TMUX1219DCKR [TI]

具有 1.8V 输入逻辑的 5V、2:1 (SPDT)、单通道通用模拟开关 | DCK | 6 | -40 to 125;
TMUX1219DCKR
型号: TMUX1219DCKR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 1.8V 输入逻辑的 5V、2:1 (SPDT)、单通道通用模拟开关 | DCK | 6 | -40 to 125

开关 光电二极管
文件: 总34页 (文件大小:1633K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TMUX1219  
ZHCSJR5 MAY 2019  
TMUX1219 5V 双向、2:1 通用开关  
1 特性  
3 说明  
1
轨至轨运行  
TMUX1219 是一款通用互补金属氧化物半导体  
(CMOS) 单极双投 (SPDT) 开关。TMUX1219 可根据  
SEL 引脚的状态在两个输入电源之间切换。1.08V 至  
5.5V 的宽电源电压工作范围 可支持 从个人电子设备到  
楼宇自动化的各种应用。该器件可在源极 (Sx) 和漏极  
(D) 引脚上支持从 GND VDD 范围的双向模拟和数字  
信号。4nA 的低电源电流可用于便携式 应用。  
双向信号路径  
1.8V 逻辑兼容  
失效防护逻辑  
低导通电阻:3Ω  
宽电源电压范围:1.08V 5.5V  
-40°C +125°C 的工作温度  
低电源电流:4nA  
转换时间:14ns  
所有逻辑输入均具有兼容 1.8V 逻辑的阈值,当器件在  
有效电源电压范围内运行时,这些阈值可确保 TTL 和  
CMOS 逻辑兼容性。失效防护逻辑 电路允许在电源引  
脚之前的控制引脚上施加电压,从而保护器件免受潜在  
的损害。  
先断后合开关  
ESD 保护 HBM2000V  
2 应用  
器件信息(1)  
模拟和数字开关  
器件型号  
TMUX1219  
封装  
SC70 (6)  
SOT-23 (6)(2)  
封装尺寸(标称值)  
2.00mm × 1.25mm  
2.90mm x 1.60mm  
I2C SPI 总线多路复用  
远程无线电单元  
条形码扫描仪  
电机驱动器  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
(2) 产品预览  
楼宇自动化  
模拟输入模块  
电力输送  
空白  
空白  
空白  
视频监控  
电子销售终端  
电器  
空白  
空白  
空白  
消费类音频  
应用示例  
方框图  
TMUX1219  
Input  
R
R
S1  
Output  
S1  
S2  
Unity Gain  
Inverting  
D
D
S2  
TLV9001  
1.8 V  
SEL  
SEL  
TMUX1219  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SCDS409  
 
 
 
