz MAX, slave mode receive 10-MHz MAX.  
(5) The active edge of the SPICLK signal referenced is controlled by the clock polarity bit (SPICCR.6).  
94  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
SPISTE(A)  
A. In the master mode, SPISTE goes active 0.5tc(SPC) (minimum) before valid SPI clock edge. On the trailing end of the word, the SPISTE will go inactive 0.5tc(SPC) after  
the receiving edge (SPICLK) of the last data bit, except that SPISTE stays active between back-to-back transmit words in both FIFO and non-FIFO modes.  
Figure 6-15. SPI Master Mode External Timing (Clock Phase = 0)  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
95  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
Table 6-22. SPI Master Mode External Timing (Clock Phase = 1)(1)(2)(3)(4)(5)  
SPI WHEN (SPIBRR + 1) IS EVEN  
OR SPIBRR = 0 OR 2  
SPI WHEN (SPIBRR + 1) IS ODD  
AND SPIBRR > 3  
NO.  
UNIT  
MIN  
4tc(LCO)  
MAX  
MIN  
MAX  
1
2
tc(SPC)M  
Cycle time, SPICLK  
128tc(LCO)  
0.5tc(SPC)M  
5tc(LCO)  
127tc(LCO)  
ns  
ns  
tw(SPCH)M  
Pulse duration, SPICLK high  
(clock polarity = 0)  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 0.5tc (LCO) – 10  
0.5tc(SPC)M – 0.5tc (LCO) – 10  
0.5tc(SPC)M + 0.5tc(LCO) – 10  
0.5tc(SPC)M + 0.5tc(LCO) – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 0.5tc(LCO)  
0.5tc(SPC)M – 0.5tc(LCO  
0.5tc(SPC)M + 0.5tc(LCO)  
0.5tc(SPC)M + 0.5tc(LCO)  
tw(SPCL))M  
Pulse duration, SPICLK low  
(clock polarity = 1)  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M  
0.5tc(SPC)M  
0.5tc(SPC)M  
3
6
tw(SPCL)M  
Pulse duration, SPICLK low  
(clock polarity = 0)  
ns  
ns  
tw(SPCH)M  
Pulse duration, SPICLK high  
(clock polarity = 1)  
tsu(SIMO-SPCH)M  
Setup time, SPISIMO data valid  
before SPICLK high  
(clock polarity = 0)  
tsu(SIMO-SPCL)M  
Setup time, SPISIMO data valid  
before SPICLK low  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
(clock polarity = 1)  
7
tv(SPCH-SIMO)M  
tv(SPCL-SIMO)M  
tsu(SOMI-SPCH)M  
tsu(SOMI-SPCL)M  
tv(SPCH-SOMI)M  
tv(SPCL-SOMI)M  
Valid time, SPISIMO data valid after  
SPICLK high (clock polarity = 0)  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
26  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
26  
ns  
ns  
ns  
Valid time, SPISIMO data valid after  
SPICLK low (clock polarity = 1)  
10  
11  
Setup time, SPISOMI before  
SPICLK high (clock polarity = 0)  
Setup time, SPISOMI before  
SPICLK low (clock polarity = 1)  
26  
26  
Valid time, SPISOMI data valid after  
SPICLK high (clock polarity = 0)  
0.25tc(SPC)M – 10  
0.25tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
Valid time, SPISOMI data valid after  
SPICLK low (clock polarity = 1)  
(1) The MASTER/SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is set.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 15-MHz MAX, master mode receive 10-MHz MAX  
Slave mode transmit 10-MHz MAX, slave mode receive 10-MHz MAX.  
(4) tc(LCO) = LSPCLK cycle time  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
96  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
6
7
Master out data Is valid  
10  
SPISIMO  
SPISOMI  
Data Valid  
11  
Master in data  
must be valid  
(A)  
SPISTE  
A. In the master mode, SPISTE goes active 0.5tc(SPC) (minimum) before valid SPI clock edge. On the trailing end of the word, the SPISTE will go inactive 0.5tc(SPC) after  
the receiving edge (SPICLK) of the last data bit, except that SPISTE stays active between back-to-back transmit words in both FIFO and non-FIFO modes.  
Figure 6-16. SPI Master Mode External Timing (Clock Phase = 1)  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
97  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
6.4.4 Serial Peripheral Interface Slave Mode Electrical Data/Timing  
Table 6-23 lists the slave mode external timing (clock phase = 0) and Table 6-24 (clock phase = 1).  
Figure 6-17 and Figure 6-18 show the timing waveforms.  
Table 6-23. SPI Slave Mode External Timing (Clock Phase = 0)(1)(2)(3)(4)(5)  
NO.  
MIN  
MAX UNIT  
12 tc(SPC)S  
13 tw(SPCH)S  
tw(SPCL)S  
Cycle time, SPICLK  
4tc(LCO)  
ns  
Pulse duration, SPICLK high (clock polarity = 0)  
0.5tc(SPC)S – 10 0.5tc(SPC)S  
ns  
ns  
ns  
ns  
ns  
ns  
Pulse duration, SPICLK low (clock polarity = 1)  
0.5tc(SPC)S – 10 0.5tc(SPC)S  
14 tw(SPCL)S  
tw(SPCH)S  
Pulse duration, SPICLK low (clock polarity = 0)  
0.5tc(SPC)S – 10 0.5tc(SPC)S  
Pulse duration, SPICLK high (clock polarity = 1)  
0.5tc(SPC)S – 10 0.5tc(SPC)S  
15 td(SPCH-SOMI)S  
td(SPCL-SOMI)S  
16 tv(SPCL-SOMI)S  
tv(SPCH-SOMI)S  
19 tsu(SIMO-SPCL)S  
tsu(SIMO-SPCH)S  
20 tv(SPCL-SIMO)S  
tv(SPCH-SIMO)S  
Delay time, SPICLK high to SPISOMI valid (clock polarity = 0)  
Delay time, SPICLK low to SPISOMI valid (clock polarity = 1)  
Valid time, SPISOMI data valid after SPICLK low (clock polarity = 0)  
Valid time, SPISOMI data valid after SPICLK high (clock polarity = 1)  
Setup time, SPISIMO before SPICLK low (clock polarity = 0)  
Setup time, SPISIMO before SPICLK high (clock polarity = 1)  
Valid time, SPISIMO data valid after SPICLK low (clock polarity = 0)  
Valid time, SPISIMO data valid after SPICLK high (clock polarity = 1)  
21  
21  
0.75tc(SPC)S  
0.75tc(SPC)S  
26  
26  
0.5tc(SPC)S – 10  
0.5tc(SPC)S – 10  
(1) The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 15-MHz MAX, master mode receive 10-MHz MAX  
Slave mode transmit 10-MHz MAX, slave mode receive 10-MHz MAX.  
(4) tc(LCO) = LSPCLK cycle time  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
16  
SPISOMI data Is valid  
19  
SPISOMI  
SPISIMO  
20  
SPISIMO data  
must be valid  
(A)  
SPISTE  
A. In the slave mode, the SPISTE signal should be asserted low at least 0.5tc(SPC) (minimum) before the valid SPI clock  
edge and remain low for at least 0.5tc(SPC) after the receiving edge (SPICLK) of the last data bit.  
Figure 6-17. SPI Slave Mode External Timing (Clock Phase = 0)  
98  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Table 6-24. SPI Slave Mode External Timing (Clock Phase = 1)(1)(2)(3)(4)  
NO.  
MIN  
8tc(LCO)  
MAX UNIT  
12 tc(SPC)S  
13 tw(SPCH)S  
tw(SPCL)S  
Cycle time, SPICLK  
ns  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
Setup time, SPISOMI before SPICLK high (clock polarity = 0)  
Setup time, SPISOMI before SPICLK low (clock polarity = 1)  
0.5tc(SPC)S – 10  
0.5tc(SPC)S – 10  
0.5tc(SPC)S – 10  
0.5tc(SPC)S – 10  
0.125tc(SPC)S  
0.5tc(SPC)S  
ns  
ns  
ns  
ns  
0.5tc(SPC) S  
0.5tc(SPC) S  
0.5tc(SPC)S  
14 tw(SPCL)S  
tw(SPCH)S  
17 tsu(SOMI-SPCH)S  
tsu(SOMI-SPCL)S  
18 tv(SPCL-SOMI)S  
0.125tc(SPC)S  
Valid time, SPISOMI data valid after SPICLK low  
(clock polarity = 1)  
0.75tc(SPC)S  
tv(SPCH-SOMI)S  
Valid time, SPISOMI data valid after SPICLK high  
(clock polarity = 0)  
0.75tc(SPC) S  
21 tsu(SIMO-SPCH)S  
tsu(SIMO-SPCL)S  
Setup time, SPISIMO before SPICLK high (clock polarity = 0)  
Setup time, SPISIMO before SPICLK low (clock polarity = 1)  
26  
26  
ns  
ns  
22 tv(SPCH-SIMO)S  
Valid time, SPISIMO data valid after SPICLK high  
(clock polarity = 0)  
0.5tc(SPC)S – 10  
tv(SPCL-SIMO)S  
Valid time, SPISIMO data valid after SPICLK low  
(clock polarity = 1)  
0.5tc(SPC)S – 10  
(1) The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 15-MHz MAX, master mode receive 10-MHz MAX  
Slave mode transmit 10-MHz MAX, slave mode receive 10-MHz MAX.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
17  
18  
SPISOMI data is valid  
SPISOMI  
SPISIMO  
Data Valid  
21  
22  
SPISIMO data  
must be valid  
(A)  
SPISTE  
A. In the slave mode, the SPISTE signal should be asserted low at least 0.5tc(SPC) before the valid SPI clock edge and  
remain low for at least 0.5tc(SPC) after the receiving edge (SPICLK) of the last data bit.  
Figure 6-18. SPI Slave Mode External Timing (Clock Phase = 1)  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
99  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
6.5 Serial Communications Interface (SCI)  
6.5.1 Serial Communications Interface Device-Specific Information  
The 2805x devices include three serial communications interface (SCI) modules (SCI-A, SCI-B, SCI-C).  
Each SCI module supports digital communications between the CPU and other asynchronous peripherals  
that use the standard non-return-to-zero (NRZ) format. The SCI receiver and transmitter are double-  
buffered, and each has its own separate enable and interrupt bits. Both can be operated independently or  
simultaneously in the full-duplex mode. To ensure data integrity, the SCI checks received data for break  
detection, parity, overrun, and framing errors. The bit rate is programmable to over 65000 different speeds  
through a 16-bit baud-select register.  
Features of each SCI module include:  
Two external pins:  
SCITXD: SCI transmit-output pin  
SCIRXD: SCI receive-input pin  
NOTE: Both pins can be used as GPIO if not used for SCI.  
Baud rate programmable to 64K different rates:  
LSPCLK  
Baud rate =  
Baud rate =  
when BRR ¹ 0  
when BRR = 0  
(BRR + 1) * 8  
LSPCLK  
16  
Data-word format  
One start bit  
Data-word length programmable from one to eight bits  
Optional even/odd/no parity bit  
One or two stop bits  
Four error-detection flags: parity, overrun, framing, and break detection  
Two wake-up multiprocessor modes: idle-line and address bit  
Half- or full-duplex operation  
Double-buffered receive and transmit functions  
Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms  
with status flags.  
Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX  
EMPTY flag (transmitter-shift register is empty)  
Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag  
(break condition occurred), and RX ERROR flag (monitoring four interrupt conditions)  
Separate enable bits for transmitter and receiver interrupts (except BRKDT)  
NRZ (non-return-to-zero) format  
NOTE  
All registers in this module are 8-bit registers that are connected to Peripheral Frame 2.  
When a register is accessed, the register data is in the lower byte (7–0), and the upper byte  
