TMS320VC5410 [TI]

FIXED-POINT DIGITAL SIGNAL PROCESSOR; 定点数字信号处理器
TMS320VC5410
型号: TMS320VC5410
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

FIXED-POINT DIGITAL SIGNAL PROCESSOR
定点数字信号处理器

数字信号处理器
文件: 总79页 (文件大小:1167K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
T MS 32 0V C5 41 0  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
G
I
T
A
L
S
I
G
N
L
P
R
O
C
E
S
S
O
R
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
D
D
D
Advanced Multibus Architecture With Three  
Separate 16-Bit Data Memory Buses and  
One Program Memory Bus  
D
D
D
D
D
Instructions With Two- or Three-Operand  
Reads  
Arithmetic Instructions With Parallel Store  
and Parallel Load  
40-Bit Arithmetic Logic Unit (ALU)  
Including a 40-Bit Barrel Shifter and Two  
Independent 40-Bit Accumulators  
Conditional Store Instructions  
Fast Return From Interrupt  
17- × 17-Bit Parallel Multiplier Coupled to a  
40-Bit Dedicated Adder for Non-Pipelined  
Single-Cycle Multiply/Accumulate (MAC)  
Operation  
On-Chip Peripherals  
– Software-Programmable Wait-State  
Generator and Programmable  
Bank-Switching  
– On-Chip Programmable Phase-Locked  
Loop (PLL) Clock Generator With  
Internal Oscillator or External Clock  
Source  
– One 16-Bit Timer  
– Six-Channel Direct Memory Access  
(DMA) Controller  
D
D
D
Compare, Select, and Store Unit (CSSU) for  
the Add/Compare Selection of the Viterbi  
Operator  
Exponent Encoder to Compute an  
Exponent Value of a 40-Bit Accumulator  
Value in a Single Cycle  
Two Address Generators With Eight  
Auxiliary Registers and Two Auxiliary  
Register Arithmetic Units (ARAUs)  
– Three Multichannel Buffered Serial Ports  
(McBSPs)  
– 8-Bit Enhanced Parallel Host-Port  
Interface (HPI8)  
D
D
Data Bus With a Bus Holder Feature  
Extended Addressing Mode for 8M × 16-Bit  
Maximum Addressable External Program  
Space  
D
Power Consumption Control With IDLE1,  
IDLE2, and IDLE3 Instructions With  
Power-Down Modes  
D
64K x 16-Bit On-Chip RAM Composed of:  
– Four Blocks of 2K × 16-Bit On-Chip  
Dual-Access Program/Data RAM  
– Seven Blocks of 8K × 16-Bit On-Chip  
Single-Access Program/Data RAM  
D
D
CLKOUT Off Control to Disable CLKOUT  
On-Chip Scan-Based Emulation Logic,  
IEEE Std 1149.1 (JTAG) Boundary Scan  
Logic  
D
D
D
144-Pin Thin Quad Flatpack (TQFP)  
(PGE Suffix)  
D
D
D
D
D
16K × 16-Bit On-Chip ROM Configured to  
Program Memory  
176-Pin Ball Grid Array (BGA)  
(GGW Suffix)  
Enhanced External Parallel Interface (XIO2)  
Single-Instruction-Repeat and  
Block-Repeat Operations for Program Code  
10-ns and 8.3-ns Single-Cycle Fixed-Point  
Instruction Execution Time (100 and 120  
MIPS)  
Block-Memory-Move Instructions for Better  
Program and Data Management  
D
3.3-V I/O and 2.5-V Core Supply Voltages  
Instructions With a 32-Bit Long Word  
Operand  
description  
The TMS320VC5410 fixed-point, digital signal processor (DSP) (hereafter referred to as the ’5410 unless  
otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus  
and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of  
parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis  
of the operational flexibility and speed of this DSP is a highly specialized instruction set.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.  
Copyright 2000, Texas Instruments Incorporated  
U
N
L
TA  
E
S
S
i
O
T
H
a
E
R
n
W
I
S
c
E
u
N
O
t
T
E
a
D
s
t
o
h
f
i
s
d
o
l
c
u
a
m
e
n
n
t
c
o
n
.
t
a
i
n
P
s
r
P
R
O
D
U
C
T
I
O
N
D
A
n
f
o
r
m
t
i
o
r
r
e
n
p
u
b
i
c
t
i
o
d
a
t
e
o
d
u
c
t
s
c
o
n
f
w ar r an ty.  
o
r
m
t
o
s
p
e
c
i
f
i
c
a
t
i
o
n
s
p
e
r
t
h
e
t
e
r
m
s
o
f
T
e
x
a
s
I
n
s
t
r
u
m
e
n
t
s
s
t
a
n
d
a
r
d
P
r
o
d
u
c
t
i
o
n
pa r a m e t e r s .  
p
r
o
c
e
s
s
i
n
g
d
o
e
s
n
o
t
n
e
c
e
s
s
a
r
i
l
y
i
n
c
l
u
d
e
t
e
s
t
i
n
g
o
f
a
l
l
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
G
N
A
L
PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
description (continued)  
Separate program and data spaces allow simultaneous access to program instructions and data, providing a  
high degree of parallelism. Two read operations and one write operation can be performed in a single cycle.  
Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition,  
data can be transferred between data and program spaces. Such parallelism supports a powerful set of  
arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The ’5410  
also includes the control mechanisms to manage interrupts, repeated operations, and function calls.  
NOTE:This data sheet is designed to be used in conjunction with the TMS320C5000 DSP Family Functional Overview  
(literature number SPRU307).  
†‡  
PGE PACKAGE  
(TOP VIEW)  
V
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
A18  
A17  
SS  
A22  
2
V
3
V
SS  
DD  
SS  
DV  
4
A16  
D5  
A10  
HD7  
A11  
A12  
A13  
A14  
A15  
5
6
D4  
D3  
D2  
D1  
D0  
RS  
X2/CLKIN  
X1  
HD3  
CLKOUT  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
98  
CV  
HAS  
97  
DD  
96  
V
95  
SS  
V
94  
SS  
CV  
HCS  
93  
V
DD  
SS  
92  
HPIENA  
HR/W  
READY  
PS  
91  
CV  
DD  
90  
V
SS  
89  
TMS  
DS  
88  
TCK  
TRST  
TDI  
IS  
87  
R/W  
86  
MSTRB  
IOSTRB  
MSC  
XF  
HOLDA  
IAQ  
HOLD  
BIO  
MP/MC  
85  
TDO  
84  
EMU1/OFF  
EMU0  
TOUT  
HD2  
83  
82  
81  
80  
NC  
79  
CLKMD3  
CLKMD2  
CLKMD1  
78  
77  
DV  
V
BDR1  
76  
V
DV  
BDX1  
DD  
SS  
SS  
DD  
75  
74  
73  
BFSR1  
BFSX1  
V
and DV  
DD  
are power supplies for I/O pins while V  
and CV are power supplies for core CPU.  
DD  
SS  
SS  
The McBSP pins BCLKS0, BCLKS1, and BCLKS2 are not available on the PGE package.  
The pin assignments table lists each signal and pin number for the TMS320VC5410PGE (144-pin) package.  
The terminal functions table lists each terminal name, function, and operating mode for the TMS320VC5410.  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
description (continued)  
GGW PACKAGE  
(BOTTOM VIEW)  
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11  
13  
15  
17  
16  
2
4
6
8
10  
12  
14  
The pin assignments table lists each signal and pin number for the TMS320VC5410GGW (176-pin) package.  
The terminal functions table lists each terminal name, function, and operating modes for the TMS320VC5410.  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
Pin Assignments for the TMS320VC5410PGE (144-Pin Package)  
and the TMS320VC5410GGW (176-Pin Package)  
PGE  
PIN NO.  
GGW  
PIN NO.  
PGE  
PIN NO.  
GGW  
PIN NO.  
PIN NAME  
PIN NAME  
V
1
2
3
4
B1  
C2  
C1  
D3  
D2  
D1  
E3  
E2  
E1  
F3  
F2  
F1  
G4  
G3  
G2  
G1  
H1  
H4  
H3  
H2  
J1  
BFSR1  
36  
R2  
T1  
SS  
A22  
CV  
DD  
V
SS  
V
SS  
37  
38  
39  
40  
U2  
DV  
CV  
BCLKR1  
HCNTL0  
T3  
DD  
DD  
U3  
A10  
HD7  
5
6
V
R4  
SS  
DV  
T4  
DD  
V
SS  
BCLKR0  
BCLKR2  
BFSR0  
BCLKS0  
BFSR2  
BDR0  
41  
42  
43  
U4  
A11  
A12  
A13  
A14  
A15  
7
8
R5  
T5  
9
U5  
10  
11  
44  
45  
R6  
T6  
DV  
V
SS  
U6  
DD  
DD  
CV  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
HCNTL1  
BDR2  
46  
47  
P7  
HAS  
R7  
V
V
CV  
T7  
SS  
DD  
BCLKX0  
BCLKX2  
BCLKS2  
48  
49  
U7  
SS  
CV  
DD  
HCS  
U8  
P8  
HR/W  
READY  
PS  
V
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
R8  
SS  
HINT  
CV  
J4  
T8  
J3  
U9  
DD  
DS  
J2  
BFSX0  
BFSX2  
HRDY  
P9  
V
SS  
K1  
K2  
K4  
K3  
L1  
R9  
IS  
22  
23  
T9  
R/W  
DV  
U10  
T10  
P10  
R10  
U11  
T11  
R11  
P11  
U12  
T12  
R12  
U13  
T13  
R13  
U14  
T14  
D17  
D16  
DD  
DV  
V
SS  
DD  
MSTRB  
IOSTRB  
24  
25  
HD0  
L2  
BDX0  
CV  
L3  
CV  
DD  
DD  
MSC  
XF  
26  
27  
28  
29  
30  
31  
32  
33  
34  
L4  
BDX2  
IACK  
60  
61  
M1  
M2  
M3  
N1  
N2  
N3  
P1  
P2  
P3  
R1  
R14  
U15  
HOLDA  
IAQ  
V
SS  
HBIL  
NMI  
62  
63  
64  
65  
HOLD  
BIO  
INT0  
INT1  
MP/MC  
DV  
DV  
DD  
DD  
V
SS  
INT2  
INT3  
66  
67  
68  
BCLKS1  
BDR1  
HD1  
35  
69  
70  
CV  
CV  
DD  
DD  
V
SS  
A16  
105  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
Pin Assignments for the TMS320VC5410PGE (144-Pin Package)  
and the TMS320VC5410GGW (176-Pin Package) (Continued)  
PGE  
PIN NO.  
GGW  
PIN NO.  
PGE  
PIN NO.  
GGW  
PIN NO.  
PIN NAME  
PIN NAME  
BCLKX1  
71  
72  
T15  
U16  
T17  
R16  
R17  
P15  
P16  
P17  
N15  
N16  
N17  
M15  
M16  
M17  
L14  
L15  
L16  
L17  
K17  
K14  
K15  
K16  
J17  
J14  
J15  
J16  
H17  
H16  
H14  
H15  
G17  
G16  
G15  
G14  
F17  
F16  
F15  
E17  
E16  
E15  
B5  
V
106  
107  
108  
D15  
C17  
C16  
B17  
A16  
B15  
A15  
C14  
B14  
A14  
C13  
B13  
A13  
C12  
B12  
A12  
D11  
C11  
B11  
A11  
A10  
D10  
C10  
B10  
A9  
SS  
V
A17  
A18  
SS  
CV  
DD  
BFSX1  
BDX1  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
DV  
DD  
DD  
CV  
DV  
A19  
A20  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
DD  
V
SS  
CLKMD1  
CLKMD2  
CLKMD3  
NC  
V
SS  
DV  
DD  
D6  
D7  
D8  
HD2  
TOUT  
D9  
EMU0  
D10  
D11  
V
SS  
EMU1/OFF  
TDO  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
DV  
DD  
D12  
HD4  
119  
120  
TDI  
TRST  
TCK  
V
SS  
D13  
D14  
D15  
HD5  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
TMS  
V
SS  
CV  
DD  
HPIENA  
CV  
DD  
V
V
SS  
HDS1  
SS  
DV  
D9  
DD  
CLKOUT  
HD3  
94  
95  
96  
97  
98  
V
C9  
SS  
HDS2  
DV  
B9  
X1  
A8  
DD  
A0  
A1  
CV  
X2/CLKIN  
RS  
B8  
D8  
V
SS  
C8  
DD  
D0  
D1  
99  
A2  
A3  
133  
134  
A7  
100  
B7  
DV  
DV  
C7  
DD  
DD  
D2  
D3  
101  
102  
HD6  
A4  
135  
136  
D7  
A6  
V
SS  
D4  
V
SS  
B6  
103  
104  
A5  
A6  
137  
138  
C6  
D5  
A5  
DV  
DV  
C4  
DD  
DD  
DD  
A7  
A8  
A9  
139  
140  
141  
C5  
CV  
142  
143  
144  
A3  
A4  
A21  
B3  
B4  
V
SS  
A2  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
terminal functions  
The terminal functions table lists each signal, function, and operating mode(s) grouped by function.  
Terminal Functions  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
DATA SIGNALS  
A22 (MSB)  
A21  
A20  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
O/Z  
Parallel address bus A22 [most significant bit (MSB)] through A0 [least significant bit (LSB)]. The sixteen LSB  
lines, A0 to A15, are multiplexed to address external memory (program, data) or I/O. The seven MSB lines, A16  
to A22, address external program space memory. A22–A0 is placed in the high-impedance state in the hold  
mode. A22–A0 also goes into the high-impedance state when OFF is low.  
The address bus has a bus holder feature that eliminates passive components and the power dissipation  
associated with them. The bus holder keeps the address bus at the previous logic level when the bus goes into  
a high-impedance state.  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
(LSB)  
D15 (MSB)  
D14  
D13  
D12  
D11  
D10  
D9  
I/O/Z  
Parallel data bus D15 (MSB) through D0 (LSB). D15–D0 is multiplexed to transfer data between the core CPU  
and external data/program memory or I/O devices. D15–D0 is placed in high-impedance state when not  
outputting data or when RS or HOLD is asserted. D15–D0 also goes into the high-impedance state when OFF  
is low.  
The data bus has a bus holder feature that eliminates passive components and the power dissipation associated  
with them. The bus holder keeps the data bus at the previous logic level when the bus goes into a  
high-impedance state. The bus holders on the data bus can be enabled/disabled under software control.  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(LSB)  
I = Input, O = Output, Z = High-impedance, S = Supply  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
Terminal Functions (Continued)  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
INITIALIZATION, INTERRUPT AND RESET OPERATIONS  
Interrupt acknowledge signal. IACK indicates receipt of an interrupt and that the program counter is fetching the  
interrupt vector location designated by A15–A0. IACK also goes into the high-impedance state when OFF is low.  
IACK  
O/Z  
I
INT0  
INT1  
INT2  
INT3  
External user interrupt inputs. INT0–INT3 is prioritized and is maskable by the interrupt mask register (IMR) and  
interrupt mode bit. INT0 –INT3 can be polled and reset by way of the interrupt flag register (IFR).  
Nonmaskable interrupt. NMI is an external interrupt that cannot be masked by way of the INTM or the IMR. When  
NMI is activated, the processor traps to the appropriate vector location.  
NMI  
I
I
Reset. RS causes the digitial signal processor (DSP) to terminate execution and forces the program counter to  
0FF80h. When RS is brought to a high level, execution begins at location 0FF80h of program memory. RS affects  
various registers and status bits.  
RS  
Microprocessor/microcomputer mode select pin. If active low at reset (microcomputer mode), MP/MC causes  
the internal program ROM to be mapped into the upper 16K words of program memory space. In the  
microprocessor mode, off-chip memory and its corresponding addresses (instead of internal program ROM) are  
accessed by the DSP.  
MP/MC  
I
MULTIPROCESSING SIGNALS  
Branch control. A branch can be conditionally executed when BIO is active. If low, the processor executes the  
conditional instruction. The BIO condition is sampled during the decode phase of the pipeline for the XC  
instruction, and all other instructions sample BIO during the read phase of the pipeline.  
BIO  
XF  
I
External flag output (latched software-programmable signal). XF is set high by the SSBX XF instruction, set low  
by RSBX XF instruction or by loading ST1. XF is used for signaling other processors in multiprocessor  
configurations or used as a general-purpose output pin. XF goes into the high-impedance state when OFF is  
low, and is set high at reset.  
O/Z  
MEMORY CONTROL SIGNALS  
Data, program, and I/O space select signals. DS, PS, and IS are always high unless driven low for  
communicating to a particular external space. Active period corresponds to valid address information. DS, PS,  
and IS are placed into the high-impedance state in the hold mode; these signals also go into the high-impedance  
state when OFF is low.  
DS  
PS  
IS  
O/Z  
O/Z  
I
Memory strobe signal. MSTRB is always high unless low-level asserted to indicate an external bus access to  
data or program memory. MSTRB is placed in the high-impedance state in the hold mode; it also goes into the  
high-impedance state when OFF is low.  
MSTRB  
READY  
R/W  
Data ready. READY indicates that an external device is prepared for a bus transaction to be completed. If the  
device is not ready (READY is low), the processor waits one cycle and checks READY again. Note that the  
processor performs ready detection if at least two software wait states are programmed. The READY signal is  
not sampled until the completion of the software wait states.  
Read/write signal. R/W indicates transfer direction during communication to an external device. R/W is normally  
in the read mode (high), unless it is asserted low when the DSP performs a write operation. R/W is placed in  
the high-impedance state in the hold mode; and it also goes into the high-impedance state when OFF is low.  
O/Z  
I/O strobe signal. IOSTRB is always high unless low-level asserted to indicate an external bus access to an I/O  
device. IOSTRB is placed in the high-impedance state in the hold mode; it also goes into the high-impedance  
state when OFF is low.  
IOSTRB  
HOLD  
O/Z  
I
Hold input. HOLD is asserted to request control of the address, data, and control lines. When acknowledged by  
the ’VC5410, these lines go into the high-impedance state.  
Hold acknowledge. HOLDA indicates to the external circuitry that the processor is in a hold state and that the  
address, data, and control lines are in the high-impedance state, allowing them to be available to the external  
circuitry. HOLDA also goes into the high-impedance state when OFF is low.  
HOLDA  
O/Z  
Microstate complete. MSC goes low when the last wait state of two or more internal software wait states  
programmed is executed. If connected to the READY line, MSC forces one external wait state after the last  
internal wait state has been completed. MSC also goes into the high-impedance state when OFF is low.  
MSC  
O/Z  
I = Input, O = Output, Z = High-impedance, S = Supply  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
G
N
A
L
PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
Terminal Functions (Continued)  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
MEMORY CONTROL SIGNALS (CONTINUED)  
Instruction acquisition signal. IAQ is asserted (active low) when there is an instruction address on the address  
bus and goes into the high-impedance state when OFF is low.  
IAQ  
O/Z  
OSCILLATOR/TIMER SIGNALS  
Clock output signal. CLKOUT can represent the machine-cycle rate of the CPU divided by 1, 2, 3, or 4 as  
configured in the bank-switching control register (BSCR). Following reset, CLKOUT represents the  
machine-cycle rate divided by 4.  
CLKOUT  
O/Z  
I
CLKMD1  
CLKMD2  
CLKMD3  
Clock mode select signals. CLKMD1 – CLKMD3 allows the selection and configuration of different clock modes  
such as crystal, external clock, PLL mode.  
X2/CLKIN  
I