 
TMUX1219  
ZHCSJR5 MAY 2019  
www.ti.com.cn  
目录  
7.8 Crosstalk ................................................................. 17  
7.9 Bandwidth ............................................................... 18  
Detailed Description ............................................ 19  
8.1 Functional Block Diagram ....................................... 19  
8.2 Feature Description................................................. 19  
8.3 Device Functional Modes........................................ 19  
8.4 Truth Tables............................................................ 19  
Application and Implementation ........................ 20  
9.1 Application Information............................................ 20  
9.2 Typical Application ................................................. 20  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics (VDD = 5 V ±10 %)............ 5  
6.6 Electrical Characteristics (VDD = 3.3 V ±10 %)......... 7  
6.7 Electrical Characteristics (VDD = 1.8 V ±10 %)......... 9  
6.8 Electrical Characteristics (VDD = 1.2 V ±10 %)....... 11  
6.9 Typical Characteristics............................................ 13  
Parameter Measurement Information ................ 14  
7.1 On-Resistance ........................................................ 14  
7.2 Off-Leakage Current ............................................... 14  
7.3 On-Leakage Current ............................................... 15  
7.4 Transition Time ....................................................... 15  
7.5 Break-Before-Make................................................. 16  
7.6 Charge Injection...................................................... 16  
7.7 Off Isolation............................................................. 17  
8
9
10 Power Supply Recommendations ..................... 22  
11 Layout................................................................... 23  
11.1 Layout Guidelines ................................................. 23  
11.2 Layout Example .................................................... 23  
12 器件和文档支持 ..................................................... 24  
12.1 文档支持................................................................ 24  
12.2 接收文档更新通知 ................................................. 24  
12.3 社区资源................................................................ 24  
12.4 ....................................................................... 24  
12.5 静电放电警告......................................................... 24  
12.6 Glossary................................................................ 24  
13 机械、封装和可订购信息....................................... 24  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2019 5 月  
*
初始发行版。  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TMUX1219  
www.ti.com.cn  
ZHCSJR5 MAY 2019  
5 Pin Configuration and Functions  
DCK Package  
6-Pin SC70  
Top View  
DBV Package  
6-Pin SOT-23  
Top View  
SEL  
VDD  
GND  
1
2
3
6
5
4
S2  
D
SEL  
VDD  
GND  
1
2
3
6
5
4
S2  
D
S1  
S1  
Not to scale  
Not to scale  
Product Preview  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
SEL  
1
2
I
Select pin: controls state of the switch according to 1. (Logic Low = S1 to D, Logic High = S2 to D)  
Positive power supply. This pin is the most positive power-supply potential. For reliable operation, connect  
a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.  
VDD  
P
GND  
S1  
3
4
5
6
P
Ground (0 V) reference  
I/O  
I/O  
I/O  
Source pin 1. Can be an input or output.  
Drain pin. Can be an input or output.  
Source pin 2. Can be an input or output.  
D
S2  
(1) I = input, O = output, I/O = input and output, P = power  
Copyright © 2019, Texas Instruments Incorporated  
3
TMUX1219  
ZHCSJR5 MAY 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.5  
–0.5  
–30  
–0.5  
–30  
–65  
MAX  
UNIT  
V
VDD  
Supply voltage  
6
6
VSEL  
Logic control input pin voltage (SEL)  
Logic control input pin current (SEL)  
Source or drain voltage (Sx, D)  
Source or drain continuous current (Sx, D)  
Storage temperature  
V
ISEL  
30  
mA  
V
VS or VD  
IS or ID (CONT)  
Tstg  
VDD+0.5  
30  
mA  
°C  
°C  
150  
TJ  
Junction temperature  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101  
or ANSI/ESDA/JEDEC JS-002, all pins(2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.08  
0
NOM  
MAX  
5.5  
UNIT  
VDD  
Supply voltage  
V
V
VS or VD  
VSEL  
TA  
Signal path input/output voltage (source or drain pin) (Sx, D)  
Logic control input pin voltage (SEL)  
Ambient temperature  
VDD  
5.5  
0
V
–40  
125  
°C  
6.4 Thermal Information  
TMUX1219  
THERMAL METRIC(1)  
SC70 (DCK)  
6 PINS  
243.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
206.0  
128.3  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
107.8  
ΨJB  
128.0  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2019, Texas Instruments Incorporated  
TMUX1219  
www.ti.com.cn  
ZHCSJR5 MAY 2019  
6.5 Electrical Characteristics (VDD = 5 V ±10 %)  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
3
Ω
VS = 0 V to VDD  
RON  
On-resistance  
ISD = 10 mA  
Refer to On-Resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
5
6
Ω
Ω
0.15  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
0.4  
1
Ω
Ω
1.5  
2
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
RON  
FLAT  
On-resistance flatness  
–40°C to +85°C  
–40°C to +125°C  
25°C  
Ω
3
Ω
VDD = 5 V  
Switch Off  
VD = 4.5 V / 1.5 V  
VS = 1.5 V / 4.5 V  
Refer to Off-Leakage Current  
±5  
nA  
nA  
–40°C to +85°C  
–25  
–40  
25  
40  
IS(OFF)  
Source off leakage current(1)  
–40°C to +125°C  
nA  
VDD = 5 V  
Switch On  
VD = VS = 4.5 V / 1.5 V  
Refer to On-Leakage Current  
25°C  
±15  
nA  
nA  
ID(ON)  
IS(ON)  
–40°C to +85°C  
–50  
–80  
50  
80  
Channel on leakage current  
–40°C to +125°C  
nA  
LOGIC INPUTS (SEL)  
VIH  
VIL  
Input logic high  
Input logic low  
–40°C to +125°C  
–40°C to +125°C  
1.49  
0
5.5  
V
V
0.87  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.05  
2
CIN  
CIN  
Logic input capacitance  
Logic input capacitance  
25°C  
1
pF  
pF  
–40°C to +125°C  
POWER SUPPLY  
25°C  
0.003  
µA  
µA  
IDD VDD supply current  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
1.5  
(1) When VS is 4.5 V, VD is 1.5 V or when VS is 1.5 V, VD is 4.5 V.  
Copyright © 2019, Texas Instruments Incorporated  
5
TMUX1219  
ZHCSJR5 MAY 2019  
www.ti.com.cn  
Electrical Characteristics (VDD = 5 V ±10 %) (continued)  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
12  
ns  
VS = 3 V  
tTRAN  
Switching time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
18  
19  
ns  
ns  
ns  
ns  
ns  
Refer to Transition Time  
8
VS = 3 V  
tOPEN  
(BBM)  
Break before make time  
Charge Injection  
RL = 200 , CL = 15 pF  
Refer to Break-Before-Make  
–40°C to +85°C  
–40°C to +125°C  
1
1
VD = 1 V  
RS = 0 , CL = 1 nF  
Refer to Charge Injection  
QC  
25°C  
25°C  
25°C  
25°C  
25°C  
–10  
–65  
–45  
–65  
–45  
pC  
dB  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off Isolation  
OISO  
Off Isolation  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off Isolation  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Crosstalk  
XTALK  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Crosstalk  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
Bandwidth  
25°C  
25°C  
25°C  
250  
7
MHz  
pF  
CSOFF  
Source off capacitance  
On capacitance  
f = 1 MHz  
CSON  
CDON  
f = 1 MHz  
23  
pF  
6
Copyright © 2019, Texas Instruments Incorporated  
TMUX1219  
www.ti.com.cn  
ZHCSJR5 MAY 2019  
6.6 Electrical Characteristics (VDD = 3.3 V ±10 %)  
at TA = 25°C, VDD = 3.3 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
5
Ω
VS = 0 V to VDD  
RON  
On-resistance  
ISD = 10 mA  
Refer to On-Resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
10  
12  
Ω
Ω
0.15  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1
1
Ω
Ω
3.5  
4
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
RON  
FLAT  
On-resistance flatness  
–40°C to +85°C  
–40°C to +125°C  
25°C  
Ω
5
Ω
VDD = 3.3 V  
Switch Off  
VD = 3 V / 1 V  
VS = 1 V / 3 V  
±5  
nA  
nA  
–40°C to +85°C  
–25  
–40  
25  
40  
IS(OFF)  
Source off leakage current(1)  
–40°C to +125°C  
nA  
Refer to Off-Leakage Current  
VDD = 3.3 V  
Switch On  
VD = VS = 3 V / 1 V  
Refer to On-Leakage Current  
25°C  
±15  
nA  
nA  
ID(ON)  
IS(ON)  
–40°C to +85°C  
–50  
–80  
50  
80  
Channel on leakage current  
–40°C to +125°C  
nA  
LOGIC INPUTS (SEL)  
VIH  
VIL  
Input logic high  
Input logic low  
–40°C to +125°C  