(15–8) is read as zeros. Writing to the upper byte has no effect.  
Enhanced features:  
Auto baud-detect hardware logic  
4-level transmit/receive FIFO  
100  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Figure 6-19 shows the SCI module block diagram.  
SCICTL1.1  
SCITXD  
Frame Format and Mode  
SCITXD  
TXSHF  
Register  
TXENA  
Parity  
Even/Odd Enable  
TX EMPTY  
SCICTL2.6  
8
SCICCR.6 SCICCR.5  
TXRDY  
TX INT ENA  
SCICTL2.0  
Transmitter-Data  
Buffer Register  
SCICTL2.7  
TXWAKE  
SCICTL1.3  
1
8
TX FIFO _0  
TX FIFO  
Interrupts  
TXINT  
TX Interrupt  
Logic  
TX FIFO _1  
-----  
To CPU  
TX FIFO _3  
SCI TX Interrupt select logic  
SCITXBUF.7-0  
WUT  
TX FIFO registers  
SCIFFENA  
AutoBaud Detect logic  
SCIFFTX.14  
SCIHBAUD. 15 - 8  
SCIRXD  
RXSHF  
Register  
Baud Rate  
MSbyte  
Register  
SCIRXD  
RXWAKE  
LSPCLK  
SCIRXST.1  
SCILBAUD. 7 - 0  
RXENA  
SCICTL1.0  
8
Baud Rate  
LSbyte  
Register  
SCICTL2.1  
Receive Data  
Buffer register  
SCIRXBUF.7-0  
RXRDY  
RX/BK INT ENA  
SCIRXST.6  
8
RX FIFO _3  
BRKDT  
SCIRXST.5  
-----  
RX FIFO  
Interrupts  
RX FIFO_1  
RX FIFO _0  
RXINT  
RX Interrupt  
Logic  
SCIRXBUF.7-0  
RX FIFO registers  
To CPU  
RXFFOVF  
SCIRXST.7 SCIRXST.4 - 2  
SCIFFRX.15  
RX Error  
FE OE PE  
RX Error  
RX ERR INT ENA  
SCICTL1.6  
SCI RX Interrupt select logic  
Figure 6-19. Serial Communications Interface (SCI) Module Block Diagram  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
101  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
6.5.2 Serial Communications Interface Register Descriptions  
The SCI port operation is configured and controlled by the registers listed in Table 6-25.  
Table 6-25. SCI-A Registers(1)  
EALLOW  
PROTECTED  
NAME  
ADDRESS  
SIZE (x16)  
DESCRIPTION  
SCICCRA  
SCICTL1A  
0x7050  
0x7051  
0x7052  
0x7053  
0x7054  
0x7055  
0x7056  
0x7057  
0x7059  
0x705A  
0x705B  
0x705C  
0x705F  
1
1
1
1
1
1
1
1
1
1
1
1
1
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
SCI-A Communications Control Register  
SCI-A Control Register 1  
SCIHBAUDA  
SCILBAUDA  
SCICTL2A  
SCI-A Baud Register, High Bits  
SCI-A Baud Register, Low Bits  
SCI-A Control Register 2  
SCIRXSTA  
SCIRXEMUA  
SCIRXBUFA  
SCITXBUFA  
SCIFFTXA(2)  
SCIFFRXA(2)  
SCIFFCTA(2)  
SCIPRIA  
SCI-A Receive Status Register  
SCI-A Receive Emulation Data Buffer Register  
SCI-A Receive Data Buffer Register  
SCI-A Transmit Data Buffer Register  
SCI-A FIFO Transmit Register  
SCI-A FIFO Receive Register  
SCI-A FIFO Control Register  
SCI-A Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. 32-bit accesses produce  
undefined results.  
(2) These registers are new registers for the FIFO mode.  
102  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
6.6 Enhanced Controller Area Network (eCAN)  
6.6.1 Enhanced Controller Area Network Device-Specific Information  
The CAN module (eCAN-A) has the following features:  
Fully compliant with CAN protocol, version 2.0B  
Supports data rates up to 1 Mbps  
Thirty-two mailboxes, each with the following properties:  
Configurable as receive or transmit  
Configurable with standard or extended identifier  
Has a programmable receive mask  
Supports data and remote frame  
Composed of 0 to 8 bytes of data  
Uses a 32-bit time stamp on receive and transmit message  
Protects against reception of new message  
Holds the dynamically programmable priority of transmit message  
Employs a programmable interrupt scheme with two interrupt levels  
Employs a programmable alarm on transmission or reception time-out  
Low-power mode  
Programmable wake-up on bus activity  
Automatic reply to a remote request message  
Automatic retransmission of a frame in case of loss of arbitration or error  
32-bit local network time counter synchronized by a specific message (communication in conjunction  
with mailbox 16)  
Self-test mode  
Operates in a loopback mode receiving its own message. A "dummy" acknowledge is provided,  
thereby eliminating the need for another node to provide the acknowledge bit.  
NOTE  
For a SYSCLKOUT of 60 MHz, the smallest bit rate possible is 4.6875 kbps.  
The F2805x CAN has passed the conformance test per ISO/DIS 16845. Contact TI for test report and  
exceptions.  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
103  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
eCAN0INT  
eCAN1INT  
Controls Address  
Data  
32  
Enhanced CAN Controller  
Message Controller  
Mailbox RAM  
(512 Bytes)  
Memory Management  
Unit  
eCAN Memory  
(512 Bytes)  
Registers and  
CPU Interface,  
Receive Control Unit,  
Timer Management Unit  
32-Message Mailbox  
of 4 x 32-Bit Words  
Message Objects Control  
32  
32  
32  
eCAN Protocol Kernel  
Receive Buffer  
Transmit Buffer  
Control Buffer  
Status Buffer  
SN65HVD23x  
3.3-V CAN Transceiver  
CAN Bus  
Figure 6-20. eCAN Block Diagram and Interface Circuit  
Table 6-26. 3.3-V eCAN Transceivers  
SUPPLY  
VOLTAGE  
LOW-POWER  
MODE  
SLOPE  
CONTROL  
PART NUMBER  
VREF  
OTHER  
TA  
SN65HVD230  
SN65HVD230Q  
SN65HVD231  
SN65HVD231Q  
SN65HVD232  
SN65HVD232Q  
SN65HVD233  
SN65HVD234  
SN65HVD235  
ISO1050  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3–5.5 V  
Standby  
Standby  
Sleep  
Adjustable  
Adjustable  
Adjustable  
Adjustable  
None  
Yes  
Yes  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 105°C  
Yes  
Sleep  
Yes  
None  
None  
None  
None  
None  
None  
None  
None  
None  
Standby  
Standby and Sleep  
Standby  
None  
Adjustable  
Adjustable  
Adjustable  
None  
Diagnostic Loopback  
Autobaud Loopback  
Built-in Isolation  
Low Prop Delay  
Thermal Shutdown  
Failsafe Operation  
Dominant Time-Out  
104  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
eCAN-A Control and Status Registers  
Mailbox Enable - CANME  
Mailbox Direction - CANMD  
Transmission Request Set - CANTRS  
Transmission Request Reset - CANTRR  
Transmission Acknowledge - CANTA  
Abort Acknowledge - CANAA  
eCAN-A Memory (512 Bytes)  
Control and Status Registers  
6000h  
Received Message Pending - CANRMP  
Received Message Lost - CANRML  
Remote Frame Pending - CANRFP  
Global Acceptance Mask - CANGAM  
603Fh  
6040h  
Local Acceptance Masks (LAM)  
(32 x 32-Bit RAM)  
607Fh  
6080h  
Master Control - CANMC  
Message Object Time Stamps (MOTS)  
(32 x 32-Bit RAM)  
Bit-Timing Configuration - CANBTC  
60BFh  
60C0h  
Error and Status - CANES  
Message Object Time-Out (MOTO)  
(32 x 32-Bit RAM)  
Transmit Error Counter - CANTEC  
Receive Error Counter - CANREC  
Global Interrupt Flag 0 - CANGIF0  
Global Interrupt Mask - CANGIM  
Global Interrupt Flag 1 - CANGIF1  
Mailbox Interrupt Mask - CANMIM  
Mailbox Interrupt Level - CANMIL  
60FFh  
eCAN-A Memory RAM (512 Bytes)  
6100h-6107h  
6108h-610Fh  
6110h-6117h  
6118h-611Fh  
6120h-6127h  
Mailbox 0  
Mailbox 1  
Mailbox 2  
Mailbox 3  
Mailbox 4  
Overwrite Protection Control - CANOPC  
TX I/O Control - CANTIOC  
RX I/O Control - CANRIOC  
Time Stamp Counter - CANTSC  
Time-Out Control - CANTOC  
Time-Out Status - CANTOS  
61E0h-61E7h  
61E8h-61EFh  
61F0h-61F7h  
61F8h-61FFh  
Mailbox 28  
Mailbox 29  
Mailbox 30  
Mailbox 31  
Reserved  
Message Mailbox (16 Bytes)  
Message Identifier - MSGID  
Message Control - MSGCTRL  
Message Data Low - MDL  
Message Data High - MDH  
61E8h-61E9h  
61EAh-61EBh  
61ECh-61EDh  
61EEh-61EFh  
Figure 6-21. eCAN-A Memory Map  
NOTE  
If the eCAN module is not used in an application, the RAM available (LAM, MOTS, MOTO,  
and mailbox RAM) can be used as general-purpose RAM. The CAN module clock should be  
enabled if the eCAN RAM (LAM, MOTS, MOTO, and mailbox RAM) is used as general-  
purpose RAM.  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
105  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
6.6.2 Enhanced Controller Area Network Register Descriptions  
The CAN registers listed in Table 6-27 are used by the CPU to configure and control the CAN controller  
and the message objects. eCAN control registers only support 32-bit read/write operations. Mailbox RAM  
can be accessed as 16 bits or 32 bits. 32-bit accesses are aligned to an even boundary.  
Table 6-27. CAN Register Map(1)  
eCAN-A  
REGISTER NAME  
SIZE (x32)  
DESCRIPTION  
ADDRESS  
0x6000  
0x6002  
0x6004  
0x6006  
0x6008  
0x600A  
0x600C  
0x600E  
0x6010  
0x6012  
0x6014  
0x6016  
0x6018  
0x601A  
0x601C  
0x601E  
0x6020  
0x6022  
0x6024  
0x6026  
0x6028  
0x602A  
0x602C  
0x602E  
0x6030  
0x6032  
CANME  
CANMD  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Mailbox enable  
Mailbox direction  
CANTRS  
CANTRR  
CANTA  
Transmit request set  
Transmit request reset  
Transmission acknowledge  
Abort acknowledge  
Receive message pending  
Receive message lost  
Remote frame pending  
Global acceptance mask  
Master control  
CANAA  
CANRMP  
CANRML  
CANRFP  
CANGAM  
CANMC  
CANBTC  
CANES  
Bit-timing configuration  
Error and status  
CANTEC  
CANREC  
CANGIF0  
CANGIM  
CANGIF1  
CANMIM  
CANMIL  
CANOPC  
CANTIOC  
CANRIOC  
CANTSC  
CANTOC  
CANTOS  
Transmit error counter  
Receive error counter  
Global interrupt flag 0  
Global interrupt mask  
Global interrupt flag 1  
Mailbox interrupt mask  
Mailbox interrupt level  
Overwrite protection control  
TX I/O control  
RX I/O control  
Time stamp counter (Reserved in SCC mode)  
Time-out control (Reserved in SCC mode)  
Time-out status (Reserved in SCC mode)  
(1) These registers are mapped to Peripheral Frame 1.  
106  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
6.7 Inter-Integrated Circuit (I2C)  
6.7.1 Inter-Integrated Circuit Device-Specific Information  
The device contains one I2C Serial Port. Figure 6-22 shows how the I2C peripheral module interfaces  
within the device.  
The I2C module has the following features:  
Compliance with the Philips Semiconductors I2C-bus specification (version 2.1):  
Support for 1-bit to 8-bit format transfers  
7-bit and 10-bit addressing modes  
General call  
START byte mode  
Support for multiple master-transmitters and slave-receivers  
