TMUX1208QRSVRQ1 [TI]

具有 1.8V 逻辑电平的汽车类 5V、8:1、单通道多路复用器 | RSV | 16 | -40 to 125;
TMUX1208QRSVRQ1
型号: TMUX1208QRSVRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 1.8V 逻辑电平的汽车类 5V、8:1、单通道多路复用器 | RSV | 16 | -40 to 125

复用器
文件: 总31页 (文件大小:1452K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZHCSK56A AUGUST 2019 REVISED JULY 2020  
TMUX1208-Q1  
具有 1.8V 逻辑的 TMUX1208-Q1 5V 双向 8:1 多路复用器  
1 特性  
3 说明  
符合面向汽车应用的 AEC-Q100 标准  
TMUX1208-Q1 一款通用互补金属氧化物半导体  
(CMOS) 多路复用器 (MUX)TMUX1208-Q1 采用 8:1  
多路复用器配置允许将 8 个不同的信号路径切换到  
公共输出引脚。1.08V 5.5V 的宽工作电源电压范围  
使其适用于具有各种电源要求的汽车应用。该器件可在  
源极 (Sx) 和漏极 (D) 引脚上支持从 GND VDD 范围  
的双向模拟和数字信号。  
– 温度等级 140°C 125°CTA  
低导通电阻5Ω  
宽电源电压范围1.08V 5.5V  
轨到轨运行  
双向信号路径  
兼容 1.8V 逻辑电平  
失效防护逻辑  
TMUX1208-Q1 采用小型 QFN 封装以满足更小的系  
统尺寸要求。该器件具有 5Ω 典型值的低导通电阻,  
从而在器件未连接至高阻抗信号路径时将失真和信号完  
整性问题的影响降至更低。  
低电源电流10nA  
转换时间14ns  
先断后合开关  
所有逻辑输入均具有{3}兼容 1.8V 逻辑{4}的阈值当  
器件在有效电源电压范围内运行时这些阈值可确保  
TTL CMOS 逻辑兼容性。{5}失效防护逻辑{6}电路  
允许先在控制引脚上施加电压然后在电源引脚上施加  
电压从而保护器件免受潜在的损害。  
ESD 保护 HBM2000V  
小型 QFN 封装  
2 应用  
模拟和数字多路复用/多路信号分离  
器件信息  
汽车音响主机  
器件型号(1)  
封装尺寸标称值)  
封装  
远程信息处理控制单元  
紧急呼叫 (eCall)  
TMUX1208-Q1  
QFN (16)  
2.60mm x 1.80mm  
信息娱乐系统  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
车身控制模块 (BCM)  
车身电子装置和照明  
电池管理系统 (BMS)  
空白  
HVAC 控制器模块  
ADAS 域控制器  
VDD  
TMUX1208-Q1  
VDD  
VI/O  
VDD  
LDO #1  
S1  
S2  
S3  
EN  
MCU  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
LDO #2  
LDO #3  
RAM  
FLASH  
S4  
D
S5  
D
Integrated  
12-bit ADC  
S6  
S7  
S8  
LM20  
Analog Temp.  
Sensor  
LM20  
Analog Temp.  
Sensor  
Port I/O  
TIMERS  
1-OF-8  
A2  
A1  
LM20  
Analog Temp.  
Sensor  
A0  
DECODER  
GND  
1.8V Logic  
I/O  
System Inputs &  
Sensors  
A0 A1 A2 EN  
TMUX1208-Q1 方框图  
应用示例  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCDS415  
 
 
 
TMUX1208-Q1  
ZHCSK56A AUGUST 2019 REVISED JULY 2020  
www.ti.com.cn  
Table of Contents  
7.6 tON(EN) and tOFF(EN) .................................................. 15  
7.7 Charge Injection........................................................16  
7.8 Off Isolation...............................................................16  
7.9 Crosstalk...................................................................17  
7.10 Bandwidth............................................................... 17  
8 Detailed Description......................................................18  
8.1 Overview...................................................................18  
8.2 Functional Block Diagram.........................................18  
8.3 Feature Description...................................................18  
9 Power Supply Recommendations................................21  
10 Layout...........................................................................22  
10.1 Layout Guidelines................................................... 22  
10.2 Layout Example...................................................... 23  
11 Device and Documentation Support..........................24  
11.1 Third-Party Products Disclaimer............................. 24  
11.2 Documentation Support.......................................... 24  
11.3 Receiving Notification of Documentation Updates..24  
11.4 Support Resources................................................. 24  
11.5 Trademarks............................................................. 24  
12 Electrostatic Discharge Caution................................ 24  
13 Glossary....................................................................... 24  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics (VDD = 5 V ±10 %).............5  
6.6 Electrical Characteristics (VDD = 3.3 V ±10 %)..........7  
6.7 Electrical Characteristics (VDD = 1.8 V ±10 %)..........9  
6.8 Electrical Characteristics (VDD = 1.2 V ±10 %)........ 11  
7 Parameter Measurement Information..........................13  
7.1 On-Resistance.......................................................... 13  
7.2 Off-Leakage Current................................................. 13  
7.3 On-Leakage Current................................................. 14  
7.4 Transition Time......................................................... 14  
7.5 Break-Before-Make...................................................15  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (August, 2019) to Revision A (July, 2020)  
Page  
将数据表发布为“生产数据”.............................................................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMUX1208-Q1  
 
