TMUX1072RUTR [TI]

具有断电保护功能的 5V、2:1 (SPDT)、2 通道模拟开关 | RUT | 12 | -40 to 125;
TMUX1072RUTR
型号: TMUX1072RUTR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有断电保护功能的 5V、2:1 (SPDT)、2 通道模拟开关 | RUT | 12 | -40 to 125

开关 光电二极管
文件: 总31页 (文件大小:1283K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TMUX1072  
ZHCSHZ3C APRIL 2018REVISED AUGUST 2019  
具有过压检测和保护功能的 TMUX1072 双通道 2:1 模拟多路复用器  
1 特性  
3 说明  
1
电源电压范围为 2.3V 5.5V  
TMUX1072 是一款高速双通道 2:1 模拟开关,具有集  
成的高压检测和断电保护功能。该器件是一款双向器  
件,可用作 2:1 1:2 开关,同时支持高于 VCC(最高  
可达 5.5V)的信号。  
关断保护:当  
VCC = 0V 时,I/O 引脚处于高阻抗状态  
借助故障指示引脚进行 6V 过压和过热检测  
通用引脚上具有 18V 过压保护 (OVP)  
支持高于 VCC 且高达 5.5V 的信号  
低至 6Ω RON  
TMUX1072 I/O 引脚上的保护功能可承受最高 18V  
的电压,并配备自动关闭电路,以防止开关后面的系统  
组件受损。该保护功能用于电源定序。系统中的某些电  
路板可能会在其他电路板准备好接收信号之前通电。该  
器件可检测过压和过热事件,并通过 FLT 引脚提供开  
漏输出信号。  
典型带宽为 1.2GHz  
典型 CON 4.5pF  
低功耗禁用模式  
1.8V 兼容型逻辑输入  
器件信息(1)  
ESD 保护性能超出 JESD22 标准  
器件型号  
TMUX1072  
封装  
UQFN (12)  
VSSOP (10)  
封装尺寸(标称值)  
2.00mm × 1.70mm  
3.00mm x 5.00mm  
2000V 人体放电模型 (HBM)  
提供小型 2.00mm x 1.70mm QFN 封装  
2 应用  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
数据采集 (DAQ)  
现场仪器  
视频监控  
HVAC 系统  
后置摄像头  
简化原理图  
TMUX1072  
VCC  
OVP  
NC1  
COM1  
COM2  
NO1  
NC2  
NO2  
SEL1  
SEL2  
Logic  
Control  
OE  
FLT  
GND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SCDS382  
 
 
 
 
 