–40°C to +125°C  
1.35  
0
5.5  
0.8  
V
V
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
-40°C to 125°C  
±0.05  
2
CIN  
CIN  
Logic input capacitance  
Logic input capacitance  
25°C  
1
pF  
pF  
–40°C to +125°C  
POWER SUPPLY  
25°C  
0.003  
µA  
µA  
IDD VDD supply current  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
0.8  
(1) When VS is 3 V, VD is 1 V or when VS is 1 V, VD is 3 V.  
Copyright © 2019, Texas Instruments Incorporated  
7
TMUX1219  
ZHCSJR5 MAY 2019  
www.ti.com.cn  
Electrical Characteristics (VDD = 3.3 V ±10 %) (continued)  
at TA = 25°C, VDD = 3.3 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
14  
ns  
VS = 2 V  
tTRAN  
Switching time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
20  
21  
ns  
ns  
ns  
ns  
ns  
Refer to Transition Time  
9
VS = 2 V  
tOPEN  
(BBM)  
Break before make time  
Charge Injection  
RL = 200 , CL = 15 pF  
Refer to Break-Before-Make  
–40°C to +85°C  
–40°C to +125°C  
1
1
VD = 1 V  
RS = 0 , CL = 1 nF  
Refer to Charge Injection  
QC  
25°C  
25°C  
25°C  
25°C  
25°C  
–6  
–65  
–45  
–65  
–45  
pC  
dB  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off Isolation  
OISO  
Off Isolation  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off Isolation  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Crosstalk  
XTALK  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Crosstalk  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
Bandwidth  
25°C  
25°C  
25°C  
250  
7
MHz  
pF  
CSOFF  
Source off capacitance  
On capacitance  
f = 1 MHz  
CSON  
CDON  
f = 1 MHz  
23  
pF  
8
Copyright © 2019, Texas Instruments Incorporated  
TMUX1219  
www.ti.com.cn  
ZHCSJR5 MAY 2019  
6.7 Electrical Characteristics (VDD = 1.8 V ±10 %)  
at TA = 25°C, VDD = 1.8 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
40  
Ω
VS = 0 V to VDD  
RON  
On-resistance  
ISD = 10 mA  
Refer to On-Resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
80  
80  
Ω
Ω
0.4  
±5  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1.5  
1.5  
Ω
Ω
VDD = 1.98 V  
Switch Off  
VD = 1.62 V / 1 V  
VS = 1 V / 1.62 V  
Refer to Off-Leakage Current  
nA  
nA  
–40°C to +85°C  
–25  
–40  
25  
40  
IS(OFF)  
Source off leakage current(1)  
Channel on leakage current  
–40°C to +125°C  
nA  
VDD = 1.98 V  
Switch On  
VD = VS = 1.62 V / 1 V  
Refer to On-Leakage Current  
25°C  
±15  
nA  
nA  
ID(ON)  
IS(ON)  
–40°C to +85°C  
–50  
–80  
50  
80  
–40°C to +125°C  
nA  
LOGIC INPUTS (SEL)  
VIH  
VIL  
Input logic high  
Input logic low  
–40°C to +125°C  
–40°C to +125°C  
1.07  
0
5.5  
V
V
0.68  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.05  
2
CIN  
CIN  
Logic input capacitance  
Logic input capacitance  
25°C  
1
pF  
pF  
–40°C to +125°C  
POWER SUPPLY  
25°C  
0.001  
µA  
µA  
IDD VDD supply current  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
0.6  
(1) When VS is 1.62 V, VD is 1 V or when VS is 1 V, VD is 1.62 V.  
Copyright © 2019, Texas Instruments Incorporated  
9
TMUX1219  
ZHCSJR5 MAY 2019  
www.ti.com.cn  
Electrical Characteristics (VDD = 1.8 V ±10 %) (continued)  
at TA = 25°C, VDD = 1.8 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
28  
ns  
VS = 1 V  
tTRAN  
Transition time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
44  
44  
ns  
ns  
ns  
ns  
ns  
Refer to Transition Time  
16  
VS = 1 V  
tOPEN  
(BBM)  
Break before make time  
Charge Injection  
RL = 200 , CL = 15 pF  
Refer to Break-Before-Make  
–40°C to +85°C  
–40°C to +125°C  
1
1
VD = 1 V  
RS = 0 , CL = 1 nF  
Refer to Charge Injection  
QC  
25°C  
25°C  
25°C  
25°C  
25°C  
–3  
–65  
–45  
–65  
–45  
pC  
dB  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off Isolation  
OISO  
Off Isolation  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off Isolation  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Crosstalk  
XTALK  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Crosstalk  
BW  
Bandwidth  
RL = 50 , CL = 5 pF  
25°C  
25°C  
250  
7
MHz  
pF  
CSOFF  
Source off capacitance  
f = 1 MHz  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
23  
pF  
10  
Copyright © 2019, Texas Instruments Incorporated  
TMUX1219  
www.ti.com.cn  
ZHCSJR5 MAY 2019  
6.8 Electrical Characteristics (VDD = 1.2 V ±10 %)  
at TA = 25°C, VDD = 1.2 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
70  
Ω
VS = 0 V to VDD  
RON  
On-resistance  
ISD = 10 mA  
Refer to On-Resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
105  
105  
Ω
Ω
0.4  
±5  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1.5  
1.5  
Ω
Ω
VDD = 1.32 V  
Switch Off  
VD = 1 V / 0.8 V  
VS = 0.8 V / 1 V  
Refer to Off-Leakage Current  
nA  
nA  
–40°C to +85°C  
–25  
–40  
25  
40  
IS(OFF)  
Source off leakage current(1)  
Channel on leakage current  
–40°C to +125°C  
nA  
VDD = 1.32 V  
Switch On  
VD = VS = 1 V / 0.8 V  
Refer to On-Leakage Current  
25°C  
±15  
nA  
nA  
ID(ON)  
IS(ON)  
–40°C to +85°C  
–50  
–80  
50  
80  
–40°C to +125°C  
nA  
LOGIC INPUTS (SEL)  
VIH  
VIL  
Input logic high  
Input logic low  
–40°C to +125°C  
–40°C to +125°C  
0.96  
0
5.5  
V
V
0.36  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.05  
2
CIN  
CIN  
Logic input capacitance  
Logic input capacitance  
25°C  
1
pF  
pF  
–40°C to +125°C  
POWER SUPPLY  
25°C  
0.003  
µA  
µA  
IDD VDD supply current  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
0.5  
(1) When VS is 1 V, VD is 0.8 V or when VS is 0.8 V, VD is 1 V.  
Copyright © 2019, Texas Instruments Incorporated  
11  
TMUX1219  
ZHCSJR5 MAY 2019  
www.ti.com.cn  
Electrical Characteristics (VDD = 1.2 V ±10 %) (continued)  
at TA = 25°C, VDD = 1.2 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
55  
ns  
VS = 1 V  
tTRAN  
Transition time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
190  
190  
ns  
ns  
ns  
ns  
ns  
Refer to Transition Time  
28  
VS = 1 V  
tOPEN  
(BBM)  
Break before make time  
Charge Injection  
RL = 200 , CL = 15 pF  
Refer to Break-Before-Make  
–40°C to +85°C  
–40°C to +125°C  
1
1
VD = 1 V  
RS = 0 , CL = 1 nF  
Refer to Charge Injection  
QC  
25°C  
25°C  
25°C  
25°C  
25°C  
–2  
–65  
–45  
–65  
–45  
pC  
dB  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off Isolation  
OISO  
Off Isolation  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off Isolation  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Crosstalk  
XTALK  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Crosstalk  
BW  
Bandwidth  
RL = 50 , CL = 5 pF  
25°C  
25°C  
250  
7
MHz  
pF  
CSOFF  
Source off capacitance  
f = 1 MHz  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
23  
pF  
12  
版权 © 2019, Texas Instruments Incorporated  
TMUX1219  
www.ti.com.cn  
ZHCSJR5 MAY 2019  
6.9 Typical Characteristics  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
80  
10  
8
VDD = 1.08V  
60  
TA = 125èC  
TA = 85èC  
6
40  
VDD = 1.62 V  
4
20  
2
VDD = 3 V  
VDD = 4.5 V  
TA = 25èC  
TA = -40èC  
0
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
Source or Drain Voltage (V)  
Source or Drain Voltage (V)  
D001  
D002  
TA = 25°C  
VDD = 3 V  
1. On-Resistance vs Source or Drain Voltage  
2. On-Resistance vs Source or Drain Voltage  
500  
400  
300  
200  
100  
0
30  
25  
20  
15  
10  
5
Rising  
Falling  
VDD = 3.3 V  
VDD = 5 V  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
Logic Voltage (V)  
VDD - Supply Voltage (V)  
D003  
D004  
TA = 25°C  
TA = 25°C  
3. Supply Current vs Logic Voltage  
4. Ttransition vs Supply Voltage  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
100k  
1M  
10M  
100M  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
D005  
D006  
TA = 25°C  
TA = 25°C  
5. Crosstalk and Off-Isolation vs Frequency  
6. Frequency Response  
版权 © 2019, Texas Instruments Incorporated  
13  
TMUX1219  
ZHCSJR5 MAY 2019  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 On-Resistance  
The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (D) pins of the device.  
The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-resistance.  
The measurement setup used to measure RON is shown in 7. Voltage (V) and current (ISD) are measured  
using this setup, and RON is computed with RON = V / ISD  
:
V
ISD  
Sx  
D
VS  
7. On-Resistance Measurement Setup  
7.2 Off-Leakage Current  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS(OFF)  
.
The setup used to measure off-leakage current is shown in 8.  
VDD  
VDD  
Is (OFF)  
S1  
A
D
S2  
VS  
VD  
GND  
8. Off-Leakage Measurement Setup  
14  
版权 © 2019, Texas Instruments Incorporated  
 