Support for multiple slave-transmitters and master-receivers  
Combined master transmit/receive and receive/transmit mode  
Data transfer rate of from 10 kbps up to 400 kbps (I2C Fast-mode rate)  
One 4-word receive FIFO and one 4-word transmit FIFO  
One interrupt that can be used by the CPU. This interrupt can be generated as a result of one of the  
following conditions:  
Transmit-data ready  
Receive-data ready  
Register-access ready  
No-acknowledgment received  
Arbitration lost  
Stop condition detected  
Addressed as slave  
An additional interrupt that can be used by the CPU when in FIFO mode  
Module enable/disable capability  
Free data format mode  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
107  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
I2C Module  
I2CXSR  
I2CDXR  
TX FIFO  
RX FIFO  
FIFO Interrupt to  
CPU/PIE  
SDA  
Peripheral Bus  
I2CRSR  
I2CDRR  
Control/Status  
Registers  
CPU  
Clock  
Synchronizer  
SCL  
Prescaler  
Noise Filters  
Arbitrator  
Interrupt to  
CPU/PIE  
I2C INT  
A. The I2C registers are accessed at the SYSCLKOUT rate. The internal timing and signal waveforms of the I2C port are  
also at the SYSCLKOUT rate.  
B. The clock enable bit (I2CAENCLK) in the PCLKCRO register turns off the clock to the I2C port for low power  
operation. Upon reset, I2CAENCLK is clear, which indicates the peripheral internal clocks are off.  
Figure 6-22. I2C Peripheral Module Interfaces  
6.7.2 Inter-Integrated Circuit Register Descriptions  
The registers in Table 6-28 configure and control the I2C port operation.  
Table 6-28. I2C-A Registers  
EALLOW  
PROTECTED  
NAME  
ADDRESS  
DESCRIPTION  
I2C own address register  
I2COAR  
I2CIER  
0x7900  
0x7901  
0x7902  
0x7903  
0x7904  
0x7905  
0x7906  
0x7907  
0x7908  
0x7909  
0x790A  
0x790C  
0x7920  
0x7921  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
I2C interrupt enable register  
I2C status register  
I2CSTR  
I2CCLKL  
I2CCLKH  
I2CCNT  
I2CDRR  
I2CSAR  
I2CDXR  
I2CMDR  
I2CISRC  
I2CPSC  
I2CFFTX  
I2CFFRX  
I2CRSR  
I2CXSR  
I2C clock low-time divider register  
I2C clock high-time divider register  
I2C data count register  
I2C data receive register  
I2C slave address register  
I2C data transmit register  
I2C mode register  
I2C interrupt source register  
I2C prescaler register  
I2C FIFO transmit register  
I2C FIFO receive register  
I2C receive shift register (not accessible to the CPU)  
I2C transmit shift register (not accessible to the CPU)  
108  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
6.7.3 Inter-Integrated Circuit Electrical Data/Timing  
Table 6-29. I2C Timing  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
fSCL  
SCL clock frequency  
I2C clock module frequency is between  
7 MHz and 12 MHz and I2C prescaler and  
clock divider registers are configured  
appropriately  
400  
kHz  
vil  
Low level input voltage  
High level input voltage  
Input hysteresis  
0.3 VDDIO  
V
V
Vih  
0.7 VDDIO  
Vhys  
Vol  
0.05 VDDIO  
V
Low level output voltage  
Low period of SCL clock  
3 mA sink current  
0
0.4  
V
tLOW  
I2C clock module frequency is between  
7 MHz and 12 MHz and I2C prescaler and  
clock divider registers are configured  
appropriately  
1.3  
μs  
tHIGH  
High period of SCL clock  
I2C clock module frequency is between  
7 MHz and 12 MHz and I2C prescaler and  
clock divider registers are configured  
appropriately  
0.6  
μs  
lI  
Input current with an input voltage  
–10  
10  
μA  
between 0.1 VDDIO and 0.9 VDDIO MAX  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
109  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
6.8 Enhanced Pulse Width Modulator (ePWM)  
6.8.1 Enhanced Pulse Width Modulator Device-Specific Information  
The devices contain up to seven enhanced PWM Modules (ePWM1–ePWM7). Figure 6-23 shows a block  
diagram of multiple ePWM modules. Figure 6-24 shows the signal interconnections with the ePWM. See  
the Enhanced Pulse Width Modulator (ePWM) Module chapter of the TMS320x2805x Piccolo Technical  
Reference Manual (literature number SPRUHE5) for more details.  
110  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
EPWMSYNCI  
EPWM1SYNCI  
EPWM1B  
EPWM1TZINT  
EPWM1INT  
EPWM1  
Module  
TZ1 to TZ3  
EPWM2TZINT  
EPWM2INT  
EQEP1ERR  
CLOCKFAIL  
EMUSTOP  
TZ4  
TZ5  
TZ6  
PIE  
EPWMxTZINT  
EPWMxINT  
EPWM1ENCLK  
TBCLKSYNC  
eCAPI  
EPWM1SYNCO  
EPWM2SYNCI  
EPWM1SYNCO  
TZ1 to TZ3  
EPWM2B  
EPWM2  
Module  
CTRIP  
Output  
Subsystem  
CTRIPxx  
EQEP1ERR  
CLOCKFAIL  
EMUSTOP  
EPWM1A  
EPWM2A  
TZ4  
TZ5  
TZ6  
EPWM2ENCLK  
TBCLKSYNC  
EPWMxA  
G
P
I
EPWM2SYNCO  
O
M
U
X
SOCA1  
SOCB1  
SOCA2  
SOCB2  
SOCAx  
SOCBx  
ADC  
EPWMxB  
EPWMxSYNCI  
TZ1 to TZ3  
EPWMx  
Module  
EQEP1ERR  
CLOCKFAIL  
EMUSTOP  
EQEP1ERR  
TZ4  
TZ5  
TZ6  
eQEP1  
EPWMxENCLK  
TBCLKSYNC  
System Control  
C28x CPU  
SOCA1  
SOCA2  
SPCAx  
ADCSOCAO  
ADCSOCBO  
Pulse Stretch  
(32 SYSCLKOUT Cycles, Active-Low Output)  
SOCB1  
SOCB2  
SPCBx  
Pulse Stretch  
(32 SYSCLKOUT Cycles, Active-Low Output)  
Figure 6-23. ePWM  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
111  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
Time-Base (TB)  
CTR=ZERO  
Sync  
In/Out  
Select  
Mux  
TBPRD Shadow (24)  
TBPRD Active (24)  
EPWMxSYNCO  
CTR=CMPB  
Disabled  
CTR=PRD  
TBCTL[SYNCOSEL]  
TBCTL[PHSEN]  
EPWMxSYNCI  
DCAEVT1.sync  
DCBEVT1.sync  
Counter  
Up/Down  
(16 Bit)  
TBCTL[SWFSYNC]  
(Software Forced  
Sync)  
CTR=ZERO  
TCBNT  
Active (16)  
CTR_Dir  
CTR=PRD  
CTR=ZERO  
EPWMxINT  
CTR=PRD or ZERO  
CTR=CMPA  
Event  
Trigger  
and  
Interrupt  
(ET)  
16  
EPWMxSOCA  
Phase  
TBPHS Active (24)  
Control  
CTR=CMPB  
CTR_Dir  
(A)  
DCAEVT1.soc  
(A)  
EPWMxSOCB  
EPWMxSOCA  
ADC  
DCBEVT1.soc  
EPWMxSOCB  
Action  
Qualifier  
CTR=CMPA  
(AQ)  
16  
CMPA Active (24)  
CMPA Shadow (24)  
EPWMA  
EPWMxA  
PWM  
Chopper  
(PC)  
Trip  
Zone  
(TZ)  
Dead  
CTR=CMPB  
Band  
(DB)  
16  
EPWMB  
EPWMxB  
EPWMxTZINT  
TZ1 to TZ3  
CMPB Active (16)  
CMPB Shadow (16)  
EMUSTOP  
CLOCKFAIL  
CTR=ZERO  
EQEP1ERR  
DCAEVT1.inter  
DCBEVT1.inter  
(A)  
(A)  
(A)  
(A)  
DCAEVT1.force  
DCAEVT2.force  
DCBEVT1.force  
DCBEVT2.force  
DCAEVT2.inter  
DCBEVT2.inter  
A. These events are generated by the Type 1 ePWM digital compare (DC) submodule based on the levels of the  
COMPxOUT and TZ signals.  
Figure 6-24. ePWM Sub-Modules Showing Critical Internal Signal Interconnections  
112  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
6.8.2 Enhanced Pulse Width Modulator Register Descriptions  
Table 6-30 and Table 6-31 show the complete ePWM register set per module.  
Table 6-30. ePWM1–ePWM4 Control and Status Registers  
SIZE (x16) /  
#SHADOW  
NAME  
ePWM1  
ePWM2  
ePWM3  
ePWM4  
DESCRIPTION  
Time Base Control Register  
TBCTL  
TBSTS  
0x6800  
0x6801  
0x6802  
0x6803  
0x6804  
0x6805  
0x6806  
0x6807  
0x6808  
0x6809  
0x680A  
0x680B  
0x680C  
0x680D  
0x680E  
0x680F  
0x6810  
0x6811  
0x6812  
0x6813  
0x6814  
0x6815  
0x6816  
0x6817  
0x6818  
0x6819  
0x681A  
0x681B  
0x681C  
0x6840  
0x6841  
0x6842  
0x6843  
0x6844  
0x6845  
0x6846  
0x6847  
0x6848  
0x6849  
0x684A  
0x684B  
0x684C  
0x684D  
0x684E  
0x684F  
0x6850  
0x6851  
0x6852  
0x6853  
0x6854  
0x6855  
0x6856  
0x6857  
0x6858  
0x6859  
0x685A  
0x685B  
0x685C  
0x6880  
0x6881  
0x6882  
0x6883  
0x6884  
0x6885  
0x6886  
0x6887  
0x6888  
0x6889  
0x688A  
0x688B  
0x688C  
0x688D  
0x688E  
0x688F  
0x6890  
0x6891  
0x6892  
0x6893  
0x6894  
0x6895  
0x6896  
0x6897  
0x6898  
0x6899  
0x689A  
0x689B  
0x689C  
0x68C0  
0x68C1  
0x68C2  
0x68C3  
0x68C4  
0x68C5  
0x68C6  
0x68C7  
0x68C8  
0x68C9  
0x68CA  
0x68CB  
0x68CC  
0x68CD  
0x68CE  
0x68CF  
0x68D0  
0x68D1  
0x68D2  
0x98D3  
0x68D4  
0x68D5  
0x68D6  
0x68D7  
0x68D8  
0x68D9  
0x68DA  
0x68DB  
0x68DC  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 1  
1 / 1  
1 / 0  
1 / 1  
1 / 1  
1 / 1  
1 / 0  
1 / 0  
1 / 0  
1 / 1  
1 / 1  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
Time Base Status Register  
Reserved  
TBPHS  
TBCTR  
TBPRD  
Reserved  
CMPCTL  
Reserved  
CMPA  
Reserved  
Time Base Phase Register  
Time Base Counter Register  
Time Base Period Register Set  
Reserved  
Counter Compare Control Register  
Reserved  
Counter Compare A Register Set  
Counter Compare B Register Set  
Action Qualifier Control Register For Output A  
Action Qualifier Control Register For Output B  
Action Qualifier Software Force Register  
Action Qualifier Continuous S/W Force Register Set  
Dead-Band Generator Control Register  
Dead-Band Generator Rising Edge Delay Count Register  
Dead-Band Generator Falling Edge Delay Count Register  
Trip Zone Select Register(1)  
CMPB  
AQCTLA  
AQCTLB  
AQSFRC  
AQCSFRC  
DBCTL  
DBRED  
DBFED  
TZSEL  
TZDCSEL  
TZCTL  
Trip Zone Digital Compare Register  
Trip Zone Control Register(1)  
Trip Zone Enable Interrupt Register(1)  
TZEINT  
TZFLG  
(1)  
Trip Zone Flag Register  
TZCLR  
Trip Zone Clear Register(1)  
Trip Zone Force Register(1)  
Event Trigger Selection Register  
Event Trigger Prescale Register  
Event Trigger Flag Register  
Event Trigger Clear Register  
TZFRC  
ETSEL  
ETPS  
ETFLG  
ETCLR  
(1) Registers that are EALLOW protected.  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
113  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
Table 6-30. ePWM1–ePWM4 Control and Status Registers (continued)  
SIZE (x16) /  
#SHADOW  
NAME  
ePWM1  
ePWM2  
ePWM3  
ePWM4  
DESCRIPTION  
ETFRC  
PCCTL  
0x681D  
0x681E  
0x6820  
0x6821  
0x6826  
0x6828  
0x682A  
0x682B  
0x682C  
0x682D  
0x6830  
0x6831  
0x6832  
0x6833  
0x6834  
0x6835  
0x6836  
0x6837  
0x6838  
0x6839  
0x685D  
0x685E  
0x6860  
-
0x689D  
0x689E  
0x68A0  
-
0x68DD  
0x68DE  
0x68E0  
-
1 / 0  
1 / 0  
Event Trigger Force Register  
PWM Chopper Control Register  
Reserved  
Reserved  
1 / 0  
Reserved  
1 / 0  
Reserved  
Reserved  
-
-
-
1 / 0  
Reserved  
Reserved  
0x6868  
0x686A  
0x686B  