Clock/oscillator input. If the internal oscillator is not being used, X2/CLKIN functions as the clock input.  
Output pin from the internal oscillator for the crystal. If the internal oscillator is not used, X1 should be left  
unconnected. X1 does not go into the high-impedance state when OFF is low.  
X1  
O
Timer output. TOUT signals a pulse when the on-chip timer counts down past zero. The pulse is one CLKOUT  
cycle wide. TOUT also goes into the high-impedance state when OFF is low.  
TOUT  
O
MULTICHANNEL BUFFERED SERIAL PORT 0 (McBSP #0), MULTICHANNEL BUFFERED SERIAL PORT 1 (McBSP #1),  
AND MULTICHANNEL BUFFERED SERIAL PORT 2 (McBSP #2) SIGNALS  
BCLKR0  
BCLKR1  
BCLKR2  
I/O/Z  
I
Receive clock input. BCLKR serves as the serial shift clock for the buffered serial port receiver.  
Serial data receive input  
BDR0  
BDR1  
BDR2  
BFSR0  
BFSR1  
BFSR2  
I/O/Z  
I/O/Z  
O/Z  
I/O/Z  
I
Frame synchronization pulse for receive input. The BFSR pulse initiates the receive data process over BDR.  
BCLKX0  
BCLKX1  
BCLKX2  
Transmit clock. BCLKX serves as the serial shift clock for the McBSP transmitter. BCLKX can be configured as  
an input or an output, and is configured as an input following reset. BCLKX enters the high-impedance state when  
OFF goes low.  
BDX0  
BDX1  
BDX2  
Serial data transmit output. BDX is placed in the high-impedance state when not transmitting, when RS is  
asserted, or when OFF is low.  
BFSX0  
BFSX1  
BFSX2  
Frame synchronization pulse for transmit input/output. The BFSX pulse initiates the data transmit process over  
BDX. BFSX can be configured as an input or an output, and is configured as an input following reset. BFSX goes  
into the high-impedance state when OFF is low.  
BCLKS0  
BCLKS1  
BCLKS2  
Serial port clock reference. The McBSP can be programmed to use either BCLKS or the CPU clock as a  
reference for generation of internal clock and frame sync signals. Pins with internal pullup devices.  
NOTE: These pins are not available on the PGE package.  
MISCELLANEOUS SIGNAL  
No connection  
NC  
HOST-PORT INTERFACE SIGNALS  
Parallel bidirectional data bus. HD0–HD7 is placed in the high-impedance state when not outputting data. The  
signals go into the high-impedance state when OFF is low. The HPI data bus has a feature called a bus holder  
that eliminates passive components and the power dissipation associated with them. The bus holder keeps the  
data bus at the previous logic level when the bus goes into high-impedance state. The bus holder on the HPI  
data bus can be enabled/disabled under software control.  
HD0–HD7  
I/O/Z  
I = Input, O = Output, Z = High-impedance, S = Supply  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P
R
O
C
E
S
S
O
R
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
Terminal Functions (Continued)  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
HOST-PORT INTERFACE SIGNALS (CONTINUED)  
Control inputs  
HCNTL0  
HCNTL1  
I
HBIL  
I
I
Byte identification  
Chip select  
HCS  
HDS1  
HDS2  
I
Data strobe  
HAS  
I
I
Address strobe  
HR/W  
HRDY  
Read/write  
O/Z  
Ready output. HRDY goes into the high-impedance state when OFF is low.  
Interrupt output. When the DSP is in reset, HINT is driven high. HINT goes into the high-impedance state when  
OFF is low.  
HINT  
O/Z  
HPI module select. HPIENA must be tied to DV  
DD  
to have HPI selected. If HPIENA is left open or connected  
to ground, the HPI module is not selected, internal pullup for the HPI input pins are enabled, and the HPI data  
bus has holders set. HPIENA is provided with an internal pulldown resistor that is active only when RS is low.  
HPIENA is sampled when RS goes high and is ignored until RS goes low again.  
HPIENA  
I
SUPPLY PNS  
V
S
S
S
Ground. Dedicated power supply for the core CPU.  
SS  
CV  
DV  
+V . Dedicated power supply for the core CPU.  
DD  
DD  
DD  
+V . Dedicated power supply for I/O pins.  
DD  
TEST PINS  
IEEE standard 1149.1 test clock. TCK is normally a free-running clock signal with a 50% duty cycle. The changes  
on test access port (TAP) of input signals TMS and TDI are clocked into the TAP controller, instruction register,  
or selected test data register on the rising edge of TCK. Changes at the TAP output signal (TDO) occur on the  
falling edge of TCK.  
TCK  
I
IEEE standard 1149.1 test data input. Pin with internal pullup device. TDI is clocked into the selected register  
(instruction or data) on a rising edge of TCK.  
TDI  
I
IEEE standard 1149.1 test data output. The contents of the selected register (instruction or data) are shifted out  
of TDO on the falling edge of TCK. TDO is in the high-impedance state except when the scanning of data is in  
progress. TDO also goes into the high-impedance state when OFF is low.  
TDO  
TMS  
TRST  
O/Z  
IEEE standard 1149.1 test mode select. Pin with internal pullup device. This serial control input is clocked into  
the TAP controller on the rising edge of TCK.  
I
I
IEEE standard 1149.1 test reset. TRST, when high, gives the IEEE standard 1149.1 scan system control of the  
operations of the device. If TRST is not connected or driven low, the device operates in its functional mode, and  
the IEEE standard 1149.1 signals are ignored. Pin with internal pulldown device.  
Emulator 0 pin. When TRST is driven low, EMU0 must be high for activation of the OFF condition. When TRST  
is driven high, EMU0 is used as an interrupt to or from the emulator system and is defined as input/output by  
way of the IEEE standard 1149.1 scan system.  
EMU0  
I/O/Z  
Emulator 1 pin/disable all outputs. When TRST is driven high, EMU1/OFF is used as an interrupt to or from the  
emulator system and is defined as input/output by way of IEEE standard 1149.1 scan system. When TRST is  
driven low, EMU1/OFF is configured as OFF. The EMU1/OFF signal, when active low, puts all output drivers into  
the high-impedance state. Note that OFF is used exclusively for testing and emulation purposes (not for  
multiprocessing applications). Therefore, for the OFF condition, the following apply:  
TRST = low,  
EMU1/OFF  
I/O/Z  
EMU0 = high  
EMU1/OFF = low  
I = Input, O = Output, Z = High-impedance, S = Supply  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
architecture  
The ’VC5410 DSP implements the standard ’C54x CPU which uses an advanced, modified Harvard  
architecture that maximizes processing power by maintaining three separate bus structures for data memory  
and one for program memory. Separate program and data spaces allow simultaneous access to program  
instructions and data, providing a high degree of parallelism. For example, two read operations and one write  
operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions  
fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such  
parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed  
in a single machine cycle. In addition, the ’VC5410 includes the control mechanisms to manage interrupts,  
repeated operations, and function calls.  
For detailed information on the architecture of the C5000 family of DSPs, refer to the TMS320C5000 DSP  
Family Functional Overview (literature number SPRU307).  
memory  
The ’VC5410 device provides both on-chip ROM and RAM memories to aid in system performance and  
integration.  
on-chip ROM with bootloader  
The ’VC5410 features a 16K-word × 16-bit on-chip maskable ROM that can only be mapped into program  
memory space.  
Customers can arrange to have the ROM of the ’VC5410 programmed with contents unique to any particular  
application.  
A bootloader is available in the standard ’VC5410 on-chip ROM. This bootloader can be used to automatically  
transfer user code from an external source to anywhere in the program memory at power up. If MP/MC of the  
device is sampled low during a hardware reset, execution begins at location FF80h of the on-chip ROM. This  
location contains a branch instruction to the start of the bootloader program. The standard ’VC5410 devices  
provide different ways to download the code to accomodate various system requirements:  
D
D
D
D
D
Parallel from 8-bit or 16-bit-wide EPROM  
Parallel from I/O space, 8-bit or 16-bit mode  
Serial boot from serial ports, 8-bit or 16-bit mode  
Host-port interface boot  
Warm boot  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
on-chip ROM with bootloader (continued)  
The standard on-chip ROM layout is shown in Table 1.  
Table 1. Standard On-Chip ROM Layout  
ADDRESS RANGE  
C000h–D4FFh  
D500h–D6FFh  
D700h–DCFFh  
DD00h–DEFFh  
DF00h–F7FFh  
F800h–FBFFh  
FC00h–FCFFh  
FD00h–FDFFh  
FE00h–FEFFh  
FF00h–FF7Fh  
FF80h–FFFFh  
DESCRIPTION  
ROM tables for the GSM EFR speech codec  
256-point complex radix-2 DIT FFT with looped code  
FFT twiddle factors for a 256-point complex radix-2 FFT  
1024-point complex radix-2 DIT FFT with looped code  
FFT twiddle factors for a 1024-point complex radix-2 FFT  
Bootloader  
µ-Law expansion table  
A-Law expansion table  
Sine look-up table  
Reserved  
Interrupt vector table  
In the ’VC5410 ROM, 128 words are reserved for factory device-testing purposes. Application  
code to be implemented in on-chip ROM must reserve these 128 words at addresses  
FF00h–FF7Fh in program space.  
on-chip RAM  
The ’VC5410 device contains 8K words × 16-bit on-chip dual-access RAM (DARAM) and 56K words × 16-bit  
of on-chip single-access RAM (SARAM).  
The DARAM is composed of four blocks of 2K words each. Each block in the DARAM can support two reads  
in one cycle, or a read and a write in one cycle. The DARAM is located in the address range 0080h–1FFFh in  
data space, and can be mapped into program/data space by setting the OVLY bit to one.  
The SARAM is composed of seven blocks of 8K words each. Each of these seven blocks is a single-access  
memory. For example, an instruction word can be fetched from one SARAM block in the same cycle as a data  
word is written to another SARAM block. The SARAM located in the address range 2000h–7FFFh in data space  
can be mapped into program space by setting the OVLY bit to one, while the SARAM located in the address  
range 18000h–1FFFFh in program space can be mapped into data space by setting the DROM bit to one.  
on-chip memory security  
The ’VC5410 device has a maskable option to protect the contents of on-chip memories. When the ROM protect  
bit is set, no externally originating instruction can access the on-chip memory spaces. In addition, when the  
ROM protect option is enabled, HPI8 read access is limited to address range 0001000h – 0001FFFh. Data  
located outside this range cannot be read through the HPI8. Write access to the entire HPI8 memory map is  
still maintained.  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
memory map  
Program  
Program  
Program  
Program  
Data  
Hex  
0000  
Hex  
010000  
Hex  
010000  
Hex  
0000  
Hex  
0000  
Reserved  
(OVLY = 1)  
External  
(OVLY = 0)  
Reserved  
(OVLY = 1)  
External  
(OVLY = 0)  
Memory-Mapped  
Registers  
005F  
0060  
Scratch-Pad  
RAM  
007F  
0080  
007F  
0080  
007F  
0080  
Mapped to  
Lower Page 0  
(OVLY = 1)  
External  
(OVLY = 0)  
Mapped to  
On-Chip  
DARAM  
(OVLY = 1)  
External  
(OVLY = 0)  
On-Chip  
DARAM  
(OVLY = 1)  
External  
(OVLY = 0)  
Lower Page 0  
(OVLY = 1)  
On-Chip  
DARAM  
(8K Words)  
External  
(OVLY = 0)  
1FFF  
2000  
1FFF  
2000  
1FFF  
2000  
On-Chip  
SARAM1  
(OVLY = 1)  
On-Chip  
SARAM1  
(OVLY = 1)  
On-Chip  
SARAM1  
(24K Words)  
External  
(OVLY = 0)  
External  
(OVLY = 0)  
017FFF  
018000  
7FFF  
8000  
7FFF  
8000  
7FFF  
8000  
017FFF  
018000  
External  
External  
External  
On-Chip  
SARAM2  
BFFF  
C000  
On-Chip  
SARAM2  
(DROM = 1)  
External  
(DROM = 0)  
On-Chip  
ROM  
(16K Words)  
FF7F  
FF80  
FF7F  
FF80  
Interrupts and  
Reserved  
(External)  
Interrupts and  
Reserved  
(On-Chip ROM)  
FFFF  
01FFFF  
01FFFF  
FFFF  
FFFF  
Page 1  
Page 0  
Page 1  
Page 0  
MP/MC= 1  
(Microprocessor Mode)  
MP/MC= 0  
(Microcomputer Mode)  
Figure 1. Memory Map  
program memory  
Software can configure their memory cells to reside inside or outside of the program address map. When the  
cells are mapped into program space, the device automatically accesses them when their addresses are within  
bounds. When the program-address generation (PAGEN) logic generates an address outside its bounds, the  
device automatically generates an external access. The advantages of operating from on-chip memory are as  
follows:  
D
D
D
Higher performance because no wait states are required  
Lower cost than external memory  
Lower power than external memory  
The advantage of operating from off-chip memory is the ability to access a larger address space.  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P
R
O
C
E
S
S
O
R
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
relocatable interrupt vector table  
The reset, interrupt, and trap vectors are addressed in program space. These vectors are soft — meaning that  
the processor, when taking the trap, loads the program counter (PC) with the trap address and executes the  
code at the vector location. Four words, either two 1-word instructions or one 2-word instruction, are reserved  
at each vector location to accommodate a delayed branch instruction which allows branching to the appropriate  
interrupt service routine without the overhead.  
At device reset, the reset, interrupt, and trap vectors are mapped to address FF80h in program space. However,  
these vectors can be remapped to the beginning of any 128-word page in program space after device reset.  
This is done by loading the interrupt vector pointer (IPTR) bits in the PMST register with the appropriate  
128-word page boundary address. After loading IPTR, any user interrupt or trap vector is mapped to the new  
128-word page.  
NOTE: The hardware reset (RS) vector cannot be remapped because the hardware reset loads the IPTR  
with 1s. Therefore, the reset vector is always fetched at location FF80h in program space.  
extended program memory  
The ’VC5410 uses a paged extended memory scheme in program space to allow access of up to 8192K of  
program memory. In order to implement this scheme, the ’VC5410 includes several features which are also  
present on ’C548/549:  
D
D
D
Twenty-three address lines, instead of sixteen  
An extra memory-mapped register, the XPC  
Six extra instructions for addressing extended program space  
Program memory in the ’VC5410 is organized into 128 pages that are each 64K in length, as shown in Figure 2.  
00 0000  
01 0000  
02 0000  
7F 0000  
. . .  
Page 0  
Page 1  
Page 2  
Page 127  
64K  
Words  
64K  
Words  
64K  
Words  
64K  
Words  
. . .  
00 FFFF  
01 FFFF  
02 FFFF  
7F FFFF  
XPC = 0  
XPC = 1  
XPC = 2  
XPC=127  
Figure 2. Extended Program Memory  
(On-Chip RAM Not Mapped in Program Space and Data Space, OVLY = 0)  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
extended program memory (continued)  
When the on-chip RAM is enabled in program space, each page of program memory is made up of two parts: a  
common block of 32K words and a unique block of 32K words. The common block is shared by all pages and each  
unique block is accessible only through its assigned page. Figure 3 shows the common and unique blocks.  
xx 0000  
xx 7FFF  
Page 0  
32K Words  
On-Chip  
XPC = xx  
00 8000  
00 FFFF  
01 8000  
01 FFFF  
02 8000  
02 FFFF  
7F 8000  
7F FFFF  
Page 0  
Page 1  
Page 2  
. . .  
. . .  
Page 127  
32K Words  
External  
32K Words  
On-Chip  
32K Words  
External  
32K Words  
External  
XPC = 0  
XPC = 1  
XPC = 2  
XPC=127  
See Figure 1 for more information about this on-chip memory region.  
NOTE A: When the on-chip RAM is enabled in program space, all accesses to the region xx 0000 – xx 7FFF, regardless of page number, are  
mapped to the on-chip RAM at 00 0000 – 00 7FFF.  
Figure 3. Extended Program Memory  
(On-Chip RAM Mapped in Program Space and Data Space, OVLY = 1)  
If the on-chip ROM is enabled (MP/MC = 0), it is enabled only on page 0. It is not mapped to any other page  
in program memory.  
The value of the XPC register defines the page selection. This register is memory-mapped into data space to  
address 001Eh. At a hardware reset, the XPC is initialized to 0.  
To facilitate page-switching through software, the ’VC5410 has six special instructions that affect the XPC:  
D
D
FB[D] pmad (23 bits) – Far branch  
FBACC[D] Accu[22:0] – Far branch to the location specified by the value in accumulator A or  
accumulator B  
D
D
D
D
FCALL[D] pmad (23 bits) – Far call  
FCALA[D] Accu[22:0] – Far call to the location specified by the value in accumulator A or accumulator B  
FRET[D] – Far return  
FRETE[D] – Far return with interrupts enabled  
In addition to these new instructions, two ’54x instructions are extended to use 23 bits in the ’VC5410:  
D
D
READA data_memory (using 23-bit accumulator address)  
WRITA data_memory (using 23-bit accumulator address)  
All other instructions, software and hardware interrupts do not modify the XPC register and access only memory  
within the current page.  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P
R
O
C
E
S
S
O
R
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
data memory  