 
TMUX1219  
www.ti.com.cn  
ZHCSJR5 MAY 2019  
7.3 On-Leakage Current  
Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is on. This current is denoted by the symbol IS(ON)  
.
Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
on. This current is denoted by the symbol ID(ON)  
.
Either the source pin or drain pin is left floating during the measurement. 9 shows the circuit used for  
measuring the on-leakage current, denoted by IS(ON) or ID(ON)  
.
VDD  
VDD  
VDD  
VDD  
IS (ON)  
S1  
S2  
S1  
S2  
ID (ON)  
N.C.  
A
D
D
A
N.C.  
Vs  
VS  
VS  
VD  
GND  
GND  
9. On-Leakage Measurement Setup  
7.4 Transition Time  
Transition time is defined as the time taken by the output of the device to rise or fall 10% after the logic control  
signal has risen or fallen past the logic threshold. The 10% transition measurement is utilized to provide the  
timing of the device. System level timing can then account for the time constant added from the load resistance  
and load capacitance. 10 shows the setup used to measure transition time, denoted by the symbol tTRANSITION  
.
VDD  
0.1F  
VDD  
VDD  
Logic  
tf < 5ns  
tr < 5ns  
Control  
(VSEL  
VIH  
)
VIL  
S1  
S2  
VS  
OUTPUT  
0 V  
D
RL  
CL  
tTRANSITION  
tTRANSITION  
SEL  
90%  
OUTPUT  
VSEL  
10%  
GND  
0 V  
10. Transition-Time Measurement Setup  
版权 © 2019, Texas Instruments Incorporated  
15  
 