0x686C  
0x686D  
0x6870  
0x6871  
0x6872  
0x6873  
0x6874  
0x6875  
0x6876  
0x6877  
0x6878  
0x6879  
0x68A8  
0x68AA  
0x68AB  
0x68AC  
0x68AD  
0x68B0  
0x68B1  
0x68B2  
0x68B3  
0x68B4  
0x68B5  
0x68B6  
0x68B7  
0x68B8  
0x68B9  
0x68E8  
0x68EA  
0x68EB  
0x68EC  
0x68ED  
0x68F0  
0x68F1  
0x68F2  
0x68F3  
0x68F4  
0x68F5  
0x68F6  
0x68F7  
0x68F8  
0x68F9  
1 / 0  
Reserved  
Reserved  
1 / W(2)  
1 / W(2)  
1 / W(2)  
1 / W(2)  
1 / 0  
Reserved  
TBPRDM  
Time Base Period Register Mirror  
Reserved  
Reserved  
CMPAM  
Compare A Register Mirror  
Digital Compare Trip Select Register  
Digital Compare A Control Register(1)  
Digital Compare B Control Register(1)  
Digital Compare Filter Control Register(1)  
Digital Compare Capture Control Register(3)  
Digital Compare Filter Offset Register  
(1)  
DCTRIPSEL  
DCACTL  
1 / 0  
DCBCTL  
1 / 0  
DCFCTL  
1 / 0  
DCCAPCT  
DCFOFFSET  
DCFOFFSETCNT  
DCFWINDOW  
DCFWINDOWCNT  
DCCAP  
1 / 0  
1 / 1  
1 / 0  
Digital Compare Filter Offset Counter Register  
Digital Compare Filter Window Register  
Digital Compare Filter Window Counter Register  
Digital Compare Counter Capture Register  
1 / 0  
1 / 0  
1 / 1  
(2) W = Write to shadow register  
(3) Registers that are EALLOW protected.  
114  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Table 6-31. ePWM5–ePWM7 Control and Status Registers  
SIZE (x16) /  
#SHADOW  
NAME  
ePWM5  
ePWM6  
ePWM7  
DESCRIPTION  
Time Base Control Register  
TBCTL  
0x6900  
0x6901  
0x6902  
0x6903  
0x6904  
0x6905  
0x6906  
0x6907  
0x6908  
0x6909  
0x690A  
0x690B  
0x690C  
0x690D  
0x690E  
0x690F  
0x6910  
0x6940  
0x6941  
0x6942  
0x6943  
0x6944  
0x6945  
0x6946  
0x6947  
0x6948  
0x6949  
0x694A  
0x694B  
0x694C  
0x694D  
0x694E  
0x694F  
0x6950  
0x6980  
0x6981  
0x6982  
0x6983  
0x6984  
0x6985  
0x6986  
0x6987  
0x6988  
0x6989  
0x698A  
0x698B  
0x698C  
0x698D  
0x698E  
0x698F  
0x6990  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 1  
1 / 1  
1 / 0  
1 / 1  
1 / 1  
1 / 1  
1 / 0  
1 / 0  
1 / 0  
1 / 1  
1 / 1  
1 / 0  
TBSTS  
Time Base Status Register  
Reserved  
TBPHS  
Reserved  
Time Base Phase Register  
TBCTR  
Time Base Counter Register  
Time Base Period Register Set  
Reserved  
TBPRD  
Reserved  
CMPCTL  
Reserved  
CMPA  
Counter Compare Control Register  
Reserved  
Counter Compare A Register Set  
Counter Compare B Register Set  
Action Qualifier Control Register For Output A  
Action Qualifier Control Register For Output B  
Action Qualifier Software Force Register  
Action Qualifier Continuous S/W Force Register Set  
Dead-Band Generator Control Register  
CMPB  
AQCTLA  
AQCTLB  
AQSFRC  
AQCSFRC  
DBCTL  
DBRED  
Dead-Band Generator Rising Edge Delay Count  
Register  
DBFED  
0x6911  
0x6951  
0x6991  
1 / 0  
Dead-Band Generator Falling Edge Delay Count  
Register  
TZSEL  
0x6912  
0x6913  
0x6914  
0x6915  
0x6916  
0x6917  
0x6918  
0x6919  
0x691A  
0x691B  
0x691C  
0x691D  
0x691E  
0x6920  
-
0x6952  
0x6953  
0x6954  
0x6955  
0x6956  
0x6957  
0x6958  
0x6959  
0x695A  
0x695B  
0x695C  
0x695D  
0x695E  
0x6960  
-
0x6992  
0x6993  
0x6994  
0x6995  
0x6996  
0x6997  
0x6998  
0x6999  
0x699A  
0x699B  
0x699C  
0x699D  
0x699E  
0x69A0  
-
1 / 0  
1 / 0  
Trip Zone Select Register(1)  
TZDCSEL  
TZCTL  
Trip Zone Digital Compare Register  
Trip Zone Control Register(1)  
Trip Zone Enable Interrupt Register(1)  
1 / 0  
TZEINT  
TZFLG  
1 / 0  
(1)  
1 / 0  
Trip Zone Flag Register  
TZCLR  
1 / 0  
Trip Zone Clear Register(1)  
Trip Zone Force Register(1)  
Event Trigger Selection Register  
Event Trigger Prescale Register  
Event Trigger Flag Register  
Event Trigger Clear Register  
Event Trigger Force Register  
PWM Chopper Control Register  
Reserved  
TZFRC  
1 / 0  
ETSEL  
1 / 0  
ETPS  
1 / 0  
ETFLG  
1 / 0  
ETCLR  
1 / 0  
ETFRC  
1 / 0  
PCCTL  
1 / 0  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TBPRDM  
Reserved  
CMPAM  
DCTRIPSEL  
DCACTL  
DCBCTL  
DCFCTL  
DCCAPCT  
1 / 0  
1 / 0  
Reserved  
-
-
-
1 / 0  
Reserved  
0x6928  
0x692A  
0x692B  
0x692C  
0x692D  
0x6930  
0x6931  
0x6932  
0x6933  
0x6934  
0x6968  
0x696A  
0x696B  
0x696C  
0x696D  
0x6970  
0x6971  
0x6972  
0x6973  
0x6974  
0x69A8  
0x69AA  
0x69AB  
0x69AC  
0x69AD  
0x69B0  
0x69B1  
0x69B2  
0x69B3  
0x69B4  
1 / 0  
Reserved  
1 / W(2)  
1 / W(2)  
1 / W(2)  
1 / W(2)  
1 / 0  
Reserved  
Time Base Period Register Mirror  
Reserved  
Compare A Register Mirror  
(1)  
Digital Compare Trip Select Register  
1 / 0  
Digital Compare A Control Register(1)  
Digital Compare B Control Register(1)  
Digital Compare Filter Control Register(1)  
Digital Compare Capture Control Register(1)  
1 / 0  
1 / 0  
1 / 0  
(1) Registers that are EALLOW protected.  
(2) W = Write to shadow register  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
115  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
Table 6-31. ePWM5–ePWM7 Control and Status Registers (continued)  
SIZE (x16) /  
#SHADOW  
NAME  
ePWM5  
ePWM6  
ePWM7  
DESCRIPTION  
DCFOFFSET  
DCFOFFSETCNT  
DCFWINDOW  
DCFWINDOWCNT  
DCCAP  
0x6935  
0x6936  
0x6937  
0x6938  
0x6939  
0x6975  
0x6976  
0x6977  
0x6978  
0x6979  
0x69B5  
0x69B6  
0x69B7  
0x69B8  
0x69B9  
1 / 1  
1 / 0  
1 / 0  
1 / 0  
1 / 1  
Digital Compare Filter Offset Register  
Digital Compare Filter Offset Counter Register  
Digital Compare Filter Window Register  
Digital Compare Filter Window Counter Register  
Digital Compare Counter Capture Register  
6.8.3 Enhanced Pulse Width Modulator Electrical Data/Timing  
PWM refers to PWM outputs on ePWM1–7. Table 6-32 shows the PWM timing requirements and Table 6-  
33, switching characteristics.  
Table 6-32. ePWM Timing Requirements(1)  
MIN  
2tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
cycles  
tw(SYCIN)  
Sync input pulse width  
Asynchronous  
Synchronous  
2tc(SCO)  
With input qualifier  
1tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 6-45.  
Table 6-33. ePWM Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
33.33  
MAX  
UNIT  
ns  
tw(PWM)  
Pulse duration, PWMx output high/low  
Sync output pulse width  
tw(SYNCOUT)  
td(PWM)tza  
8tc(SCO)  
cycles  
ns  
Delay time, trip input active to PWM forced high  
Delay time, trip input active to PWM forced low  
no pin load  
25  
20  
td(TZ-PWM)HZ  
Delay time, trip input active to PWM Hi-Z  
ns  
116  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
6.8.3.1 Trip-Zone Input Timing  
Table 6-34. Trip-Zone Input Timing Requirements(1)  
MIN  
2tc(TBCLK)  
MAX UNIT  
cycles  
tw(TZ)  
Pulse duration, TZx input low  
Asynchronous  
Synchronous  
2tc(TBCLK)  
cycles  
With input qualifier  
2tc(TBCLK) + tw(IQSW)  
cycles  
(1) For an explanation of the input qualifier parameters, see Table 6-45.  
SYSCLK  
t
w(TZ)  
TZ(A)  
t
d(TZ-PWM)HZ  
PWM(B)  
A. TZ - TZ1, TZ2, TZ3, TZ4, TZ5, TZ6  
B. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM  
recovery software.  
Figure 6-25. PWM Hi-Z Characteristics  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
117  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
6.9 Enhanced Capture Module (eCAP)  
6.9.1 Enhanced Capture Module Device-Specific Information  
The device contains an enhanced capture module (eCAP1). Figure 6-26 shows a functional block diagram  
of a module.  
CTRPHS  
(phase register−32 bit)  
APWM mode  
SYNCIn  
CTR_OVF  
OVF  
CTR [0−31]  
PRD [0−31]  
CMP [0−31]  
TSCTR  
(counter−32 bit)  
SYNCOut  
PWM  
compare  
logic  
Delta−mode  
RST  
32  
CTR=PRD  
CTR=CMP  
CTR [0−31]  
PRD [0−31]  
32  
eCAPx  
32  
LD1  
CAP1  
(APRD active)  
Polarity  
select  
LD  
APRD  
shadow  
32  
CMP [0−31]  
32  
32  
LD2  
CAP2  
(ACMP active)  
Polarity  
select  
LD  
Event  
qualifier  
Event  
Pre-scale  
32  
ACMP  
shadow  
Polarity  
select  
32  
32  
LD3  
LD4  
CAP3  
(APRD shadow)  
LD  
CAP4  
(ACMP shadow)  
Polarity  
select  
LD  
4
Capture events  
4
CEVT[1:4]  
Interrupt  
Trigger  
and  
Flag  
control  
Continuous /  
Oneshot  
Capture Control  
to PIE  
CTR_OVF  
CTR=PRD  
CTR=CMP  
Figure 6-26. eCAP Functional Block Diagram  
The eCAP module is clocked at the SYSCLKOUT rate.  
The clock enable bits (ECAP1 ENCLK) in the PCLKCR1 register turn off the eCAP module individually (for  
low power operation). Upon reset, ECAP1ENCLK is set to low, indicating that the peripheral clock is off.  
118  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
6.9.2 Enhanced Capture Module Register Descriptions  
Table 6-35 shows the eCAP Control and Status Registers.  
Table 6-35. eCAP Control and Status Registers  
NAME  
TSCTR  
CTRPHS  
CAP1  
eCAP1  
0x6A00  
SIZE (x16) EALLOW PROTECTED  
DESCRIPTION  
Time-Stamp Counter  
2
2
2
2
2
2
8
1
1
1
1
1
1
6
0x6A02  
Counter Phase Offset Value Register  
Capture 1 Register  
0x6A04  
CAP2  
0x6A06  
Capture 2 Register  
CAP3  
0x6A08  
Capture 3 Register  
CAP4  
0x6A0A  
Capture 4 Register  
Reserved  
ECCTL1  
ECCTL2  
ECEINT  
ECFLG  
ECCLR  
ECFRC  
Reserved  
0x6A0C – 0x6A12  
0x6A14  
Reserved  
Capture Control Register 1  
Capture Control Register 2  
Capture Interrupt Enable Register  
Capture Interrupt Flag Register  
Capture Interrupt Clear Register  
Capture Interrupt Force Register  
Reserved  
0x6A15  
0x6A16  
0x6A17  
0x6A18  
0x6A19  
0x6A1A – 0x6A1F  
6.9.3 Enhanced Capture Module Electrical Data/Timing  
Table 6-36 shows the eCAP timing requirement and Table 6-37 shows the eCAP switching characteristics.  
Table 6-36. Enhanced Capture (eCAP) Timing Requirement(1)  
MIN  
2tc(SCO)  
MAX UNIT  
cycles  
tw(CAP)  
Capture input pulse width  
Asynchronous  
Synchronous  
2tc(SCO)  
cycles  
With input qualifier  
1tc(SCO) + tw(IQSW)  
cycles  
(1) For an explanation of the input qualifier parameters, see Table 6-45.  
Table 6-37. eCAP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
tw(APWM)  
Pulse duration, APWMx output high/low  
20  
ns  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
119  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
 