TMUX1208-Q1  
ZHCSK56A AUGUST 2019 REVISED JULY 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
N.C.  
S1  
1
12  
11  
10  
9
GND  
VDD  
S5  
2
3
4
S2  
S3  
S6  
Not to scale  
5-1. RSV Package 16-Pin QFN Top View  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
UQFN  
A0  
15  
16  
I
I
Address line 0. Controls the switch configuration as shown in 8-1.  
Active high logic input. When this pin is low, all switches are turned off. When this pin is high, the A[2:0]  
address inputs determine which switch is turned on.  
EN  
N.C.  
S1  
S2  
S3  
S4  
D
1
2
Not Connected  
Not Connected  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Source pin 1. Can be an input or output.  
Source pin 2. Can be an input or output.  
Source pin 3. Can be an input or output.  
Source pin 4. Can be an input or output.  
Drain pin. Can be an input or output.  
Source pin 8. Can be an input or output.  
Source pin 7. Can be an input or output.  
Source pin 6. Can be an input or output.  
Source pin 5. Can be an input or output.  
3
4
5
6
S8  
S7  
S6  
S5  
7
8
9
10  
Positive power supply. This pin is the most positive power-supply potential. For reliable operation,  
connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.  
VDD  
11  
P
GND  
A2  
12  
13  
14  
P
I
Ground (0 V) reference  
Address line 2. Controls the switch configuration as shown in 8-1.  
Address line 1. Controls the switch configuration as shown in 8-1.  
A1  
I
(1) I = input, O = output, I/O = input and output, P = power  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMUX1208-Q1  
 
 
 
TMUX1208-Q1  
ZHCSK56A AUGUST 2019 REVISED JULY 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2) (3)  
MIN  
0.3  
0.3  
30  
0.5  
30  
30  
65  
MAX  
UNIT  
V
VDD  
Supply voltage  
6
6
VLOGIC  
ILOGIC  
VS or VD  
IS or ID (CONT)  
IIK  
Logic control input pin voltage (EN, A0, A1, A2)  
Logic control input pin current (EN, A0, A1, A2)  
Source or drain voltage (Sx, D)  
Source or drain continuous current (Sx, D)  
Diode clamp current(4)  
V
30  
mA  
V
VDD+0.5  
30  
mA  
mA  
°C  
°C  
30  
Tstg  
Storage temperature  
150  
150  
TJ  
Junction temperature  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
(3) All voltages are with respect to ground, unless otherwise specified.  
(4) Signal path pins are diode-clamped to the power-supply rails. Over voltage signals must be voltage and current limited to maximum  
ratings.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 2  
±2000  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per AEC Q100-011  
CDM ESD Classification Level C4B  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.08  
0
NOM  
MAX  
5.5  
UNIT  
V
VDD  
Supply voltage  
VS or VD  
VLOGIC  
TA  
Signal path input/output voltage (source or drain pin) (Sx, D)  
Logic control input pin voltage (EN, A0, A1, A2)  
Ambient temperature  
VDD  
5.5  
V
0
V
125  
°C  
40  
6.4 Thermal Information  
TMUX1208-Q1  
RSV (QFN)  
16 PINS  
134.6  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
74.3  
62.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
4.3  
ΨJT  
61.1  
ΨJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMUX1208-Q1  
 
 
 
 
 
 
 
 
 
 
 
TMUX1208-Q1  
ZHCSK56A AUGUST 2019 REVISED JULY 2020  
www.ti.com.cn  
6.5 Electrical Characteristics (VDD = 5 V ±10 %)  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
5
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to 7-1  
7
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
Ω
9
Ω
0.15  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to 7-1  
On-resistance matching between  
channels  
1
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
Ω
1
Ω
1.5  
2
Ω
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to 7-1  
RON  
On-resistance flatness  
40°C to +85°C  
40°C to +125°C  
25°C  
FLAT  
3
Ω
VDD = 5 V  
±75  
nA  
Switch Off  
-150  
-175  
150  
175  
nA  
nA  
40°C to +85°C  
IS(OFF) Source off leakage current(1)  
VD = 4.5 V / 1 V  
VS = 1 V / 4.5 V  
Refer to 7-2  
40°C to +125°C  
VDD = 5 V  
Switch Off  
VD = 4.5 V / 1 V  
VS = 1 V / 4.5 V  
Refer to 7-2  
25°C  
±200  
±200  
nA  
nA  
-500  
-750  
500  
750  
40°C to +85°C  
ID(OFF) Drain off leakage current(1)  
nA  
40°C to +125°C  
VDD = 5 V  
Switch On  
VD = VS = 4.5 V / 1 V  
Refer to 7-3  
25°C  
nA  
nA  
nA  
ID(ON)  
-500  
-750  
500  
750  
Channel on leakage current  
IS(ON)  
40°C to +85°C  
40°C to +125°C  
LOGIC INPUTS (EN, A0, A1, A2)  
VIH  
VIL  
Input logic high  
Input logic low  
-40°C to 125°C  
-40°C to 125°C  
1.49  
0
5.5  
V
V
0.87  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
1
µA  
µA  
IIH  
IIL  
±0.10  
2
40°C to +125°C  
CIN  
CIN  
Logic input capacitance  
Logic input capacitance  
25°C  
pF  
pF  
40°C to +125°C  
POWER SUPPLY  
25°C  
0.02  
µA  
µA  
IDD  
VDD supply current  
Logic inputs = 0 V or 5.5 V  
2.7  
40°C to +125°C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMUX1208-Q1  
 