TMUX1072  
ZHCSHZ3C APRIL 2018REVISED AUGUST 2019  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 15  
8.4 Device Functional Modes........................................ 16  
Application and Implementation ........................ 17  
9.1 Application Information............................................ 17  
9.2 Typical Application .................................................. 17  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Dynamic Characteristics ........................................... 8  
6.7 Timing Requirements................................................ 8  
6.8 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 10  
Detailed Description ............................................ 14  
8.1 Overview ................................................................. 14  
8.2 Functional Block Diagram ....................................... 14  
9
10 Power Supply Recommendations ..................... 18  
11 Layout................................................................... 18  
11.1 Layout Guidelines ................................................. 18  
11.2 Layout Example .................................................... 19  
12 器件和文档支持 ..................................................... 20  
12.1 文档支持................................................................ 20  
12.2 接收文档更新通知 ................................................. 20  
12.3 社区资源................................................................ 20  
12.4 ....................................................................... 20  
12.5 静电放电警告......................................................... 20  
12.6 Glossary................................................................ 20  
13 机械、封装和可订购信息....................................... 20  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (June 2019) to Revision C  
Page  
已添加 Typical Characteristics curves for AC parameters .................................................................................................... 9  
Added the Application Curves section.................................................................................................................................. 18  
Changes from Revision A (August 2018) to Revision B  
Page  
特性 通用引脚上具有 0V 18V 过压保护 (OVP)”更改为通用引脚上具有 0V 6V 过压保护 (OVP)” ........................ 1  
Changes from Original (April 2018) to Revision A  
Page  
将器件状态从预告信息 更改为生产数据.................................................................................................................................. 1  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
TMUX1072  
www.ti.com.cn  
ZHCSHZ3C APRIL 2018REVISED AUGUST 2019  
5 Pin Configuration and Functions  
RUT Package  
12-Pin UQFN  
Top View  
DGS Package  
10-Pin VSSOP  
Top View  
SEL1  
NO1  
GND  
NO2  
SEL2  
1
2
3
4
5
10  
9
COM1  
NC1  
SEL1  
NO1  
GND  
NO2  
SEL2  
1
2
3
4
5
11  
10  
9
COM1  
NC1  
12  
8
VCC  
VCC  
7
NC2  
6
8
NC2  
6
COM2  
7
COM2  
Not to scale  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
SEL1  
NO1  
GND  
NO2  
SEL2  
OE  
RUT  
1
DGS  
1
2
3
4
5
-
I
I/O  
GND  
I/O  
I
Switch select 1  
2
Signal path NO1  
Ground  
3
4
Signal path NO2  
Switch select 2  
5
6
I
Output enable (Active low)  
Common signal path 2  
Signal path NC2  
Supply Voltage  
COM2  
NC2  
7
6
7
8
9
10  
-
I/O  
I/O  
PWR  
I/O  
I/O  
O
8
VCC  
NC1  
9
10  
11  
12  
Signal path NC1  
Common signal path 1  
COM1  
FLT  
Fault indicator output pin (Active low) - open drain. If feature is unused, pin may be  
left floating or connected to ground  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
TMUX1072  
ZHCSHZ3C APRIL 2018REVISED AUGUST 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
(2)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
MAX  
UNIT  
VCC  
VI/O  
Supply voltage(3)  
6
20  
6
V
V
V
V
V
Input/Output DC voltage (COM1, COM2)(3)  
Input/Output DC voltage (NC1, NO1, NC2, NO2)  
Digital input voltage (SEL1, SEL2, OE)  
Digital output voltage (FLT)  
(3)  
VI  
6
VO  
6
Input-output port diode current (COM1,  
COM2,NC1, NO1, NC2, NO2)  
IK  
VIN < 0  
VI < 0  
–50  
–50  
mA  
mA  
Digital logic input clamp current (SEL1,  
IIK  
(3)  
SEL2, OE)  
ICC  
IGND  
Tstg  
TJ  
Continuous current through VCC  
Continuous current through GND  
Storage temperature  
100  
mA  
mA  
°C  
–100  
–65  
150  
150  
Operating Junction Temperature  
–65  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
(3) All voltages are with respect to ground, unless otherwise specified.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
MAX  
5.5  
18  
UNIT  
VCC  
VI/O  
VI/O  
II/O  
II/O  
VI  
Supply voltage  
2.3  
0
V
V
COM1, COM2  
(NC1, NO1, NC2, NO2)  
COM1, COM2  
0
5.5  
50  
V
Analog input/output  
-50  
-50  
0
mA  
mA  
V
(NC1, NO1, NC2, NO2)  
SEL1, SEL2, OE  
FLT  
50  
Digital input voltage  
5.5  
5.5  
VO  
Digital output voltage  
0
V
Analog input/output port continuous current  
(COM1, COM2, NC1, NO1,  
NC2, NO2)  
II/O  
-50  
50  
mA  
IOL  
TA  
TJ  
Digital output current  
3
125  
125  
mA  
ºC  
Operating free-air temperature  
Junction temperature  
–40  
–40  
ºC  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
 