 
TMUX1219  
ZHCSJR5 MAY 2019  
www.ti.com.cn  
7.5 Break-Before-Make  
Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is  
switching. The output first breaks from the on-state switch before making the connection with the next on-state  
switch. The time delay between the break and the make is known as break-before-make delay. 11 shows the  
setup used to measure break-before-make delay, denoted by the symbol tOPEN(BBM)  
.
VDD  
0.1F  
VDD  
VDD  
Logic  
S1  
S2  
Control  
tr < 5ns  
tf < 5ns  
VS  
OUTPUT  
D
(VSEL  
)
0 V  
RL  
CL  
90%  
Output  
SEL  
tBBM  
1
tBBM 2  
0 V  
VSEL  
tOPEN (BBM) = min ( tBBM 1, tBBM 2)  
GND  
11. Break-Before-Make Delay Measurement Setup  
7.6 Charge Injection  
The TMUX1219 has a transmission-gate topology. Any mismatch in capacitance between the NMOS and PMOS  
transistors results in a charge injected into the drain or source during the falling or rising edge of the gate signal.  
The amount of charge injected into the source or drain of the device is known as charge injection, and is denoted  
by the symbol QC. 12 shows the setup used to measure charge injection from Drain (D) to Source (Sx).  
VDD  
VSS  
0.1F  
0.1F  
VSS  
VDD  
VDD  
VSEL  
S2  
N.C.  
D
VD  
OUTPUT  
S1  
VOUT  
0 V  
CL  
Output  
VOUT  
SEL  
VS  
QC = CL  
×
VOUT  
VSEL  
GND  
12. Charge-Injection Measurement Setup  
16  
版权 © 2019, Texas Instruments Incorporated  
 