The data memory space addresses up to 64K of 16-bit words. The device automatically accesses the on-chip  
RAM when addressing within its bounds. When an address is generated outside the RAM bounds, the device  
automatically generates an external access.  
The advantages of operating from on-chip memory are as follows:  
D
D
D
D
Higher performance because no wait states are required  
Higher performance because of better flow within the pipeline of the central arithmetic logic unit (CALU)  
Lower cost than external memory  
Lower power than external memory  
The advantage of operating from off-chip memory is the ability to access a larger address space.  
on-chip peripherals  
The ’VC5410 device has the following peripherals:  
D
D
D
D
D
D
D
D
Software-programmable wait-state generator  
Programmable bank-switching  
A host-port interface (HPI8)  
Three multichannel buffered serial ports (McBSPs)  
A hardware timer  
A clock generator with a multiple phase-locked loop (PLL)  
Enhanced external parallel interface (XIO2)  
A DMA controller (DMA)  
software-programmable wait-state generator  
The software-programmable wait-state generator can extend external bus cycles by up to fourteen CLKOUT  
cycles, providing a convenient means of interfacing the ’VC5410 with slower external devices. Devices that  
require more than fourteen wait states can be interfaced using the hardware READY line. When all external  
accesses are configured for zero wait states, the internal clocks to the wait-state generator are shut off; shutting  
off these paths from the internal clocks allows the device to run with lower power consumption.  
The software-programmable wait-state generator is controlled by the 16-bit software wait-state register  
(SWWSR), which is memory-mapped to address 0028h in data space.  
The program and data spaces each consist of two 32K-word blocks; the I/O space consists of one 64K-word block.  
Each of these blocks has a corresponding 3-bit field in the SWWSR. These fields are shown in Figure 4 and  
described in Table 2.  
The value of a 3-bit field in SWWSR, in conjunction with the software wait-state multiplier (SWSM) bit in the  
software wait-state control register (SWCR), specifies the number of wait states to be inserted for each access  
in the corresponding space and address range.  
D
D
When SWSM = 0, the possible values for the number of wait states are 0, 1, 2, 3, 4, 5, 6, and 7. This is the  
default configuration.  
When SWSM = 1, the possible values for the number of wait states are 0, 2, 4, 6, 8, 10, 12, and 14.  
At reset, the SWWSR is set to 7FFFh, and SWSM to 0, configuring seven wait states for all external accesses.  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
Ć
F
I
X
E
D
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
P
R
O
C
E
S
S
O
R
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
software-programmable wait-state generator (continued)  
15  
14  
12 11  
9
8
6
5
3
2
0
SWWSR (0x28)  
XPA  
I/O  
Data  
R/W  
Data  
R/W  
Program  
R/W  
Program  
R/W  
R/W  
R/W  
R = Read, W = Write, Reset value = 7FFFh  
Figure 4. Software Wait-State Register (SWWSR)  
Table 2. Software Wait-State Register Fields  
RESET  
VALUE  
BIT  
NAME  
FUNCTION  
15  
XPA  
0
1
Extended program address control bit. XPA selects the address ranges selected by the program fields.  
I/O space. The field value (0–14) corresponds to the number of wait states for I/O space 0000–FFFFh.  
14–12 I/O  
Data space. The field value (0–14) corresponds to the number of wait states for data space  
8000–FFFFh.  
11–9  
8–6†  
Data  
1
1
Data space. The field value (0–14) corresponds to the number of wait states for data space  
0000–7FFFh.  
Data  
Program space. The field value (0–14) corresponds to the number of wait states for:  
XPA = 0  
XPA = 1  
xx8000–xxFFFFh  
400000h–7FFFFF  
5–3  
2–0  
Program  
1
1
Program space. The field value (0–14) corresponds to the number of wait states for:  
XPA = 0  
XPA = 1  
xx0000–xx7FFFh  
000000–3FFFFFh  
Program  
Although this field is present to maintain compatibility with previous C5000 family DSPs, there is no external data space on the ’VC5410 in this  
address range; therefore, the configuration of this bit field has no effect.  
The SWSM bit is located in the software wait-state control register (SWCR), a memory-mapped register (MMR)  
at address 0x2B, bit 0 position (LSB). The bit fields of the SWCR are shown in Figure 5 and are described in  
Table 3.  
15  
1
0
SWCR (0x2B)  
Reserved  
SWSM  
Figure 5. Software Wait-State Control Register (SWCR)  
Table 3. Software Wait-State Control Register Fields  
RESET  
VALUE  
BIT  
NAME  
FUNCTION  
15–1  
0
Reserved  
Reserved  
Software wait-state multiplier bit.  
SWSM = 0 Wait states in SWWSR are not multiplied by 2  
SWSM = 1 Wait states in SWWSR are multiplied by 2  
SWSM  
0
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
programmable bank-switching  
Programmable bank-switching logic allows the ’VC5410 to switch between external memory banks without  
requiring external wait states for memories that need additional time to turn off. The bank-switching logic  
automatically inserts one cycle when accesses cross a 32K-word memory-bank boundary inside program or  
data space.  
Bank-switching is defined by the bank-switching control register (BSCR), which is memory-mapped at  
address 0029h. The bit fields of the BSCR are shown in Figure 6 and are described in Table 4.  
15  
14  
13  
DIVFCT  
R/W  
12  
11  
3
2
1
0
Rsvd  
R
BSCR (0x29)  
CONSEC  
R/W  
IACKOFF  
R/W  
Rsvd  
R
HBH  
BH  
R/W  
R/W  
R = Read, W = Write  
Figure 6. Bank-Switching Control Register (BSCR)  
Table 4. Bank-Switching Control Register Fields  
RESET  
VALUE  
BIT  
NAME  
FUNCTION  
Consecutive bank-switching. Specifies the bank-switching mode.  
Bank-switching on 32K bank boundaries only. This bit is cleared if fast access is desired for  
continuous memory reads (i.e., no starting and trailing cycles between read cycles).  
CONSEC = 0  
CONSEC = 1  
15  
CONSEC  
1
consecutive bank switches on external memory reads. Each read cycle consists of 3 cycles:  
starting cycle, read cycle, and trailing cycle.  
CLKOUT output divide factor. The CLKOUT output is driven by an on-chip source having a frequency  
equal to 1/(DIVFCT+1) of the DSP clock.  
DIVFCT = 00  
DIVFCT = 01  
DIVFCT = 10  
DIVFCT = 11  
CLKOUT is not divided.  
13–14 DIVFCT  
11  
CLKOUT is divided by 2 from the DSP clock.  
CLKOUT is divided by 3 from the DSP clock.  
CLKOUT is divided by 4 from the DSP clock (default value following reset).  
IACK signal output off. Controls the output of the IACK signal. IACKOFF is set to 1 at reset.  
IACKOFF = 0 The IACK signal output off function is disabled.  
IACKOFF = 1 The IACK signal output off function is enabled.  
Reserved  
12  
IACKOFF  
1
11–3  
Rsvd  
HBH  
HPI bus holder. Controls the HPI bus holder. HBH is cleared to 0 at reset.  
HBH = 0  
The bus holder is disabled.  
2
0
The bus holder is enabled. When not driven, the HPI data bus, HD[7:0] is held in the previous  
logic level.  
HBH = 1  
Bus holder. Controls the bus holder. BH is cleared to 0 at reset.  
BH = 0  
The bus holder is disabled.  
1
0
BH  
0
The bus holder is enabled. When not driven, the data bus, D[15:0] is held in the previous logic  
level.  
BH = 1  
Rsvd  
Reserved  
For additional information, see the “enhanced external parallel interface (XIO2)” section of this document.  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
programmable bank-switching (continued)  
The ’VC5410 has an internal register that holds the MSB of the last address used for a read or write operation  
in program or data space. In the non-consecutive bank switches (CONSEC = 0), if the MSB of the address used  
for the current read does not match that contained in this internal register, the MSTRB (memory strobe) signal  
is not asserted for one CLKOUT cycle. During this extra cycle, the address bus switches to the new address.  
The contents of the internal register are replaced with the MSB for the read of the current address. If the MSB  
of the address used for the current read matches the bits in the register, a normal read cycle occurs.  
In non-consecutive bank switches (CONSEC = 0), if repeated reads are performed from the same memory  
bank, no extra cycles are inserted. When a read is performed from a different memory bank, memory conflicts  
are avoided by inserting an extra cycle. For more information, see the “enhanced external parallel interface  
(XIO2)” section of this document.  
The bank-switching mechanism automatically inserts one extra cycle in the following cases:  
D
D
D
D
A memory read followed by another memory read from a different memory bank.  
A program-memory read followed by a data-memory read.  
A data-memory read followed by a program-memory read.  
A program-memory read followed by another program-memory read from a different page.  
parallel I/O ports  
Each device has a total of 64K I/O ports. These ports can be addressed by the PORTR instruction or the PORTW  
instruction. The IS signal indicates a read/write operation through an I/O port. The ’VC5410 can interface easily  
with external devices through the I/O ports while requiring minimal off-chip address-decoding circuits.  
enhanced host-port interface (HPI8)  
The enhanced host-port interface (HPI8) in the ’VC5410 is an 8-bit parallel port used to interface a host  
processor to the DSP. Data can be exchanged between the host processor and the DSP throughout the entire  
on-chip memory via the DMA controller. The extended program memory pages are also accessible by both the  
host and the DSP. The DSP and the host control the HPI8 activity through the HPI8 control register (HPIC). The  
host can address memory through the HPI8 address register (HPIA).  
Data transfers of 16-bit words occur as two consecutive bytes with a dedicated pin (HBIL) indicating whether  
the high or low byte is being transmitted. Two pins (controlled by the host), HCNTL0 and HCNTL1, indicate  
whether the being exchanged is the most significant or least significant byte. Control pins (HCNTL0 and  
HCNTL1) determine whether the data is directed to the HPIA, the HPIC, or to memory. The DSP can interrupt  
the host with a dedicated HINT pin that the host can acknowledge and clear.  
The ’VC5410 is the first device in the C5000 family in which the HPI8 can address all on-chip memory, including  
extended memory pages. Extended memory addresses are defined by a 23-bit address. The HPI8 sets the  
upper 6 bits of the extended memory address by writing a one to the XHPIA bit in HPIC, and then writing address  
bits A[22:16] into HPIA. The lower 16 bits of the extended memory address are set by writing a zero to XHPIA,  
followed by writing bits A[15:0] to HPIA. Similar to previous implementations of the HPI, after a write is performed  
to XHPIA or HPIA, a memory prefetch is initiated. The XHPIA bit is accessible only to the host. XHPIA is  
uninitialized following reset. The host should always initialize XHPIA prior to the first HPI8 access following a  
device reset.  
The HPI8 interface has two data strobes (HDS1 and HDS2), a read/write strobe (HR/W), and an address strobe  
(HAS), to enable a glueless interface to a variety of industry-standard host devices. The HPI8 is easily interfaced  
to hosts with multiplexed address/data bus, separate address and data buses, one data strobe, and a read/write  
strobe, or two separate strobes for read and write.  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
enhanced host-port interface (HPI8) (continued)  
All memory accesses on the ’VC5410 are in shared-access mode, meaning both the DSP and the host can  
access memory. Asynchronous host accesses are resynchronized internally, and in the event that the CPU and  
the host both request access to the same memory block, the host has access priority. The HRDY pin provides  
handshaking to the host during memory access.  
The HPI8 also provides the capability to access memory during reset and power-down states. During reset, data  
or application code can be loaded via the HPI8, and the application can be initiated through the HPI option of  
the bootloader. During IDLE2/3 states, the HPI8 and the other six DMA channels continue to operate, and all  
pending DMA events complete before the DSP stops the clocks. The HPI8 has higher priority than the other  
six DMA channels. The HPI8 continues to have access to memory in IDLE2/3 even after the DSP has stopped  
the internal clocks as long as X2/CLKIN is maintained. The ’VC5410 HPI8 also remains active during emulation  
stop. The HPI8 can access any on-chip RAM on the device. The HPI8 memory map for the ’VC5410 is shown  
in Figure 7. The HPI8 determines memory location by address only (program or data space is not relevant).  
Address (Hex)  
000 0000  
Reserved  
000 005F  
000 0060  
Scratch-Pad  
RAM  
000 007F  
000 0080  
DARAM  
000 1FFF  
000 2000  
SARAM1  
000 7FFF  
000 8000  
Reserved  
001 7FFF  
001 8000  
SARAM2  
001 FFFF  
Figure 7. HPI8 Memory Map  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
multichannel buffered serial ports  
The ’VC5410 device provides three high-speed, full-duplex, multichannel buffered serial ports that allow direct  
interface to other ’C54x/’LC54x devices, codecs, and other devices in a system. The McBSPs are based on the  
standard serial-port interface found on other ’54x devices. Like their predecessors, the McBSPs provide:  
D
D
D
Full-duplex communication  
Double-buffer data registers, which allow a continuous data stream  
Independent framing and clocking for receive and transmit  
In addition, the McBSPs have the following capabilities:  
D
Direct interface to:  
T1/E1 framers  
MVIP switching compatible and ST-BUS compliant devices  
IOM-2 compliant devices  
AC97-compliant devices  
IIS-compliant devices  
Serial peripheral interface (SPIt)  
D
D
D
D
D
Multichannel transmit and receive of up to 128 channels  
A wide selection of data sizes, including 8, 12, 16, 20, 24, or 32 bits  
µ-law and A-law companding  
Programmable polarity for both frame synchronization and data clocks  
Programmable internal clock and frame generation  
The McBSPs consist of separate transmit and receive channels that operate independently. The external  
interface of each McBSP consists of the following pins:  
D
D
D
D
D
D
D
BCLKX  
BDX  
BFSX  
BCLKR  
BDR  
Transmit reference clock  
Transmit data  
Transmit frame synchronization  
Receive reference clock  
Receive data  
BFSR  
BCLKS  
Receive frame synchronization  
External clock reference for the programmable clock generator  
The first six pins listed are identical to the previous serial-port interface pins on the C5000 family of DSPs. The  
BCLKS pin is an additional signal to provide a clock reference to the McBSP programmable clock generator.  
As a compatibility option, the ’VC5410 is provided in a 144-pin TQFP package (designated PGE) that is  
pin-compatible with the ’C548/549 devices. BCLKS is not implemented on this package.  
On the transmitter, transmit frame synchronization and clocking are indicated by the BFSX and BCLKX pins,  
respectively. The CPU or DMA can initiate transmission of data by writing to the data transmit register (DXR).  
Data written to DXR is shifted out on the BDX pin through a transmit shift register (XSR). This structure allows  
DXR to be loaded with the next word to be sent while the transmission of the current word is in progress.  
On the receiver, receive frame synchronization and clocking are indicated by the BFSR and BCLKR pins  
respectively. The CPU or DMA can read received data from the data receive register (DRR). Data received on  
the BDR pin is shifted into a receive shift register (RSR) and then buffered in the receive buffer register (RBR).  
If DRR is empty, the RBR contents are copied into DRR. If not, RBR holds the data until DRR is available. This  
structure allows storage of the two previous words while the reception of the current word is in progress.  
SPI is a trademark of Motorola Incorporated.  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
multichannel buffered serial ports (continued)  
The CPU and DMA can move data to and from the McBSPs and can synchronize transfers based on McBSP  
interrupts, event signals, and status flags. The DMA is capable of handling data movement between the  
McBSPs and memory with no intervention from the CPU.  
In addition to the standard serial-port functions, the McBSP provides programmable clock and frame  
synchronization generation. Among the programmable functions are:  
D
D
D
D
D
D
Frame synchronization pulse width  
Frame period  
Frame synchronization delay  
Clock reference (internal vs. external)  
Clock division  
Clock and frame synchronization polarity  
The on-chip companding hardware allows compression and expansion of data in either µ-law or A-law format.  
When companding is used, transmit data is encoded according to specified companding law and received data  
is decoded to 2s complement format.  
The McBSP allows the multiple channels to be independently selected for the transmitter and receiver. When  