TMUX1072  
www.ti.com.cn  
ZHCSHZ3C APRIL 2018REVISED AUGUST 2019  
6.4 Thermal Information  
TMUX1072  
(1)  
THERMAL METRIC  
RUT (UQFN)  
12 PINS  
127  
DGS (VSSOP)  
10 PINS  
175  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
55.5  
61.2  
67.7  
96.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.6  
8.2  
ψJB  
67.3  
95.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
TA = –40°C to +125°C , VCC = 2.3 V to 5.5 V, GND = 0V, Typical values are at VCC = 3.3 V, TA = 25°C, (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY  
VCC  
Power supply voltage  
2.3  
5.5  
V
OE = 0 V  
Active supply current  
SEL1, SEL2 = 0 V, 1.8 V or VCC  
0 V < VI/O < 3.6 V  
75  
65  
3
110  
µA  
ICC  
OE = 0 V  
SEL1, SEL2 = 0 V, 1.8 V or VCC  
VI/O > VPOS_THLD  
Supply current during OVP  
condition  
98  
10  
µA  
OE = 1.8 V or VCC  
SEL1 = 0 V, 1.8 V, or VCC  
SEL2 = 0 V, 1.8 V, or VCC  
Standby powered down  
supply current  
(1)  
ICC_PD  
µA  
V
UVLO  
Under Voltage Lock Out  
VCC = rising and falling  
1.65  
DC Characteristics  
VI/O = 0 V to VCC  
RON  
ON-state resistance  
ISINK = 8 mA  
Refer to ON-State Resistance Figure  
6
0.07  
2.5  
18  
0.5  
7
VI/O = 0 V to VCC  
ISINK = 8 mA  
Refer to ON-State Resistance Figure  
ON-state resistance match  
between channels  
ΔRON  
VI/O = 0 V to VCC  
RON (FLAT)  
ON-state resistance flatness ISINK = 8 mA  
Refer to ON-State Resistance Figure  
(1) Not tested for DGS package due to absence of FLT and OE pin.  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
TMUX1072  
ZHCSHZ3C APRIL 2018REVISED AUGUST 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
TA = –40°C to +125°C , VCC = 2.3 V to 5.5 V, GND = 0V, Typical values are at VCC = 3.3 V, TA = 25°C, (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
(2)  
VCOM1/2 = 0 V to 5.5 V  
VCC = 2.3 V to 5.5 V  
VNC1/2 or VNO1/2 = 5.5 V or 0 V  
Refer to Off Leakage Figure  
3.6  
10  
3
µA  
µA  
µA  
µA  
uA  
uA  
µA  
µA  
(2)  
VCOM1/2 = 5.5 V  
VCC = 5.5 V  
VNC1/2 or VNO1/2 = 5.5 V  
Refer to Off Leakage Figure  
(2)  
VCOM1/2 = 3.6 V  
VCC = 3.3 V  
VNC1/2 or VNO1/2 = 3.6 V  
Refer to Off Leakage Figure  
2
VCOM1/2 = 5.5 V  
VCC = 0 V  
VNC1/2 or VNO1/2 = 5.5 V  
Refer to Off Leakage Figure  
IOFF  
I/O pin OFF leakage current  
15  
10  
2
VCOM1/2 = 3.6 V  
VCC = 0 V  
VNC1/2 or VNO1/2 = 3.6 V  
Refer to Off Leakage Figure  
VCOM1/2 = 1 V  
VCC = 0 V  
VNC1/2 or VNO1/2 = 1 V  
Refer to Off Leakage Figure  
VCOM1/2 = 18 V  
VCC = 0 V, 5.5 V  
VNC1/2 or VNO1/2 = 0 V  
Refer to Off Leakage Figure  
165  
1.2  
185  
3.5  
VCOM1/2 = 5.5 V  
VCC = 5.5 V  
VNC1/2 and VNO1/2 = high-Z  
Refer to On Leakage Figure  
ION  
ON leakage current  
VCOM1/2 = 0 V to 5.5 V  
VCC = 2.3-5.5 V  
VNC1/2 and VNO1/2 = high-Z  
Refer to On Leakage Figure  
11.5  
µA  
Digital Characteristics  
VIH  
VIL  
Input logic high  
Input logic low  
SEL1, SEL2, OE  
SEL1, SEL2, OE  
1.45  
V
V
0.5  
0.3  
FLT  
IOL = 3 mA  
VOL  
Output logic low  
V
IIH  
IIL  
Input high leakage current  
Input low leakage current  
SEL1, SEL2, OE = 1.8 V, VCC  
SEL1, SEL2, OE = 0 V  
SEL1, SEL2  
-1  
-1  
2
±0.2  
6
5
1
μA  
μA  
12  
6
MΩ  
MΩ  
Internal pull-down resistor on  
digital input pins  
RPD  
OE  
3
SEL1, SEL2 = 0 V, 1.8 V or VCC  
f = 1 MHz  
(3)  
CI  
Digital input capacitance  
8
pF  
Protection and Detection  
VOVP_TH  
OVP positive threshold  
5.55  
40  
5.8  
6.0  
V
(3)  
VOVP_HYST  
OVP threshold hysteresis  
100  
300  
mV  
(2) Not tested on COM1/2 pins for DGS package due to the absence of OE pin  
(3) Specified by design, not tested in production.  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
TMUX1072  
www.ti.com.cn  
ZHCSHZ3C APRIL 2018REVISED AUGUST 2019  
Electrical Characteristics (continued)  
TA = –40°C to +125°C , VCC = 2.3 V to 5.5 V, GND = 0V, Typical values are at VCC = 3.3 V, TA = 25°C, (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Thermal Shutdown  
Hysteresis  
(3)  
TSD_HYST  
3
8
°C  
°C  
Overtemperature detection  
threshold  
(3)  
TOTD_TH  
135  
165  
VCOM1/2 = 0 to 18 V  
tRISE and tFALL(10% to 90 %) = 100 ns  
RL = Open  
Switch on or off  
0
9.6  
9.0  
V
V
Maximum voltage to appear  
on NC1/2 and NO1/2 pins  
during OVP scenario  
OE = 0 V  
(3)  
VCLAMP_V  
VCOM1/2 = 0 to 18 V  