 
TMUX1219  
www.ti.com.cn  
ZHCSJR5 MAY 2019  
7.7 Off Isolation  
Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to the  
source pin (Sx) of an off-channel. 13 shows the setup used to measure, and the equation used to calculate off  
isolation.  
0.1µF  
NETWORK  
VDD  
ANALYZER  
VS  
50Q  
S
VSIG  
D
VOUT  
RL  
50Q  
SX  
GND  
RL  
50Q  
13. Off Isolation Measurement Setup  
«
÷
VOUT  
VS  
Off Isolation = 20 Log  
(1)  
7.8 Crosstalk  
Crosstalk is defined as the ratio of the signal at the drain pin (D) of a different channel, when a signal is applied  
at the source pin (Sx) of an on-channel. 14 shows the setup used to measure, and the equation used to  
calculate crosstalk.  
0.1µF  
NETWORK  
VDD  
ANALYZER  
S1  
VOUT  
RL  
D
50Q  
VS  
RL  
S2  
50Q  
50Q  
VSIG  
GND  
14. Crosstalk Measurement Setup  
«
÷
VOUT  
VS  
Channel-to-Channel Crosstalk = 20 Log  
(2)  
17  
版权 © 2019, Texas Instruments Incorporated  
 
 
TMUX1219  
ZHCSJR5 MAY 2019  
www.ti.com.cn  
7.9 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the device. 15  
shows the setup used to measure bandwidth.  
0.1µF  
NETWORK  
VDD  
ANALYZER  
VS  
S
50Q  
VSIG  
D
VOUT  
RL  
50Q  
SX  
GND  
RL  
50Q  
15. Bandwidth Measurement Setup  
18  
版权 © 2019, Texas Instruments Incorporated  
 
TMUX1219  
www.ti.com.cn  
ZHCSJR5 MAY 2019  
8 Detailed Description  
8.1 Functional Block Diagram  
The TMUX1219 is an 2:1 (SPDT), 1-channel switch where the input is controlled with a single select (SEL)  
control pin.  
TMUX1219  
S1  
D
S2  
SEL  
16. TMUX1219 Functional Block Diagram  
8.2 Feature Description  
8.2.1 Bidirectional Operation  
The TMUX1219 conducts equally well from source (Sx) to drain (D) or from drain (D) to source (Sx). The device  
has very similar characteristics in both directions and supports both analog and digital signals.  
8.2.2 Rail to Rail Operation  
The valid signal path input/output voltage for TMUX1219 ranges from GND to VDD  
.
8.2.3 1.8 V Logic Compatible Inputs  
The TMUX1219 has 1.8-V logic compatible control for the logic control input (SEL). The logic input threshold  
scales with supply but still provides 1.8-V logic control when operating at 5.5 V supply voltage. 1.8-V logic level  
inputs allow the TMUX1219 to interface with processors that have lower logic I/O rails and eliminates the need  
for an external translator, which saves both space and BOM cost. For more information on 1.8 V logic  
implementations refer to Simplifying Design with 1.8 V logic Muxes and Switches  
8.2.4 Fail-Safe Logic  
The TMUX1219 supports Fail-Safe Logic on the control input pin (SEL) allowing for operation up to 5.5 V,  
regardless of the state of the supply pin. This feature allows voltages on the control pin to be applied before the  
supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system complexity by  
removing the need for power supply sequencing on the logic control pins. For example, the Fail-Safe Logic  
feature allows the select pin of the TMUX1219 to be ramped to 5.5 V while VDD = 0 V. Additionally, the feature  
enables operation of the TMUX1219 with VDD = 1.2 V while allowing the select pin to interface with a logic level  
of another device up to 5.5 V.  
8.3 Device Functional Modes  
The select (SEL) pin of the TMUX1219 controls which source channel is connected to the drain of the device.  
When a signal path is not selected, that source pin is in high impedance mode (HI-Z). The control pin can be as  
high as 5.5 V.  
8.4 Truth Tables  
1. TMUX1219 Truth Table  
CONTROL LOGIC (SEL)  
Selected Source (Sx) Connected To Drain (D) Pin  
0
1
S1  
S2  
版权 © 2019, Texas Instruments Incorporated  
19  
TMUX1219  
ZHCSJR5 MAY 2019  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TMUX12xx family offers good system performance across a wide operating supply (1.08V to 5.5V). These  
devices include 1.8V logic compatible control input pins that enable operation in systems with 1.8V I/O rails.  
Additionally, the control input pin supports Fail-Safe Logic which allows for operation up to 5.5V, regardless of  
the state of the supply pin. This protection stops the logic pins from back-powering the supply rail. These  
features of the TMUX12xx, a family of general purpose multiplexers and switches, reduce system complexity,  
board size, and overall system cost.  
9.2 Typical Application  
9.2.1 Switchable Operational Amplifier Gain Setting  
One example application of the TMUX1219 is to change an Op Amp from unity gain setting to an inverting  
amplifier configuration. Utilizing a switch allows a system to have a configurable gain and allows the same  
architecture to be utilized across the board for various inputs to the system. 17 shows the TMUX1219  
configured for gain setting application.  
Input  
R
R
Output  
S1  
S2  
Unity Gain  
Inverting  
D
TLV9001  
1.8 V  
SEL  
TMUX1219  
17. Switchable Op Amp Gain Setting  
9.2.1.1 Design Requirements  
This design example uses the parameters listed in 2.  
2. Design Parameters  
PARAMETERS  
Input Signal  
VALUES  
0 V to 2.75 V  
Mux Supply (VDD  
)
2.75 V  
Op Amp Supply (V+/ V-)  
Mux I/O signal range  
Control logic thresholds  
±2.75 V  
0 V to VDD (Rail to Rail)  
1.8 V compatible (up to 5.5V)  
20  
版权 © 2019, Texas Instruments Incorporated  
 