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
6.10 Enhanced Quadrature Encoder Pulse (eQEP)  
6.10.1 Enhanced Quadrature Encoder Pulse Device-Specific Information  
The device contains one enhanced quadrature encoder pulse (eQEP) module.  
Figure 6-27 shows the eQEP functional block diagram.  
System Control  
Registers  
To CPU  
EQEPxENCLK  
SYSCLKOUT  
QCPRD  
QCAPCTL  
16  
QCTMR  
16  
16  
Quadrature  
Capture  
Unit  
QCTMRLAT  
QCPRDLAT  
(QCAP)  
QUTMR  
QUPRD  
QWDTMR  
QWDPRD  
Registers  
Used by  
Multiple Units  
32  
16  
QEPCTL  
QEPSTS  
QFLG  
UTOUT  
QWDOG  
UTIME  
QDECCTL  
16  
WDTOUT  
EQEPxAIN  
EQEPxBIN  
EQEPxIIN  
EQEPxA/XCLK  
EQEPxB/XDIR  
EQEPxI  
QCLK  
QDIR  
QI  
EQEPxINT  
16  
PIE  
Position Counter/  
Control Unit  
(PCCU)  
EQEPxIOUT  
EQEPxIOE  
EQEPxSIN  
EQEPxSOUT  
EQEPxSOE  
Quadrature  
Decoder  
(QDU)  
QS  
GPIO  
MUX  
QPOSLAT  
QPOSSLAT  
QPOSILAT  
PHE  
PCSOUT  
EQEPxS  
32  
32  
16  
QPOSCNT  
QPOSINIT  
QPOSMAX  
QEINT  
QFRC  
QPOSCMP  
QCLR  
QPOSCTL  
Enhanced QEP (eQEP) Peripheral  
Figure 6-27. eQEP Functional Block Diagram  
120  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
6.10.2 Enhanced Quadrature Encoder Pulse Register Descriptions  
Table 6-38 shows the eQEP Control and Status Registers.  
Table 6-38. eQEP Control and Status Registers  
eQEP1  
eQEP1  
ADDRESS  
NAME  
QPOSCNT  
SIZE(x16)/  
#SHADOW  
REGISTER DESCRIPTION  
0x6B00  
0x6B02  
0x6B04  
0x6B06  
0x6B08  
0x6B0A  
0x6B0C  
0x6B0E  
0x6B10  
0x6B12  
0x6B13  
0x6B14  
0x6B15  
0x6B16  
0x6B17  
0x6B18  
0x6B19  
0x6B1A  
0x6B1B  
0x6B1C  
0x6B1D  
0x6B1E  
0x6B1F  
0x6B20  
2/0  
2/0  
2/0  
2/1  
2/0  
2/0  
2/0  
2/0  
2/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
31/0  
eQEP Position Counter  
QPOSINIT  
QPOSMAX  
QPOSCMP  
QPOSILAT  
QPOSSLAT  
QPOSLAT  
QUTMR  
eQEP Initialization Position Count  
eQEP Maximum Position Count  
eQEP Position-compare  
eQEP Index Position Latch  
eQEP Strobe Position Latch  
eQEP Position Latch  
eQEP Unit Timer  
QUPRD  
eQEP Unit Period Register  
eQEP Watchdog Timer  
QWDTMR  
QWDPRD  
QDECCTL  
QEPCTL  
QCAPCTL  
QPOSCTL  
QEINT  
eQEP Watchdog Period Register  
eQEP Decoder Control Register  
eQEP Control Register  
eQEP Capture Control Register  
eQEP Position-compare Control Register  
eQEP Interrupt Enable Register  
eQEP Interrupt Flag Register  
eQEP Interrupt Clear Register  
eQEP Interrupt Force Register  
eQEP Status Register  
QFLG  
QCLR  
QFRC  
QEPSTS  
QCTMR  
eQEP Capture Timer  
QCPRD  
eQEP Capture Period Register  
eQEP Capture Timer Latch  
eQEP Capture Period Latch  
QCTMRLAT  
QCPRDLAT  
Reserved  
0x6B21 –  
0x6B3F  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
121  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
6.10.3 Enhanced Quadrature Encoder Pulse Electrical Data/Timing  
Table 6-39 shows the eQEP timing requirement and Table 6-40 shows the eQEP switching  
characteristics.  
Table 6-39. Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements(1)  
TEST CONDITIONS  
Synchronous  
MIN  
MAX  
UNIT  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
tw(QEPP)  
QEP input period  
2tc(SCO)  
With input qualifier  
Synchronous  
2[1tc(SCO) + tw(IQSW)]  
tw(INDEXH)  
tw(INDEXL)  
tw(STROBH)  
tw(STROBL)  
QEP Index Input High time  
QEP Index Input Low time  
QEP Strobe High time  
QEP Strobe Input Low time  
2tc(SCO)  
2tc(SCO) +tw(IQSW)  
2tc(SCO)  
With input qualifier  
Synchronous  
With input qualifier  
Synchronous  
2tc(SCO) + tw(IQSW)  
2tc(SCO)  
2tc(SCO) + tw(IQSW)  
2tc(SCO)  
With input qualifier  
Synchronous  
With input qualifier  
2tc(SCO) +tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 6-45.  
Table 6-40. eQEP Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
td(CNTR)xin  
Delay time, external clock to counter increment  
4tc(SCO)  
6tc(SCO)  
cycles  
cycles  
td(PCS-OUT)QEP  
Delay time, QEP input edge to position compare sync output  
122  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
6.11 JTAG Port  
6.11.1 JTAG Port Device-Specific Information  
On the 2805x device, the JTAG port is reduced to 5 pins (TRST, TCK, TDI, TMS, TDO). TCK, TDI, TMS  
and TDO pins are also GPIO pins. The TRST signal selects either JTAG or GPIO operating mode for the  
pins in Figure 6-28. During emulation/debug, the GPIO function of these pins are not available. If the  
GPIO38/TCK/XCLKIN pin is used to provide an external clock, an alternate clock source should be used  
to clock the device during emulation/debug since this pin will be needed for the TCK function.  
NOTE  
In 2805x devices, the JTAG pins may also be used as GPIO pins. Care should be taken in  
the board design to ensure that the circuitry connected to these pins do not affect the  
emulation capabilities of the JTAG pin function. Any circuitry connected to these pins should  
not prevent the emulator from driving (or being driven by) the JTAG pins for successful  
debug.  
TRST = 0: JTAG Disabled (GPIO Mode)  
TRST = 1: JTAG Mode  
TRST  
TRST  
XCLKIN  
GPIO38_in  
TCK  
TCK/GPIO38  
GPIO38_out  
C28x  
Core  
GPIO37_in  
TDO  
TDO/GPIO37  
1
0
GPIO37_out  
GPIO36_in  
1
0
TMS  
TMS/GPIO36  
TDI/GPIO35  
1
GPIO36_out  
GPIO35_in  
1
0
TDI  
1
GPIO35_out  
Figure 6-28. JTAG/GPIO Multiplexing  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
123  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
6.11.1.1 Emulator Connection Without Signal Buffering for the MCU  
Figure 6-29 shows the connection between the MCU and JTAG header for a single-processor  
configuration. If the distance between the JTAG header and the MCU is greater than 6 inches, the  
emulation signals must be buffered. If the distance is less than 6 inches, buffering is typically not needed.  
Figure 6-29 shows the simpler, no-buffering situation. For the pullup and pulldown resistor values, see  
Section 3.2.  
6 inches or less  
VDDIO  
VDDIO  
13  
14  
2
5
EMU0  
EMU1  
TRST  
TMS  
PD  
4
6
8
TRST  
TMS  
TDI  
GND  
1
GND  
GND  
GND  
GND  
3
TDI  
7
10  
12  
TDO  
TCK  
TDO  
11  
9
TCK  
TCK_RET  
MCU  
JTAG Header  
A. See Figure 6-28 for JTAG/GPIO multiplexing.  
Figure 6-29. Emulator Connection Without Signal Buffering for the MCU  
NOTE  
The 2805x devices do not have EMU0/EMU1 pins. For designs that have a JTAG Header  
on-board, the EMU0/EMU1 pins on the header must be tied to VDDIO through a 4.7-k  
(typical) resistor.  
124  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
6.12 General-Purpose Input/Output (GPIO)  
6.12.1 General-Purpose Input/Output Device-Specific Information  
The GPIO MUX can multiplex up to three independent peripheral signals on a single GPIO pin in addition  
to providing individual pin bit-banging I/O capability.  
Table 6-41. GPIOA MUX(1) (2)  
DEFAULT AT RESET  
PERIPHERAL  
SELECTION 1  
PERIPHERAL  
SELECTION 2  
PERIPHERAL  
SELECTION 3  
PRIMARY I/O  
FUNCTION  
GPAMUX1 REGISTER  
BITS  
(GPAMUX1 BITS = 00) (GPAMUX1 BITS = 01)  
(GPAMUX1 BITS = 10)  
(GPAMUX1 BITS = 11)  
1-0  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
EPWM1A (O)  
EPWM1B (O)  
EPWM2A (O)  
EPWM2B (O)  
EPWM3A (O)  
EPWM3B (O)  
EPWM4A (O)  
EPWM4B (O)  
EPWM5A (O)  
EPWM5B (O)  
EPWM6A (O)  
EPWM6B (O)  
TZ1 (I)  
Reserved  
Reserved  
Reserved  
COMP1OUT (O)  
Reserved  
3-2  
5-4  
Reserved  
7-6  
SPISOMIA (I/O)  
Reserved  
COMP2OUT (O)  
Reserved  
9-8  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
SPISIMOA (I/O)  
EPWMSYNCI (I)  
SCIRXDA (I)  
Reserved  
ECAP1 (I/O)  
EPWMSYNCO (O)  
Reserved  
ADCSOCAO (O)  
Reserved  
Reserved  
Reserved  
ADCSOCBO (O)  
Reserved  
Reserved  
SCITXDA (O)  
Reserved  
Reserved  
TZ2 (I)  
Reserved  
TZ3 (I)  
Reserved  
Reserved  
TZ1 (I)  
Reserved  
Reserved  
GPAMUX2 REGISTER  
BITS  
(GPAMUX2 BITS = 00) (GPAMUX2 BITS = 01)  
(GPAMUX2 BITS = 10)  
(GPAMUX2 BITS = 11)  
1-0  
GPIO16  
GPIO17  
SPISIMOA (I/O)  
SPISOMIA (I/O)  
SPICLKA (I/O)  
SPISTEA (I/O)  
EQEP1A (I)  
EQEP1B (I)  
EQEP1S (I/O)  
EQEP1I (I/O)  
ECAP1 (I/O)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
SDAA (I/OD)  
SCLA (I/OD)  
Reserved  
Reserved  
TZ2 (I)  
TZ3 (I)  
3-2  
5-4  
GPIO18  
XCLKOUT (O)  
ECAP1 (I/O)  
COMP1OUT (O)  
COMP2OUT (O)  
Reserved  
7-6  
GPIO19/XCLKIN  
GPIO20  
9-8  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
GPIO21  
GPIO22  
GPIO23  
Reserved  
GPIO24  
Reserved  
GPIO25  
Reserved  
GPIO26  
Reserved  
Reserved  
GPIO27  
Reserved  
Reserved  
GPIO28  
SCIRXDA (I)  
SCITXDA (O)  
CANRXA (I)  
CANTXA (O)  
TZ2 (I)  
GPIO29  
TZ3 (I)  
GPIO30  
Reserved  
GPIO31  
Reserved  
(1) The word reserved means that there is no peripheral assigned to this GPxMUX1/2 register setting. Should the Reserved GPxMUX1/2  
register setting be selected, the state of the pin will be undefined and the pin may be driven. This selection is a reserved configuration  
for future expansion.  
(2) I = Input, O = Output, OD = Open Drain  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
125  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
Table 6-42. GPIOB MUX(1)  
DEFAULT AT RESET  
PRIMARY I/O FUNCTION  
PERIPHERAL  
SELECTION 1  
PERIPHERAL  
SELECTION 2  
PERIPHERAL  
SELECTION 3  
GPBMUX1 REGISTER  
BITS  
(GPBMUX1 BITS = 00)  
(GPBMUX1 BITS = 01)  
(GPBMUX1 BITS = 10)  
(GPBMUX1 BITS = 11)  
1-0  
GPIO32  
GPIO33  
SDAA (I/OD)  
SCLA (I/OD)  
COMP2OUT (O)  
Reserved  
EPWMSYNCI (I)  
EPWMSYNCO (O)  
Reserved  
ADCSOCAO (O)  
ADCSOCBO (O)  
COMP3OUT (O)  
Reserved  
3-2  
5-4  
GPIO34  
7-6  
GPIO35 (TDI)  
GPIO36 (TMS)  
GPIO37 (TDO)  
GPIO38/XCLKIN (TCK)  
GPIO39  
Reserved  
9-8  
Reserved  
Reserved  
Reserved  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
GPIO40  
EPWM7A (O)  
EPWM7B (O)  
Reserved  
Reserved  
Reserved  
GPIO41  
Reserved  
Reserved  
GPIO42  
Reserved  
COMP1OUT (O)  
COMP2OUT (O)  
Reserved  
GPIO43  
Reserved  
Reserved  
GPIO44  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
(1) I = Input, O = Output, OD = Open Drain  
The user can select the type of input qualification for each GPIO pin via the GPxQSEL1/2 registers from  
four choices:  
Synchronization to SYSCLKOUT Only (GPxQSEL1/2 = 0, 0): This mode is the default mode of all  
GPIO pins at reset and this mode simply synchronizes the input signal to the system clock  
(SYSCLKOUT).  
Qualification Using Sampling Window (GPxQSEL1/2 = 0, 1 and 1, 0): In this mode the input signal,  
after synchronization to the system clock (SYSCLKOUT), is qualified by a specified number of cycles  