tRISE and tFALL(10% to 90 %) = 100 ns  
RL = 50Ω  
0
Switch on or off  
OE = 0 V  
RPU = 10 kΩ to VCC (FLT)  
CL = 35 pF  
Refer to OVP Timing Diagram Figure  
(3)  
tEN_OVP  
OVP enable time  
0.6  
1.5  
3
5
μs  
μs  
RPU = 10 kΩ to VCC (FLT)  
CL = 35 pF  
(3)  
tREC_OVP  
OVP recovery time  
Refer to OVP Timing Diagram Figure  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
TMUX1072  
ZHCSHZ3C APRIL 2018REVISED AUGUST 2019  
www.ti.com.cn  
6.6 Dynamic Characteristics  
TA = –40°C to +125°C , VCC = 2.3 V to 5.5V, GND = 0V, Typical values are at VCC = 3.3 V, TA = 25°C, (unless otherwise  
noted)  
PARAMETER(1)  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VCOM1/2 = 0 or 3.3 V,  
OE = VCC  
COM1, COM2 off capacitance  
Switch OFF  
1.2  
4.0  
6.2  
pF  
f = 240 MHz  
COFF  
VCOM1/2 = 0 or 3.3 V,  
OE = VCC or OE = 0V with SEL1,  
SEL2 (switch not selected)  
f = 240 MHz  
NC1, NO1, NC2, NO2 off  
capacitance  
Switch OFF or  
not selected  
1.2  
1.4  
4.0  
4.0  
-80  
6.2  
6.2  
pF  
pF  
dB  
VCOM1/2 = 0 or 3.3 V,  
f = 240 MHz  
COM1, COM2, NC1, NO1, NC2,  
NO2 on capacitance  
CON  
Switch ON  
RL = 50 Ω  
CL = 5 pF  
f = 100 kHz  
Switch OFF  
Refer to Off Isolation Figure  
OISO  
Differential off isolation  
RL = 50 Ω  
CL = 5 pF  
f = 240 MHz  
Refer to Off Isolation Figure  
Switch OFF  
Switch ON  
-22  
-90  
dB  
dB  
RL = 50 Ω  
CL = 5 pF  
f = 100 kHz  
XTALK  
Channel to Channel crosstalk  
Refer to Crosstalk Figure  
RL = 50 Ω; Refer to BW and  
Insertion Loss Figure  
BW  
Bandwidth  
Switch ON  
Switch ON  
1.2  
GHz  
dB  
RL = 50 Ω  
f = TBD MHz; Refer to BW and  
Insertion Loss Figure  
ILOSS  
Insertion loss  
-0.8  
(1) Specified by design, not tested in production.  
6.7 Timing Requirements  
TA = –40°C to +125°C , VCC = 2.3 V to 5.5V, GND = 0V, Typical values are at VCC = 3.3 V, TA = 25°C, (unless otherwise  
noted)  
PARAMETER(1)  
TEST CONDITIONS  
MIN NOM  
MAX UNIT  
VNC = 0.8 V  
Refer to Tswitch Timing Figure  
Switching time between channels  
(SEL1, SEL2 to output)  
tswitch  
ton  
0.9  
1
250  
10  
µs  
µs  
µs  
VNC = 0.8 V  
Refer to Ton and Toff Figure  
Device turn on time (OE to output)  
Device turn off time (OE to output)  
200  
1
RL = 50 ,  
CL = 5 pF,  
VCC = 2.3 V to 5.5 V  
VNC = 0.8 V  
Refer to Ton and Toff Figure  
toff  
VNC = 0.8 V  
Refer to Ton and Toff Figure  
Device turn off time VCC to Switch  
off  
toff_Vcc  
250  
µs  
Ramp rate VCC = 2.3 V to 0 V  
250µs  
RL = 50 ,  
CL = 1 pF,  
VCC = 2.3 V to 5.5 V  
Skew of opposite transitions of  
same output (between COM1 and  
COM2)(1)  
VCOM1/2 = VCC  
Refer to Tsk Figure  
tSK(P)  
9
50  
ps  
ps  
RL = 50 ,  
CL = 5 pF,  
VCC = 2.3 V to 5.5 V  
VCOM1/2 = VCC  
Refer to Tpd Figure  
tpd  
Propagation delay(1)  
130  
200  
(1) Specified by design, not tested in production.  
8
Copyright © 2018–2019, Texas Instruments Incorporated  
TMUX1072  
www.ti.com.cn  
ZHCSHZ3C APRIL 2018REVISED AUGUST 2019  
6.8 Typical Characteristics  
10  
0
-60  
-65  
-70  
-75  
-80  
-85  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
100k  
1M  
10M 100M  
Frequency (Hz)  
1G  
10G  
1M  
10M  
Frequency (Hz)  
TDM0U0X3  
TDM0U0X1  
1. Off-Isolation vs Frequency  
2. Xtalk vs Frequency  
0
-1  
-2  
-3  
-4  
-5  
-6  
1M  
10M  
100M  
1G  
Frequency (Hz)  
TDM0U0X1  
3. Bandwidth and Insertion Loss vs Frequency  
版权 © 2018–2019, Texas Instruments Incorporated  
9
TMUX1072  
ZHCSHZ3C APRIL 2018REVISED AUGUST 2019  
www.ti.com.cn  
7 Parameter Measurement Information  
V
V
I/O  
I
Switch  
SINK  
Channel ON, RON = V/ISINK  
4. ON-State Resistance (RON  
)
VNC/NO  
VCOM  
A
A
Switch  
5. Off Leakage  
VCOM  
A
Switch  
6. On Leakage  
VNC  
VNO  
VCOM  
SEL  
CL  
RL  
VSEL  
1.8 V  
0 V  
0.8 V  
1.2 V  
VSEL  
tSWITCH  
tSWITCH  
VCOM  
V
NC  
90 %  
10 %  
0 V  
(1) All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 Ω, tr < 500  
ps, tf < 500 ps.  
(2) CL includes probe and jig capacitance.  
7. tSWITCH Timing  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
TMUX1072  
www.ti.com.cn  
ZHCSHZ3C APRIL 2018REVISED AUGUST 2019  
Parameter Measurement Information (接下页)  
2.3 V  
VNC  
VNO  
V
CC  
OE  
VCOM  
1.8 V  
0 V  
0.8 V  
1.2 V  
V
CL  
RL  
OE  
t
t
OFF  
ON  
V
NC/NO  
0 V  
90 %  
V
OE  
V
COM  
10 %  
