TMUX1119DCKR [TI]

3pA 导通状态泄漏电流、5V、2:1 (SPDT)、单通道精密多路复用器 | DCK | 6 | -40 to 125;
TMUX1119DCKR
型号: TMUX1119DCKR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3pA 导通状态泄漏电流、5V、2:1 (SPDT)、单通道精密多路复用器 | DCK | 6 | -40 to 125

光电二极管 复用器
文件: 总37页 (文件大小:1784K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TMUX1119  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
TMUX1119 5V、低泄漏电流、2:1 精密开关  
1 特性  
3 说明  
1
宽电源电压范围:1.08V 5.5V  
TMUX1119是一种互补金属氧化物半导体 (CMOS) 单  
极双投 (2:1) 开关。1.08V 5.5V 的宽电源电压工作  
范围 可支持 医疗设备到工业系统的大量应用。该器件  
可在源极 (Sx) 和漏极 (D) 引脚上支持从 GND VDD  
范围的双向模拟和数字信号。所有逻辑输入均具有兼容  
1.8V 逻辑电平的阈值,当器件在有效电源电压范围内  
运行时,这些阈值可确保 TTL CMOS 逻辑兼容性。  
失效防护逻辑 电路允许在电源引脚之前的控制引脚上  
施加电压,从而保护器件免受潜在的损害。  
低泄漏电流:3pA  
低导通电阻:1.8Ω  
低电荷注入:–6pC  
工作温度范围:-40°C +125°C  
兼容 1.8V 逻辑电平  
失效防护逻辑  
轨至轨运行  
双向信号路径  
先断后合开关  
TMUX1119 是精密开关和多路复用器器件系列的一部  
分。这些器件具有非常低的导通和关断泄漏电流以及较  
低的电荷注入,因此可用于高精度测量 应用的高速串  
行链路的稳定性。3nA 的低电源电流和小型封装选项  
使其可用于便携式 应用的热管理优化而设计。中实现  
高功率密度、高效率和稳健性。  
ESD 保护 HBM2000V  
2 应用  
超声波扫描仪  
患者监护和诊断  
血糖监测仪  
器件信息(1)  
光学模块  
器件型号  
TMUX1119  
封装  
SC70 (6)  
SOT-23 (6)(2)  
封装尺寸(标称值)  
2.00mm × 1.25mm  
2.90mm x 1.60mm  
光纤传输  
远程无线电单元  
数据采集系统  
半导体测试设备  
工厂自动化和工业控制  
流量变送器  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
(2) 产品预览  
SPACER  
SPACER  
可编程逻辑控制器 (PLC)  
模拟输入模块  
电池测试  
应用示例  
方框图  
OPA836  
OPA835  
TMUX1119  
ADC  
TMUX1119  
x1  
SEL  
S1  
MSP430FR599  
D
S2  
TX/RX MOSI  
MUX  
TX  
TMUX1119  
SEL  
x2  
SEL  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SCDS401  
 
 
 
 
 