TMUX1208-Q1  
ZHCSK56A AUGUST 2019 REVISED JULY 2020  
www.ti.com.cn  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
14  
ns  
VS = 3 V  
33  
33  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tTRAN  
Transition time between channels  
RL = 200 , CL = 15 pF  
Refer to 7-4  
40°C to +85°C  
40°C to +125°C  
25°C  
8
14  
11  
VS = 3 V  
RL = 200 , CL = 15 pF  
Refer to 7-5  
tOPEN  
1
1
Break before make time  
40°C to +85°C  
40°C to +125°C  
25°C  
(BBM)  
VS = 3 V  
RL = 200 , CL = 15 pF  
Refer to 7-6  
20  
20  
tON(EN) Enable turn-on time  
tOFF(EN) Enable turn-off time  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 3 V  
RL = 200 , CL = 15 pF  
Refer to 7-6  
20  
20  
40°C to +85°C  
40°C to +125°C  
VS = VDD/2  
QC  
Charge Injection  
Off Isolation  
RS = 0 , CL = 1 nF  
Refer to 7-7  
25°C  
25°C  
25°C  
25°C  
-8  
-62  
-42  
-62  
pC  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to 7-8  
OISO  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to 7-8  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to 7-9  
XTALK  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to 7-9  
25°C  
25°C  
-42  
65  
dB  
RL = 50 , CL = 5 pF  
Refer to 7-10  
BW  
Bandwidth  
MHz  
CSOFF Source off capacitance  
CDOFF Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
13  
76  
pF  
pF  
CSON  
On capacitance  
CDON  
f = 1 MHz  
25°C  
85  
pF  
(1) When VS is 4.5 V, VD is 1.5 V or when VS is 1.5 V, VD is 4.5 V.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMUX1208-Q1  
 
TMUX1208-Q1  
ZHCSK56A AUGUST 2019 REVISED JULY 2020  
www.ti.com.cn  
6.6 Electrical Characteristics (VDD = 3.3 V ±10 %)  
at TA = 25°C, VDD = 3.3 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
9
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to 7-1  
15  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
Ω
17  
Ω
0.15  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to 7-1  
On-resistance matching between  
channels  
1
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
Ω
1
Ω
3
5
Ω
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to 7-1  
RON  
On-resistance flatness  
40°C to +85°C  
40°C to +125°C  
25°C  
FLAT  
6
Ω
VDD = 3.3 V  
Switch Off  
VD = 3 V / 1 V  
VS = 1 V / 3 V  
Refer to 7-2  
±75  
nA  
-150  
-175  
150  
175  
nA  
nA  
40°C to +85°C  
IS(OFF) Source off leakage current(1)  
40°C to +125°C  
VDD = 3.3 V  
Switch Off  
VD = 3 V / 1 V  
VS = 1 V / 3 V  
Refer to 7-2  
25°C  
±200  
±200  
nA  
nA  
-500  
-750  
500  
750  
40°C to +85°C  
ID(OFF) Drain off leakage current(1)  
nA  
40°C to +125°C  
VDD = 3.3 V  
Switch On  
VD = VS = 3 V / 1 V  
Refer to 7-3  
25°C  
nA  
nA  
nA  
ID(ON)  
-500  
-750  
500  
750  
Channel on leakage current  
IS(ON)  
40°C to +85°C  
40°C to +125°C  
LOGIC INPUTS (EN, A0, A1, A2)  
VIH  
VIL  
Input logic high  
Input logic low  
-40°C to 125°C  
-40°C to 125°C  
1.35  
0
5.5  
0.8  
V
V
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
1
µA  
µA  
IIH  
IIL  
±0.10  
2
40°C to +125°C  
CIN  
CIN  
Logic input capacitance  
Logic input capacitance  
25°C  
pF  
pF  
40°C to +125°C  
POWER SUPPLY  
25°C  
0.01  
µA  
µA  
IDD  
VDD supply current  
Logic inputs = 0 V or 5.5 V  
1.5  
40°C to +125°C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMUX1208-Q1  
 
TMUX1208-Q1  
ZHCSK56A AUGUST 2019 REVISED JULY 2020  
www.ti.com.cn  
at TA = 25°C, VDD = 3.3 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
14  
ns  
VS = 2 V  
25  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tTRAN  
Transition time between channels  
RL = 200 , CL = 15 pF  
Refer to 7-4  
40°C to +85°C  
40°C to +125°C  
25°C  
8
17  
7
VS = 2 V  
RL = 200 , CL = 15 pF  
Refer to 7-5  
tOPEN  
1
1
Break before make time  
40°C to +85°C  
40°C to +125°C  
25°C  
(BBM)  
VS = 2 V  
RL = 200 , CL = 15 pF  
Refer to 7-6  
25  
25  
tON(EN) Enable turn-on time  
tOFF(EN) Enable turn-off time  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 2 V  
RL = 200 , CL = 15 pF  
Refer to 7-6  
13  
13  
40°C to +85°C  
40°C to +125°C  
VS = VDD/2  
QC  
Charge Injection  
Off Isolation  
RS = 0 , CL = 1 nF  
Refer to 7-7  
25°C  
25°C  
25°C  
25°C  
±7  
-62  
-42  
-62  
pC  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to 7-8  
OISO  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to 7-8  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to 7-9  
XTALK  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to 7-9  
25°C  
25°C  
-42  
65  
dB  
RL = 50 , CL = 5 pF  
Refer to 7-10  
BW  
Bandwidth  
MHz  
CSOFF Source off capacitance  
CDOFF Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
13  
76  
pF  
pF  
CSON  
On capacitance  
CDON  
f = 1 MHz  
25°C  
85  
pF  
(1) When VS is 3 V, VD is 1 V or when VS is 1 V, VD is 3 V.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMUX1208-Q1  
 