the multiple channels are selected, each frame represents a time-division multiplexed (TDM) data stream. In  
using TDM data streams, the CPU may only need to process a few of them. Thus, to save memory and bus  
bandwidth, multichannel selection allows independent enabling of particular channels for transmission and  
reception. Up to 32 channels in a bit stream of up to 128 channels can be enabled.  
The clock-stop mode (CLKSTP) in the McBSP provides compatibility with the serial peripheral interface (SPI)  
protocol. Clock-stop mode works with only single-phase frames and one word per frame. The word sizes  
supported by the McBSP are programmable for 8-, 12-, 16-, 20-, 24-, or 32-bit operation. When the McBSP is  
configured to operate in SPI mode, both the transmitter and the receiver operate together as a master or as a  
slave.  
The McBSP is fully static and operates at arbitrarily low clock frequencies. The maximum frequency is CPU  
clock frequency divided by 2.  
hardware timer  
The ’VC5410 device features a 16-bit timing circuit with a 4-bit prescaler. The timer counter is decremented by  
one every CPU clock cycle. Each time the counter decrements to 0, a timer interrupt is generated. The timer  
can be stopped, restarted, reset, or disabled by specific status bits.  
clock generator  
The clock generator provides clocks to the ’VC5410 device, and consists of an internal oscillator and a  
phase-locked loop (PLL) circuit. The clock generator requires a reference clock input, which can be provided  
by using a crystal resonator with the internal oscillator, or from an external clock source. The reference clock  
input is then divided by two (DIV mode) to generate clocks for the ’VC5410 device, or the PLL circuit can be  
used (PLL mode) to generate the device clock by multiplying the reference clock frequency by a scale factor,  
allowing use of a clock source with a lower frequency than that of the CPU.The PLL is an adaptive circuit that,  
once synchronized, locks onto and tracks an input clock signal.  
When the PLL is initially started, it enters a transitional mode during which the PLL acquires lock with the input  
signal. Once the PLL is locked, it continues to track and maintain synchronization with the input signal. Then,  
other internal clock circuitry allows the synthesis of new clock frequencies for use as master clock for the  
’VC5410 device.  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
clock generator (continued)  
This clock generator allows system designers to select the clock source. The sources that drive the clock  
generator are:  
D
D
A crystal resonator circuit. The crystal resonator circuit is connected across the X1 and X2/CLKIN pins of  
the ’VC5410 to enable the internal oscillator.  
An external clock. The external clock source is directly connected to the X2/CLKIN pin, and X1 is left  
unconnected.  
The software-programmable PLL features a high level of flexibility, and includes a clock scaler that provides  
various clock multiplier ratios, capability to directly enable and disable the PLL, and a PLL lock timer that can  
be used to delay switching to PLL clocking mode of the device until lock is achieved.Devices that have a built-in  
software-programmable PLL can be configured in one of two clock modes:  
D
PLL mode. The input clock (X2/CLKIN) is multiplied by 1 of 31 possible ratios.  
DIV (divider) mode. The input clock is divided by 2 or 4. Note that when DIV mode is used, the PLL can be  
completely disabled in order to minimize power dissipation.  
D
The software-programmable PLL is controlled using the 16-bit memory-mapped (address 0058h) clock mode  
register (CLKMD). The CLKMD register is used to define the clock configuration of the PLL clock module. Note  
that upon reset, the CLKMD register is initialized with a predetermined value dependent only upon the state of  
the CLKMD1 – CLKMD3 pins. The CLKMD pin configured clock options are shown in Table 5.  
Table 5. CLKMD Pin Configured Clock Options  
CLKMD REGISTER  
RESET VALUE  
CLKMD1  
CLKMD2  
CLKMD3  
CLOCK MODE  
0
0
0
0
0
1
0000h  
Divide-by-2, with external source  
Divide-by-2, with external source  
1000h  
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
2000h  
Divide-by-2, with external source  
Stop mode  
4000h  
0007h  
6000h  
7000h  
Divide-by-2, internal oscillator enabled  
PLLx1 with external source  
Divide-by-2, with external source  
Reserved  
enhanced external parallel interface (XIO2)  
The ’VC5410 external interface has been redesigned to include several improvements, including: simplification  
of the bus sequence, more immunity to bus contention when transitioning between read and write operation,  
the ability for external memory access to the DMA controller, and optimization of the power-down modes.  
The bus sequence on the ’VC5410 still maintains all of the same interface signals as on previous ’54x devices,  
but the signal sequence has been simplified. Most external accesses now require 3 cycles composed of a  
leading cycle, an active (read or write) cycle, and a trailing cycle. The leading and trailing cycles provide  
additional immunity against bus contention when switching between read operations and write operations. To  
maintain high-speed read access, a consecutive read mode that performs single-cycle reads as on previous  
’54x devices is available.  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P
R
O
C
E
S
S
O
R
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
enhanced external parallel interface (XIO2) (continued)  
Figure 8 shows the bus sequence for three cases: all I/O reads, memory reads in nonconsecutive mode, or  
single memory reads in consecutive mode. The accesses shown in Figure 8 always require 3 CLKOUT cycles  
to complete.  
CLKOUT  
A[22:0]  
D[15:0]  
R/W  
READ  
MSTRB or IOSTRB  
PS/DS/IS  
Leading  
Cycle  
Read  
Cycle  
Trailing  
Cycle  
Figure 8. Nonconsecutive Memory Read and I/O Read Bus Sequence  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
enhanced external parallel interface (XIO2) (continued)  
Figure 9 shows the bus sequence for repeated memory reads in consecutive mode. The accesses shown in  
Figure 9 require (2+n) CLKOUT cycles to complete, where n is the number of consecutive reads performed.  
CLKOUT  
A[22:0]  
D[15:0]  
R/W  
READ  
READ  
READ  
MSTRB  
PS/DS  
Leading  
Cycle  
Read  
Cycle  
Read  
Cycle  
Read  
Cycle  
Trailing  
Cycle  
Figure 9. Consecutive Memory Read Bus Sequence (n = 3 reads)  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
enhanced external parallel interface (XIO2) (continued)  
Figure 10 shows the bus sequence for all memory writes and I/O writes. The accesses shown in Figure 10  
always require 3 CLKOUT cycles to complete.  
CLKOUT  
A[22:0]  
D[15:0]  
R/W  
WRITE  
MSTRB or IOSTRB  
PS/DS/IS  
Leading  
Cycle  
Write  
Cycle  
Trailing  
Cycle  
Figure 10. Memory Write and I/O Write Bus Sequence  
The enhanced interface also provides the ability for DMA transfers to extend to external memory. For more  
information on DMA capability, see the DMA sections that follow.  
The enhanced interface improves the low-power performance already present on the ’C5000 family by  
switching off the internal clocks to the interface when it is not being used. This power-saving feature is automatic,  
requires no software setup, and causes no latency in the operation of the interface.  
Additional features integrated in the enhanced interface are the ability to automatically insert bank-switching  
cycles when crossing 32K memory boundaries (see the “programmable bank-switching” section), the ability to  
program up to 14 wait states through software (see the “software-programmable wait-state generator” section),  
and the ability to divide down CLKOUT by a factor of 1, 2, 3, or 4. Dividing down CLKOUT provides an alternative  
to wait states when interfacing to slower external memory or peripheral devices. While inserting wait states  
extends the bus sequence during read or write accesses, it does not slow down the bus signal sequences at  
the beginning and the end of the access. Dividing down CLKOUT provides a method of slowing the entire bus  
sequence when necessary. The CLKOUT divide-down factor is controlled through the DIVFCT field in the  
bank-switching control register (BSCR).  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
DMA controller  
The ’VC5410 direct memory access (DMA) controller transfers data between points in the memory map without  
intervention by the CPU. The DMA allows movements of data to and from internal program/data memory,  
internal peripherals (such as the McBSPs), or external memory devices to occur in the background of CPU  
operation. The DMA has six independent programmable channels, allowing six different contexts for DMA  
operation.  
features  
The DMA has the following features:  
D
D
D
D
D
The DMA operates independently of the CPU.  
The DMA has six channels. The DMA can keep track of the contexts of six independent block transfers.  
The DMA has higher priority than the CPU for both internal and external accesses.  
Each channel has independently programmable priorities.  
Each channel’s source and destination address registers can have configurable indexes through memory  
on each read and write transfer, respectively. The address may remain constant, be post-incremented, be  
post-decremented, or be adjusted by a programmable value.  
D
D
D
Each read or write transfer may be initialized by selected events.  
On completion of a half- or entire-block transfer, each DMA channel may send an interrupt to the CPU.  
The DMA can perform double-word transfers (a 32-bit transfer of two 16-bit words).  
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
DMA memory map  
The DMA memory map, see Figure 11, allows the DMA transfer to be unaffected by the status of the MP/MC,  
DROM, and OVLY bits.  
Program  
Program  
Program  
Data  
Hex  
0000  
Hex  
Hex  
XX0000  
Hex  
010000  
0000  
Reserved  
DRR20  
001F  
0020  
Reserved  
007F  
0080  
0021  
0022  
0023  
0024  
DRR10  
DXR20  
DXR10  
Reserved  
002F  
0030  
0031  
0032  
DRR22  
DRR12  
DXR22  
0033  
0034  
DXR12  
Reserved  
0035  
0036  
RCERA2  
XCERA2  
0037  
0038  
Reserved  
External  
External  
External  
0039  
003A  
RCERA0  
XCERA0  
003B  
003C  
Reserved  
DRR21  
003F  
0040  
0041  
DRR11  
DXR21  
DXR11  
0042  
0043  
0044  
Reserved  
0049  
004A  
004B  
004C  
RCERA1  
XCERA1  
Reserved  
BFFF  
C000  
005F  
0060  
Scratch-Pad  
RAM  
017FFF  
018000  
007F  
0080  
DARAM  
1FFF  
2000  
SARAM2  
Page 1  
On-Chip ROM  
SARAM1  
External  
7FFF  
8000  
FFFF  
01FFFF  
XXFFFF  
FFFF  
Page 0  
Page 2,3,...  
Figure 11. DMA Memory Map  
DMA priority level  
Each DMA channel can be independently assigned high- or low-priority relative to each other. Multiple DMA  
channels that are assigned to the same priority level are handled in a round-robin manner.  
27  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
DMA source/destination address modification  
The DMA provides flexible address-indexing modes for easy implementation of data management schemes  
such as autobuffering and circular buffers. Source and destination addresses can be indexed separately and  
can be post-incremented, post-decremented, or post-incremented with a specified index offset.  
DMA in autoinitialization mode  
The DMA can automatically reinitialize itself after completion of a block transfer. Some of the DMA registers can  
be preloaded for the next block transfer through the DMA global reload registers (DMGSA, DMGDA, and  
DMGCR). Autoinitialization allows:  
D
D
Continuous operation: Normally, the CPU would have to reinitialize the DMA immediately after the  
completion of the current block transfers, but with the global reload registers, it can reinitialize these values  
for the next block transfer any time after the current block transfer begins.  
Repetitive operation: The CPU does not preload the global reload register with new values for each block  
transfer but only loads them on the first block transfer.  
DMA transfer counting  
The DMA channel element count register (DMCTRx) and the frame count register (DMFRCx) contain bit fields  
that represent the number of frames and the number of elements per frame to be transferred.  
D
Frame count. This 8-bit value defines the total number of frames in the block transfer. The maximum  
number of frames per block transfer is 128 (FRAME COUNT= 0ffh). The counter is decremented upon the  
last read transfer in a frame transfer. Once the last frame is transferred, the selected 8-bit counter is  
reloaded with the DMA global frame reload register (DMGFR) if the AUTOINIT bit is set to 1. A frame count  
of 0 (default value) means the block transfer contains a single frame.  
D
Element count. This 16-bit value defines the number of elements per frame. This counter is decremented  
after the read transfer of each element. The maximum number of elements per frame is 65536  
(DMCTRn = 0ffffh). In autoinitialization mode, once the last frame is transferred, the counter is reloaded with  
the DMA global count reload register (DMGCR).  
DMA transfer in double-word mode  
Double-word mode allows the DMA to transfer 32-bit words in any index mode. In double-word mode, two  
consecutive 16-bit transfers are initiated and the source and destination addresses are automatically updated  
following each transfer. In this mode, each 32-bit word is considered to be one element.  
DMA channel index registers  
The particular DMA channel index register is selected by way of the SIND and DIND fields in the DMA mode  
control register (DMMCRx). Unlike basic address adjustment, in conjunction with the frame index DMFRI0 and  
DMFRI1, the DMA allows different adjustment amounts depending on whether or not the element transfer is  
the last in the current frame. The normal adjustment value (element index) is contained in the element index  
registers DMIDX0 and DMIDX1. The adjustment value (frame index) for the end of the frame, is determined by  
the selected DMA frame index register, either DMFRI0 or DMFRI1.  
The element index and the frame index affect address adjustment as follows:  
D
D
Element index: For all except the last transfer in the frame, the element index determines the amount to be  
added to the DMA channel for the source/destination address register (DMSRCx/DMDSTx) as selected by  
the SIND/DIND bits.  
Frame index: If the transfer is the last in a frame, frame index is used for address adjustment as selected  
by the SIND/DIND bits. This occurs in both single-frame and multi-frame transfers.  
28  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
DMA interrupts  
The ability of the DMA to interrupt the CPU based on the status of the data transfer is configurable and is  
determined by the IMOD and DINM bits in the DMA channel mode control register (DMMCRn). The available  
modes are shown in Table 6.  
Table 6. DMA Interrupts  
MODE  
ABU (non-decrement)  
ABU (non-decrement)  
Multi-Frame  
DINM  
IMOD  
INTERRUPT  
1
1
1
1
0
0
0
1
0
1
X
X
At full buffer only  
At half buffer and full buffer  
At block transfer complete (DMCTRn = DMSEFCn[7:0] = 0)  
At end of frame and end of block (DMCTRn = 0)  
No interrupt generated  
Multi-Frame  
Either  
Either  
No interrupt generated  
29  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
G
N
A
L
PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
memory-mapped registers  
The ’VC5410 has 27 memory-mapped CPU registers, which are mapped in data memory space address 0h  
to 1Fh. Each ’VC5410 device also has a set of memory-mapped registers associated with peripherals. Table 7  
gives a list of CPU memory-mapped registers (MMRs) available on ’VC5410. Table 8 shows additional  
peripheral MMRs associated with the ’VC5410.  
Table 7. CPU Memory-Mapped Registers  
ADDRESS  
NAME  
DESCRIPTION  
DEC  
0
HEX  
0
IMR  
IFR  
Interrupt mask register  
Interrupt flag register  
Reserved for testing  
Status register 0  
1
1
2–5  
6
2–5  
6
ST0  
ST1  
AL  
7
7
Status register 1  
8
8
Accumulator A low word (15–0)  
AH  
9
9
Accumulator A high word (31–16)  
Accumulator A guard bits (39–32)  
Accumulator B low word (15–0)  
Accumulator B high word (31–16)  
Accumulator B guard bits (39–32)  
Temporary register  
AG  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
A
BL  
B
BH  
C
BG  
D
TREG  
TRN  
AR0  
AR1  
AR2  
AR3  
AR4  
AR5  
AR6  
AR7  
SP  
E
F
Transition register  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
Auxiliary register 0  
Auxiliary register 1  
Auxiliary register 2  
Auxiliary register 3  
Auxiliary register 4  
Auxiliary register 5  
Auxiliary register 6  
Auxiliary register 7  
Stack pointer register  
BK  
Circular buffer size register  
Block repeat counter  
BRC  
RSA  
REA  
PMST  
XPC  
Block repeat start address  
Block repeat end address  
Processor mode status (PMST) register  
Extended program page register  
Reserved  
30  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
memory-mapped registers (continued)  
Table 8. Peripheral Memory-Mapped Registers  
NAME  
DRR20  
ADDRESS  
20h  
SUB-ADDRESS  
DESCRIPTION  
McBSP0 data receive register  