 
TMUX1119  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics (VDD = 5 V ±10 %)............ 5  
6.6 Electrical Characteristics (VDD = 3.3 V ±10 %)......... 7  
6.7 Electrical Characteristics (VDD = 1.8 V ±10 %)......... 9  
6.8 Electrical Characteristics (VDD = 1.2 V ±10 %)....... 11  
6.9 Typical Characteristics............................................ 13  
Parameter Measurement Information ................ 16  
7.1 On-Resistance ........................................................ 16  
7.2 Off-Leakage Current ............................................... 16  
7.3 On-Leakage Current ............................................... 17  
7.4 Transition Time ....................................................... 17  
7.5 Break-Before-Make................................................. 18  
7.6 Charge Injection...................................................... 18  
7.7 Off Isolation............................................................. 19  
7.8 Crosstalk ................................................................. 19  
7.9 Bandwidth ............................................................... 20  
8
9
Detailed Description ............................................ 21  
8.1 Overview ................................................................. 21  
8.2 Functional Block Diagram ....................................... 21  
8.3 Feature Description................................................. 21  
8.4 Device Functional Modes........................................ 23  
8.5 Truth Tables............................................................ 23  
Application and Implementation ........................ 24  
9.1 Application Information............................................ 24  
9.2 Typical Application ................................................. 24  
9.3 Design Requirements.............................................. 24  
9.4 Detailed Design Procedure ..................................... 25  
9.5 Application Curve.................................................... 25  
10 Power Supply Recommendations ..................... 25  
11 Layout................................................................... 26  
11.1 Layout Guidelines ................................................. 26  
11.2 Layout Example .................................................... 26  
12 器件和文档支持 ..................................................... 27  
12.1 文档支持................................................................ 27  
12.2 相关链接................................................................ 27  
12.3 接收文档更新通知 ................................................. 27  
12.4 社区资源................................................................ 27  
12.5 ....................................................................... 27  
12.6 静电放电警告......................................................... 27  
12.7 Glossary................................................................ 27  
13 机械、封装和可订购信息....................................... 27  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (December 2018) to Revision A  
Page  
将数据表标题从精密模拟多路复用器更改为精密开关” ........................................................................................................ 1  
更改了应用 列表...................................................................................................................................................................... 1  
Changed Thermal Information for DCK package ................................................................................................................... 4  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
TMUX1119  
www.ti.com.cn  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
5 Pin Configuration and Functions  
DCK Package  
6-Pin SC70  
Top View  
DBV Package  
6-Pin SOT-23  
Top View  
SEL  
VDD  
GND  
1
2
3
6
5
4
S2  
D
SEL  
VDD  
GND  
1
2
3
6
5
4
S2  
D
S1  
S1  
Not to scale  
Not to scale  
Product Preview  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
SEL  
1
2
I
Select pin: controls state of the switch according to 1. (Logic Low = S1 to D, Logic High = S2 to D)  
Positive power supply. This pin is the most positive power-supply potential. For reliable operation, connect  
a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.  
VDD  
P
GND  
S1  
3
4
5
6
P
Ground (0 V) reference  
I/O  
I/O  
I/O  
Source pin 1. Can be an input or output.  
Drain pin. Can be an input or output.  
Source pin 2. Can be an input or output.  
D
S2  
(1) I = input, O = output, I/O = input and output, P = power  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
TMUX1119  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.5  
–0.5  
–30  
–0.5  
–30  
–65  
MAX  
UNIT  
V
VDD  
Supply voltage  
6
6
VSEL or VEN  
ISEL or IEN  
VS or VD  
IS or ID (CONT)  
Tstg  
Logic control input pin voltage (SEL)  
Logic control input pin current (SEL)  
Source or drain voltage (Sx, D)  
Source or drain continuous current (Sx, D)  
Storage temperature  
V
30  
mA  
V
VDD+0.5  
30  
mA  
°C  
°C  
150  
TJ  
Junction temperature  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±2000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.08  
0
NOM  
MAX  
5.5  
UNIT  
V
VDD  
Supply voltage  
VS or VD  
VSEL  
TA  
Signal path input/output voltage (source or drain pin) (Sx, D)  
Logic control input pin voltage (SEL)  
Ambient temperature  
VDD  
5.5  
V
0
V
–40  
125  
°C  
6.4 Thermal Information  
TMUX1119  
THERMAL METRIC(1)  
SC70 (DCK)  
6 PINS  
243.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
206.0  
128.3  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
107.8  
ΨJB  
128.0  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
TMUX1119  
www.ti.com.cn  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
6.5 Electrical Characteristics (VDD = 5 V ±10 %)  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
1.8  
4
4.5  
4.9  
Ω
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
Ω
0.13  
0.85  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
0.4  
0.5  
Ω
Ω
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
RON  
FLAT  
On-resistance flatness  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1.4  
1.6  
Ω
Ω
VDD = 5 V  
Switch Off  
VD = 4.5 V / 1.5 V  
VS = 1.5 V / 4.5 V  
Refer to Off-Leakage Current  
–0.08 ±0.005  
–0.3  
0.08  
0.3  
nA  
nA  
–40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
–40°C to +125°C  
–0.9  
0.9  
nA  
VDD = 5 V  
Switch On  
VD = VS = 2.5 V  
Refer to On-Leakage Current  
25°C  
–0.025 ±0.003  
–0.3  
0.025  
0.3  
nA  
nA  
ID(ON)  
IS(ON)  
–40°C to +85°C  
Channel on leakage current  
Channel on leakage current  
–40°C to +125°C  
–0.95  
0.95  
nA  
VDD = 5 V  
Switch On  
VD = VS = 4.5 V / 1.5 V  
Refer to On-Leakage Current  
25°C  
–0.1  
±0.01  
0.1  
nA  
nA  
ID(ON)  
IS(ON)  
–40°C to +85°C  
–0.35  
0.35  
–40°C to +125°C  
–2  
2
nA  
LOGIC INPUTS (SEL)  
VIH  
VIL  
Input logic high  
Input logic low  
–40°C to +125°C  
–40°C to +125°C  
1.49  
0
5.5  
V
V
0.87  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.05  
2
CIN  
CIN  
Logic input capacitance  
Logic input capacitance  
25°C  
1
pF  
pF  
–40°C to +125°C  
POWER SUPPLY  
25°C  
0.003  
µA  
µA  
IDD VDD supply current  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
1