TMUX1208-Q1  
ZHCSK56A AUGUST 2019 REVISED JULY 2020  
www.ti.com.cn  
6.7 Electrical Characteristics (VDD = 1.8 V ±10 %)  
at TA = 25°C, VDD = 1.8 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
40  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to 7-1  
80  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
Ω
80  
Ω
0.15  
±75  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to 7-1  
On-resistance matching between  
channels  
1.5  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
Ω
1.5  
Ω
VDD = 1.98 V  
Switch Off  
VD = 1.8 V / 1 V  
VS = 1 V / 1.8 V  
Refer to 7-2  
nA  
-150  
-175  
150  
175  
nA  
nA  
40°C to +85°C  
IS(OFF) Source off leakage current(1)  
40°C to +125°C  
VDD = 1.98 V  
Switch Off  
VD = 1.8 V / 1 V  
VS = 1 V / 1.8 V  
Refer to 7-2  
25°C  
±200  
±200  
nA  
nA  
-500  
-750  
500  
750  
40°C to +85°C  
ID(OFF) Drain off leakage current(1)  
nA  
40°C to +125°C  
VDD = 1.98 V  
Switch On  
VD = VS = 1.8 V / 1 V  
Refer to 7-3  
25°C  
nA  
nA  
nA  
ID(ON)  
-500  
-750  
500  
750  
Channel on leakage current  
IS(ON)  
40°C to +85°C  
40°C to +125°C  
LOGIC INPUTS (EN, A0, A1, A2)  
VIH  
VIL  
Input logic high  
Input logic low  
1.07  
0
5.5  
V
V
40°C to +125°C  
40°C to +125°C  
0.68  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
1
µA  
µA  
IIH  
IIL  
±0.10  
2
40°C to +125°C  
25°C  
pF  
pF  
CIN  
Logic input capacitance  
40°C to +125°C  
POWER SUPPLY  
25°C  
0.006  
µA  
µA  
IDD  
VDD supply current  
Logic inputs = 0 V or 5.5 V  
0.95  
40°C to +125°C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMUX1208-Q1  
 
TMUX1208-Q1  
ZHCSK56A AUGUST 2019 REVISED JULY 2020  
www.ti.com.cn  
at TA = 25°C, VDD = 1.8 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
28  
ns  
VS = 1 V  
48  
48  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tTRAN  
Transition time between channels  
RL = 200 , CL = 15 pF  
Refer to 7-4  
40°C to +85°C  
40°C to +125°C  
25°C  
16  
28  
16  
VS = 1 V  
RL = 200 , CL = 15 pF  
Refer to 7-5  
tOPEN  
1
1
Break before make time  
40°C to +85°C  
40°C to +125°C  
25°C  
(BBM)  
VS = 1 V  
RL = 200 , CL = 15 pF  
Refer to 7-6  
48  
48  
tON(EN) Enable turn-on time  
tOFF(EN) Enable turn-off time  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 1 V  
RL = 200 , CL = 15 pF  
Refer to 7-6  
27  
27  
40°C to +85°C  
40°C to +125°C  
VS = VDD/2  
QC  
Charge Injection  
Off Isolation  
RS = 0 , CL = 1 nF  
Refer to 7-7  
25°C  
25°C  
25°C  
25°C  
-2  
-62  
-42  
-62  
pC  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to 7-8  
OISO  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to 7-8  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to 7-9  
XTALK  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to 7-9  
25°C  
25°C  
-42  
65  
dB  
RL = 50 , CL = 5 pF  
Refer to 7-10  
BW  
Bandwidth  
MHz  
CSOFF Source off capacitance  
CDOFF Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
13  
76  
pF  
pF  
CSON  
On capacitance  
CDON  
f = 1 MHz  
25°C  
85  
pF  
(1) When VS is 1.8 V, VD is 1 V or when VS is 1 V, VD is 1.8 V.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMUX1208-Q1  
 
TMUX1208-Q1  
ZHCSK56A AUGUST 2019 REVISED JULY 2020  
www.ti.com.cn  
6.8 Electrical Characteristics (VDD = 1.2 V ±10 %)  
at TA = 25°C, VDD = 1.2 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
70  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to 7-1  
105  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
Ω
105  
Ω
0.15  
±75  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to 7-1  
On-resistance matching between  
channels  
1.5  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
Ω
1.5  
Ω
VDD = 1.32 V  
Switch Off  
VD = 1.2 V / 1 V  
VS = 1 V / 1.2 V  
Refer to 7-2  
nA  
-150  
-175  
150  
175  
nA  
nA  
40°C to +85°C  
IS(OFF) Source off leakage current(1)  
40°C to +125°C  
VDD = 1.32 V  
Switch Off  
VD = 1.2 V / 1 V  
VS = 1 V / 1.2 V  
Refer to 7-2  
25°C  
±200  
±200  
nA  
nA  
-500  
-750  
500  
750  
40°C to +85°C  
ID(OFF) Drain off leakage current(1)  
nA  
40°C to +125°C  
VDD = 1.32 V  
Switch On  
VD = VS = 1.2 V / 1 V  
Refer to 7-3  
25°C  
nA  
nA  
nA  
ID(ON)  
-500  
-750  
500  
750  
Channel on leakage current  
IS(ON)  
40°C to +85°C  
40°C to +125°C  
LOGIC INPUTS (EN, A0, A1, A2)  
VIH  
VIL  
Input logic high  
Input logic low  
0.96  
0
5.5  
V
V
40°C to +125°C  
40°C to +125°C  
0.36  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
1
µA  
µA  
IIH  
IIL  
±0.10  
2
40°C to +125°C  
25°C  
pF  
pF  
CIN  
Logic input capacitance  
40°C to +125°C  
POWER SUPPLY  
25°C  
0.005  
µA  
µA  
IDD  
VDD supply current  
Logic inputs = 0 V or 5.5 V  
0.8  
40°C to +125°C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMUX1208-Q1  
 