 
TMUX1219  
www.ti.com.cn  
ZHCSJR5 MAY 2019  
9.2.1.2 Detailed Design Procedure  
The application shown in 17 demonstrates how to use a single control input and toggle between gain settings  
of -1 and +1. If switching between inverting and unity gain is not required, the TMUX1219 can be utilized in the  
feedback path to select different feedback resistors and provide scalable gain settings for configurable signal  
conditioning.  
The TMUX1219 can be operated without any external components except for the supply decoupling capacitors.  
The select pin is recommended to have a weak pull-down or pull-up resistor to ensure the input is in a known  
state. All inputs to the switch must fall within the recommend operating conditions of the TMUX1219 including  
signal range and continuous current. For this design with a supply of 2.75 V the signal range can be 0 V to 2.75  
V and the max continuous current can be 30 mA.  
9.2.1.3 Application Curve  
80  
VDD = 1.08V  
60  
40  
VDD = 1.62 V  
20  
VDD = 3 V  
VDD = 4.5 V  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Source or Drain Voltage (V)  
D001  
TA = 25°C  
18. On-Resistance vs Source or Drain Voltage  
9.2.2 Input Control for Power Amplifier  
Another application of the TMUX1219 is for input control of a power amplifier. Utilizing a switch allows a system  
to control when the DAC is connected to the power amplifier, and can stop biasing the power amplifier by  
switching the gate to GND. 19 shows the TMUX1219 configured for control of the power amplifier.  
RF Input  
RF Output  
5 V  
TMUX1219  
0 V  
DAC  
1.8 V  
SEL  
19. Input Control of Power Amplifier  
版权 © 2019, Texas Instruments Incorporated  
21  
 
TMUX1219  
ZHCSJR5 MAY 2019  
www.ti.com.cn  
9.2.2.1 Design Requirements  
This design example uses the parameters listed in 2.  
3. Design Parameters  
PARAMETERS  
Supply (VDD  
VALUES  
5 V  
)
Mux I/O signal range  
0 V to VDD (Rail to Rail)  
1.8 V compatible (up to 5.5V)  
Control logic thresholds  
9.2.2.2 Detailed Design Procedure  
The application shown in 19 demonstrates how to toggle between the DAC output and GND for control of a  
power amplifier using a single control input. The DAC output is utilized to bias the gate of the power amplifier and  
can be disconnected from the circuit using the select pin of the switch. The TMUX1219 can support 1.8-V logic  
signals on the control input, allowing the device to interface with low logic controls of an FPGA or MCU. The  
TMUX1219 can be operated without any external components except for the supply decoupling capacitors. The  
select pin is recommended to have a weak pull-down or pull-up resistor to ensure the input is in a known state.  
All inputs to the switch must fall within the recommend operating conditions of the TMUX1219 including signal  
range and continuous current. For this design with a supply of 5 V the signal range can be 0 V to 5 V and the  
max continuous current can be 30 mA.  
9.2.2.3 Application Curve  
A key parameter for this application is the transition time of the device. Faster transition time allows the system to  
toggle between input sources at a faster rate and allows the output to settle to the final value. The TMUX1219  
has a transition time that varies with supply voltage and is shown in 20  
30  
25  
20  
Rising  
15  
Falling  
10  
5
0
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
VDD - Supply Voltage (V)  
D004  
TA = 25°C  
20. Ttransition vs Supply Voltage  
10 Power Supply Recommendations  
The TMUX1219 operates across a wide supply range of 1.08 V to 5.5 V. Do not exceed the absolute maximum  
ratings because stresses beyond the listed ratings can cause permanent damage to the devices.  
Power-supply bypassing improves noise margin and prevents switching noise propagation from the VDD supply to  
other components. Good power-supply decoupling is important to achieve optimum performance. For improved  
supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μF to 10 μF from VDD to ground.  
Place the bypass capacitors as close to the power supply pins of the device as possible using low-impedance  
connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low equivalent series  
resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes. For very sensitive  
systems, or for systems in harsh noise environments, avoiding the use of vias for connecting the capacitors to  
the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers the overall  
inductance and is beneficial for connections to ground planes.  
22  
版权 © 2019, Texas Instruments Incorporated  
 