(1) When VS is 4.5 V, VD is 1.5 V, and vice versa.  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
TMUX1119  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
www.ti.com.cn  
Electrical Characteristics (VDD = 5 V ±10 %) (continued)  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
12  
ns  
VS = 3 V  
tTRAN  
Switching time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
18  
19  
ns  
ns  
ns  
ns  
ns  
Refer to Transition Time  
8
VS = 3 V  
tOPEN  
(BBM)  
Break before make time  
Charge Injection  
RL = 200 , CL = 15 pF  
Refer to Break-Before-Make  
–40°C to +85°C  
–40°C to +125°C  
1
1
VD = 1 V  
RS = 0 , CL = 1 nF  
Refer to Charge Injection  
QC  
25°C  
25°C  
25°C  
25°C  
25°C  
–6  
–65  
–45  
–65  
–45  
pC  
dB  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off Isolation  
OISO  
Off Isolation  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off Isolation  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Crosstalk  
XTALK  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Crosstalk  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
Bandwidth  
25°C  
25°C  
25°C  
250  
6
MHz  
pF  
CSOFF  
Source off capacitance  
On capacitance  
f = 1 MHz  
CSON  
CDON  
f = 1 MHz  
20  
pF  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
TMUX1119  
www.ti.com.cn  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
6.6 Electrical Characteristics (VDD = 3.3 V ±10 %)  
at TA = 25°C, VDD = 3.3 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
3.7  
8.8  
9.5  
9.8  
Ω
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
Ω
0.13  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
0.4  
0.5  
Ω
Ω
1.9  
2
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
RON  
FLAT  
On-resistance flatness  
–40°C to +85°C  
–40°C to +125°C  
25°C  
Ω
2.2  
Ω
VDD = 3.3 V  
Switch Off  
VD = 3 V / 1 V  
–0.05 ±0.001  
–0.1  
0.05  
0.1  
nA  
nA  
–40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VS = 1 V / 3 V  
Refer to Off-Leakage Current  
–40°C to +125°C  
–0.5  
0.5  
nA  
VDD = 3.3 V  
Switch On  
VD = VS = 3 V / 1 V  
Refer to On-Leakage Current  
25°C  
–0.1 ±0.005  
–0.35  
0.1  
nA  
nA  
ID(ON)  
IS(ON)  
–40°C to +85°C  
0.35  
Channel on leakage current  
–40°C to +125°C  
–2  
2
nA  
LOGIC INPUTS (SEL)  
VIH  
VIL  
Input logic high  
Input logic low  
–40°C to +125°C  
–40°C to +125°C  
1.35  
0
5.5  
0.8  
V
V
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
-40°C to 125°C  
±0.05  
2
CIN  
CIN  
Logic input capacitance  
Logic input capacitance  
25°C  
1
pF  
pF  
–40°C to +125°C  
POWER SUPPLY  
25°C  
0.003  
µA  
µA  
IDD  
VDD supply current  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
0.8  
(1) When VS is 3 V, VD is 1 V, and vice versa.  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
TMUX1119  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
www.ti.com.cn  
Electrical Characteristics (VDD = 3.3 V ±10 %) (continued)  
at TA = 25°C, VDD = 3.3 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
14  
ns  
VS = 2 V  
tTRAN  
Switching time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
20  
21  
ns  
ns  
ns  
ns  
ns  
Refer to Transition Time  
9
VS = 2 V  
tOPEN  
(BBM)  
Break before make time  
Charge Injection  
RL = 200 , CL = 15 pF  
Refer to Break-Before-Make  
–40°C to +85°C  
–40°C to +125°C  
1
1
VD = 1 V  
RS = 0 , CL = 1 nF  
Refer to Charge Injection  
QC  
25°C  
25°C  
25°C  
25°C  
25°C  
–6  
–65  
–45  
–65  
–45  
pC  
dB  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off Isolation  
OISO  
Off Isolation  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off Isolation  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Crosstalk  
XTALK  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Crosstalk  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
Bandwidth  
25°C  
25°C  
25°C  
250  
6
MHz  
pF  
CSOFF  
Source off capacitance  
On capacitance  
f = 1 MHz  
CSON  
CDON  
f = 1 MHz  
20  
pF  
8
Copyright © 2018–2019, Texas Instruments Incorporated  
TMUX1119  
www.ti.com.cn  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
6.7 Electrical Characteristics (VDD = 1.8 V ±10 %)  
at TA = 25°C, VDD = 1.8 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
40  
Ω
VS = 0 V to VDD  
RON  
On-resistance  
ISD = 10 mA  
Refer to On-Resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
80  
80  
Ω
Ω
0.4  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1.5  
1.5  
Ω
Ω
VDD = 1.98 V  
Switch Off  
VD = 1.62 V / 1 V  
VS = 1 V / 1.62 V  
Refer to Off-Leakage Current  
–0.05 ±0.003  
–0.1  
0.05  
0.1  
nA  
nA  
–40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
Channel on leakage current  
–40°C to +125°C  
–0.5  
0.5  
nA  
VDD = 1.98 V  
Switch On  
VD = VS = 1.62 V / 1 V  
Refer to On-Leakage Current  
25°C  
–0.1 ±0.005  
–0.5  
0.1  
0.5  
nA  
nA  
ID(ON)  
IS(ON)  
–40°C to +85°C  
–40°C to +125°C  
–2  
2
nA  
LOGIC INPUTS (SEL)  
VIH  
VIL  
Input logic high  
Input logic low  
–40°C to +125°C  
–40°C to +125°C  
1.07  
0
5.5  
V
V
0.68  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.05  
2
CIN  
CIN  
Logic input capacitance  
Logic input capacitance  
25°C  
1
pF  
pF  
–40°C to +125°C  
POWER SUPPLY  
25°C  
0.001  
µA  
µA  
IDD VDD supply current  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
0.85  
(1) When VS is 1.62 V, VD is 1 V, and vice versa.  
Copyright © 2018–2019, Texas Instruments Incorporated  
9
TMUX1119  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
www.ti.com.cn  
Electrical Characteristics (VDD = 1.8 V ±10 %) (continued)  
at TA = 25°C, VDD = 1.8 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
28  
ns  
VS = 1 V  
tTRAN  
Transition time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
44  
44  
ns  
ns  
ns  
ns  
ns  
Refer to Transition Time  
16  
VS = 1 V  
tOPEN  
(BBM)  
Break before make time  
Charge Injection  
RL = 200 , CL = 15 pF  
Refer to Break-Before-Make  
–40°C to +85°C  
–40°C to +125°C  
1
1
VD = 1 V  
RS = 0 , CL = 1 nF  
Refer to Charge Injection  
QC  
25°C  
25°C  
25°C  
25°C  
25°C  
–3  
–65  
–45  
–65  
–45  
pC  
dB  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off Isolation  
OISO  
Off Isolation  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off Isolation  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Crosstalk  
XTALK  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Crosstalk  
BW  
Bandwidth  
RL = 50 , CL = 5 pF  
25°C  
25°C  
250  
6
MHz  
pF  
CSOFF  
Source off capacitance  
f = 1 MHz  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
20  
pF  
10  
Copyright © 2018–2019, Texas Instruments Incorporated  
TMUX1119  
www.ti.com.cn  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
6.8 Electrical Characteristics (VDD = 1.2 V ±10 %)  
at TA = 25°C, VDD = 1.2 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
70  
Ω
VS = 0 V to VDD  
RON  
On-resistance  
ISD = 10 mA  
Refer to On-Resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
105  
105  
Ω
Ω
0.4  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1.5  
1.5  
Ω
Ω
VDD = 1.32 V  
Switch Off  
VD = 1 V / 0.8 V  
VS = 0.8 V / 1 V  
Refer to Off-Leakage Current  
–0.05 ±0.003  
–0.1  
0.05  
0.1  
nA  
nA  
–40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
Channel on leakage current  