TMUX1208-Q1  
ZHCSK56A AUGUST 2019 REVISED JULY 2020  
www.ti.com.cn  
at TA = 25°C, VDD = 1.2 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
60  
ns  
VS = 1 V  
210  
210  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tTRAN  
Transition time between channels  
RL = 200 , CL = 15 pF  
Refer to 7-4  
40°C to +85°C  
40°C to +125°C  
25°C  
32  
60  
45  
VS = 1 V  
RL = 200 , CL = 15 pF  
Refer to 7-5  
tOPEN  
1
1
Break before make time  
40°C to +85°C  
40°C to +125°C  
25°C  
(BBM)  
VS = 1 V  
RL = 200 , CL = 15 pF  
Refer to 7-6  
190  
190  
tON(EN) Enable turn-on time  
tOFF(EN) Enable turn-off time  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 1 V  
RL = 200 , CL = 15 pF  
Refer to 7-6  
150  
150  
40°C to +85°C  
40°C to +125°C  
VS = VDD/2  
QC  
Charge Injection  
Off Isolation  
RS = 0 , CL = 1 nF  
Refer to 7-7  
25°C  
25°C  
25°C  
25°C  
-2  
-62  
-42  
-62  
pC  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to 7-8  
OISO  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to 7-8  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to 7-9  
XTALK  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to 7-9  
25°C  
25°C  
-42  
65  
dB  
RL = 50 , CL = 5 pF  
Refer to 7-10  
BW  
Bandwidth  
MHz  
CSOFF Source off capacitance  
CDOFF Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
13  
76  
pF  
pF  
CSON  
On capacitance  
CDON  
f = 1 MHz  
25°C  
85  
pF  
(1) When VS is 1.2 V, VD is 1 V or when VS is 1 V, VD is 1.2 V.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMUX1208-Q1  
 
TMUX1208-Q1  
ZHCSK56A AUGUST 2019 REVISED JULY 2020  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 On-Resistance  
The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (D) pins of the device.  
The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-  
resistance. The measurement setup used to measure RON is shown below. Voltage (V) and current (ISD) are  
measured using this setup, and RON is computed as shown in 7-1 with RON = V / ISD  
:
V
ISD  
Sx  
D
VS  
7-1. On-Resistance Measurement Setup  
7.2 Off-Leakage Current  
There are two types of leakage currents associated with a switch during the off state:  
1. Source off-leakage current  
2. Drain off-leakage current  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS(OFF)  
.
Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off.  
This current is denoted by the symbol ID(OFF)  
.
The setup used to measure both off-leakage currents is shown in 7-2.  
VDD  
VDD  
VDD  
VDD  
Is (OFF)  
S1  
S2  
S1  
A
ID (OFF)  
S2  
D
D
A
VS  
S8  
S8  
VS  
VD  
VD  
GND  
GND  
7-2. Off-Leakage Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMUX1208-Q1  
 
 
 
 
 
TMUX1208-Q1  
ZHCSK56A AUGUST 2019 REVISED JULY 2020  
www.ti.com.cn  
7.3 On-Leakage Current  
Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is on. This current is denoted by the symbol IS(ON)  
.
Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
on. This current is denoted by the symbol ID(ON)  
.
Either the source pin or drain pin is left floating during the measurement. 7-3 shows the circuit used for  
measuring the on-leakage current, denoted by IS(ON) or ID(ON)  
.
VDD  
VDD  
VDD  
VDD  
IS (ON)  
S1  
S1  
S2  
A
N.C.  
ID (ON)  
S2  
D
D
A
N.C.  
S8  
S8  
Vs  
VS  
VS  
VD  
GND  
GND  
7-3. On-Leakage Measurement Setup  
7.4 Transition Time  
Transition time is defined as the time taken by the output of the device to rise or fall 10% after the address signal  
has risen or fallen past the logic threshold. The 10% transition measurement is utilized to provide the timing of  
the device, system level timing can then account for the time constant added from the load resistance and load  
capacitance. 7-4 shows the setup used to measure transition time, denoted by the symbol tTRANSITION  
.
VDD  
0.1F  
VDD  
VDD  
ADDRESS  
DRIVE  
(VSEL  
tf < 5ns  
tr < 5ns  
VIH  
S1  
)
VS  
OUTPUT  
VIL  
D
0 V  
S2  
S8  
RL  
CL  
tTRANSITION  
tTRANSITION  
A0  
A1  
A2  
90%  
OUTPUT  
VSEL  
10%  
GND  
0 V  
7-4. Transition-Time Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMUX1208-Q1  
 
 
 