TYPE  
McBSP #0  
McBSP #0  
McBSP #0  
McBSP #0  
Timer  
DRR10  
DXR20  
DXR10  
TIM  
21h  
McBSP0 data receive register  
McBSP0 data transmit register  
McBSP0 data transmit register  
Timer register  
22h  
23h  
24h  
PRD  
25h  
Timer period counter  
Timer  
TCR  
26h  
Timer control register  
Timer  
27h  
Reserved  
SWWSR  
BSCR  
28h  
Software wait-state register  
External Bus  
External Bus  
29h  
Bank-switching control register  
Reserved  
2Ah  
2Bh  
2Ch  
2Dh–2Fh  
30h  
SWCR  
HPIC  
Software wait-state control register  
HPI control register  
External Bus  
HPI  
Reserved  
DRR22  
DRR12  
DXR22  
DXR12  
SPSA2  
SPCR12  
SPCR22  
RCR12  
RCR22  
XCR12  
XCR22  
SRGR12  
SRGR22  
MCR12  
MCR22  
RCERA2  
RCERB2  
XCERA2  
XCERB2  
PCR2  
McBSP2 data receive register  
McBSP2 data receive register  
McBSP2 data transmit register  
McBSP2 data transmit register  
McBSP2 sub-address register  
McBSP2 serial port control register 1  
McBSP2 serial port control register 2  
McBSP2 receive control register 1  
McBSP2 receive control register 2  
McBSP2 transmit control register 1  
McBSP2 transmit control register 2  
McBSP2 sample rate generator register 1  
McBSP2 sample rate generator register 2  
McBSP2 multichannel register 1  
McBSP2 multichannel register 2  
McBSP2 receive channel enable register partition A  
McBSP2 receive channel enable register partition B  
McBSP2 transmit channel enable register partition A  
McBSP2 transmit channel enable register partition B  
McBSP2 pin control register  
McBSP #2  
McBSP #2  
McBSP #2  
McBSP #2  
McBSP #2  
McBSP #2  
McBSP #2  
McBSP #2  
McBSP #2  
McBSP #2  
McBSP #2  
McBSP #2  
McBSP #2  
McBSP #2  
McBSP #2  
McBSP #2  
McBSP #2  
McBSP #2  
McBSP #2  
McBSP #2  
31h  
32h  
33h  
34h  
35h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
35h  
35h  
35h  
35h  
35h  
35h  
35h  
35h  
35h  
35h  
35h  
35h  
35h  
35h  
36h–37h  
38h  
Reserved  
SPSA0  
SPCR10  
SPCR20  
RCR10  
RCR20  
XCR10  
McBSP0 sub-address register  
McBSP0 serial port control register 1  
McBSP0 serial port control register 2  
McBSP0 receive control register 1  
McBSP0 receive control register 2  
McBSP0 transmit control register 1  
McBSP #0  
McBSP #0  
McBSP #0  
McBSP #0  
McBSP #0  
McBSP #0  
39h  
00h  
01h  
02h  
03h  
04h  
39h  
39h  
39h  
39h  
Accesses to address 56h update the sub-addressed register and post-increment the sub-address contained in DMSBAR. Accesses to 57h  
update the sub-addressed register without modifying DMSBAR.  
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
G
N
A
L
PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
memory-mapped registers (continued)  
Table 8. Peripheral Memory-Mapped Registers (Continued)  
NAME  
XCR20  
ADDRESS  
39h  
SUB-ADDRESS  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
DESCRIPTION  
McBSP0 transmit control register 2  
McBSP0 sample rate generator register 1  
McBSP0 sample rate generator register 2  
McBSP0 multichannel register 1  
TYPE  
McBSP #0  
McBSP #0  
McBSP #0  
McBSP #0  
McBSP #0  
McBSP #0  
McBSP #0  
McBSP #0  
McBSP #0  
McBSP #0  
SRGR10  
SRGR20  
MCR10  
MCR20  
RCERA0  
RCERB0  
XCERA0  
XCERB0  
PCR0  
39h  
39h  
39h  
39h  
McBSP0 multichannel register 2  
39h  
McBSP0 receive channel enable register partition A  
McBSP0 receive channel enable register partition B  
McBSP0 transmit channel enable register partition A  
McBSP0 transmit channel enable register partition B  
McBSP0 pin control register  
39h  
39h  
39h  
39h  
3Ah–3Fh  
40h  
Reserved  
DRR21  
DRR11  
DXR21  
DXR11  
McBSP1 Data receive register 2  
McBSP #1  
McBSP #1  
McBSP #1  
McBSP #1  
41h  
McBSP1 Data receive register 1  
42h  
McBSP1 Data transmit register 2  
43h  
McBSP1 Data transmit register 1  
44h–47h  
48h  
Reserved  
SPSA1  
SPCR11  
SPCR21  
RCR11  
RCR21  
XCR11  
McBSP1 sub-address register  
McBSP #1  
McBSP #1  
McBSP #1  
McBSP #1  
McBSP #1  
McBSP #1  
McBSP #1  
McBSP #1  
McBSP #1  
McBSP #1  
McBSP #1  
McBSP #1  
McBSP #1  
McBSP #1  
McBSP #1  
McBSP #1  
49h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
McBSP1 serial port control register 1  
McBSP1 serial port control register 2  
McBSP1 receive control register 1  
49h  
49h  
49h  
McBSP1 receive control register 2  
49h  
McBSP1 transmit control register 1  
McBSP1 transmit control register 2  
McBSP1 sample rate generator register 1  
McBSP1 sample rate generator register 2  
McBSP1 multichannel register 1  
XCR21  
SRGR11  
SRGR21  
MCR11  
MCR21  
RCERA1  
RCERB1  
XCERA1  
XCERB1  
PCR1  
49h  
49h  
49h  
49h  
49h  
McBSP1 multichannel register 2  
49h  
McBSP1 receive channel enable register partition A  
McBSP1 receive channel enable register partition B  
McBSP1 transmit channel enable register partition A  
McBSP1 transmit channel enable register partition B  
McBSP1 pin control register  
49h  
49h  
49h  
49h  
4Ah–53h  
54h  
Reserved  
DMPREC  
DMSBAR  
DMSRC0  
DMDST0  
DMCTR0  
DMSFC0  
DMMCR0  
DMSRC1  
DMA channel priority and enable control register  
DMA channel sub-address register  
DMA channel 0 source address register  
DMA channel 0 destination address register  
DMA channel 0 element count register  
DMA channel 0 sync select and frame count register  
DMA channel 0 transfer mode control register  
DMA channel 1 source address register  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
55h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
00h  
01h  
02h  
03h  
04h  
05h  
Accesses to address 56h update the sub-addressed register and post-increment the sub-address contained in DMSBAR. Accesses to 57h  
update the sub-addressed register without modifying DMSBAR.  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
memory-mapped registers (continued)  
Table 8. Peripheral Memory-Mapped Registers (Continued)  
NAME  
DMDST1  
ADDRESS  
SUB-ADDRESS  
06h  
DESCRIPTION  
TYPE  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
DMA channel 1 destination address register  
DMA channel 1 element count register  
DMCTR1  
DMSFC1  
DMMCR1  
DMSRC2  
DMDST2  
DMCTR2  
DMSFC2  
DMMCR2  
DMSRC3  
DMDST3  
DMCTR3  
DMSFC3  
DMMCR3  
DMSRC4  
DMDST4  
DMCTR4  
DMSFC4  
DMMCR4  
DMSRC5  
DMDST5  
DMCTR5  
DMSFC5  
DMMCR5  
07h  
08h  
DMA channel 1 sync select and frame count register  
DMA channel 1 transfer mode control register  
DMA channel 2 source address register  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
DMA channel 2 destination address register  
DMA channel 2 element count register  
DMA channel 2 sync select and frame count register  
DMA channel 2 transfer mode control register  
DMA channel 3 source address register  
10h  
DMA channel 3 destination address register  
DMA channel 3 element count register  
11h  
12h  
DMA channel 3 sync select and frame count register  
DMA channel 3 transfer mode control register  
DMA channel 4 source address register  
13h  
14h  
15h  
DMA channel 4 destination address register  
DMA channel 4 element count register  
16h  
17h  
DMA channel 4 sync select and frame count register  
DMA channel 4 transfer mode control register  
DMA channel 5 source address register  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
DMA channel 5 destination address register  
DMA channel 5 element count register  
DMA channel 5 sync select and frame count register  
DMA channel 5 transfer mode control register  
DMA source program page address (common  
channel)  
DMSRCP  
DMDSTP  
56h/57h  
56h/57h  
1Eh  
1Fh  
DMA  
DMA  
DMA destination program page address (common  
channel)  
DMIDX0  
DMIDX1  
DMFRI0  
DMFRI1  
DMGSA  
DMGDA  
DMGCR  
DMGFR  
CLKMD  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
58h  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
DMA element index address register 0  
DMA element index address register 1  
DMA frame index register 0  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
DMA  
PLL  
DMA frame index register 1  
DMA global source address reload register  
DMA global destination address reload register  
DMA global count reload register  
DMA global frame count reload register  
Clock mode register  
59h – 5Fh  
Reserved  
Accesses to address 56h update the sub-addressed register and post-increment the sub-address contained in DMSBAR. Accesses to 57h  
update the sub-addressed register without modifying DMSBAR.  
33  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
interrupts  
Vector-relative locations and priorities for all internal and external interrupts are shown in Table 9.  
Table 9. Interrupt Locations and Priorities  
LOCATION  
DECIMAL  
NAME  
PRIORITY  
FUNCTION  
HEX  
00  
RS, SINTR  
NMI, SINT16  
SINT17  
0
1
2
Reset (hardware and software reset)  
Nonmaskable interrupt  
4
04  
8
08  
3
Software interrupt #17  
SINT18  
12  
0C  
10  
Software interrupt #18  
SINT19  
16  
Software interrupt #19  
SINT20  
20  
14  
Software interrupt #20  
SINT21  
24  
18  
Software interrupt #21  
SINT22  
28  
1C  
20  
Software interrupt #22  
SINT23  
32  
Software interrupt #23  
SINT24  
36  
24  
Software interrupt #24  
SINT25  
40  
28  
Software interrupt #25  
SINT26  
44  
2C  
30  
Software interrupt #26  
SINT27  
48  
Software interrupt #27  
SINT28  
52  
34  
Software interrupt #28  
SINT29  
56  
38  
Software interrupt #29  
SINT30  
60  
3C  
40  
Software interrupt #30  
INT0, SINT0  
INT1, SINT1  
INT2, SINT2  
TINT, SINT3  
RINT0, SINT4  
XINT0, SINT5  
RINT2, SINT6  
XINT2, SINT7  
INT3, SINT8  
HINT, SINT9  
64  
External user interrupt #0  
External user interrupt #1  
External user interrupt #2  
Timer interrupt  
68  
44  
4
72  
48  
5
76  
4C  
50  
6
80  
7
McBSP #0 receive interrupt (default)  
McBSP #0 transmit interrupt (default)  
McBSP #2 receive interrupt (default)  
McBSP #2 transmit interrupt (default)  
External user interrupt #3  
HPI interrupt  
84  
54  
8
88  
58  
9
92  
5C  
60  
10  
11  
12  
13  
14  
15  
16  
96  
100  
104  
108  
112  
116  
120–127  
64  
RINT1, SINT10  
XINT1, SINT11  
DMAC4,SINT12  
DMAC5,SINT13  
Reserved  
68  
McBSP #1 receive interrupt (default)  
McBSP #1 transmit interrupt (default)  
DMA channel 4 (default)  
DMA channel 5 (default)  
Reserved  
6C  
70  
74  
78–7F  
The bit layout of the interrupt flag register (IFR) and the interrupt mask register (IMR) is shown in Figure 12.  
15–14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RES DMAC5 DMAC4 XINT1 RINT1 HINT  
INT3  
XINT2 RINT2 XINT0 RINT0  
TINT  
INT2  
INT1  
INT0  
Figure 12. IFR and IMR  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
documentation support  
Extensive documentation supports all TMS320 family generations of devices from product announcement  
through applications development. The following types of documentation are available to support the design  
and use of the ’C5000 family of DSPs:  
D
D
D
D
D
TMS320C5000 DSP Family Functional Overview (literature number SPRU307)  
Device-specific data sheets (such as this document)  
Complete user’s guides  
Development support tools  
Hardware and software application reports  
The four-volume TMS320C54x DSP Reference Set (literature number SPRU210) consists of:  
D
D
D
D
Volume 1: CPU and Peripherals (literature number SPRU131)  
Volume 2: Mnemonic Instruction Set (literature number SPRU172)  
Volume 3: Algebraic Instruction Set (literature number SPRU179)  
Volume 4: Applications Guide (literature number SPRU173)  
The reference set describes in detail the ’54x TMS320 products currently available and the hardware and  
software applications, including algorithms, for fixed-point TMS320 devices.  
For general background information on DSPs and TI devices, see the three-volume publication Digital Signal  
Processing Applications with the TMS320 Family (literature numbers SPRA012, SPRA016, and SPRA017).  
A series of DSP textbooks is published by Prentice-Hall and John Wiley & Sons to support digital signal  
processing research and education. The TMS320 newsletter, Details on Signal Processing, is published  
quarterly and distributed to update TMS320 customers on product information.  
Information regarding TI DSP products is also available on the Worldwide Web at http://www.ti.com uniform  
resource locator (URL).  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
P
R
O
C
E
S
S
O
R
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
absolute maximum ratings over specified temperature range (unless otherwise noted)  
Supply voltage I/O range, DV ‡ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 4.6 V  
DD  
DD  
Supply voltage core range, CV  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 3.75 V  
Input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 4.6 V  
Output voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 4.6 V  
Operating case temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 100°C  
C
Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
All voltage values are with respect to V  
.
SS  
recommended operating conditions  
MIN NOM  
MAX  
3.6  
UNIT  
V
§
DV  
CV  
Device supply voltage, I/O  
3
3.3  
2.5  
DD  
DD  
§
Device supply voltage, core  
Supply voltage, GND  
2.4  
2.75  
V
V
V
V
0
V
V
SS  
TCK, DV  
DD  
= 3.3"0.3 V  
3
DV  
+ 0.3  
DD  
RS, INTn, NMI, X2/CLKIN,  
BCLKR0, BCLKR1, BCLKR2,  
BCLKX0, BCLKX1, BCLKX2,  
BCLKS0, BCLKS1, BCLKS2,  
HCS, HDS1, HDS2, HAS  
High-level input voltage, I/O  
2.5  
DV  
DV  
+ 0.3  
+ 0.3  
IH  
DD  
DD  
V
CLKMDn, DV  
DD  
= 3.3"0.3 V  
All other inputs  
2
Low-level input voltage  
High-level output current  
Low-level output current  
Operating case temperature  
–0.3  
0.8  
V
IL  
I
I
–300  
1.5  
µA  
mA  
°C  
OH  
OL  
T
C
–40  
100  
§
Texas Instrument DSPs do not require specific power sequencing between the core supply and the I/O supply. However, systems should be  
designed to ensure that neither supply is powered up for extended periods of time if the other supply is below the proper operating voltage.  
Excessive exposure to these conditions can adversely affect the long term reliability of the devices. System-level concerns such as bus contention  
may require supply sequencing to be implemented. In this case, the core supply should be powered up at the same time as or prior to the I/O  
buffers and then powered down after the I/O buffers.  
Refer to Figure 13 for 3.3-V device test load circuit values.  
36  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P
R
O
C
E
S
S
O
R
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
electrical characteristics over recommended operating case temperature range (unless otherwise  
noted)  
TYP  
PARAMETER  
TEST CONDITIONS  
= 3.3"0.3 V,I = MAX  
MIN  
2.4  
MAX  
UNIT  
V
V
DV  
V
High-level output voltage  
OH  
DD  
= MAX  
OH  
Low-level output voltage  
I
0.4  
V
OL  
OL  
DV  
Input current in high  
I
I
A[22:0]  
= MAX, V = V  
SS  
to DV  
DD  
–175  
175  
µA  
IZ  
DD  
O
impedance  
TRST  
With internal pulldown  
–10  
–10  
800  
400  
HPIENA  
With internal pulldown, RS = 0  
TMS, TCK, TDI,  
BCLKS0, BCLKS1,  
BCLKS2, HPI  
With internal pullups  
–400  
10  
Input current  
µA  
§
I
(V = V  
SS  
to V )  
DD  
I
Bus holders enabled, DV  
DD  
= MAX,  
D[15:0], HD[7:0]  
–175  
–10  
175  
10  
V = DV  
to DV  
I
SS  
DD  
All other input-only pins  
= 2.5 V, 100 MHz CPU clock,  
CV  
DD  
= 25°C  
#
I
I
Supply current, core CPU  
Supply current, pins  
47  
mA  
DDC  
T
C
DV  
= 3.3 V, 100 MHz CPU clock,  
= 25°C  
DD  
||  
22  
mA  
mA  
DDP  
T
C
IDLE2  
IDLE3  
PLL × 2 mode, 50 MHz input, T = 25°C  
2
5
C
Supply current,  
standby  
I
DD  
Divide-by-two mode, CLKIN stopped,  
µA  
T
C
= 25°C  
C
C
Input capacitance  
Output capacitance  
10  
10  
pF  
pF  
i
o
§
#
All values are typical unless otherwise specified.  
All input and output voltage levels except RS, INT0–INT3, NMI, X2/CLKIN, CLKMD0–CLKMD3 are LVTTL-compatible.  
HPI input signals except for HPIENA.  
Clock mode: PLL × 2 with external source  
This value was obtained with 50% usage of MAC and 50% usage of NOP instructions. Actual operating current varies with program being  
executed.  
||  
This value was obtained with continous external writes, CLKOFF = 0 and load = 15 pF. For more details on how this calculation is performed,  
refer to the Calculation of TMS320LC54x Power Dissipation application report (literature number SPRA164).  
37  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
PARAMETER MEASUREMENT INFORMATION  
I
OL  
50 Ω  
Output  
Under  
Test  
Tester Pin  
Electronics  
V
Load  
C
T
I
OH  
Where:  
I
I
= 1.5 mA (all outputs)  
= 300 µA (all outputs)  
= 1.5 V  
OL  
OH  
V
Load  
C
= 40-pF typical load circuit capacitance  
T
Figure 13. 3.3-V Test Load Circuit  
38  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
F IX EDĆPO I NT DI GI TAL SI G NAL P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
internal divide-by-two clock option with external crystal  
The internal oscillator on the ’5410 is enabled by setting the CLKMD(1,2,3) pins to (1,0,0) at reset and  
connecting a crystal or ceramic resonator across X1 and X2/CLKIN. The CPU clock frequency is one-half the  
crystal’s oscillation frequency following reset. Since the internal oscillator can be used as a clock source to the  