–40°C to +125°C  
–0.5  
0.5  
nA  
VDD = 1.32 V  
Switch On  
VD = VS = 1 V / 0.8 V  
Refer to On-Leakage Current  
25°C  
–0.1 ±0.005  
–0.5  
0.1  
0.5  
nA  
nA  
ID(ON)  
IS(ON)  
–40°C to +85°C  
–40°C to +125°C  
–2  
2
nA  
LOGIC INPUTS (SEL)  
VIH  
VIL  
Input logic high  
Input logic low  
–40°C to +125°C  
–40°C to +125°C  
0.96  
0
5.5  
V
V
0.36  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.05  
2
CIN  
CIN  
Logic input capacitance  
Logic input capacitance  
25°C  
1
pF  
pF  
–40°C to +125°C  
POWER SUPPLY  
25°C  
0.003  
µA  
µA  
IDD VDD supply current  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
0.7  
(1) When VS is 1 V, VD is 0.8 V, and vice versa.  
Copyright © 2018–2019, Texas Instruments Incorporated  
11  
TMUX1119  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
www.ti.com.cn  
Electrical Characteristics (VDD = 1.2 V ±10 %) (continued)  
at TA = 25°C, VDD = 1.2 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
55  
ns  
VS = 1 V  
tTRAN  
Transition time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
190  
190  
ns  
ns  
ns  
ns  
ns  
Refer to Transition Time  
28  
VS = 1 V  
tOPEN  
(BBM)  
Break before make time  
Charge Injection  
RL = 200 , CL = 15 pF  
Refer to Break-Before-Make  
–40°C to +85°C  
–40°C to +125°C  
1
1
VD = 1 V  
RS = 0 , CL = 1 nF  
Refer to Charge Injection  
QC  
25°C  
25°C  
25°C  
25°C  
25°C  
–2  
–65  
–45  
–65  
–45  
pC  
dB  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off Isolation  
OISO  
Off Isolation  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off Isolation  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Crosstalk  
XTALK  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Crosstalk  
BW  
Bandwidth  
RL = 50 , CL = 5 pF  
25°C  
25°C  
250  
6
MHz  
pF  
CSOFF  
Source off capacitance  
f = 1 MHz  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
20  
pF  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
TMUX1119  
www.ti.com.cn  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
6.9 Typical Characteristics  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
6
5
4.5  
4
VDD = 3 V  
5
TA = 125èC  
TA = 85èC  
VDD = 3.63 V  
3.5  
3
4
VDD = 4.5 V  
3
2.5  
2
VDD = 5.5 V  
2
1
0
1.5  
1
TA = -40èC  
TA = 25èC  
0.5  
0
0
1
2
VS or VD - Source or Drain Voltage (V)  
3
4
5
5.5  
0
1
2
VS or VD - Source or Drain Voltage (V)  
3
4
5
D001  
D002  
TA = 25°C  
VDD = 5 V  
1. On-Resistance vs Source or Drain Voltage  
2. On-Resistance vs Temperature  
8
7
6
5
4
3
2
1
0
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD = 1.08 V  
VDD = 1.32 V  
TA = 85èC  
TA = 125èC  
VDD = 1.62 V  
VDD = 1.98 V  
TA = -40èC TA = 25èC  
1.5  
VS or VD - Source or Drain Voltage (V)  
0
0.5  
1
2
2.5  
3
3.5  
0
0.2 0.4 0.6 0.8  
1 1.2 1.4 1.6 1.8  
VS or VD - Source or Drain Voltage (V)  
2
D003  
D004  
VDD = 3.3 V  
TA = 25°C  
3. On-Resistance vs Temperature  
4. On-Resistance vs Source or Drain Voltage  
40  
30  
100  
80  
60  
20  
40  
VDD = 1.32 V  
VDD = 1.98 V  
VDD = 3.63 V  
10  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-10  
-20  
-30  
-40  
0
0.5  
1
VS or VD - Source or Drain Voltage (V)  
1.5  
2
2.5  
3
3.5  
4
0
1
VS or VD - Source or Drain Voltage (V)  
2
3
4
5
D005  
D006  
TA = 25°C  
VDD = 5 V  
5. On-Leakage vs Source or Drain Voltage  
6. On-Leakage vs Source or Drain Voltage  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
TMUX1119  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
3
2
1
0.75  
0.5  
IS(OFF)  
IS(OFF)  
1
0.25  
0
0
-0.25  
-1  
-2  
-3  
I(ON)  
I(ON)  
-0.5  
-0.75  
-1  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D007  
D008  
VDD = 3.3 V  
VDD = 5 V  
7. Leakage Current vs Temperature  
8. Leakage Current vs Temperature  
0.4  
0.3  
0.2  
0.1  
0
500  
400  
300  
200  
100  
0
VDD = 5 V  
VDD = 3.3 V  
VDD = 1.8 V  
VDD = 3.3 V  
VDD = 5 V  
VDD = 1.2 V  
-0.1  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
0.5  
1
1.5  
2
Logic Voltage (V)  
2.5  
3
3.5  
4
4.5  
5
Temperature (èC)  
D009  
D010  
VSEL = 5.5 V  
TA = 25°C  
9. Supply Current vs Temperature  
10. Supply Current vs Logic Voltage  
5
3
20  
15  
10  
5
1
VDD = 3.3 V  
VDD = 1.2 V  
0
VDD = 5 V  
-1  
-3  
-5  
-5  
VDD = 1.8 V  
-10  
-15  
-20  
0
1
2
VD - Drain Voltage (V)  
3
4
5
0
0.5  
1
VD - Drain Voltage (V)  
1.5  
2
D011  
D012  
TA = -40°C to 125°C  
TA = -40°C to 125°C  
11. Charge Injection vs Drain Voltage  
12. Charge Injection vs Drain Voltage  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
TMUX1119  
www.ti.com.cn  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
Typical Characteristics (接下页)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
30  
25  
20  
Rising  
15  
10  
5
Falling  
0
0.5  
1.5  
2.5 3.5  
VDD - Supply Voltage (V)  
4.5  
5.5  
100k  
1M  
10M  
Frequency (Hz)  
100M  
D013  
D014  
TA = 25°C  
TA = 25°C  
13. Output TTRANSITION vs Supply Voltage  
14. Xtalk and Off-Isolation vs Frequency  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
1M  
10M  
Frequency (Hz)  
100M  
D015  
TA = 25°C  
15. On Response vs Frequency  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
TMUX1119  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 On-Resistance  
The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (D) pins of the device.  
The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-resistance.  
The measurement setup used to measure RON is shown in 16. Voltage (V) and current (ISD) are measured  
using this setup, and RON is computed with RON = V / ISD  
:
V
ISD  
Sx  
D
VS  
16. On-Resistance Measurement Setup  
7.2 Off-Leakage Current  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS(OFF)  
.
The setup used to measure off-leakage current is shown in 17.  
VDD  
VDD  
Is (OFF)  
S1  
A
D
S2  
VS  
VD  
GND  
17. Off-Leakage Measurement Setup  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
TMUX1119  
www.ti.com.cn  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
7.3 On-Leakage Current  
Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is on. This current is denoted by the symbol IS(ON)  
.
Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
on. This current is denoted by the symbol ID(ON)  
.
Either the source pin or drain pin is left floating during the measurement. 18 shows the circuit used for  
measuring the on-leakage current, denoted by IS(ON) or ID(ON)  
.
VDD  
VDD  
VDD  
VDD  
IS (ON)  
S1  
S2  
S1  
S2  
ID (ON)  
N.C.  
A
D
D
A
N.C.  
Vs  
VS  
VS  
VD  
GND  
GND  
18. On-Leakage Measurement Setup  
7.4 Transition Time  
Transition time is defined as the time taken by the output of the device to rise or fall 10% after the address signal  
has risen or fallen past the logic threshold. The 10% transition measurement is utilized to provide the timing of  
the device. System level timing can then account for the time constant added from the load resistance and load  
capacitance. 19 shows the setup used to measure transition time, denoted by the symbol tTRANSITION  
.
VDD  
0.1F  
VDD  
VDD  
ADDRESS  
DRIVE  
(VSEL  
tf < 5ns  
tr < 5ns  
VIH  
)
VIL  
S1  
S2  
VS  
OUTPUT  
0 V  
D
RL  
CL  
tTRANSITION  
tTRANSITION  
SEL  
90%  
OUTPUT  
VSEL  
10%  
GND  
0 V  
19. Transition-Time Measurement Setup  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
 