 
TMUX1208-Q1  
ZHCSK56A AUGUST 2019 REVISED JULY 2020  
www.ti.com.cn  
7.5 Break-Before-Make  
Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is  
switching. The output first breaks from the on-state switch before making the connection with the next on-state  
switch. The time delay between the break and the make is known as break-before-make delay. 7-5 shows the  
setup used to measure break-before-make delay, denoted by the symbol tOPEN(BBM)  
.
VDD  
0.1F  
VDD  
VDD  
S1  
ADDRESS  
DRIVE  
VS  
OUTPUT  
D
tr < 5ns  
tf < 5ns  
(VSEL  
)
S2-S7  
0 V  
RL  
CL  
S8  
90%  
Output  
A0  
A1  
A2  
tBBM  
1
tBBM 2  
0 V  
VSEL  
tOPEN (BBM) = min ( tBBM 1, tBBM 2)  
GND  
7-5. Break-Before-Make Delay Measurement Setup  
7.6 tON(EN) and tOFF(EN)  
Turn-on time is defined as the time taken by the output of the device to rise to 10% after the enable has risen  
past the logic threshold. The 10% measurement is utilized to provide the timing of the device, system level timing  
can then account for the time constant added from the load resistance and load capacitance. 7-6 shows the  
setup used to measure transition time, denoted by the symbol tON(EN)  
.
Turn-off time is defined as the time taken by the output of the device to fall to 90% after the enable has fallen  
past the logic threshold. The 90% measurement is utilized to provide the timing of the device, system level timing  
can then account for the time constant added from the load resistance and load capacitance. 7-6 shows the  
setup used to measure transition time, denoted by the symbol tOFF(EN)  
.
VDD  
0.1F  
VDD  
VDD  
tf < 5ns  
tr < 5ns  
ENABLE  
DRIVE  
S1  
VS  
OUTPUT  
VIH  
(VEN  
)
D
VIL  
S2  
S8  
0 V  
RL  
CL  
tOFF  
tON  
(EN)  
(EN)  
A0  
A1  
A2  
EN  
90%  
OUTPUT  
0 V  
VEN  
10%  
GND  
7-6. Turn-On and Turn-Off Time Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMUX1208-Q1  
 
 
 
 
TMUX1208-Q1  
ZHCSK56A AUGUST 2019 REVISED JULY 2020  
www.ti.com.cn  
7.7 Charge Injection  
The TMUX1208-Q1 has a transmission-gate topology. Any mismatch in capacitance between the NMOS and  
PMOS transistors results in a charge injected into the drain or source during the falling or rising edge of the gate  
signal. The amount of charge injected into the source or drain of the device is known as charge injection, and is  
denoted by the symbol QC. 7-7 shows the setup used to measure charge injection from source (Sx) to drain  
(D).  
VDD  
0.1F  
VDD  
VDD  
S1  
VS  
OUTPUT  
D
VOUT  
0 V  
S2  
S8  
CL  
Output  
VOUT  
VS  
QC = CL  
×
VOUT  
A0  
A1  
A2  
EN  
VEN  
GND  
7-7. Charge-Injection Measurement Setup  
7.8 Off Isolation  
Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to the  
source pin (Sx) of an off-channel. 7-8 shows the setup used to measure, and the equation to compute off  
isolation.  
0.1µF  
NETWORK  
VDD  
ANALYZER  
VS  
S
50Q  
VSIG  
D
VOUT  
RL  
SX/DX  
50Q  
GND  
RL  
50Q  
7-8. Off Isolation Measurement Setup  
«
VOUT  
VS  
Off Isolation = 20 Log  
÷
(1)  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMUX1208-Q1  
 
 
 
 
TMUX1208-Q1  
ZHCSK56A AUGUST 2019 REVISED JULY 2020  
www.ti.com.cn  
7.9 Crosstalk  
Crosstalk is defined as the ratio of the signal at the drain pin (D) of a different channel, when a signal is applied  
at the source pin (Sx) of an on-channel. 7-9 shows the setup used to measure, and the equation used to  
compute crosstalk.  
0.1µF  
NETWORK  
VDD  
ANALYZER  
S1  
VOUT  
RL  
D
50Q  
VS  
RL  
S2  
50Q  
50Q  
VSIG  
SX  
RL  
GND  
50Q  
7-9. Channel-to-Channel Crosstalk Measurement Setup  
«
÷
VOUT  
VS  
Channel-to-Channel Crosstalk = 20 Log  
(2)  
7.10 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the device. 7-10  
shows the setup used to measure bandwidth.  
0.1µF  
NETWORK  
VDD  
ANALYZER  
VS  
S
50Q  
VSIG  
D
VOUT  
RL  
50Q  
GND  
7-10. Bandwidth Measurement Setup  
«
÷
V2  
Attenuation = 20 Log  
V
1
(3)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMUX1208-Q1  
 
 
 
 
TMUX1208-Q1  
ZHCSK56A AUGUST 2019 REVISED JULY 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TMUX1208-Q1 is an 8:1, single-ended (1-channel), mux. Each channel is turned on or off based on the  
state of the address lines and enable pin.  
8.2 Functional Block Diagram  
TMUX1208-Q1  
S1  
S2  
S3  
S4  
D
S5  
S6  
S7  
S8  
1-OF-8  
DECODER  
A0 A1 A2 EN  
8.3 Feature Description  
8.3.1 Bidirectional Operation  
The TMUX1208-Q1 conducts equally well from source (Sx) to drain (D) or from drain (D) to source (Sx). Each  
channel has very similar characteristics in both directions and supports both analog and digital signals.  
8.3.2 Rail to Rail Operation  
The valid signal path input/output voltage for TMUX1208-Q1 ranges from GND to VDD  
.
8.3.3 1.8 V Logic Compatible Inputs  
The TMUX1208-Q1 has 1.8-V logic compatible control for all logic control inputs. The logic input thresholds scale  
with supply but still provide 1.8-V logic control when operating at 5.5 V supply voltage. 1.8-V logic level inputs  
allows the multiplexers to interface with processors that have lower logic I/O rails and eliminates the need for an  
external translator, which saves both space and BOM cost. For more information on 1.8 V logic implementations  
refer to Simplifying Design with 1.8 V logic Muxes and Switches  
8.3.4 Fail-Safe Logic  
The TMUX1208-Q1 has Fail-Safe Logic on the control input pins (EN, A0. A1, A2) allowing for operation up to  
5.5 V, regardless of the state of the supply pin. This feature allows voltages on the control pins to be applied  
before the supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system complexity  
by removing the need for power supply sequencing on the logic control pins. For example, the Fail-Safe Logic  
feature allows the select pins of the TMUX1208-Q1 to be ramped to 5.5 V while VDD = 0 V. Additionally, the  
feature enables operation of the multiplexers with VDD = 1.2 V while allowing the select pins to interface with a  
logic level of another device up to 5.5 V.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMUX1208-Q1  
 