PLL, the crystal oscillation frequency can be multiplied to generate the CPU clock if desired.  
The crystal should be in fundamental mode operation and parallel resonant with an effective series resistance  
of 30 ohms and power dissipation of 1 mW. The connection of the required circuit, consisting of the crystal and  
two load capacitors, is shown in Figure 14. The load capacitors, C and C , should be chosen such that the  
1
2
equation below is satisfied. C in the equation is the load specified for the crystal.  
L
C1C2  
CL +  
(C1 ) C2)  
’VC5410-100  
’VC5410-120  
MIN NOM MAX  
UNIT  
MIN NOM  
MAX  
0
50  
0
50  
f
x
Input clock frequency  
MHz  
This device utilizes a fully static design and therefore can operate with t  
approaching 0 Hz.  
It is recommended that the PLL clocking option be used for maximum frequency operation.  
approaching . The device is characterized at frequencies  
c(CI)  
X1  
X2/CLKIN  
Crystal  
C1  
C2  
Figure 14. Internal Divide-by-Two Clock Option With External Crystal  
PR O DU C T PR EVI EW inf or ma tio n co nce r ns pr od uct s in th e fo rm at iv e o r  
de s i gn ph a s e of de ve lopm ent . C ha ra ct er is tic da ta an d o the r  
s pe c i fi c a t io ns a r e de s ig n goa ls . Tex as Ins tr um ent s r es er v es th e r i gh t to  
c ha n ge or di s c on ti nu e th es e pr od uct s w ith out not ice .  
39  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
F I X ED ĆPOI N T DI G I TAL S I GN AL PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
external divide-by-two clock option  
An external frequency source can be used by applying an input clock to X2/CLKIN with X1 left unconnected.  
Table 5 shows the configuration options for the CLKMD pins that generate the external divide-by-2 clock option.  
This external input clock frequency is divided by two to generate the CPU machine cycle.  
The external frequency injected must conform to specifications listed in the timing requirements table.  
switching characteristics over recommended operating conditions [H = 0.5t  
(see Figure 14, Figure 15, and the recommended operating conditions table)  
]
c(CO)  
’VC5410-100  
’VC5410-120  
PARAMETER  
UNIT  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
t
Cycle time, CLKOUT  
10  
2t  
8.33  
2t  
ns  
ns  
ns  
ns  
ns  
ns  
c(CO)  
c(CI)  
6
c(CI)  
6
t
Delay time, X2/CLKIN high to CLKOUT high/low  
Fall time, CLKOUT  
3
10  
3
10  
d(CIH-CO)  
t
2
2
2
2
f(CO)  
t
t
t
Rise time, CLKOUT  
r(CO)  
Pulse duration, CLKOUT low  
Pulse duration, CLKOUT high  
H–2  
H–2  
H–1  
H–1  
H
H
H–2  
H–2  
H–1  
H–1  
H
H
w(COL)  
w(COH)  
It is recommended that the PLL clocking option be used for maximum frequency operation.  
This device utilizes a fully static design and therefore can operate with t  
approaching 0 Hz.  
approaching . The device is characterized at frequencies  
c(CI)  
P ROD UCT PR EV IEW in f or m a ti on co nce r ns pr od uct s in th e fo rm at iv e or  
d e s i g n ph a s e of de v e l op me nt. C ha ra ct er is tic da ta an d ot her  
s p e c i fi ca t i ons a r e de s i gn go a ls . Tex a s Ins tr um ent s r es er v es th e r igh t to  
c h a n g e or di s c on ti nue t he s e pr od uct s w ith out not ice .  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
F IX EDĆPO I NT DI GI TAL SI G NAL P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
external divide-by-two clock option (continued)  
timing requirements (see Figure 15)  
’VC5410-100  
’VC5410-120  
UNIT  
MIN  
MAX  
MIN  
MAX  
t
t
t
t
t
Cycle time, X2/CLKIN  
5
4.167  
ns  
ns  
ns  
ns  
ns  
c(CI)  
Fall time, X2/CLKIN  
1
1
f(CI)  
Rise time, X2/CLKIN  
1
1
r(CI)  
Pulse duration, X2/CLKIN low  
Pulse duration, X2/CLKIN high  
2
2
2
2
w(CIL)  
w(CIH)  
This device utilizes a fully static design and therefore can operate with t  
approaching 0 Hz.  
approaching . The device is characterized at frequencies  
c(CI)  
t
t
t
t
f(CI)  
r(CI)  
c(CI)  
w(CIH)  
t
w(CIL)  
X2/CLKIN  
t
f(CO)  
t
c(CO)  
t
t
r(CO)  
w(COH)  
t
d(CIH–CO)  
t
w(COL)  
CLKOUT  
NOTE A: The CLKOUT timing in this diagram assumes the CLKOUT divide factor (DIVFCT field in the BSCR) is configured as 00 (CLKOUT not  
divided). DIVFCT is configured as CLKOUT divided-by-4 mode following reset.  
Figure 15. External Divide-by-Two Clock Timing  
PR O DU C T PR EVI EW inf or ma tio n co nce r ns pr od uct s in th e fo rm at iv e o r  
de s i gn  
s pe c i fi c a t io ns a r e de s ig n goa ls . Tex as Ins tr um ent s r es er v es th e r i gh t to  
c ha n ge or di s c on ti nu e th es e pr od uct s w ith out not ice .  
p
h
a
s
e
of  
d
e
v
e
l
o
p
m
e
n
t
.
C
h
a
r
a
c
t
e
r
i
s
t
i
c
d
a
t
a
a
n
d
o
t
h
e
r
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
F I X ED ĆPOI N T DI G I TAL S I GN AL PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
external multiply-by-N clock option  
An external frequency source can be used by applying an input clock to X2/CLKIN with X1 left unconnected.  
Figure 14 shows the configuration options for the CLKMD pins that generate the external divide-by-2 clock  
option. Following reset, the software PLL can be programmed for the desired multiplication factor. Refer to the  
TMS320C54x DSP CPU and Peripherals Reference Set, Volume 1 (literature number SPRU131) for detailed  
information on programming the PLL. The external input clock frequency is multiplied by the multiplication factor  
N to generate the internal CPU machine cycle.  
The external frequency injected must conform to specifications listed in the timing requirements table.  
switching characteristics over recommended operating conditions [H = 0.5t  
(see Figure 16 and the recommended operating conditions table)  
]
c(CO)  
’VC5410-100  
PARAMETER  
’VC5410-120  
TYP  
UNIT  
MIN  
10  
3
TYP  
MAX  
MIN  
8.33  
3
MAX  
t
Cycle time, CLKOUT  
t
t
c(CI)/N  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
c(CO)  
c(CI)/N  
t
Delay time, X2/CLKIN high/low to CLKOUT high/low  
Fall time, CLKOUT  
6
10  
6
10  
d(CI-CO)  
t
2
2
2
2
f(CO)  
r(CO)  
w(COL)  
w(COH)  
p
t
t
t
t
Rise time, CLKOUT  
Pulse duration, CLKOUT low  
Pulse duration, CLKOUT high  
Transitory phase, PLL lock-up time  
H–2  
H–2  
H–1  
H–1  
H
H
H–2  
H–2  
H–1  
H–1  
H
H
35  
35  
N is the multiplication factor.  
timing requirements (see Figure 16)  
’VC5410-100  
MIN MAX  
’VC5410-120  
MIN MAX  
UNIT  
Integer PLL multiplier N (N = 1–15)  
PLL multiplier N = x.5  
10N 400N 8.33N 400N  
10N 200N 8.33N 200N  
10N 100N 8.33N 100N  
t
Cycle time, X2/CLKIN  
ns  
c(CI)  
PLL multiplier N = x.25, x.75  
t
t
t
t
Fall time, X2/CLKIN  
4
4
4
4
ns  
ns  
ns  
ns  
f(CI)  
Rise time, X2/CLKIN  
r(CI)  
Pulse duration, X2/CLKIN low  
Pulse duration, X2/CLKIN high  
2
2
2
2
w(CIL)  
w(CIH)  
N is the multiplication factor.  
t
w(CIL)  
t
t
w(CIH)  
f(CI)  
t
t
r(CI)  
c(CI)  
X2/CLKIN  
t
d(CI–CO)  
t
f(CO)  
t
w(COH)  
t
c(CO)  
t
w(COL)  
t
t
r(CO)  
p
Unstable  
CLKOUT  
NOTE A: The CLKOUT timing in this diagram assumes the CLKOUT divide factor (DIVFCT field in the BSCR) is configured as 00 (CLKOUT not  
divided). DIVFCT is configured as CLKOUT divided-by-4 mode following reset.  
Figure 16. External Multiply-by-One Clock Timing  
P ROD UCT PR EV IEW in f or m a ti on co nce r ns pr od uct s in th e fo rm at iv e or  
da ta  
d e s i g n  
ph a s e  
o
f
d
e
v
e
l
o
p
m
e
n
t
.
C
h
a
r
a
c
t
e
r
i
s
t
i
c
a
n
d
o
t
h
e
r
s p e c i fi ca t i ons a r e de s i gn go a ls . Tex a s Ins tr um ent s r es er v es th e r igh t to  
c h a n g e or di s c on ti nue t he s e pr od uct s w ith out not ice .  
42  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
F IX EDĆPO I NT DI GI TAL SI G NAL P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
memory and parallel I/O interface timing  
memory read  
External memory reads can be performed in consecutive or nonconsecutive mode under control of the  
CONSEC bit in the BSCR.  
switching characteristics over recommended operating conditions (MSTRB = 0) (see Figure 17  
and Figure 18)  
’VC5410-100  
’VC5410-120  
PARAMETER  
UNIT  
MIN  
– 1  
– 1  
– 1  
MAX  
MIN  
– 1  
– 1  
– 1  
MAX  
t
Delay time, CLKOUT low to address valid  
Delay time, CLKOUT low to MSTRB low  
Delay time, CLKOUT low to MSTRB high  
4
4
4
6
6
6
ns  
ns  
ns  
d(CLKL-A)  
t
d(CLKL-MSL)  
t
d(CLKL-MSH)  
Address,R/W, PS, DS, and IS timings are all included in timings referenced as address.  
timing requirements (MSTRB = 0) [H = 0.5 t  
] (see Figure 17 and Figure 18)  
c(CO)  
’VC5410-100  
’VC5410-120  
UNIT  
ns  
MIN  
MAX  
MIN  
MAX  
t
t
Access time, read data access from address valid, first read access  
4H–10  
4H–10  
a(A)M1  
Access time, read data access from address valid, consecutive read  
accesses  
2H–10  
2H–10  
ns  
a(A)M2  
t
t
Setup time, read data valid before CLKOUT low  
Hold time, read data valid after CLKOUT low  
6
0
6
0
ns  
ns  
su(D)R  
h(D)R  
Address,R/W, PS, DS, and IS timings are all included in timings referenced as address.  
PR O DU C T PR EVI EW inf or ma tio n co nce r ns pr od uct s in th e fo rm at iv e o r  
de s i gn ph a s e of de ve lopm ent . C ha ra ct er is tic da ta an d o the r  
s pe c i fi c a t io ns a r e de s ig n goa ls . Tex as Ins tr um ent s r es er v es th e r i gh t to  
c ha n ge or di s c on ti nu e th es e pr od uct s w ith out not ice .  
43  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
memory and parallel I/O interface timing (continued)  
CLKOUT  
t
d(CLKL-A)  
A[22:0]  
t
d(CLKL-MSL)  
t
d(CLKL-MSH)  
t
a(A)M1  
D[15:0]  
t
su(D)R  
t
h(D)R  
MSTRB  
R/W  
PS/DS  
Figure 17. Nonconsecutive Mode Memory Reads  
44  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
memory and parallel I/O interface timing (continued)  
CLKOUT  
t
d(CLKL-A)  
t
d(CLKL-MSL)  
t
d(CLKL-MSH)  
A[22:0]  
D[15:0]  
t
a(A)M1  
t
a(A)M2  
t
t
su(D)R  
su(D)R  
t
t
h(D)R  
h(D)R  
MSTRB  
R/W  
PS/DS  
Figure 18. Consecutive Mode Memory Reads  
45  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
F I X ED ĆPOI N T DI G I TAL S I GN AL PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
memory and parallel I/O interface timing (continued)  
memory write  
switching characteristics over recommended operating conditions (MSTRB = 0) [H = 0.5 t  
(see Figure 19)  
]
c(CO)  
’VC5410-100  
’VC5410-120  
PARAMETER  
UNIT  
MIN  
– 1  
MAX  
MIN  
– 1  
MAX  
t
Delay time, CLKOUT low to address valid  
Setup time, address valid before MSTRB low  
Delay time, CLKOUT low to data valid  
Setup time, data valid before MSTRB high  
Hold time, data valid after MSTRB high  
Delay time, CLKOUT low to MSTRB low  
Pulse duration, MSTRB low  
4
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(CLKL-A)  
t
2H – 5  
0
2H – 5  
0
su(A)MSL  
t
5
7
d(CLKL-D)W  
t
2H – 5  
2H – 5  
– 1  
2H + 5 2H – 5  
2H + 5 2H – 5  
su(D)MSH  
t
h(D)MSH  
t
4
– 1  
2H – 5  
– 1  
6
6
d(CLKL-MSL)  
t
2H – 5  
– 1  
w(SL)MS  
t
Delay time, CLKOUT low to MSTRB high  
4
d(CLKL-MSH)  
Address, R/W, PS, DS, and IS timings are all included in timings referenced as address.  
CLKOUT  
t
d(CLKL-A)  
t
d(CLKL-D)W  
t
su(A)MSL  
A[22:0]  
D[15:0]  
t
su(D)MSH  
t
h(D)MSH  
t
d(CLKL-MSL)  
t
d(CLKL-MSH)  
t
w(SL)MS  
MSTRB  
R/W  
PS/DS  
Figure 19. Memory Write (MSTRB = 0)  
P ROD UCT PR EV IEW in f or m a ti on co nce r ns pr od uct s in th e fo rm at iv e or  
d e s i g n ph a s e of de v e l op me nt. C ha ra ct er is tic da ta an d ot her  
s p e c i fi ca t i ons a r e de s i gn go a ls . Tex a s Ins tr um ent s r es er v es th e r igh t to  
c h a n g e or di s c on ti nue t he s e pr od uct s w ith out not ice .  
46  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
F IX EDĆPO I NT DI GI TAL SI G NAL P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
memory and parallel I/O interface timing (continued)  
I/O read  
switching characteristics over recommended operating conditions (IOSTRB = 0) (see Figure 20)  
’VC5410-100  
’VC5410-120  
PARAMETER  
UNIT  
MIN  
– 1  
– 1  
– 1  
MAX  
MIN  
– 1  
– 1  
– 1  
MAX  
t
Delay time, CLKOUT low to address valid  
Delay time, CLKOUT low to IOSTRB low  
Delay time, CLKOUT low to IOSTRB high  
4
4
4
6
6
6
ns  
ns  
ns  
d(CLKL-A)  
t
d(CLKL-IOSL)  
t
d(CLKL-IOSH)  
Address R/W, PS, DS, and IS timings are included in timings referenced as address.  
timing requirements for a parallel I/O port read (IOSTRB = 0) [H = 0.5 t  
] (see Figure 20)  
c(CO)  
’VC5410-100  
’VC5410-120  
UNIT  
MIN  
MAX  
MIN  
MAX  
t
t
t
Access time, read data access from address valid, first read access  
Setup time, read data valid before CLKOUT low  
4H–10  
4H–10  
ns  
ns  
ns  
a(A)M1  
su(D)R  
h(D)R  
6
0
6
0
Hold time, read data valid after CLKOUT low  
Address R/W, PS, DS, and IS timings are included in timings referenced as address.  
PR O DU C T PR EVI EW inf or ma tio n co nce r ns pr od uct s in th e fo rm at iv e o r  
de s i gn ph a s e of de ve lopm ent . C ha ra ct er is tic da ta an d o the r  
s pe c i fi c a t io ns a r e de s ig n goa ls . Tex as Ins tr um ent s r es er v es th e r i gh t to  
c ha n ge or di s c on ti nu e th es e pr od uct s w ith out not ice .  
47  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
P
R
O
C
E
S
S
O
R
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
memory and parallel I/O interface timing (continued)  
CLKOUT  
t
d(CLKL-A)  
t
d(CLKL-IOSL)  
t
d(CLKL-IOSH)  
A[22:0]  
t
a(A)M1  
t
su(D)R  
t
h(D)R  
D[15:0]  
IOSTRB  
R/W  
IS  
Figure 20. Parallel I/O Port Read (IOSTRB = 0)  
48  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
F IX EDĆPO I NT DI GI TAL SI G NAL P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
memory and parallel I/O interface timing (continued)  
I/O write  
switching characteristics over recommended operating conditions (IOSTRB = 0) [H = 0.5 t  
(see Figure 21)  
]
c(CO)  
’VC5410-100  
’VC5410-120  
PARAMETER  
UNIT  
MIN  
– 1  
MAX  
MIN  
– 1  
MAX  
t
Delay time, CLKOUT low to address valid  
Setup time, address valid before IOSTRB low  
Delay time, CLKOUT low to write data valid  
Setup time, data valid before IOSTRB high  
Hold time, data valid after IOSTRB high  
Delay time, CLKOUT low to IOSTRB low  
Pulse duration, IOSTRB low  
4
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(CLKL-A)  
t
2H – 5  
0
2H – 5  
0
su(A)IOSL  
t
5
7
d(CLKL-D)W  
t
2H – 5 2H + 5  
2H – 5 2H + 5  
2H – 5 2H + 5  
2H – 5 2H + 5  
su(D)IOSH  
t
h(D)IOSH  
t
t
t
– 1  
2H – 5  
– 1  
4
– 1  
2H – 5  
– 1  
6
d(CLKL-IOSL)  
w(SL)IOS  
Delay time, CLKOUT low to IOSTRB high  
4
6
d(CLKL-IOSH)  
Address R/W, PS, DS, and IS timings are included in timings referenced as address.  
PR O DU C T PR EVI EW inf or ma tio n co nce r ns pr od uct s in th e fo rm at iv e o r  
de s i gn ph a s e of de ve lopm ent . C ha ra ct er is tic da ta an d o the r  
s pe c i fi c a t io ns a r e de s ig n goa ls . Tex as Ins tr um ent s r es er v es th e r i gh t to  
c ha n ge or di s c on ti nu e th es e pr od uct s w ith out not ice .  
49  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
P
R
O
C
E
S
S
O
R
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
memory and parallel I/O interface timing (continued)  
CLKOUT  
t
d(CLKL-A)  
A[22:0]  
D[15:0]  
t
d(CLKL-D)W  
t
d(CLKL-D)W  
t
su(A)IOSL  
t
su(D)IOSH  
t
h(D)IOSH  
IOSTRB  
R/W  
IS  
Figure 21. Parallel I/O Port Write (IOSTRB = 0)  
50  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
F IX EDĆPO I NT DI GI TAL SI G NAL P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
ready timing for externally generated wait states  
†‡  
switching characteristics over recommended operating conditions (see Figure 22, Figure 23,  
Figure 24, and Figure 25)  
’VC5410-100  
’VC5410-120  
PARAMETER  
UNIT  
MIN  
– 1  
MAX  
MIN  
– 1  
MAX  
t
Delay time, CLKOUT low to MSC low  
Delay time, CLKOUT low to MSC high  
4
4
6
6
ns  
ns  
d(MSCL)  
t
– 1  
– 1  
d(MSCH)  
The hardware wait states can be used only in conjunction with the software wait states to extend the bus cycles. To generate wait states by  
READY, at least two software wait states must be programmed. READY is not sampled until the completion of the internal software wait states.  
These timings are included for reference only. The critical timings for READY are those referenced to CLKOUT.  
timing requirements for externally generated wait states [H = 0.5 t  
Figure 24, and Figure 25)  
] (see Figure 22, Figure 23,  
c(CO)  
’VC5410-100  
’VC5410-120  
UNIT  
MIN  
MAX  
MIN  
5
MAX  
t
t
t
t
t
t
Setup time, READY before CLKOUT low  
Hold time, READY after CLKOUT low  
5
0
ns  
ns  
ns  
ns  
ns  
ns  
su(RDY)  
0
h(RDY)  
Valid time, READY after MSTRB low  
4H–8  
4H–8  
4H–8  
4H–8  
v(RDY)MSTRB  
h(RDY)MSTRB  
v(RDY)IOSTRB  
h(RDY)IOSTRB  
Hold time, READY after MSTRB low  
4H  
4H  
Valid time, READY after IOSTRB low  
Hold time, READY after IOSTRB low  
4H  
4H  
The hardware wait states can be used only in conjunction with the software wait states to extend the bus cycles. To generate wait states by  
READY, at least two software wait states must be programmed. READY is not sampled until the completion of the internal software wait states.  
These timings are included for reference only. The critical timings for READY are those referenced to CLKOUT.  