(1) All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 Ω, tr < 500  
ps, tf < 500 ps.  
(2) CL includes probe and jig capacitance.  
8. tON, tOFF for OE  
Network Analyzer  
Switch  
50 O  
V
COM1  
50 O  
Source  
Signal  
50 O  
V
COM2  
50 O  
Source  
Signal  
50 O  
50 O  
9. Off Isolation  
Network Analyzer  
50  
Switch  
V
V
COM1  
50 ꢀ  
Source  
Signal  
50 ꢀ  
COM2  
50 ꢀ  
50 ꢀ  
50 ꢀ  
10. Cross Talk  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
TMUX1072  
ZHCSHZ3C APRIL 2018REVISED AUGUST 2019  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
Network Analyzer  
Switch  
50  
V
COM1  
50 ꢀ  
Source  
Signal  
50 ꢀ  
V
COM2  
50 ꢀ  
Source  
Signal  
50 ꢀ  
50 ꢀ  
11. BW and Insertion Loss  
18 V  
0 V  
VPOS_THLD  
VCOM  
OE  
VCOM  
CL  
RL  
tEN_OVP  
FLT  
tREC_OVP  
VOE  
VCC  
0 V  
10 %  
10 %  
12. tEN_OVP and tDIS_OVP Timing Diagram  
Switch  
V
COM  
50  
0.4 V  
50 %  
50 %  
V
COM  
0 V  
0.4 V  
0 V  
50 ꢀ  
t
PD  
t
PD  
50 %  
50 %  
V
NC/NO  
(1) All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 Ω, tr < 500  
ps, tf < 500 ps.  
(2) CL includes probe and jig capacitance.  
13. tPD  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
TMUX1072  
www.ti.com.cn  
ZHCSHZ3C APRIL 2018REVISED AUGUST 2019  
Parameter Measurement Information (接下页)  
Switch  
VNC1  
0.4 V  
VCOM1  
50 O  
50 O  
VCOM1/2  
0 V  
50 O  
0.4 V  
50 %  
50 %  
VNC2  
VNC1  
VNC2  
0 V  
0.4 V  
0 V  
VCOM2  
tSK  
tSK  
50 %  
50 %  
50 O  
(1) All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 Ω, tr < 500  
ps, tf < 500 ps.  
(2) CL includes probe and jig capacitance.  
14. tSK  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
TMUX1072  
ZHCSHZ3C APRIL 2018REVISED AUGUST 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TMUX1072 is a high speed, 2-channel 2:1 analog switch with overvoltage protection. The device is  
bidirectional and can be used as a dual 2:1 or 1:2 switch, but OVP only applies to the COM pins. The device also  
contains a fault indicator pin which can signal to the system of either an over voltage or over temperature event.  
The device maintains excellent signal integrity through the optimization of both RON and BW while protecting the  
system with up to 18 V OVP protection. The OVP implementation is designed to protect sensitive system  
components behind the switch that cannot survive fault conditions.  
8.2 Functional Block Diagram  
VCC  
SEL1  
6 M  
SEL2  
Control  
Logic  
FLT  
6 Mꢀ  
OE  
3 Mꢀ  
VOVP  
OVP  
VNC1  
VCOM1  
VNC2  
VNO1  
VCOM2  
VNO2  
Switches  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
TMUX1072  
www.ti.com.cn  
ZHCSHZ3C APRIL 2018REVISED AUGUST 2019  
8.3 Feature Description  
8.3.1 Powered-off Protection  
When the TMUX1072 is powered off the I/Os of the device remain in a high-Z state. The crosstalk, off-isolation,  
and leakage remain within the Electrical Specifications  
This prevents errant voltages from reaching the rest of the system and maintains isolation when the system is  
powering up.  
8.3.2 Overvoltage Detection  
When a voltage on the COM pin exceeds the VOVP_TH, the open drain output FLTpin pulls the pin low to indicate  
an overvoltage event has been detected. The open drain output will release the FLT pin when the voltage on the  
COM pin returns below the VOVP_TH  
.
8.3.3 Overtemperature Detection  
When the junction temperature of the device exceeds the overtemperature detection threshold TOTD_TH, the open  
drain output FLT pin pulls the pin low to indicate an overtemperature event has been detected. The open drain  
output releases the FLT pin when the junction temperature returns below the TOTD_TH  
.
8.3.4 Overvoltage Protection  
The OVP of the TMUX1072 is designed to protect the system from overvoltage conditions up to 18 V on the  
COM1 and COM2 pins. This protection is valid even if Vcc = 0V. 15 depicts an event where up to 18 V could  
appear on COM1 and COM2 that could pass through the device and damage components behind the device.  
Device 1  
Existing Solutions  
NC1  
COM1  
NO1  
NC2  
COM2  
NO2  
Device 2  
15. Existing Solution Being Damaged by a Short, 18 V  
The TMUX1072 opens the switches and protect the rest of the system by blocking the 18 V as depicted in 16.  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
 