 
 
 
 
 
 
 
TMUX1208-Q1  
ZHCSK56A AUGUST 2019 REVISED JULY 2020  
www.ti.com.cn  
8.3.5 Device Functional Modes  
When the EN pin of the TMUX1208-Q1 is pulled high, one of the switches is closed based on the state of the  
address lines. When the EN pin is pulled low, all the switches are in an open state regardless of the state of the  
address lines.  
The TMUX1208-Q1 can be operated without any external components except for the supply decoupling  
capacitors. Unused logic control pins should be tied to GND or VDD in order to ensure the device does not  
consume additional current as highlighted in Implications of Slow or Floating CMOS Inputs. Unused signal path  
inputs (Sx or D) should be connected to GND.  
8.3.6 Truth Tables  
8-1 shows the truth tables for the TMUX1208-Q1.  
8-1. TMUX1208-Q1 Truth Table  
EN A2 A1 A0 Selected Inputs Connected To Drain (D) Pin  
0
1
1
1
1
1
1
1
1
X(1) X(1) X(1)  
All channels are off  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
(1) X denotes don't care.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMUX1208-Q1  
 
 
TMUX1208-Q1  
ZHCSK56A AUGUST 2019 REVISED JULY 2020  
www.ti.com.cn  
Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TMUX12xx family offers good system performance across a wide operating supply (1.08 V to 5.5 V). These  
devices include 1.8 V logic compatible control input pins that enable operation in systems with 1.8 V I/O rails.  
Additionally, the control input pins support Fail-Safe Logic which allows for operation up to 5.5 V, regardless of  
the state of the supply pin. This protection stops the logic pins from back-powering the supply rail. These  
features make the TMUX12xx a family of general purpose multiplexers and switches that can reduce system  
complexity, board size, and overall system cost.  
9.2 Typical Application  
One useful application to take advantage of the TMUX1208-Q1 features is multiplexing various signals into an  
ADC that is integrated into a MCU. Using an integrated ADC in a MCU allows a system to minimize cost with a  
potential tradeoff of system performance when compared to an external ADC. The multiplexer allows for multiple  
inputs/sensors to be monitored with a single ADC pin of the device, which is critical in systems with limited I/O.  
VDD  
VDD  
VI/O  
VDD  
EN  
LDO #1  
MCU  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
LDO #2  
LDO #3  
RAM  
FLASH  
D
Integrated  
12-bit ADC  
LM20  
Analog Temp.  
Sensor  
LM20  
Analog Temp.  
Sensor  
Port I/O  
TIMERS  
A2  
A1  
LM20  
Analog Temp.  
Sensor  
A0  
GND  
1.8V Logic  
I/O  
System Inputs &  
Sensors  
9-1. Multiplexing Signals to Integrated ADC  
9.3 Design Requirements  
For this design example, use the parameters listed in 9-1.  
9-1. Design Parameters  
PARAMETERS  
Supply (VDD  
VALUES  
5.0 V  
)
I/O signal range  
0 V to VDD (Rail to Rail)  
1.8 V compatible  
Control logic thresholds  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMUX1208-Q1  
 
TMUX1208-Q1  
ZHCSK56A AUGUST 2019 REVISED JULY 2020  
www.ti.com.cn  
9.4 Detailed Design Procedure  
The TMUX1208-Q1 can be operated without any external components except for the supply decoupling  
capacitors. If the parts desired power-up state is disabled, the enable pin should have a weak pull-down resistor  
and be controlled by the MCU via GPIO. All inputs being muxed to the ADC of the MCU must fall within the  
recommend operating conditions of the TMUX1208-Q1 including signal range and continuous current. For this  
design with a supply of 5 V, the signal range can be 0 V to 5 V and the max continuous current can be 30 mA.  
9.5 Application Curve  
80  
VDD= 1.08V  
60  
40  
VDD= 1.62V  
20  
VDD= 3V  
VDD= 4.5V  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Source or Drain Voltage (V)  
4
4.5  
5
D001  
TA = 25°C  
9-2. On-Resistance vs Source or Drain Voltage  
9 Power Supply Recommendations  
The TMUX1208-Q1 operate across a wide supply range of 1.08 V to 5.5 V. Do not exceed the absolute  
maximum ratings because stresses beyond the listed ratings can cause permanent damage to the devices.  
Power-supply bypassing improves noise margin and prevents switching noise propagation from the VDD supply  
to other components. Good power-supply decoupling is important to achieve optimum performance. For  
improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μF to 10 μF from VDD to  
ground. Place the bypass capacitors as close to the power supply pins of the device as possible using low-  
impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low  
equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes.  
For very sensitive systems, or for systems in harsh noise environments, avoiding the use of vias for connecting  
the capacitors to the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers  
the overall inductance and is beneficial for connections to ground planes.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMUX1208-Q1  
 