PR O DU C T PR EVI EW inf or ma tio n co nce r ns pr od uct s in th e fo rm at iv e o r  
de s i gn ph a s e of de ve lopm ent . C ha ra ct er is tic da ta an d o the r  
s pe c i fi c a t io ns a r e de s ig n goa ls . Tex as Ins tr um ent s r es er v es th e r i gh t to  
c ha n ge or di s c on ti nu e th es e pr od uct s w ith out not ice .  
51  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
T
A
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
ready timing for externally generated wait states (continued)  
CLKOUT  
A[22:0]  
t
su(RDY)  
t
h(RDY)  
READY  
MSTRB  
MSC  
t
v(RDY)MSTRB  
t
h(RDY)MSTRB  
t
d(MSCL)  
t
d(MSCH)  
Leading  
Cycle  
Wait States  
Generated  
Internally  
Wait  
States  
Generated  
by READY  
Trailing  
Cycle  
Figure 22. Memory Read With Externally Generated Wait States  
52  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
ready timing for externally generated wait states (continued)  
CLKOUT  
A[22:0]  
D[15:0]  
t
h(RDY)  
t
su(RDY)  
READY  
MSTRB  
MSC  
t
v(RDY)MSTRB  
t
h(RDY)MSTRB  
t
d(MSCL)  
t
d(MSCH)  
Wait States  
Generated Internally  
Wait State Generated  
by READY  
Figure 23. Memory Write With Externally Generated Wait States  
53  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
ready timing for externally generated wait states (continued)  
CLKOUT  
A[22:0]  
t
su(RDY)  
t
h(RDY)  
READY  
IOSTRB  
MSC  
t
v(RDY)IOSTRB  
t
h(RDY)IOSTRB  
t
d(MSCL)  
t
d(MSCH)  
Leading  
Cycle  
Wait States  
Generated  
Internally  
Wait  
States  
Generated  
by READY  
Trailing  
Cycle  
Figure 24. I/O Read With Externally Generated Wait States  
54  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P
R
O
C
E
S
S
O
R
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
ready timing for externally generated wait states (continued)  
CLKOUT  
A[22:0]  
D[15:0]  
t
su(RDY)  
t
h(RDY)  
READY  
IOSTRB  
MSC  
t
v(RDY)IOSTRB  
t
h(RDY)IOSTRB  
t
d(MSCL)  
t
d(MSCH)  
Leading  
Cycle  
Wait  
States  
Wait  
States  
Generated  
by READY  
Generated  
Internally  
Trailing  
Cycle  
Figure 25. I/O Write With Externally Generated Wait States  
55  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
F I X ED ĆPOI N T DI G I TAL S I GN AL PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
HOLD and HOLDA timings  
switching characteristics over recommended operating conditions for memory control signals  
and HOLDA [H = 0.5 t  
] (see Figure 26)  
c(CO)  
’VC5410-100  
’VC5410-120  
PARAMETER  
UNIT  
MIN  
MAX  
5
MIN  
MAX  
5
t
t
t
t
t
t
Disable time, Address, PS, DS, IS high impedance from CLKOUT low  
Disable time, R/W high impedance from CLKOUT low  
Disable time, MSTRB, IOSTRB high impedance from CLKOUT low  
Enable time, Address, PS, DS, IS valid from CLKOUT low  
Enable time, R/W enabled from CLKOUT low  
ns  
ns  
ns  
ns  
ns  
ns  
dis(CLKL-A)  
dis(CLKL-RW)  
dis(CLKL-S)  
en(CLKL-A)  
en(CLKL-RW)  
en(CLKL-S)  
5
5
5
5
2H+5  
2H+5  
2H+5  
2H+5  
2H+5  
2H+5  
Enable time, MSTRB, IOSTRB enabled from CLKOUT low  
– 1  
– 1  
4
4
– 1  
– 1  
4
4
ns  
ns  
ns  
Valid time, HOLDA low after CLKOUT low  
t
t
v(HOLDA)  
Valid time, HOLDA high after CLKOUT low  
Pulse duration, HOLDA low duration  
2H–3  
2H–3  
w(HOLDA)  
timing requirements for HOLD [H = 0.5 t  
] (see Figure 26)  
c(CO)  
’VC5410-100  
’VC5410-120  
UNIT  
MAX  
4H+10  
9
MIN  
MAX  
4H+10  
9
MIN  
t
t
Pulse duration, HOLD low duration  
Setup time, HOLD before CLKOUT low  
ns  
ns  
w(HOLD)  
su(HOLD)  
P ROD UCT PR EV IEW in f or m a ti on co nce r ns pr od uct s in th e fo rm at iv e or  
d e s i g n ph a s e of de v e l op me nt. C ha ra ct er is tic da ta an d ot her  
s p e c i fi ca t i ons a r e de s i gn go a ls . Tex a s Ins tr um ent s r es er v es th e r igh t to  
c h a n g e or di s c on ti nue t he s e pr od uct s w ith out not ice .  
56  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
HOLD and HOLDA timings (continued)  
CLKOUT  
t
t
su(HOLD)  
su(HOLD)  
t
w(HOLD)  
HOLD  
t
t
v(HOLDA)  
v(HOLDA)  
t
w(HOLDA)  
HOLDA  
t
t
en(CLKL–A)  
dis(CLKL–A)  
A[22:0]  
PS, DS, IS  
D[15:0]  
R/W  
t
t
t
t
dis(CLKL–RW)  
dis(CLKL–S)  
dis(CLKL–S)  
en(CLKL–RW)  
t
en(CLKL–S)  
MSTRB  
IOSTRB  
t
en(CLKL–S)  
Figure 26. HOLD and HOLDA Timings (HM = 1)  
57  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
F I X ED ĆPOI N T DI G I TAL S I GN AL PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
reset, BIO, interrupt, and MP/MC timings  
timing requirements for reset, BIO, interrupt, and MP/MC [H = 0.5 t  
and Figure 29)  
] (see Figure 27, Figure 28,  
c(CO)  
’VC5410-100  
’VC5410-120  
UNIT  
MIN  
MAX  
MIN  
0
MAX  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Hold time, RS after CLKOUT low  
Hold time, BIO after CLKOUT low  
Hold time, INTn, NMI, after CLKOUT low  
Hold time, MP/MC after CLKOUT low  
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
h(RS)  
0
h(BIO)  
0
0
h(INT)  
0
0
h(MPMC)  
w(RSL)  
‡§  
Pulse duration, RS low  
4H+5  
2H+5  
4H  
2H+7  
4H  
2H+7  
4H  
8
4H+5  
2H+5  
4H  
2H+7  
4H  
2H+7  
4H  
8
Pulse duration, BIO low, synchronous  
Pulse duration, BIO low, asynchronous  
w(BIO)S  
w(BIO)A  
w(INTH)S  
w(INTH)A  
w(INTL)S  
w(INTL)A  
w(INTL)WKP  
su(RS)  
Pulse duration, INTn, NMI high (synchronous)  
Pulse duration, INTn, NMI high (asynchronous)  
Pulse duration, INTn, NMI low (synchronous)  
Pulse duration, INTn, NMI low (asynchronous)  
Pulse duration, INTn, NMI low for IDLE2/IDLE3 wakeup  
Setup time, RS before X2/CLKIN low  
5
5
Setup time, BIO before CLKOUT low  
8
12  
13  
8
12  
12  
su(BIO)  
Setup time, INTn, NMI, RS before CLKOUT low  
Setup time, MP/MC before CLKOUT low  
9
8
su(INT)  
8
8
su(MPMC)  
The external interrupts (INT0–INT3, NMI) are synchronized to the core CPU by way of a two-flip-flop synchronizer that samples these inputs  
with consecutive falling edges of CLKOUT. The input to the interrupt pins is required to represent a 1–0–0 sequence at the timing that is  
corresponding to three CLKOUTs sampling sequence.  
If the PLL mode is selected, then at power-on sequence, or at wakeup from IDLE3, RS must be held low for at least 50 µs to ensure  
synchronization and lock-in of the PLL.  
§
Note that RS may cause a change in clock frequency, therefore changing the value of H.  
The diagram assumes clock mode is divide-by-2 and the CLKOUT divide factor is set to no-divide mode (DIVFCT=00 field in the BSCR).  
P ROD UCT PR EV IEW in f or m a ti on co nce r ns pr od uct s in th e fo rm at iv e or  
d e s i g n ph a s e of de v e l op me nt. C ha ra ct er is tic da ta an d ot her  
s p e c i fi ca t i ons a r e de s i gn go a ls . Tex a s Ins tr um ent s r es er v es th e r igh t to  
c h a n g e or di s c on ti nue t he s e pr od uct s w ith out not ice .  
58  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
T
A
L
S
I
G
N
L
P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
reset, BIO, interrupt, and MP/MC timings (continued)  
X2/CLKIN  
t
su(RS)  
t
w(RSL)  
RS, INTn, NMI  
t
su(INT)  
t
h(RS)  
CLKOUT  
t
su(BIO)  
t
h(BIO)  
BIO  
t
w(BIO)S  
Figure 27. Reset and BIO Timings  
CLKOUT  
t
t
t
su(INT)  
su(INT)  
h(INT)  
INTn, NMI  
t
w(INTH)A  
t
w(INTL)A  
Figure 28. Interrupt Timing  
CLKOUT  
RS  
t
h(MPMC)  
t
su(MPMC)  
MP/MC  
Figure 29. MP/MC Timing  
59  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
F I X ED ĆPOI N T DI G I TAL S I GN AL PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
instruction acquisition (IAQ), interrupt acknowledge (IACK), external flag (XF), and TOUT timings  
switching characteristics over recommended operating conditions for IAQ and IACK  
[H = 0.5 t  
] (see Figure 30)  
c(CO)  
’VC5410-100  
’VC5410-120  
PARAMETER  
UNIT  
MIN  
– 1  
MAX  
MIN  
– 1  
MAX  
t
Delay time, CLKOUT low to IAQ low  
Delay time, CLKOUT low to IAQ high  
Delay time, IAQ low to address valid  
Delay time, CLKOUT low to IACK low  
Delay time, CLKOUT low to IACK high  
Delay time, IACK low to address valid  
Hold time, address valid after IAQ high  
Hold time, address valid after IACK high  
Pulse duration, IAQ low  
4
4
3
4
4
3
7
7
4
6
6
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(CLKL-IAQL)  
t
t
– 1  
– 1  
d(CLKL-IAQH)  
d(A)IAQ  
t
– 1  
– 1  
– 1  
– 1  
d(CLKL-IACKL)  
t
d(CLKL-IACKH)  
d(A)IACK  
h(A)IAQ  
t
t
t
t
t
– 3  
– 3  
– 6  
– 6  
h(A)IACK  
w(IAQL)  
2H–3  
2H–3  
2H–6  
2H–6  
Pulse duration, IACK low  
w(IACKL)  
CLKOUT  
A[22:0]  
IAQ  
t
t
d(CLKL–IAQH)  
d(CLKL–IAQL)  
t
h(A)IAQ  
t
d(A)IAQ  
t
w(IAQL)  
t
t
d(CLKL–IACKH)  
d(CLKL–IACKL)  
t
h(A)IACK  
t
d(A)IACK  
t
w(IACKL)  
IACK  
Figure 30. Instruction Acquisition (IAQ) and Interrupt Acknowledge (IACK) Timings  
P ROD UCT PR EV IEW in f or m a ti on co nce r ns pr od uct s in th e fo rm at iv e or  
d e s i g n ph a s e of de v e l op me nt. C ha ra ct er is tic da ta an d ot her  
s p e c i fi ca t i ons a r e de s i gn go a ls . Tex a s Ins tr um ent s r es er v es th e r igh t to  
c h a n g e or di s c on ti nue t he s e pr od uct s w ith out not ice .  
60  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
F IX EDĆPO I NT DI GI TAL SI G NAL P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
instruction acquisition (IAQ), interrupt acknowledge (IACK), external flag (XF), and TOUT timings  
(continued)  
switching characteristics over recommended operating conditions for XF and TOUT  
[H = 0.5 t  
] (see Figure 31 and Figure 32)  
c(CO)  
’VC5410-100  
’VC5410-120  
PARAMETER  
UNIT  
MIN  
–1  
MAX  
MIN  
–1  
MAX  
Delay time, CLKOUT low to XF high  
Delay time, CLKOUT low to XF low  
Delay time, CLKOUT low to TOUT high  
Delay time, CLKOUT low to TOUT low  
Pulse duration, TOUT  
4
4
4
4
6
6
6
6
t
ns  
d(XF)  
–1  
–1  
t
t
t
–1  
–1  
ns  
ns  
ns  
d(TOUTH)  
d(TOUTL)  
w(TOUT)  
–1  
–1  
2H–10  
2H–6  
CLKOUT  
t
d(XF)  
XF  
Figure 31. External Flag (XF) Timing  
CLKOUT  
TOUT  
t
t
d(TOUTL)  
d(TOUTH)  
t
w(TOUT)  
Figure 32. TOUT Timing  
PR O DU C T PR EVI EW inf or ma tio n co nce r ns pr od uct s in th e fo rm at iv e o r  
de s i gn ph a s e of de ve lopm ent . C ha ra ct er is tic da ta an d o the r  
s pe c i fi c a t io ns a r e de s ig n goa ls . Tex as Ins tr um ent s r es er v es th e r i gh t to  
c ha n ge or di s c on ti nu e th es e pr od uct s w ith out not ice .  
61  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
F I X ED ĆPOI N T DI G I TAL S I GN AL PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
multichannel buffered serial port timing  
timing requirements for McBSP [H=0.5t  
] (see Figure 33 and Figure 34)  
c(CO)  
’VC5410-100  
’VC5410-120  
UNIT  
MIN  
4H  
2H–1  
13  
4
MAX  
MIN  
4H  
2H–1  
13  
4
MAX  
t
t
Cycle time, BCLKR/X  
BCLKR/X ext  
BCLKR/X ext  
BCLKR int  
BCLKR ext  
BCLKR int  
BCLKR ext  
BCLKR int  
BCLKR ext  
BCLKR int  
BCLKR ext  
BCLKX int  
BCLKX ext  
BCLKX int  
BCLKX ext  
BCLKR/X ext  
BCLKR/X ext  
ns  
ns  
c(BCKRX)  
Pulse duration, BCLKR/X high or BCLKR/X low  
w(BCKRX)  
t
t
t
t
t
t
Setup time, external BFSR high before BCLKR low  
ns  
ns  
ns  
ns  
ns  
ns  
su(BFRH-BCKRL)  
h(BCKRL-BFRH)  
su(BDRV-BCKRL)  
h(BCKRL-BDRV)  
su(BFXH-BCKXL)  
h(BCKXL-BFXH)  
0
0
Hold time, external BFSR high after BCLKR low  
Setup time, BDR valid before BCLKR low  
Hold time, BDR valid after BCLKR low  
4
4
13  
3
13  
3
0
0
5
5
13  
5
13  
5
Setup time, external BFSX high before BCLKX low  
Hold time, external BFSX high after BCLKX low  
0
0
4
4
t
t
Rise time, BCLKR/X  
Fall time, BCLKR/X  
8
8
8
8
ns  
ns  
r(BCKRX)  
f(BCKRX)  
CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted.  
switching characteristics for McBSP [H=0.5t  
] (see Figure 33 and Figure 34)  
c(CO)  
’VC5410-100  
’VC5410-120  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
t
t
Cycle time, BCLKR/X  
BCLKR/X int  
BCLKR/X int  
4H  
4H  
ns  
ns  
c(BCKRX)  
2
2
Pulse duration, BCLKR/X high  
D – 2  
C – 2  
D
C
D – 2  
C – 2  
D
C
w(BCKRXH)  
t
Pulse duration, BCLKR/X low  
BCLKR/X int  
BCLKR int  
BCLKR ext  
BCLKX int  
BCLKX ext  
BCLKX int  
BCLKX ext  
BCLKX int  
BCLKX ext  
ns  
ns  
ns  
w(BCKRXL)  
– 4  
1
– 4  
1
t
Delay time, BCLKR high to internal BFSR valid  
Delay time, BCLKX high to internal BFSX valid  
d(BCKRH-BFRV)  
13  
2
13  
2
– 4  
1
– 4  
1
t
ns  
ns  
ns  
d(BCKXH-BFXV)  
13  
5
13  
5
– 3  
1
– 3  
1
Disable time, BCLKX high to BDX high impedance  
following last data bit of transfer  
t
dis(BCKXH-BDXHZ)  
19  
6
19  
6
§
3
§
§
3
§
0
0
Delay time, BCLKX high to BDX valid  
t
d(BCKXH-BDXV)  
d(BFXH-BDXV)  
15  
15  
Delay time, BFSX high to BDX valid  
BFSX int  
BFSX ext  
0
8
0
8
t
ns  
ONLY applies when in data delay 0 (XDATDLY =  
00b) mode  
0
10  
0
10  
CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted.  
T = BCLKRX period = (1 + CLKGDV) * 2H  
C = BCLKRX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2H when CLKGDV is even  
D = BCLKRX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * 2H when CLKGDV is even  
Minimum delay times also represent minimum output hold times.  
§
P ROD UCT PR EV IEW in f or m a ti on co nce r ns pr od uct s in th e fo rm at iv e or  
d e s i g n ph a s e of de v e l op me nt. C ha ra ct er is tic da ta an d ot her  
s p e c i fi ca t i ons a r e de s i gn go a ls . Tex a s Ins tr um ent s r es er v es th e r igh t to  
c h a n g e or di s c on ti nue t he s e pr od uct s w ith out not ice .  
62  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
T
A
L
S
I
G
N
L
P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
multichannel buffered serial port timing (continued)  
t
c(BCKRX)  
t
w(BCKRXH)  
w(BCKRXL)  
t
t
r(BCKRX)  
f(BCKRX)  
t
BCLKR  
BFSR (int)  
BFSR (ext)  
BDR  
t
d(BCKRH-BFRV)  
t
d(BCKRH-BFRV)  
t
su(BFRH-BCKRL)  
t
h(BCKRL-BFRH)  
t
su(BDRV-BCKRL)  
t
h(BCKRL-BDRV)  
(n-2)  
(n-3)  
Bit(n-1)  
Figure 33. McBSP Receive Timings  
t
c(BCKRX)  
t
t
w(BCKRXH)  
t
t
f(BCKRX)  
r(BCKRX)  
w(BCKRXL)  
BCLKX  
t
d(BCKXH-BFXV)  
BFSX (int)  
t
h(BCKXL-BFXH)  
t
su(BFXH-BCKXL)  
BFSX (ext)  
BFSX  
(XDATDLY=00b)  
t
d(BCKXH-BDXV)  
t
d(BFXH-BDXV)  
t
t
dis(BCKXH-BDXHZ)  
d(BCKXH-BDXV)  
BDX  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
Figure 34. McBSP Transmit Timings  
63  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
F I X ED ĆPOI N T DI G I TAL S I GN AL PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
multichannel buffered serial port timing (continued)  
timing requirements for McBSP general-purpose I/O (see Figure 35)  
’VC5410-100  
’VC5410-120  
UNIT  
MIN  
9
MAX  
MIN  
8
MAX  
t
t
Setup time, BGPIOx input mode before CLKOUT high  
ns  
ns  
su(BGPIO-COH)  
Hold time, BGPIOx input mode after CLKOUT high  
0
0
h(COH-BGPIO)  
BGPIOx refers to BCLKRx, BFSRx, BDRx, BCLKXx, or BFSXx when configured as a general-purpose input.  
switching characteristics for McBSP general-purpose I/O (see Figure 35)  
’VC5410-100  
’VC5410-120  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
t
Delay time, CLKOUT high to BGPIOx output mode  
0
5
0
5
ns  
d(COH-BGPIO)  
BGPIOx refers to BCLKRx, BFSRx, BCLKXx, BFSXx, or BDXx when configured as a general-purpose output.  
t
t
su(BGPIO-COH)  
d(COH-BGPIO)  
CLKOUT  
t
h(COH-BGPIO)  
BGPIOx Input  
mode  
BGPIOx Output  
mode  
BGPIOx refers to BCLKRx, BFSRx, BDRx, BCLKXx, or BFSXx when configured as a general-purpose input.  
BGPIOx refers to BCLKRx, BFSRx, BCLKXx, BFSXx, or BDXx when configured as a general-purpose output.  
Figure 35. McBSP General-Purpose I/O Timings  
P ROD UCT PR EV IEW in f or m a ti on co nce r ns pr od uct s in th e fo rm at iv e or  
d e s i g n ph a s e of de v e l op me nt. C ha ra ct er is tic da ta an d ot her  
s p e c i fi ca t i ons a r e de s i gn go a ls . Tex a s Ins tr um ent s r es er v es th e r igh t to  
c h a n g e or di s c on ti nue t he s e pr od uct s w ith out not ice .  
64  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
F IX EDĆPO I NT DI GI TAL SI G NAL P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
multichannel buffered serial port timing (continued)  
timing requirements for McBSP as SPI master or slave: [H=0.5t  
(see Figure 36)  
] CLKSTP = 10b, CLKXP = 0  
c(CO)  
5410-100  
5410-120  
MASTER  
SLAVE  
MIN MAX  
MASTER  
SLAVE  
MIN MAX  
UNIT  
MIN  
12  
0
MAX  
MIN  
12  
0
MAX  
Setup time, BDR valid before BCLKX  
low  
t
7 – 6H  
7 – 6H  
5 + 6H  
ns  
ns  
su(BDRV-BCKXL)  
t
Hold time, BDR valid after BCLKX low  
5 + 6H  
h(BCKXL-BDRV)  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
switching characteristics for McBSP as SPI master or slave: [H=0.5t  
] CLKSTP = 10b,  
c(CO)  
CLKXP = 0 (see Figure 36)  
5410-100  
5410-120  
MASTER  
SLAVE  
MIN  
MASTER  
SLAVE  
MIN  
PARAMETER  
UNIT  
MIN MAX  
MAX  
MIN MAX  
MAX  
Hold time, BFSX low after  
BCLKX low  
t
t
t
T – 7 T + 4  
C – 7 C + 5  
T – 7 T + 4  
C – 7 C + 5  
ns  
ns  
ns  
h(BCKXL-BFXL)  
d(BFXL-BCKXH)  
d(BCKXH-BDXV)  
§
Delay time, BFSX low to  
BCLKX high  
Delay time, BCLKX high to  
BDX valid  
– 3  
4
6H + 4 10H + 15  
– 3  
4
6H + 4 10H + 15  
Disable time, BDX high  
impedance following last  
data bit from BCLKX low  
t
C – 2 C + 3  
C – 2 C + 3  
ns  
dis(BCKXL-BDXHZ)  
Disable time, BDX high  
impedance following last  
data bit from BFSX high  
t
2H+ 3  
6H + 17  
8H + 17  