TMUX1072  
ZHCSHZ3C APRIL 2018REVISED AUGUST 2019  
www.ti.com.cn  
Feature Description (接下页)  
18 V does not reach  
rest of system  
Device 1  
NC1  
COM1  
COM2  
NO1  
NC2  
NO2  
USB  
Device 2  
16. Protecting During a 18-V Short  
17 is a waveform showing the voltage on the pins during an overvoltage scenario.  
18 V  
VOVP_THLD  
COM1/COM2  
0 V  
NO1/NO2 or  
NC1/NC2  
0 V  
FLT  
17. Overvoltage Protection Waveform, 18 V  
8.4 Device Functional Modes  
8.4.1 Pin Functions  
1. Function Table  
OE  
H
L
SEL1  
SEL2  
COM1 Connection  
High-Z  
COM2 Connection  
X
L
X
L
High-Z  
COM1 to NC1  
COM1 to NC1  
COM1 to NO1  
COM1 to NO1  
COM2 to NC2  
COM2 to NO2  
COM2 to NC2  
COM2 to NO2  
L
L
H
L
L
H
H
L
H
16  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TMUX1072  
www.ti.com.cn  
ZHCSHZ3C APRIL 2018REVISED AUGUST 2019  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
There are many applications in which processors and microcontrollers have a limited number of I/Os. This IC can  
effectively expand the limited number of I/Os by switching between multiple signal paths in order to interface  
them to a single processor or microcontroller. The device can also be used to connect a single microcontroller to  
two signal paths. With independent control of the two switches using SEL1 and SEL2, TMUX1072 can be used  
to cross switch single ended signals.  
9.2 Typical Application  
The TMUX1072 is used to switch signals between the high speed signal paths that may be exposed to a  
connector or near a bus which could experience an overvoltage condition. The TMUX1072 has internal pull-down  
resistors on SEL1, SEL2, and OE. The pull-down on SEL1 and SEL2 pins ensure the NC1/NC2 channel is  
selected by default. The pull-down on OE enables the switch when power is applied.  
TMUX1072  
Device 1  
VCC  
OVP  
NC1  
COM1  
COM2  
NO1  
NC2  
NO2  
SEL1  
SEL2  
Device 2  
Logic  
Control  
OE  
FLT  
GND  
18. Typical TMUX1072 Application  
9.2.1 Design Requirements  
The TMUX1072 has internal pull-down resistors on SEL1, SEL2, and OE, so no external resistors are required  
on the logic pins. The internal pull-down resistor on SEL1 and SEL2 pins ensures the NC1 and NC2 channels  
are selected by default. The internal pull-down resistor on OE enables the switch when power is applied to VCC.  
The FLT indicator output pin is an open drain output that will require an external pull-up resistor for the  
overvoltage and overtemperature condition to be detected. If feature is unused, FLT pin may be left floating or  
connected to ground  
9.2.2 Detailed Design Procedure  
The TMUX1072 can be properly operated without any external components. However, TI recommends that  
unused signal pins must be connected to ground through a 50-Ω resistor to prevent signal reflections back into  
the device. TI does recommend a 100-nF bypass capacitor placed close to TMUX1072 VCC pin.  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
TMUX1072  
ZHCSHZ3C APRIL 2018REVISED AUGUST 2019  
www.ti.com.cn  
Typical Application (接下页)  
9.2.3 Application Curves  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin of an on-channel, and the output is measured at the drain pin of the TMUX1072. 19 shows  
the bandwidth of TMUX1072.  
0
-1  
-2  
-3  
-4  
-5  
-6  
1M  
10M  
100M  
1G  
Frequency (Hz)  
TDM0U0X1  
19. Bandwidth and Insertion Loss vs Frequency  
10 Power Supply Recommendations  
Power to the device is supplied through the VCC pin. TI recommends placing a 100-nF bypass capacitor as  
close to the supply pin VCC as possible to help smooth out lower frequency noise to provide better load  
regulation across the frequency spectrum.  
11 Layout  
11.1 Layout Guidelines  
1. Place supply bypass capacitors as close to VCC pin as possible and avoid placing the bypass caps near the  
signal traces.  
2. The high-speed traces should always be of equal length and must be no more than 4 inches; otherwise, the  
eye diagram performance may be degraded.  
3. Route the high-speed signals using a minimum of vias and corners which will reduce signal reflections and  
impedance changes. When a via must be used, increase the clearance size around it to minimize its  
capacitance. Each via introduces discontinuities in the transmission line of the signal and increases the  
chance of picking up interference from the other layers of the board. Be careful when designing test points  