 
TMUX1119  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
www.ti.com.cn  
7.5 Break-Before-Make  
Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is  
switching. The output first breaks from the on-state switch before making the connection with the next on-state  
switch. The time delay between the break and the make is known as break-before-make delay. 20 shows the  
setup used to measure break-before-make delay, denoted by the symbol tOPEN(BBM)  
.
VDD  
0.1F  
VDD  
VDD  
ADDRESS  
DRIVE  
S1  
S2  
tr < 5ns  
tf < 5ns  
VS  
OUTPUT  
D
(VSEL  
)
0 V  
RL  
CL  
90%  
Output  
SEL  
tBBM  
1
tBBM 2  
0 V  
VSEL  
tOPEN (BBM) = min ( tBBM 1, tBBM 2)  
GND  
20. Break-Before-Make Delay Measurement Setup  
7.6 Charge Injection  
The TMUX1119 has a transmission-gate topology. Any mismatch in capacitance between the NMOS and PMOS  
transistors results in a charge injected into the drain or source during the falling or rising edge of the gate signal.  
The amount of charge injected into the source or drain of the device is known as charge injection, and is denoted  
by the symbol QC. 21 shows the setup used to measure charge injection from Drain (D) to Source (Sx).  
VDD  
VSS  
0.1F  
0.1F  
VSS  
VDD  
VDD  
VSEL  
S2  
N.C.  
D
VD  
OUTPUT  
S1  
VOUT  
0 V  
CL  
Output  
VOUT  
SEL  
VS  
QC = CL  
×
VOUT  
VSEL  
GND  
21. Charge-Injection Measurement Setup  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
TMUX1119  
www.ti.com.cn  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
7.7 Off Isolation  
Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to the  
source pin (Sx) of an off-channel. 22 shows the setup used to measure, and the equation used to calculate off  
isolation.  
0.1µF  
NETWORK  
VDD  
ANALYZER  
VS  
50Q  
S
VSIG  
D
VOUT  
RL  
SX  
50Q  
GND  
RL  
50Q  
22. Off Isolation Measurement Setup  
«
÷
VOUT  
VS  
Off Isolation = 20 Log  
(1)  
7.8 Crosstalk  
Crosstalk is defined as the ratio of the signal at the drain pin (D) of a different channel, when a signal is applied  
at the source pin (Sx) of an on-channel. 23 shows the setup used to measure, and the equation used to  
calculate crosstalk.  
0.1µF  
NETWORK  
VDD  
ANALYZER  
S1  
VOUT  
RL  
D
50Q  
VS  
RL  
S2  
50Q  
50Q  
VSIG  
GND  
23. Crosstalk Measurement Setup  
«
÷
VOUT  
VS  
Channel-to-Channel Crosstalk = 20 Log  
(2)  
19  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
TMUX1119  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
www.ti.com.cn  
7.9 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the device. 24  
shows the setup used to measure bandwidth.  
0.1µF  
NETWORK  
VDD  
ANALYZER  
VS  
S
50Q  
VSIG  
D
VOUT  
RL  
50Q  
SX  
GND  
RL  
50Q  
24. Bandwidth Measurement Setup  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TMUX1119  
www.ti.com.cn  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
8 Detailed Description  
8.1 Overview  
The TMUX1119 is an 2:1, 1-ch. (SPDT), analog switch where the input is controlled with a single select (SEL)  
control pin.  
8.2 Functional Block Diagram  
TMUX1119  
S1  
D
S2  
SEL  
25. TMUX1119 Functional Block Diagram  
8.3 Feature Description  
8.3.1 Bidirectional Operation  
The TMUX1119 conducts equally well from source (Sx) to drain (D) or from drain (D) to source (Sx). The device  
has very similar characteristics in both directions and supports both analog and digital signals.  
8.3.2 Rail to Rail Operation  
The valid signal path input/output voltage for TMUX1119 ranges from GND to VDD  
.
8.3.3 1.8 V Logic Compatible Inputs  
The TMUX1119 has 1.8-V logic compatible control for the logic control input (SEL). The logic input threshold  
scales with supply but still provide 1.8-V logic control when operating at 5.5 V supply voltage. 1.8-V logic level  
inputs allow the TMUX1119 to interface with processors that have lower logic I/O rails and eliminates the need  
for an external translator, which saves both space and BOM cost. For more information on 1.8 V logic  
implementations refer to Simplifying Design with 1.8 V logic Muxes and Switches  
8.3.4 Fail-Safe Logic  
The TMUX1119 supports Fail-Safe Logic on the control input pin (SEL) allowing for operation up to 5.5 V,  
regardless of the state of the supply pin. This feature allows voltages on the control pin to be applied before the  
supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system complexity by  
removing the need for power supply sequencing on the logic control pins. For example, the Fail-Safe Logic  
feature allows the select pin of the TMUX1119 to be ramped to 5.5 V while VDD = 0 V. Additionally, the feature  
enables operation of the TMUX1119 with VDD = 1.2 V while allowing the select pin to interface with a logic level  
of another device up to 5.5 V.  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
TMUX1119  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
www.ti.com.cn  
Feature Description (接下页)  
8.3.5 Ultra-low Leakage Current  
The TMUX1119 provides extremely low on-leakage and off-leakage currents. The TMUX1119 is capable of  
switching signals from high source-impedance inputs into a high input-impedance op amp with minimal offset  
error because of the ultra-low leakage currents. 26 shows typical leakage currents of the TMUX1119 versus  
temperature.  
3
2
IS(OFF)  
1
0
-1  
I(ON)  
-2  
-3  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
D008  
26. Leakage Current vs Temperature  
8.3.6 Ultra-low Charge Injection  
The TMUX1119 has a transmission gate topology, as shown in 27. Any mismatch in the stray capacitance  
associated with the NMOS and PMOS causes an output level change whenever the switch is opened or closed.  
OFF ON  
CGDN  
CGSN  
D
S
CGSP  
CGDP  
OFF ON  
27. Transmission Gate Topology  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
TMUX1119  
www.ti.com.cn  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
Feature Description (接下页)  
The TMUX1119 has special charge-injection cancellation circuitry that reduces the drain-to-source charge  
injection to -6 pC at VD = 1 V as shown in 28.  
20  
15  
10  
5
VDD = 3.3 V  
0
-5  
VDD = 5 V  
-10  
-15  
-20  
0
1
2
3
VD - Drain Voltage (V)  
4
5
D011  
28. Charge Injection vs Drain Voltage  
8.4 Device Functional Modes  
The select (SEL) pin of the TMUX1119 controls which switch is connected to the drain of the device. When a  
given input is not selected, that source pin is in high impedance mode (HI-Z). The control pins can be as high as  
5.5 V.  
8.5 Truth Tables  
1. TMUX1119 Truth Table  
CONTROL LOGIC (SEL)  
Selected Source (Sx) Connected To Drain (D) Pin  
0
1
S1  
S2  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
 