before the input is allowed to change.  
The sampling period is specified by the QUALPRD bits in the GPxCTRL register and is configurable in  
groups of 8 signals. The sampling period specifies a multiple of SYSCLKOUT cycles for sampling the  
input signal. The sampling window is either 3-samples or 6-samples wide and the output is only  
changed when ALL samples are the same (all 0s or all 1s) as shown in Figure 6-32 (for 6 sample  
mode).  
No Synchronization (GPxQSEL1/2 = 1,1): This mode is used for peripherals where synchronization is  
not required (synchronization is performed within the peripheral).  
Due to the multi-level multiplexing that is required on the device, there may be cases where a peripheral  
input signal can be mapped to more then one GPIO pin. Also, when an input signal is not selected, the  
input signal will default to either a 0 or 1 state, depending on the peripheral.  
126  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
GPIOXINT1SEL  
GPIOXINT2SEL  
GPIOXINT3SEL  
GPIOLMPSEL  
LPMCR0  
External Interrupt  
PIE  
MUX  
Low Power  
Modes Block  
Asynchronous  
path  
GPxDAT (read)  
GPxQSEL1/2  
GPxCTRL  
GPxPUD  
N/C  
00  
01  
Peripheral 1 Input  
Input  
Internal  
Pullup  
Qualification  
Peripheral 2 Input  
10  
11  
Peripheral 3 Input  
GPxTOGGLE  
Asynchronous path  
GPIOx pin  
GPxCLEAR  
GPxSET  
00  
01  
GPxDAT (latch)  
Peripheral 1 Output  
10  
11  
Peripheral 2 Output  
Peripheral 3 Output  
High Impedance  
Output Control  
GPxDIR (latch)  
00  
01  
Peripheral 1 Output Enable  
Peripheral 2 Output Enable  
0 = Input, 1 = Output  
XRS  
10  
11  
Peripheral 3 Output Enable  
= Default at Reset  
GPxMUX1/2  
A. x stands for the port, either A or B. For example, GPxDIR refers to either the GPADIR and GPBDIR register  
depending on the particular GPIO pin selected.  
B. GPxDAT latch/read are accessed at the same memory location.  
C. This diagram is a generic GPIO MUX block diagram. Not all options may be applicable for all GPIO pins. See the  
Systems Control and Interrupts chapter of the TMS320x2805x Piccolo Technical Reference Manual (literature number  
SPRUHE5) for pin-specific variations.  
Figure 6-30. GPIO Multiplexing  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
127  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
6.12.2 General-Purpose Input/Output Register Descriptions  
The device supports 42 GPIO pins. The GPIO control and data registers are mapped to Peripheral  
Frame 1 to enable 32-bit operations on the registers (along with 16-bit operations). Table 6-43 shows the  
GPIO register mapping.  
Table 6-43. GPIO Registers  
NAME  
ADDRESS  
GPIO CONTROL REGISTERS (EALLOW PROTECTED)  
0x6F80 GPIO A Control Register (GPIO0 to 31)  
SIZE (x16)  
DESCRIPTION  
GPACTRL  
GPAQSEL1  
GPAQSEL2  
GPAMUX1  
GPAMUX2  
GPADIR  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
0x6F82  
0x6F84  
0x6F86  
0x6F88  
0x6F8A  
0x6F8C  
0x6F90  
0x6F92  
0x6F96  
0x6F9A  
0x6F9C  
0x6FB6  
0x6FBA  
GPIO A Qualifier Select 1 Register (GPIO0 to 15)  
GPIO A Qualifier Select 2 Register (GPIO16 to 31)  
GPIO A MUX 1 Register (GPIO0 to 15)  
GPIO A MUX 2 Register (GPIO16 to 31)  
GPIO A Direction Register (GPIO0 to 31)  
GPIO A Pull Up Disable Register (GPIO0 to 31)  
GPIO B Control Register (GPIO32 to 44)  
GPIO B Qualifier Select 1 Register (GPIO32 to 44)  
GPIO B MUX 1 Register (GPIO32 to 44)  
GPIO B Direction Register (GPIO32 to 44)  
GPIO B Pull Up Disable Register (GPIO32 to 44)  
Reserved  
GPAPUD  
GPBCTRL  
GPBQSEL1  
GPBMUX1  
GPBDIR  
GPBPUD  
Reserved  
Reserved  
Reserved  
GPIO DATA REGISTERS (NOT EALLOW PROTECTED)  
GPADAT  
GPASET  
0x6FC0  
0x6FC2  
0x6FC4  
0x6FC6  
0x6FC8  
0x6FCA  
0x6FCC  
0x6FCE  
0x6FD8  
0x6FDA  
0x6FDC  
0x6FDE  
2
2
2
2
2
2
2
2
2
2
2
2
GPIO A Data Register (GPIO0 to 31)  
GPIO A Data Set Register (GPIO0 to 31)  
GPIO A Data Clear Register (GPIO0 to 31)  
GPIO A Data Toggle Register (GPIO0 to 31)  
GPIO B Data Register (GPIO32 to 44)  
GPIO B Data Set Register (GPIO32 to 44)  
GPIO B Data Clear Register (GPIO32 to 44)  
GPIO B Data Toggle Register (GPIO32 to 44)  
Reserved  
GPACLEAR  
GPATOGGLE  
GPBDAT  
GPBSET  
GPBCLEAR  
GPBTOGGLE  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
GPIO INTERRUPT AND LOW POWER MODES SELECT REGISTERS (EALLOW PROTECTED)  
GPIOXINT1SEL  
GPIOXINT2SEL  
GPIOXINT3SEL  
GPIOLPMSEL  
0x6FE0  
0x6FE1  
0x6FE2  
0x6FE8  
1
1
1
2
XINT1 GPIO Input Select Register (GPIO0 to 31)  
XINT2 GPIO Input Select Register (GPIO0 to 31)  
XINT3 GPIO Input Select Register (GPIO0 to 31)  
LPM GPIO Select Register (GPIO0 to 31)  
NOTE  
There is a two-SYSCLKOUT cycle delay from when the write to the GPxMUXn and  
GPxQSELn registers occurs to when the action is valid.  
128  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
6.12.3 General-Purpose Input/Output Electrical Data/Timing  
6.12.3.1 GPIO - Output Timing  
Table 6-44. General-Purpose Output Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
13(1)  
13(1)  
15  
UNIT  
ns  
tr(GPO)  
tf(GPO)  
tfGPO  
Rise time, GPIO switching low to high  
Fall time, GPIO switching high to low  
Toggling frequency  
All GPIOs  
All GPIOs  
ns  
MHz  
(1) Rise time and fall time vary with electrical loading on I/O pins. Values given in Table 6-44 are applicable for a 40-pF load on I/O pins.  
GPIO  
t
r(GPO)  
t
f(GPO)  
Figure 6-31. General-Purpose Output Timing  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
129  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
6.12.3.2 GPIO - Input Timing  
Table 6-45. General-Purpose Input Timing Requirements  
MIN  
1tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
cycles  
cycles  
cycles  
QUALPRD = 0  
tw(SP)  
Sampling period  
QUALPRD 0  
2tc(SCO) * QUALPRD  
tw(SP) * (n(1) – 1)  
2tc(SCO)  
tw(IQSW)  
Input qualifier sampling window  
Pulse duration, GPIO low/high  
Synchronous mode  
With input qualifier  
(2)  
tw(GPI)  
tw(IQSW) + tw(SP) + 1tc(SCO)  
(1) "n" represents the number of qualification samples as defined by GPxQSELn register.  
(2) For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal.  
(A)  
GPIO Signal  
GPxQSELn = 1,0 (6 samples)  
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
1
tw(SP)  
Sampling Period determined  
by GPxCTRL[QUALPRD](B)  
tw(IQSW)  
[(SYSCLKOUT cycle * 2 * QUALPRD) * 5(C)  
]
Sampling Window  
SYSCLKOUT  
QUALPRD = 1  
(SYSCLKOUT/2)  
(D)  
Output From  
Qualifier  
A. This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period.  
The QUALPRD bit field value can vary from 00 to 0xFF. If QUALPRD = 00, then the sampling period is 1  
SYSCLKOUT cycle. For any other value "n", the qualification sampling period in 2n SYSCLKOUT cycles (that is, at  
every 2n SYSCLKOUT cycles, the GPIO pin will be sampled).  
B. The qualification period selected via the GPxCTRL register applies to groups of 8 GPIO pins.  
C. The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is  
used.  
D. In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLKOUT cycles or  
greater. In other words, the inputs should be stable for (5 x QUALPRD x 2) SYSCLKOUT cycles. This condition would  
ensure 5 sampling periods for detection to occur. Since external signals are driven asynchronously, an 13-  
SYSCLKOUT-wide pulse ensures reliable recognition.  
Figure 6-32. Sampling Mode  
130  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
6.12.3.3 Sampling Window Width for Input Signals  
The following section summarizes the sampling window width for input signals for various input qualifier  
configurations.  
Sampling frequency denotes how often a signal is sampled with respect to SYSCLKOUT.  
Sampling frequency = SYSCLKOUT/(2 * QUALPRD), if QUALPRD 0  
Sampling frequency = SYSCLKOUT, if QUALPRD = 0  
Sampling period = SYSCLKOUT cycle x 2 x QUALPRD, if QUALPRD 0  
In the above equations, SYSCLKOUT cycle indicates the time period of SYSCLKOUT.  
Sampling period = SYSCLKOUT cycle, if QUALPRD = 0  
In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of  
the signal. The number of samples is determined by the value written to GPxQSELn register.  
Case 1:  
Qualification using 3 samples  
Sampling window width = (SYSCLKOUT cycle x 2 x QUALPRD) x 2, if QUALPRD 0  
Sampling window width = (SYSCLKOUT cycle) x 2, if QUALPRD = 0  
Case 2:  
Qualification using 6 samples  
Sampling window width = (SYSCLKOUT cycle x 2 x QUALPRD) x 5, if QUALPRD 0  
Sampling window width = (SYSCLKOUT cycle) x 5, if QUALPRD = 0  
SYSCLK  
GPIOxn  
t
w(GPI)  
Figure 6-33. General-Purpose Input Timing  
VDDIO  
> 1 MS  
2 pF  
VSS  
VSS  
Figure 6-34. Input Resistance Model for a GPIO Pin With an Internal Pull-up  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
131  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
6.12.3.4 Low-Power Mode Wakeup Timing  
Table 6-46 shows the timing requirements, Table 6-47 shows the switching characteristics, and Figure 6-  
35 shows the timing diagram for IDLE mode.  
Table 6-46. IDLE Mode Timing Requirements(1)  
MIN  
2tc(SCO)  
MAX  
UNIT  
Without input qualifier  
With input qualifier  
tw(WAKE-INT)  
Pulse duration, external wake-up signal  
cycles  
5tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 6-45.  
Table 6-47. IDLE Mode Switching Characteristics(1)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
cycles  
cycles  
(2)  
Delay time, external wake signal to program execution resume  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
20tc(SCO)  
Wake-up from Flash  
Flash module in active state  
20tc(SCO) + tw(IQSW)  
1050tc(SCO)  
td(WAKE-IDLE)  
cycles  
cycles  
Wake-up from Flash  
Flash module in sleep state  
1050tc(SCO) + tw(IQSW)  
20tc(SCO)  
Wake-up from SARAM  
20tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 6-45.  
(2) This delay time is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. execution of an ISR  
(triggered by the wake-up) signal involves additional latency.  
t
d(WAKE−IDLE)  
Address/Data  
(internal)  
XCLKOUT  
t
w(WAKE−INT)  
WAKE INT(A)(B)  
A. WAKE INT can be any enabled interrupt, WDINT or XRS. After the IDLE instruction is executed, a delay of 5  
OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted.  
B. From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be  
initiated until at least 4 OSCCLK cycles have elapsed.  
Figure 6-35. IDLE Entry and Exit Timing  
132  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
 