TMUX1208-Q1  
ZHCSK56A AUGUST 2019 REVISED JULY 2020  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
10.1.1 Layout Information  
When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of  
the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and selfinductance  
of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must  
turn corners. 10-1 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
WORST  
BETTER  
BEST  
2W  
1W min.  
W
10-1. Trace Example  
Route high-speed signals using a minimum of vias and corners which reduces signal reflections and impedance  
changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via  
introduces discontinuities in the signals transmission line and increases the chance of picking up interference  
from the other layers of the board. Be careful when designing test points, through-hole pins are not  
recommended at high frequencies.  
10.1.2  
10-2 illustrates an example of a PCB layout with the TMUX1208-Q1. Some key considerations are:  
Decouple the VDD pin with a 0.1-µF capacitor, placed as close to the pin as possible. Make sure that the  
capacitor voltage rating is sufficient for the VDD supply.  
Keep the input lines as short as possible.  
Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMUX1208-Q1  
 
 
 
TMUX1208-Q1  
ZHCSK56A AUGUST 2019 REVISED JULY 2020  
www.ti.com.cn  
10.2 Layout Example  
Via to  
ground plane  
A0  
EN  
A1  
A2  
Wide (low inductance)  
trace for power  
C
GND  
VDD  
N.C.  
Via to  
ground plane  
S1  
S2  
S3  
S4  
D
S5  
S6  
S7  
S8  
TMUX1208-Q1  
10-2. TMUX1208-Q1 Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMUX1208-Q1  
 
 
TMUX1208-Q1  
ZHCSK56A AUGUST 2019 REVISED JULY 2020  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 Documentation Support  
11.2.1 Related Documentation  
Texas Instruments, Simplifying Design with 1.8 V logic Muxes and Switches.  
Texas Instruments, QFN/SON PCB Attachment.  
Texas Instruments, Quad Flatpack No-Lead Logic Packages.  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMUX1208-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX1208QRSVRQ1  
ACTIVE  
UQFN  
RSV  
16  
3000 RoHS & Green  
NIPDAUAG  
Level-1-260C-UNLIM  
-40 to 125  
208Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX1208QRSVRQ1  
UQFN  
RSV  
16  
3000  
178.0  
13.5  
2.1  
2.9  
0.75  
4.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
UQFN RSV 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
189.0 185.0 36.0  
TMUX1208QRSVRQ1  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RSV0016A  
UQFN - 0.55 mm max height  
S
C
A
L
E
5
.
0
0
0
ULTRA THIN QUAD FLATPACK - NO LEAD  
1.85  
1.75  
A
B
PIN 1 INDEX AREA  
2.65  
2.55  
C
0.55  
0.45  
SEATING PLANE  
0.05 C  
0.05  
0.00  
2X 1.2  
SYMM  
(0.13) TYP  
5
8
0.45  
0.35  
15X  
4
9
SYMM  
2X 1.2  
12X 0.4  
1
0.25  
16X  
12  
0.15  
0.07  
0.05  
C A B  
13  
16  
0.55  
0.45  
PIN 1 ID  
(45° X 0.1)  
4220314/C 02/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSV0016A  
UQFN - 0.55 mm max height  
ULTRA THIN QUAD FLATPACK - NO LEAD  
SYMM  
(0.7)  
16  
SEE SOLDER MASK  
DETAIL  
13  
12  
16X (0.2)  
1
SYMM  
12X (0.4)  
(2.4)  
(R0.05) TYP  
9
4
15X (0.6)  
5
8
(1.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4220314/C 02/2020  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSV0016A  
UQFN - 0.55 mm max height  
ULTRA THIN QUAD FLATPACK - NO LEAD  
(0.7)  
16  
13  
16X (0.2)  
1
12  
SYMM  
12X (0.4)  
(2.4)  
(R0.05) TYP  
4
9
15X (0.6)  
5
8
SYMM  
(1.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 25X  
4220314/C 02/2020  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TMUX1208RSVR

具有 1.8V 输入逻辑的 5V、8:1、单通道通用模拟多路复用器 | RSV | 16 | -40 to 125
TI

TMUX1209

具有 1.8V 输入逻辑控制的 5V、4:1、2 通道通用多路复用器
TI

TMUX1209PWR

具有 1.8V 输入逻辑控制的 5V、4:1、2 通道通用多路复用器 | PW | 16 | -40 to 125
TI

TMUX1209RSVR

具有 1.8V 输入逻辑控制的 5V、4:1、2 通道通用多路复用器 | RSV | 16 | -40 to 125
TI

TMUX1219

具有 1.8V 输入逻辑的 5V、2:1 (SPDT)、单通道通用模拟开关
TI

TMUX1219DBVR

具有 1.8V 输入逻辑的 5V、2:1 (SPDT)、单通道通用模拟开关 | DBV | 6 | -40 to 125
TI

TMUX1219DCKR

具有 1.8V 输入逻辑的 5V、2:1 (SPDT)、单通道通用模拟开关 | DCK | 6 | -40 to 125
TI

TMUX1237

在切换输入时无过冲的 5V、2:1 (SPDT) 通用开关
TI

TMUX1237DCKR

在切换输入时无过冲的 5V、2:1 (SPDT) 通用开关 | DCK | 6 | -40 to 125
TI

TMUX1247

5-V、2:1 (SPDT) 通用开关
TI

TMUX1247DCKR

5-V、2:1 (SPDT) 通用开关 | DCK | 6 | -40 to 125
TI

TMUX1248

具有 3157 引脚排列的 3Ω 低 RON、5V、2:1 (SPDT) 通用开关
TI