TMUX1119  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TMUX11xx family offers ulta-low input/output leakage currents and low charge injection. These devices  
operate up to 5.5 V, and offer true rail-to-rail input and output of both analog and digital signals. The TMUX1119  
has a low on-capacitance which allows faster settling time when multiplexing inputs in the time domain. These  
features make the TMUX11xx devices a family of precision, high-performance switches and multiplexers for low-  
voltage applications.  
9.2 Typical Application  
29 shows an ultrasonic gas meter front end. The ultrasonic front end design utilizes time of flight (TOF)  
measurement to determine the amount of gas flowing in a pipe. The circuit utilizes the MSP430FR5994, two ultra  
low power operational amplifiers, OPA835 and OPA836, along with two TMUX1119, 2:1 precision switches.  
8 MHz  
OPA836  
OPA835  
MSP430FR599  
ADC  
32 kHz  
TMUX1119  
x1  
SEL  
TX/RX MOSI  
MUX TX  
TMUX1119  
x2  
SEL  
29. Ultrasonic Gas Meter System  
9.3 Design Requirements  
For this design example, use the parameters listed in 2.  
2. Design Parameters  
PARAMETERS  
Supply (VDD  
VALUES  
)
5 V  
I/O signal range  
Control logic thresholds  
0 V to VDD (Rail to Rail)  
1.8 V compatible  
<2 ns  
Single-shot standard deviation (STD)  
Zero-flow drift (ZFD)  
<1 ns  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
TMUX1119  
www.ti.com.cn  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
9.4 Detailed Design Procedure  
The TMUX1119 can be operated without any external components except for the supply decoupling capacitors.  
All inputs passing through the switch must fall within the recommend operating conditions of the TMUX1119,  
including signal range and continuous current. For this design with a supply of 5 V the signal range can be 0 V to  
5 V, and the max continuous current can be 30 mA.  
The TMUX1119 device is a bidirectional, single-pole double-throw (SPDT) switch that offers low on-resistance,  
low leakage, and low power. These features make this device suitable for portable and power sensitive  
applications such as ultrasonic gas metering systems. The two TMUX1119 devices are used to switch the  
transmission and reception signals from the MCU to the two transceivers in an efficient manner without distortion.  
Exceptional on-resistance flatness, leakage performance, and charge injection allows the TMUX1119 to be  
utilized in place of the TS5A9411 in Ultrasonic Gas Meter Front-End With MSP430™ Reference Design. For a  
more detailed analysis of the entire system refer to the reference design.  
9.5 Application Curve  
The TMUX1119 is capable of switching signals with minimal distortion because of the ultra-low leakage currents  
and excellent On-resistance flatness. 30 shows how the on-resistance fo the TMUX1119 varies with different  
supply voltages.  
6
VDD = 3 V  
5
VDD = 3.63 V  
4
VDD = 4.5 V  
3
VDD = 5.5 V  
2
1
0
0
1
2
3
4
VS or VD - Source or Drain Voltage (V)  
5
5.5  
D001  
TA = 25°C  
30. On-Leakage vs Source or Drain Voltage  
10 Power Supply Recommendations  
The TMUX1119 operates across a wide supply range of 1.08 V to 5.5 V. Do not exceed the absolute maximum  
ratings because stresses beyond the listed ratings can cause permanent damage to the devices.  
Power-supply bypassing improves noise margin and prevents switching noise propagation from the VDD supply to  
other components. Good power-supply decoupling is important to achieve optimum performance. For improved  
supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μF to 10 μF from VDD to ground.  
Place the bypass capacitors as close to the power supply pins of the device as possible using low-impedance  
connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low equivalent series  
resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes. For very sensitive  
systems, or for systems in harsh noise environments, avoiding the use of vias for connecting the capacitors to  
the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers the overall  
inductance and is beneficial for connections to ground planes.  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
 