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
Table 6-48. STANDBY Mode Timing Requirements  
MIN  
3tc(OSCCLK)  
MAX  
UNIT  
Without input qualification  
With input qualification(1)  
Pulse duration, external  
wake-up signal  
tw(WAKE-INT)  
cycles  
(2 + QUALSTDBY) * tc(OSCCLK)  
(1) QUALSTDBY is a 6-bit field in the LPMCR0 register.  
Table 6-49. STANDBY Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Delay time, IDLE instruction  
executed to XCLKOUT low  
td(IDLE-XCOL)  
32tc(SCO)  
45tc(SCO)  
cycles  
Delay time, external wake signal to program execution  
resume(1)  
cycles  
cycles  
Without input qualifier  
100tc(SCO)  
Wake up from flash  
Flash module in active state With input qualifier  
100tc(SCO) + tw(WAKE-INT)  
1125tc(SCO)  
td(WAKE-STBY)  
Without input qualifier  
Wake up from flash  
cycles  
cycles  
Flash module in sleep state With input qualifier  
1125tc(SCO) + tw(WAKE-INT)  
100tc(SCO)  
Without input qualifier  
Wake up from SARAM  
With input qualifier  
100tc(SCO) + tw(WAKE-INT)  
(1) This delay time is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. execution of an ISR  
(triggered by the wake up signal) involves additional latency.  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
133  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
(C)  
(F)  
(A)  
(B)  
(D)(E)  
(G)  
Normal Execution  
Device  
Status  
STANDBY  
STANDBY  
Flushing Pipeline  
Wake-up  
Signal(H)  
t
w(WAKE-INT)  
t
d(WAKE-STBY)  
X1/X2 or  
XCLKIN  
XCLKOUT  
t
d(IDLE−XCOL)  
A. IDLE instruction is executed to put the device into STANDBY mode.  
B. The PLL block responds to the STANDBY signal. SYSCLKOUT is held for the number of cycles indicated below  
before being turned off:  
16 cycles, when DIVSEL = 00 or 01  
32 cycles, when DIVSEL = 10  
64 cycles, when DIVSEL = 11  
This delay enables the CPU pipeline and any other pending operations to flush properly.  
C. Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in  
STANDBY mode. After the IDLE instruction is executed, a delay of 5 OSCCLK cycles (minimum) is needed before the  
wake-up signal could be asserted.  
D. The external wake-up signal is driven active.  
E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement.  
Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the  
device will not be deterministic and the device may not exit low-power mode for subsequent wake-up pulses.  
F. After a latency period, the STANDBY mode is exited.  
G. Normal execution resumes. The device will respond to the interrupt (if enabled).  
H. From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be  
initiated until at least 4 OSCCLK cycles have elapsed.  
Figure 6-36. STANDBY Entry and Exit Timing Diagram  
Table 6-50. HALT Mode Timing Requirements  
MIN  
toscst + 2tc(OSCCLK)  
toscst + 8tc(OSCCLK)  
MAX  
UNIT  
cycles  
cycles  
tw(WAKE-GPIO)  
tw(WAKE-XRS)  
Pulse duration, GPIO wake-up signal  
Pulse duration, XRS wakeup signal  
Table 6-51. HALT Mode Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
cycles  
ms  
td(IDLE-XCOL)  
tp  
Delay time, IDLE instruction executed to XCLKOUT low  
PLL lock-up time  
32tc(SCO)  
45tc(SCO)  
1
Delay time, PLL lock to program execution resume  
1125tc(SCO)  
35tc(SCO)  
cycles  
cycles  
Wake up from flash  
Flash module in sleep state  
td(WAKE-HALT)  
Wake up from SARAM  
134  
Peripheral Information and Timings  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
(C)  
(F)  
(A)  
(H)  
(B)  
(G)  
(D)(E)  
Device  
Status  
HALT  
HALT  
Flushing Pipeline  
PLL Lock-up Time  
Normal  
Execution  
Wake-up Latency  
GPIOn(I)  
t
)
d(WAKE−HALT  
t
w(WAKE-GPIO)  
tp  
X1/X2 or  
XCLKIN  
Oscillator Start-up Time  
XCLKOUT  
t
d(IDLE−XCOL)  
A. IDLE instruction is executed to put the device into HALT mode.  
B. The PLL block responds to the HALT signal. SYSCLKOUT is held for the number of cycles indicated below before  
oscillator is turned off and the CLKIN to the core is stopped:  
16 cycles, when DIVSEL = 00 or 01  
32 cycles, when DIVSEL = 10  
64 cycles, when DIVSEL = 11  
This delay enables the CPU pipeline and any other pending operations to flush properly.  
C. Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as  
the clock source, the internal oscillator is shut down as well. The device is now in HALT mode and consumes  
absolute minimum power. It is possible to keep the zero-pin internal oscillators (INTOSC1 and INTOSC2) and the  
watchdog alive in HALT mode. Keeping INTOSC1, INTOSC2, and the watchdog alive in HALT mode is done by  
writing to the appropriate bits in the CLKCTL register. After the IDLE instruction is executed, a delay of 5 OSCCLK  
cycles (minimum) is needed before the wake-up signal could be asserted.  
D. When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator  
wake-up sequence is initiated. The GPIO pin should be driven high only after the oscillator has stabilized, which  
enables the provision of a clean clock signal during the PLL lock sequence. Since the falling edge of the GPIO pin  
asynchronously begins the wakeup procedure, care should be taken to maintain a low noise environment prior to  
entering and during HALT mode.  
E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement.  
Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the  
device will not be deterministic and the device may not exit low-power mode for subsequent wake-up pulses.  
F. Once the oscillator has stabilized, the PLL lock sequence is initiated, which takes 1 ms.  
G. When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after a latency. The HALT  
mode is now exited.  
H. Normal operation resumes.  
I.  
From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be  
initiated until at least 4 OSCCLK cycles have elapsed.  
Figure 6-37. HALT Wake-Up Using GPIOn  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Timings  
135  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
7 Device and Documentation Support  
7.1 Device Support  
7.1.1 Development Support  
Texas Instruments (TI) offers an extensive line of development tools for the C28x™ generation of MCUs,  
including tools to evaluate the performance of the processors, generate code, develop algorithm  
implementations, and fully integrate and debug software and hardware modules.  
The following products support development of 2805x-based applications:  
Software Development Tools  
Code Composer Studio™ Integrated Development Environment (IDE)  
C/C++ Compiler  
Code generation tools  
Assembler/Linker  
Cycle Accurate Simulator  
Application algorithms  
Sample applications code  
Hardware Development Tools  
Development and evaluation boards  
JTAG-based emulators - XDS510™ class, XDS560™ emulator, XDS100  
Flash programming tools  
Power supply  
Documentation and cables  
For a complete listing of development-support tools for the processor platform, visit the Texas Instruments  
website at www.ti.com. For information on pricing and availability, contact the nearest TI field sales office  
or authorized distributor.  
7.1.2 Device and Development Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
TMS320™ MCU devices and support tools. Each TMS320™ MCU commercial family member has one of  
three prefixes: TMX, TMP, or TMS (for example, TMX320F28055). Texas Instruments recommends two of  
three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent  
evolutionary stages of product development from engineering prototypes (with TMX for devices and TMDX  
for tools) through fully qualified production devices and tools (with TMS for devices and TMDS for tools).  
Device development evolutionary flow:  
TMX  
TMP  
TMS  
Experimental device that is not necessarily representative of the final device's electrical  
specifications  
Final silicon die that conforms to the device's electrical specifications but has not  
completed quality and reliability verification  
Fully qualified production device  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal  
qualification testing  
TMDS Fully qualified development-support product  
136  
Device and Documentation Support  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
TMX and TMP devices and TMDX development-support tools are shipped against the following  
disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard  
production devices. Texas Instruments recommends that these devices not be used in any production  
system because their expected end-use failure rate still is undefined. Only qualified production devices are  
to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the  
package type (for example, PN) and temperature range (for example, T). Figure 7-1 provides a legend for  
reading the complete device name for any family member.  
For device part numbers and further ordering information, see the TI website (www.ti.com) or contact your  
TI sales representative.  
For additional description of the device nomenclature markings on the die, see the TMS320F28055,  
TMS320F28054, TMS320F28053, TMS320F28052, TMS320F28051, TMS320F28050 Piccolo MCU  
Silicon Errata (literature number SPRZ362).  
TMX  
320  
F
28055 PN  
T
PREFIX  
TEMPERATURE RANGE  
experimental device  
prototype device  
qualified device  
TMX =  
TMP =  
TMS =  
=
=
T
S
−40°C to 105°C  
−40°C to 125°C  
PACKAGE TYPE  
80-Pin PN Low-Profile Quad Flatpack (LQFP)  
DEVICE FAMILY  
320 = TMS320 MCU Family  
DEVICE  
TECHNOLOGY  
28055  
28054  
28053  
28052  
28051  
28050  
F = Flash  
Figure 7-1. Device Nomenclature  
Copyright © 2012, Texas Instruments Incorporated  
Device and Documentation Support  
137  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
SPRS797 NOVEMBER 2012  
www.ti.com  
7.2 Documentation Support  
Extensive documentation supports all of the TMS320™ MCU family generations of devices from product  
announcement through applications development. The types of documentation available include: data  
sheets and data manuals, with design specifications; and hardware and software applications.  
The following documents can be downloaded from the TI website (www.ti.com):  
Data Manual and Errata  
SPRS797  
TMS320F28055, TMS320F28054, TMS320F28053, TMS320F28052, TMS320F28051,  
TMS320F28050 Piccolo Microcontrollers Data Manual contains the pinout, signal  
descriptions, as well as electrical and timing specifications for the 2805x devices.  
SPRZ362  
TMS320F28055, TMS320F28054, TMS320F28053, TMS320F28052, TMS320F28051,  
TMS320F28050 Piccolo MCU Silicon Errata describes known advisories on silicon and  
provides workarounds.  
Technical Reference Manual  
SPRUHE5 TMS320x2805x Piccolo Technical Reference Manual details the integration, the  
environment, the functional description, and the programming models for each peripheral  
and subsystem in the 2805x microcontrollers.  
CPU User's Guides  
SPRU430  
TMS320C28x CPU and Instruction Set Reference Guide describes the central processing  
unit (CPU) and the assembly language instructions of the TMS320C28x fixed-point digital  
signal processors (DSPs). This Reference Guide also describes emulation features available  
on these DSPs.  
Peripheral Guides  
SPRU566 TMS320x28xx, 28xxx DSP Peripheral Reference Guide describes the peripheral reference  
guides of the 28x digital signal processors (DSPs).  
Tools Guides  
SPRU513  
TMS320C28x Assembly Language Tools v5.0.0 User's Guide describes the assembly  
language tools (assembler and other tools used to develop assembly language code),  
assembler directives, macros, common object file format, and symbolic debugging directives  
for the TMS320C28x device.  
SPRU514  
SPRU608  
TMS320C28x Optimizing C/C++ Compiler v5.0.0 User's Guide describes the  
TMS320C28x™ C/C++ compiler. This compiler accepts ANSI standard C/C++ source code  
and produces TMS320 DSP assembly language source code for the TMS320C28x device.  
TMS320C28x Instruction Set Simulator Technical Overview describes the simulator,  
available within the Code Composer Studio for TMS320C2000 IDE, that simulates the  
instruction set of the C28x™ core.  
7.3 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the  
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;  
see TI's Terms of Use.  
TI E2E Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and  
help solve problems with fellow engineers.  
TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help  
developers get started with Embedded Processors from Texas Instruments and to foster  
innovation and growth of general knowledge about the hardware and software surrounding  
these devices.  
138  
Device and Documentation Support  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
TMS320F28055, TMS320F28054, TMS320F28053  
TMS320F28052, TMS320F28051, TMS320F28050  
www.ti.com  
SPRS797 NOVEMBER 2012  
8 Mechanical Packaging and Orderable Information  
8.1 Thermal Data for Package  
Table 8-1 shows the thermal data. See Section 2.9 for more information on thermal design considerations.  
Table 8-1. Thermal Model 80-Pin PN Results  
AIR FLOW  
PARAMETER  
0 lfm  
49.9  
0.8  
150 lfm  
38.3  
250 lfm  
36.7  
500 lfm  
34.4  
θJA [°C/W] High k PCB  
ΨJT [°C/W]  
ΨJB  
1.18  
1.34  
1.62  
21.6  
14.2  
21.9  
20.7  
20.5  
20.1  
θJC  
θJB  
8.2 Packaging Information  
The following packaging information and addendum reflect the most current data available for the  
designated devices. This data is subject to change without notice and without revision of this document.  
Copyright © 2012, Texas Instruments Incorporated  
Mechanical Packaging and Orderable Information  
Submit Documentation Feedback  
139  
Product Folder Links: TMS320F28055 TMS320F28054 TMS320F28053 TMS320F28052 TMS320F28051  
TMS320F28050  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Feb-2013  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package Qty  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
PN  
PN  
PN  
PN  
PN  
PN  
PN  
PN  
PN  
PN  
PN  
PN  
PN  
PN  
PN  
PN  
PN  
PN  
(1)  
(2)  
(3)  
(4)  
TMS320F28050PNQ  
TMS320F28050PNS  
TMS320F28050PNT  
TMS320F28051PNQ  
TMS320F28051PNS  
TMS320F28051PNT  
TMS320F28052PNQ  
TMS320F28052PNS  
TMS320F28052PNT  
TMS320F28053PNQ  
TMS320F28053PNS  
TMS320F28053PNT  
TMS320F28054PNQ  
TMS320F28054PNS  
TMS320F28054PNT  
TMS320F28055PNQ  
TMS320F28055PNS  
TMS320F28055PNT  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
119  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
CU NIPDAU  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 105  
-40 to 105  
-40 to 125  
-40 to 125  
-40 to 105  
-40 to 125  
-40 to 125  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Green (RoHS  
& no Sb/Br)  
Level-3-260C-168 HR  
-40 to 105 F28055PNT  
TMS320  
TMX320F28055PNT  
ACTIVE  
LQFP  
PN  
80  
1
TBD  
Call TI  
Call TI  
-40 to 105  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Feb-2013  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) Only one of markings shown within the brackets will appear on the physical device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MTQF010A – JANUARY 1995 – REVISED DECEMBER 1996  
PN (S-PQFP-G80)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
60  
M
0,08  
41  
61  
40  
0,13 NOM  
80  
21  
1
20  
Gage Plane  
9,50 TYP  
0,25  
12,20  
SQ  
11,80  
0,05 MIN  
0°7°  
14,20  
SQ  
13,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040135 /B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