TMUX1219  
www.ti.com.cn  
ZHCSJR5 MAY 2019  
11 Layout  
11.1 Layout Guidelines  
11.1.1 Layout Information  
When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of  
the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and self–inductance  
of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must  
turn corners. 21 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
WORST  
BETTER  
BEST  
1W min.  
W
21. Trace Example  
Route high-speed signals using a minimum of vias and corners which reduces signal reflections and  
impedance changes. When a via must be used, increase the clearance size around it to minimize its  
capacitance. Each via introduces discontinuities in the signal’s transmission line and increases the chance of  
picking up interference from the other layers of the board. Be careful when designing test points, through-  
hole pins are not recommended at high frequencies.  
22 illustrates an example of a PCB layout with the TMUX1219. Some key considerations are:  
Decouple the VDD pin with a 0.1-µF capacitor, placed as close to the pin as possible. Make sure that the  
capacitor voltage rating is sufficient for the VDD supply.  
Keep the input lines as short as possible.  
Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
11.2 Layout Example  
Via to  
GND plane  
TMUX1219  
Wide (low inductance)  
trace for power  
C
22. TMUX1219 Layout Example  
版权 © 2019, Texas Instruments Incorporated  
23  
 
 
TMUX1219  
ZHCSJR5 MAY 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
德州仪器 (TI)《使用低 CON 多路复用器改善稳定性问题》。  
德州仪器 (TI)《使用 1.8V 逻辑多路复用器和开关简化设计》。  
德州仪器 (TI)《利用关断保护信号开关消除电源排序》。  
德州仪器 (TI)《高电压模拟多路复用器的系统级保护》。  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
24  
版权 © 2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX1219DBVR  
TMUX1219DCKR  
ACTIVE  
ACTIVE  
SOT-23  
SC70  
DBV  
DCK  
6
6
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
26IT  
1F5  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jun-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX1219DBVR  
TMUX1219DCKR  
SOT-23  
SC70  
DBV  
DCK  
6
6
3000  
3000  
178.0  
178.0  
9.0  
9.0  
2.4  
2.4  
2.5  
2.5  
1.2  
1.2  
4.0  
4.0  
8.0  
8.0  
Q3  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jun-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMUX1219DBVR  
TMUX1219DCKR  
SOT-23  
SC70  
DBV  
DCK  
6
6
3000  
3000  
180.0  
180.0  
180.0  
180.0  
18.0  
18.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TMUX1237

在切换输入时无过冲的 5V、2:1 (SPDT) 通用开关
TI

TMUX1237DCKR

在切换输入时无过冲的 5V、2:1 (SPDT) 通用开关 | DCK | 6 | -40 to 125
TI

TMUX1247

5-V、2:1 (SPDT) 通用开关
TI

TMUX1247DCKR

5-V、2:1 (SPDT) 通用开关 | DCK | 6 | -40 to 125
TI

TMUX1248

具有 3157 引脚排列的 3Ω 低 RON、5V、2:1 (SPDT) 通用开关
TI

TMUX1248DCKR

具有 3157 引脚排列的 3Ω 低 RON、5V、2:1 (SPDT) 通用开关 | DCK | 6 | -40 to 125
TI

TMUX13

TMUX13xx 5-V, Bidirectional 8:1, 1-Channel and 4:1, 2-Channel Multiplexers with Injection Current Control
TI

TMUX1308

具有 1.8V 逻辑电平控制的 5V、8:1、单通道通用多路复用器
TI

TMUX1308-Q1

具有注入电流控制和 1.8V 逻辑电平的汽车类 5V、8:1、单通道多路复用器
TI

TMUX1308-Q1_V02

TMUX13xx-Q1 5-V, Bidirectional 8:1, 1-Channel and 4:1, 2-Channel Multiplexers with Injection Current Control
TI

TMUX1308-Q1_V03

TMUX13xx-Q1 5-V, Bidirectional 8:1, 1-Channel and 4:1, 2-Channel Multiplexers with Injection Current Control
TI

TMUX1308BQBR

TMUX13xx 5-V, Bidirectional 8:1, 1-Channel and 4:1, 2-Channel Multiplexers with Injection Current Control
TI