TMUX1119  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
11.1.1 Layout Information  
When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of  
the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and self–inductance  
of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must  
turn corners. 31 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
WORST  
BETTER  
BEST  
1W min.  
W
31. Trace Example  
Route high-speed signals using a minimum of vias and corners which reduces signal reflections and  
impedance changes. When a via must be used, increase the clearance size around it to minimize its  
capacitance. Each via introduces discontinuities in the signal’s transmission line and increases the chance of  
picking up interference from the other layers of the board. Be careful when designing test points, through-  
hole pins are not recommended at high frequencies.  
32 illustrates an example of a PCB layout with the TMUX1119. Some key considerations are:  
Decouple the VDD pin with a 0.1-µF capacitor, placed as close to the pin as possible. Make sure that the  
capacitor voltage rating is sufficient for the VDD supply.  
Keep the input lines as short as possible.  
Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
11.2 Layout Example  
Via to  
GND plane  
TMUX1119  
Wide (low inductance)  
trace for power  
C
32. TMUX1119 Layout Example  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
TMUX1119  
www.ti.com.cn  
ZHCSJ88A DECEMBER 2018REVISED NOVEMBER 2019 2019  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
德州仪器 (TI)《采用 MSP430™ 的超声波燃气表前端参考设计》。  
德州仪器 (TI)《真差分 4 x 2 多路复用器、模拟前端、同步采样 ADC 电路》。  
德州仪器 (TI)《使用低 CON 多路复用器改善稳定性问题》。  
德州仪器 (TI)《使用 1.8V 逻辑多路复用器和开关简化设计》。  
德州仪器 (TI)《利用关断保护信号开关消除电源排序》。  
德州仪器 (TI)《高电压模拟多路复用器的系统级保护》。  
德州仪器 (TI)QFN/SON PCB 连接》。  
德州仪器 (TI)《四方扁平封装无引线逻辑封装》。  
12.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 商标  
E2E is a trademark of Texas Instruments.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX1119DBVR  
TMUX1119DCKR  
ACTIVE  
ACTIVE  
SOT-23  
SC70  
DBV  
DCK  
6
6
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
26HT  
1DF  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jun-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX1119DBVR  
TMUX1119DCKR  
SOT-23  
SC70  
DBV  
DCK  
6
6
3000  
3000  
178.0  
178.0  
9.0  
9.0  
2.4  
2.4  
2.5  
2.5  
1.2  
1.2  
4.0  
4.0  
8.0  
8.0  
Q3  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jun-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMUX1119DBVR  
TMUX1119DCKR  
SOT-23  
SC70  
DBV  
DCK  
6
6
3000  
3000  
180.0  
180.0  
180.0  
180.0  
18.0  
18.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TMUX1121