on twisted pair lines; through-hole pins are not recommended.  
4. When it becomes necessary to turn 90°, use two 45° turns or an arc instead of making a single 90° turn. This  
reduces reflections on the signal traces by minimizing impedance discontinuities.  
5. Do not route signal traces under or near crystals, oscillators, clock signal generators, switching regulators,  
mounting holes, magnetic devices, or IC’s that use or duplicate clock signals.  
6. Avoid stubs on the high-speed signals because they cause signal reflections.  
7. Route all high-speed signal traces over continuous planes (VCC or GND), with no interruptions.  
8. Avoid crossing over anti-etch, commonly found with plane splits.  
9. For high frequency systems, a printed circuit board with at least four layers is recommended: two signal  
layers separated by a ground layer and a power layer. The majority of signal traces should run on a single  
layer, preferably Signal 1. Immediately next to this layer should be the GND plane, which is solid with no  
cuts. Avoid running signal traces across a split in the ground or power plane. When running across split  
planes is unavoidable, sufficient decoupling must be used. Minimizing the number of signal vias reduces EMI  
by reducing inductance at high frequencies. For more information on layout guidelines, see High Speed  
Layout Guidelines (SCAA082)  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TMUX1072  
www.ti.com.cn  
ZHCSHZ3C APRIL 2018REVISED AUGUST 2019  
11.2 Layout Example  
LEGEND  
Polygonal Copper Pour  
VIAto Power Plane  
VIAto GND Plane  
12  
SEL1  
NO1  
COM1  
1
2
3
4
5
11  
FLT  
10  
9
NC1  
VCC  
Vcc  
GND  
NO2  
SEL2  
Bypass Capacitor  
NC2  
8
7
COM2  
OE  
6
Not to scale  
20. Layout Example  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
TMUX1072  
ZHCSHZ3C APRIL 2018REVISED AUGUST 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
应用报告《高速布局指南》  
《高速接口布局指南》  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX1072DGSR  
TMUX1072RUTR  
ACTIVE  
ACTIVE  
VSSOP  
UQFN  
DGS  
RUT  
10  
12  
2500 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
1A9  
1BU  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX1072DGSR  
TMUX1072RUTR  
VSSOP  
UQFN  
DGS  
RUT  
10  
12  
2500  
3000  
330.0  
180.0  
12.4  
9.5  
5.3  
1.9  
3.4  
2.2  
1.4  
0.7  
8.0  
4.0  
12.0  
8.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMUX1072DGSR  
TMUX1072RUTR  
VSSOP  
UQFN  
DGS  
RUT  
10  
12  
2500  
3000  
364.0  
189.0  
364.0  
185.0  
27.0  
36.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DGS0010A  
VSSOP - 1.1 mm max height  
S
C
A
L
E
3
.
2
0
0
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
5.05  
4.75  
TYP  
PIN 1 ID  
AREA  
A
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.1  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.7  
0.4  
0 - 8  
DETAIL A  
TYPICAL  
4221984/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
(R0.05)  
TYP  
SYMM  
10X (0.3)  
1
5
10  
SYMM  
6
8X (0.5)  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221984/A 05/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
SYMM  
(R0.05) TYP  
10X (0.3)  
8X (0.5)  
1
5
10  
SYMM  
6
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221984/A 05/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
RUT0012A  
UQFN - 0.55 mm max height  
SCALE 6.800  
PLASTIC QUAD FLATPACK - NO LEAD  
1.8  
1.6  
A
B
0.6  
0.4  
PIN 1 INDEX AREA  
0.25  
(0.15)  
0.15  
2.1  
1.9  
PIN 1 ID  
OPTIONAL TERMINAL & PIN 1 ID  
C
0.55 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
SYMM  
6
(0.15) TYP  
10X 0.4  
5
7
2X  
SYMM  
1.6  
11  
1
0.25  
0.15  
12  
12X  
PIN 1 ID  
(OPTIONAL)  
0.6  
0.4  
12X  
0.1  
C B A  
C
0.05  
4220310/A 11/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RUT0012A  
UQFN - 0.55 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
12  
12X (0.7)  
(R0.05) TYP  
11  
1
12X (0.2)  
SYMM  
(1.7)  
8X (0.4)  
7
5
6
(1.4)  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4220310/A 11/2016  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RUT0012A  
UQFN - 0.55 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
12  
12X (0.7)  
(R0.05) TYP  
11  
1
12X (0.2)  
SYMM  
(1.7)  
8X (0.4)  
7
5
6
(1.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 30X  
4220310/A 11/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TMUX1101