TMS320F28053PNS

Piccolo Microcontrollers
TI

TMS320F28053PNT

Piccolo Microcontrollers
TI

TMS320F28054

Piccolo Microcontrollers
TI

TMS320F28054-Q1

TMS320F2805x Microcontrollers
TI

TMS320F28054F

具有 60MHz 频率、128KB 闪存、InstaSPIN-FOC、PGA 的 C2000™ 32 位 MCU
TI

TMS320F28054F-Q1

TMS320F2805x Microcontrollers
TI

TMS320F28054FPNQ

具有 60MHz 频率、128KB 闪存、InstaSPIN-FOC、PGA 的汽车类 C2000™ 32 位 MCU | PN | 80 | -40 to 125
TI

TMS320F28054FPNT

具有 60MHz 频率、128KB 闪存、InstaSPIN-FOC、PGA 的 C2000™ 32 位 MCU | PN | 80 | -40 to 105
TI

TMS320F28054M

具有 60MHz 频率、128KB 闪存、InstaSPIN-MOTION、PGA 的 C2000™ 32 位 MCU
TI

TMS320F28054M-Q1

TMS320F2805x Microcontrollers
TI

TMS320F28054MPNQ

暂无描述
TI

TMS320F28054MPNT

具有 60MHz 频率、128KB 闪存、InstaSPIN-MOTION、PGA 的 C2000™ 32 位 MCU | PN | 80 | -40 to 105
TI