2H+ 3  
6H + 17  
8H + 17  
ns  
ns  
dis(BFXH-BDXHZ)  
Delay time, BFSX low to BDX  
valid  
t
4H + 2  
4H + 2  
d(BFXL-BDXV)  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
T = BCLKX period = (1 + CLKGDV) * 2H  
C = BCLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2H when CLKGDV is even  
FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on BFSX  
and BFSR is inverted before being used internally.  
§
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
BFSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(BCLKX).  
PR O DU C T PR EVI EW inf or ma tio n co nce r ns pr od uct s in th e fo rm at iv e o r  
de s i gn ph a s e of de ve lopm ent . C ha ra ct er is tic da ta an d o the r  
s pe c i fi c a t io ns a r e de s ig n goa ls . Tex as Ins tr um ent s r es er v es th e r i gh t to  
c ha n ge or di s c on ti nu e th es e pr od uct s w ith out not ice .  
65  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
multichannel buffered serial port timing (continued)  
MSB  
LSB  
BCLKX  
BFSX  
t
h(BCKXL-BFXL)  
t
d(BFXL-BCKXH)  
t
dis(BFXH-BDXHZ)  
t
d(BFXL-BDXV)  
t
t
d(BCKXH-BDXV)  
(n-2)  
dis(BCKXL-BDXHZ)  
BDX  
BDR  
Bit 0  
Bit(n-1)  
(n-3)  
(n-4)  
t
su(BDRV-BCLXL)  
t
h(BCKXL-BDRV)  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
Figure 36. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0  
66  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
multichannel buffered serial port timing (continued)  
timing requirements for McBSP as SPI master or slave: [H=0.5t  
(see Figure 37)  
] CLKSTP = 11b, CLKXP = 0  
c(CO)  
5410-100  
5410-120  
MASTER  
SLAVE  
MIN  
MASTER  
SLAVE  
MIN MAX  
UNIT  
MIN  
MAX  
MAX  
MIN  
MAX  
Setup time, BDR valid  
before BCLKX low  
t
t
12  
7 – 6H  
5 + 6H  
12  
7 – 6H  
5 + 6H  
ns  
ns  
su(BDRV-BCKXL)  
Hold time, BDR valid  
after BCLKX high  
0
0
h(BCKXH-BDRV)  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
switching characteristics for McBSP as SPI master or slave: [H=0.5t  
CLKXP = 0 (see Figure 37)  
] CLKSTP = 11b,  
c(CO)  
5410-100  
5410-120  
MASTER  
SLAVE  
MIN  
MASTER  
SLAVE  
MIN  
PARAMETER  
UNIT  
MIN MAX  
MAX  
MIN MAX  
MAX  
Hold time, BFSX low after  
BCLKX low  
t
t
t
C – 7 C + 4  
T –7 T + 5  
C – 7 C + 4  
T –7 T + 5  
ns  
ns  
ns  
h(BCKXL-BFXL)  
d(BFXL-BCKXH)  
d(BCKXL-BDXV)  
§
Delay time, BFSX low to  
BCLKX high  
Delay time, BCLKX low to  
BDX valid  
– 3  
–2  
4
4
6H + 4 10H + 15  
6H + 3 10H + 17  
– 3  
–2  
4
4
6H + 4 10H + 15  
6H + 3 10H + 17  
Disable time, BDX high  
impedance following last  
data bit from BCLKX low  
t
ns  
ns  
dis(BCKXL-BDXHZ)  
Delay time, BFSX low to  
BDX valid  
t
D – 3 D + 5  
4H + 2  
8H + 17 D – 3 D + 5 4H + 2  
8H + 17  
d(BFXL-BDXV)  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
T = BCLKX period = (1 + CLKGDV) * 2H  
C = BCLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2H when CLKGDV is even  
D = BCLKX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * 2H when CLKGDV is even  
FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on BFSX  
and BFSR is inverted before being used internally.  
§
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
BFSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(BCLKX).  
67  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
F I X ED ĆPOI N T DI G I TAL S I GN AL PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
multichannel buffered serial port timing (continued)  
MSB  
LSB  
BCLKX  
t
t
d(BFXL-BCKXH)  
h(BCKXL-BFXL)  
BFSX  
t
t
t
d(BCKXL-BDXV)  
d(BFXL-BDXV)  
dis(BCKXL-BDXHZ)  
BDX  
BDR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
t
su(BDRV-BCKXL)  
t
h(BCKXH-BDRV)  
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 37. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0  
P ROD UCT PR EV IEW in f or m a ti on co nce r ns pr od uct s in th e fo rm at iv e or  
d e s i g n ph a s e of de v e l op me nt. C ha ra ct er is tic da ta an d ot her  
s p e c i fi ca t i ons a r e de s i gn go a ls . Tex a s Ins tr um ent s r es er v es th e r igh t to  
c h a n g e or di s c on ti nue t he s e pr od uct s w ith out not ice .  
68  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
F IX EDĆPO I NT DI GI TAL SI G NAL P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
multichannel buffered serial port timing (continued)  
timing requirements for McBSP as SPI master or slave: [H=0.5t  
(see Figure 38)  
] CLKSTP = 10b, CLKXP = 1  
c(CO)  
5410-100  
5410-120  
MASTER  
SLAVE  
MIN  
MASTER  
SLAVE  
MIN MAX  
UNIT  
MIN  
MAX  
MAX  
MIN  
MAX  
Setup time, BDR valid  
before BCLKX high  
t
t
12  
7 – 6H  
5 + 6H  
12  
7 – 6H  
5 + 6H  
ns  
ns  
su(BDRV-BCKXH)  
Hold time, BDR valid  
after BCLKX high  
0
0
h(BCKXH-BDRV)  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
switching characteristics for McBSP as SPI master or slave: [H=0.5t  
CLKXP = 1 (see Figure 38)  
] CLKSTP = 10b,  
c(CO)  
†‡  
5410-100  
5410-120  
SLAVE  
MIN MAX  
MASTER  
SLAVE  
MIN  
MASTER  
MIN MAX  
PARAMETER  
UNIT  
MIN  
MAX  
MAX  
Hold time, BFSX low after  
BCLKX high  
t
t
t
T – 7 T + 4  
T – 7 T + 4  
D – 7 D + 5  
ns  
ns  
ns  
h(BCKXH-BFXL)  
d(BFXL-BCKXL)  
d(BCKXL-BDXV)  
§
Delay time, BFSX low to  
D – 7 D + 5  
BCLKX low  
Delay time, BCLKX low to  
BDX valid  
– 3  
4
6H + 4 10H + 15  
– 3  
4
6H + 4 10H + 15  
Disable time, BDX high  
impedance following last  
data bit from BCLKX high  
t
D – 2 D + 3  
D – 2 D + 3  
ns  
dis(BCKXH-BDXHZ)  
Disable time, BDX high  
impedance following last  
data bit from BFSX high  
t
t
2H + 3  
4H + 2  
6H + 17  
8H + 17  
2H + 3  
4H + 2  
6H + 17  
8H + 17  
ns  
ns  
dis(BFXH-BDXHZ)  
Delay time, BFSX low to  
BDX valid  
d(BFXL-BDXV)  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
T = BCLKX period = (1 + CLKGDV) * 2H  
D = BCLKX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * 2H when CLKGDV is even  
FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on BFSX  
and BFSR is inverted before being used internally.  
§
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
BFSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(BCLKX).  
PR O DU C T PR EVI EW inf or ma tio n co nce r ns pr od uct s in th e fo rm at iv e o r  
de s i gn ph a s e of de ve lopm ent . C ha ra ct er is tic da ta an d o the r  
s pe c i fi c a t io ns a r e de s ig n goa ls . Tex as Ins tr um ent s r es er v es th e r i gh t to  
c ha n ge or di s c on ti nu e th es e pr od uct s w ith out not ice .  
69  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
multichannel buffered serial port timing (continued)  
LSB  
MSB  
BCLKX  
t
h(BCKXH-BFXL)  
t
d(BFXL-BCKXL)  
BFSX  
t
t
d(BFXL-BDXV)  
dis(BFXH-BDXHZ)  
t
t
t
d(BCKXL-BDXV)  
dis(BCKXH-BDXHZ)  
BDX  
BDR  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
t
su(BDRV-BCKXH)  
h(BCKXH-BDRV)  
(n-2)  
Bit 0  
Bit(n-1)  
(n-3)  
(n-4)  
Figure 38. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1  
70  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
F IX EDĆPO I NT DI GI TAL SI G NAL P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
multichannel buffered serial port timing (continued)  
timing requirements for McBSP as SPI master or slave: [H=0.5t  
(see Figure 39)  
] CLKSTP = 11b, CLKXP = 1  
c(CO)  
5410-100  
5410-120  
MASTER  
SLAVE  
MIN MAX  
MASTER  
SLAVE  
MIN MAX  
UNIT  
MIN  
12  
0
MAX  
MIN  
12  
0
MAX  
Setup time, BDR valid before BCLKX  
low  
t
t
7 – 6H  
7 – 6H  
5 + 6H  
ns  
ns  
su(BDRV-BCKXL)  
Hold time, BDR valid after BCLKX low  
5 + 6H  
h(BCKXL-BDRV)  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
switching characteristics for McBSP as SPI master or slave: [H=0.5t  
CLKXP = 1 (see Figure 39)  
] CLKSTP = 11b,  
c(CO)  
†‡  
5410-100  
5410-120  
MASTER  
MIN MAX  
SLAVE  
MIN  
MASTER  
MIN MAX  
SLAVE  
MIN  
PARAMETER  
UNIT  
MAX  
MAX  
Hold time, BFSX low after  
BCLKX high  
t
t
t
D – 7 D + 4  
T – 7 T + 5  
D – 7 D + 4  
T – 7 T + 5  
ns  
ns  
ns  
h(BCKXH-BFXL)  
d(BFXL-BCKXL)  
d(BCKXH-BDXV)  
§
Delay time, BFSX low to  
BCLKX low  
Delay time, BCLKX high to  
BDX valid  
– 3  
–2  
4
4
6H + 4 10H + 15  
6H + 3 10H + 17  
– 3  
–2  
4
4
6H + 4 10H + 15  
6H + 3 10H + 17  
Disable time, BDX high  
impedance following last  
data bit from BCLKX high  
t
ns  
ns  
dis(BCKXH-BDXHZ)  
Delay time, BFSX low to BDX  
valid  
t
C – 3 C + 5 4H + 2  
8H + 17 C – 3 C + 5 4H + 2  
8H + 17  
d(BFXL-BDXV)  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
T = BCLKX period = (1 + CLKGDV) * 2H  
C = BCLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2H when CLKGDV is even  
D = BCLKX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * 2H when CLKGDV is even  
FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on BFSX  
and BFSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
§
BFSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(BCLKX).  
PR O DU C T PR EVI EW inf or ma tio n co nce r ns pr od uct s in th e fo rm at iv e o r  
de s i gn ph a s e of de ve lopm ent . C ha ra ct er is tic da ta an d o the r  
s pe c i fi c a t io ns a r e de s ig n goa ls . Tex as Ins tr um ent s r es er v es th e r i gh t to  
c ha n ge or di s c on ti nu e th es e pr od uct s w ith out not ice .  
71  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
multichannel buffered serial port timing (continued)  
MSB  
LSB  
BCLKX  
t
t
h(BCKXH-BFXL)  
d(BFXL-BCKXL)  
BFSX  
t
t
t
d(BCKXH-BDXV)  
(n-2)  
dis(BCKXH-BDXHZ)  
d(BFXL-BDXV)  
BDX  
BDR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-3)  
(n-4)  
t
su(BDRV-BCKXL)  
t
h(BCKXL-BDRV)  
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 39. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1  
72  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
F IX EDĆPO I NT DI GI TAL SI G NAL P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
HPI8 timing  
switching characteristics over recommended operating conditions [H = 0.5 t  
†‡§  
]
c(CO)  
(see Figure 40 Figure 41 and Figure 42)  
,
,
’5410-100  
MAX  
’5410-120  
MAX  
PARAMETER  
UNIT  
MIN  
MIN  
t
Enable time, HD driven from DS low  
Case 1a: Memory accesses  
when DMAC is active in 16-bit  
mode and t < 18H  
2
15  
2
15  
ns  
en(DSL-HD)  
18H+15 – t  
18H+15 – t  
w(DSH)  
w(DSH)  
w(DSH)  
w(DSH)  
w(DSH)  
Case 1b: Memory accesses  
when DMAC is active in 16-bit  
15  
15  
mode and t  
18H  
w(DSH)  
Case 1c: Memory access when  
DMAC is active in 32-bit mode  
26H+15 – t  
26H+15 – t  
and t  
< 26H  
w(DSH)  
Delay time, DS low to  
HDx valid for first byte  
of an HPI read  
Case 1d: Memory access when  
DMAC is active in 32-bit mode  
t
ns  
d(DSL-HDV1)  
15  
15  
and t  
26H  
w(DSH)  
Case 2a: Memory accesses  
when DMAC is inactive and  
10H+15 – t  
15  
10H+15 – t  
15  
w(DSH)  
w(DSH)  
t
< 10H  
w(DSH)  
Case 2b: Memory accesses  
when DMAC is inactive and  
t
10H  
w(DSH)  
Case 3: Register accesses  
15  
15  
15  
15  
Delay time, DS low to HDx valid for second byte of an  
HPI read  
t
ns  
ns  
d(DSL-HDV2)  
t
Hold time, HDx valid after DS high, for a HPI read  
Valid time, HDx valid after HRDY high  
1
5
5
8
1
5
5
8
h(DSH-HDV)R  
t
v(HYH-HDV)  
t
Delay time, DS high to HRDY low (see Note 1)  
ns  
ns  
d(DSH-HYL)  
Case 1a: Memory accesses  
when DMAC is active in 16-bit  
mode  
18H+12  
18H+12  
Case 1b: Memory accesses  
when DMAC is active in 32-bit  
mode  
26H+12  
26H+12  
ns  
ns  
Delay time, DS high to  
HRDY high  
t
d(DSH-HYH)  
Case 2: Memory accesses  
when DMAC is inactive  
10H+12  
6H+12  
10H+12  
6H+12  
Case 3: Write accesses to  
HPIC register (see Note 2)  
5
5
ns  
ns  
ns  
t
Delay time, HCS low/high to HRDY low/high  
Delay time, CLKOUT high to HRDY high  
Delay time, CLKOUT high to HINT change  
d(HCS-HRDY)  
t
t
)
10  
10  
10  
10  
d(COH-HYH  
d(COH-HTX)  
§
DS refers to the logical OR of HCS, HDS1, and HDS2.  
HD refers to any of the HPI data bus pins (HD0, HD1, HD2, etc.). HAD stands for HCNTL0, HCNTL1, and HR/W.  
DMAC stands for direct memory access controller (DMAC). The HPI8 shares the internal DMA bus with the DMAC, thus HPI8 access times are  
affected by DMAC activity.  
NOTES: 1. The HRDY output is always high when the HCS input is high, regardless of DS timings.  
2. This timing applies when writing a one to the DSPINT bit or HINT bit of the HPIC register. All other writes to the HPIC occur  
asynchronously, and do not cause HRDY to be deasserted.  
P
R
O
D
U
C
T
P
R
E
V
I
E
W
i
n
f
o
r
m
a
t
i
o
n
c
o
n
c
e
r
n
s
p
r
o
d
u
c
t
s
i
n
t
h
e
f
o
r
m
a
t
i
v
e
o
r
de s i gn  
s pe c i fi c a t io ns a r e de s ig n goa ls . Tex as Ins tr um ent s r es er v es th e r i gh t to  
c ha n ge or di s c on ti nu e th es e pr od uct s w ith out not ice .  
p
h
a
s
e
of  
d
e
v
e
l
o
p
m
e
n
t
.
C ha ra ct er is tic  
d
a
t
a
a
n
d
o
t
h
e
r
73  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
F I X ED ĆPOI N T DI G I TAL S I GN AL PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
HPI8 timing (continued)  
†‡  
timing requirements (see Figure 40 Figure 41 and Figure 42)  
,
,
’VC5410-100  
’VC5410-120  
UNIT  
MIN  
5
MAX  
MIN  
5
MAX  
§
t
t
t
t
t
t
t
Setup time, HBIL valid before DS low  
Hold time, HBIL valid after DS low  
Setup time, HAS low before DS low  
Pulse duration, DS low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(HBV-DSL)  
h(DSL-HBV)  
su(HSL-DSL)  
w(DSL)  
5
5
10  
20  
10  
5
10  
20  
10  
5
Pulse duration, DS high  
w(DSH)  
Setup time, HD valid before DS high, HPI write  
Hold time, HD valid after DS high, HPI write  
su(HDV-DSH)  
h(DSH-HDV)W  
3
3
DS refers to the logical OR of HCS, HDS1, and HDS2.  
§
HD refers to any of the HPI data bus pins (HD0, HD1, HD2, etc.).  
When HAS is not used (HAS always high), this timing refers to DS  
P ROD UCT PR EV IEW in f or m a ti on co nce r ns pr od uct s in th e fo rm at iv e or  
d e s i g n ph a s e of de v e l op me nt. C ha ra ct er is tic da ta an d ot her  
s p e c i fi ca t i ons a r e de s i gn go a ls . Tex a s Ins tr um ent s r es er v es th e r igh t to  
c h a n g e or di s c on ti nue t he s e pr od uct s w ith out not ice .  
74  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
HPI8 timing (continued)  
Second Byte  
First Byte  
Second Byte  
HAS  
t
su(HBV-DSL)  
t
su(HSL-DSL)  
t
h(DSL-HBV)  
HAD  
Valid  
Valid  
t
su(HBV-DSL)  
t
h(DSL-HBV)  
HBIL  
HCS  
t
w(DSH)  
t
w(DSL)  
HDS  
t
d(DSH-HYH)  
t
d(DSH-HYL)  
HRDY  
t
en(DSL-HD)  
t
d(DSL-HDV2)  
t
d(DSL-HDV1)  
Valid  
t
h(DSH-HDV)R  
HD READ  
Valid  
Valid  
t
su(HDV-DSH)  
t
v(HYH-HDV)  
Valid  
t
h(DSH-HDV)W  
HD WRITE  
CLKOUT  
Valid  
Valid  
t
d(COH-HYH)  
HAD refers to HCNTL0, HCNTL1, and HR/W.  
When HAS is not used (HAS always high), this timing refers to DS  
Figure 40. Using HDS to Control Accesses (HCS Always Low)  
75  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
P
R
O
C
E
S
S
O
R
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
HPI8 timing (continued)  
Second Byte  
First Byte  
Second Byte  
HCS  
HDS  
t
d(HCS-HRDY)  
HRDY  
Figure 41. Using HCS to Control Accesses  
CLKOUT  
t
d(COH-HTX)  
HINT  
Figure 42. HINT Timing  
76  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T MS 3 20 VC 54 10  
A
F
I
X
E
D
Ć
P
O
I
N
T
D
I
GI  
TA  
L
S
I
G
N
L
P RO C ES S O R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
MECHANICAL DATA  
PGE (S-PQFP-G144)  
PLASTIC QUAD FLATPACK  
108  
73  
109  
72  
0,27  
M
0,08  
0,17  
0,50  
0,13 NOM  
144  
37  
1
36  
Gage Plane  
17,50 TYP  
20,20  
SQ  
19,80  
0,25  
0,05 MIN  
22,20  
SQ  
0°ā7°  
21,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040147/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
Thermal Resistance Characteristics  
PARAMETER  
°C/W  
R
56  
ΘJA  
ΘJC  
R
5
77  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
T M S3 2 0 VC5 410  
E
F
I
X
D
Ć
P
O
I
N
T
D
I
G
I
TA  
L
S
I
GN  
A
L
PRO CE SSO R  
SPRS075D – OCTOBER 1998 – REVISED MAY 2000  
MECHANICAL DATA  
GGW (S-PBGA-N176)  
PLASTIC BALL GRID ARRAY PACKAGE  
15,10  
SQ  
12,80 TYP  
0,80  
14,90  
U
T
R
P
N
M
L
0,80  
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13 15 17  
10 12 14 16  
2
4
6
8
0,95  
0,85  
1,40 MAX  
Seating Plane  
0,10  
0,55  
0,12  
M
0,08  
0,45  
0,35  
0,45  
0,08  
4145255/B 11/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. MicroStar BGA configuration  
MicroStar BGA is a trademark of Texas Instruments Incorporated.  
78  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
Customers are responsible for their applications using TI components.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

相关型号:

TMS320VC5410A

Fixed-Point Digital Signal Processor
TI

TMS320VC5410A-120

Digital Signal Processor
ETC

TMS320VC5410A-160

Digital Signal Processor
ETC

TMS320VC5410AGGU12

Fixed-Point Digital Signal Processor
TI

TMS320VC5410AGGU16

Fixed-Point Digital Signal Processor
TI

TMS320VC5410AGWS12

数字信号处理器 | GWS | 144 | -40 to 100
TI

TMS320VC5410AGWS16

数字信号处理器 | GWS | 144 | -40 to 100
TI

TMS320VC5410APGE12

Fixed-Point Digital Signal Processor
TI

TMS320VC5410APGE16

Fixed-Point Digital Signal Processor
TI

TMS320VC5410AZGU12

Fixed-Point Digital Signal Processor
TI

TMS320VC5410AZGU16

Fixed-Point Digital Signal Processor
TI

TMS320VC5410AZWS12

数字信号处理器 | ZWS | 144 | -40 to 100
TI