3pA 导通状态泄漏电流、5V、1:1 (SPST)、2 通道精密开关(高电平有效)
TI

TMUX1121DGKR

3pA 导通状态泄漏电流、5V、1:1 (SPST)、2 通道精密开关(高电平有效) | DGK | 8 | -40 to 125
TI

TMUX1122

3pA 导通状态泄漏电流、5V、1:1 (SPST)、2 通道精密开关(低电平有效)
TI

TMUX1122DGKR

3pA 导通状态泄漏电流、5V、1:1 (SPST)、2 通道精密开关(低电平有效) | DGK | 8 | -40 to 125
TI

TMUX1123

5V、低泄漏电流、1:1 (SPST) 2 通道精密开关(1 个高电平有效,1 个低电平有效)
TI

TMUX1123DGKR

5V、低泄漏电流、1:1 (SPST) 2 通道精密开关(1 个高电平有效,1 个低电平有效) | DGK | 8 | -40 to 125
TI

TMUX1133

3pA 导通状态泄漏电流、低泄漏电流、2:1 (SPDT)、3 通道精密开关
TI

TMUX1133PWR

3pA 导通状态泄漏电流、低泄漏电流、2:1 (SPDT)、3 通道精密开关 | PW | 16 | -40 to 125
TI

TMUX1134

3pA 导通状态泄漏电流、2:1 (SPDT)、4 通道精密模拟开关
TI

TMUX1134PWR

3pA 导通状态泄漏电流、2:1 (SPDT)、4 通道精密模拟开关 | PW | 20 | -40 to 125
TI

TMUX1136

3pA 导通状态泄漏电流、5V、2:1、2 通道精密模拟开关
TI

TMUX1136DGSR

3pA 导通状态泄漏电流、5V、2:1、2 通道精密模拟开关 | DGS | 10 | -40 to 125
TI