3pA 导通状态漏电流、5V、1:1 (SPST)、单通道精密开关(高电平有效)
TI

TMUX1101DBVR

3pA 导通状态漏电流、5V、1:1 (SPST)、单通道精密开关(高电平有效) | DBV | 5 | -40 to 125
TI

TMUX1101DCKR

3pA 导通状态漏电流、5V、1:1 (SPST)、单通道精密开关(高电平有效) | DCK | 5 | -40 to 125
TI

TMUX1102

3pA 导通状态漏电流、5V、1:1 (SPST)、单通道精密开关(低电平有效)
TI

TMUX1102DBVR

3pA 导通状态漏电流、5V、1:1 (SPST)、单通道精密开关(低电平有效) | DBV | 5 | -40 to 125
TI

TMUX1102DCKR

3pA 导通状态漏电流、5V、1:1 (SPST)、单通道精密开关(低电平有效) | DCK | 5 | -40 to 125
TI

TMUX1104

3pA 导通状态泄漏电流、5V、4:1、单通道精密多路复用器
TI

TMUX1104DGSR

3pA 导通状态泄漏电流、5V、4:1、单通道精密多路复用器 | DGS | 10 | -40 to 125
TI

TMUX1104DQAR

3pA 导通状态泄漏电流、5V、4:1、单通道精密多路复用器 | DQA | 10 | -40 to 125
TI

TMUX1108

3pA 导通状态泄漏电流、5V、±2.5V、8:1、单通道精密多路复用器
TI

TMUX1108PWR

3pA 导通状态泄漏电流、5V、±2.5V、8:1、单通道精密多路复用器 | PW | 16 | -40 to 125
TI

TMUX1108RSVR

3pA 导通状态泄漏电流、5V、±2.5V、8:1、单通道精密多路复用器 | RSV | 16 | -40 to 125
TI