TMUX1575YCJR [TI]

具有 1.2V 逻辑电平的低电容、2:1 (SPDT) 4 通道断电保护开关 | YCJ | 16 | -40 to 125;
TMUX1575YCJR
型号: TMUX1575YCJR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 1.2V 逻辑电平的低电容、2:1 (SPDT) 4 通道断电保护开关 | YCJ | 16 | -40 to 125

开关 光电二极管
文件: 总31页 (文件大小:1580K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZHCSM11 OCTOBER 2020  
TMUX1575  
采用 WCSP 封装并具有 1.2V 逻辑的  
TMUX1575 2:1 (SPDT) 4 通道断电保护开关  
1 特性  
3 说明  
宽电源电压范围1.08V 3.6V  
低导通电容5pF  
高带宽1.8GHz  
TMUX1575 是一款采用 2:1 (SPDT) 配置的 4 通道互补  
金属氧化物半导体 (CMOS) 开关。此器件的体积小  
工作电源电压为 1.08V 3.6V可用于从服务器  
和通信设备到个人电子设备的广泛应用。此器件可在源  
SxASxB和漏极 (Dx) 引脚上支持双向模拟和  
数字信号并且能够传递最高 VDD x 2 的信号最大输  
/输出电压为 3.6V。  
-40°C +125°C 工作温度  
兼容 1.2V 逻辑  
支持超出电源电压范围的输入电压  
逻辑引脚上带有集成下拉电阻器  
双向信号路径  
TMUX1575 信号路径上的断电保护功能可在移除电源  
电压 (VDD = 0V) 时提供隔离。如果没有该保护功能,  
开关可通过内部 ESD 二极管为电源轨进行反向供电,  
从而对系统造成潜在损坏。  
失效防护逻辑  
断电保护  
2 应用  
失效防护逻辑电路允许在电源引脚上施加电压之前先  
在逻辑控制引脚上施加电压从而保护器件免受潜在的  
损害。所有控制输入都具有兼容 1.2V 逻辑的阈值因  
此无需外部逻辑转换。逻辑引脚上带有集成下拉电阻  
无需外部组件可减小系统尺寸、降低系统成本。  
闪存存储器共享  
JTAG 多路复用  
SPI 多路复用  
eMMC 多路复用  
器件信息 (1)  
智能手表  
智能追踪器  
手机  
封装尺寸标称值)  
器件型号  
TMUX1575  
封装  
WCSP (16)  
1.34mm × 1.34mm  
PC 和笔记本电脑  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
网络接口卡 (NIC)  
服务器  
数据中心交换机和路由器  
无线基础设施  
楼宇自动化  
ePOS  
TMUX1575  
1.2 V  
3.3 V  
3.3 V  
VDD  
0.1µF  
S1A  
D1  
FLASH Device #1  
S1B  
VI/O  
VDD  
Processor  
S1A  
S2A  
S3A  
S4A  
MISO  
MOSI  
SCLK  
SS  
S2A  
D2  
S2B  
D1  
D2  
D3  
D4  
RAM  
CPU  
S3A  
D3  
SPI PORT  
S3B  
FLASH Device #2  
S4A  
D4  
S1B  
S2B  
S3B  
S4B  
S4B  
MISO  
MOSI  
SCLK  
SS  
Peripherals  
1.2V Logic  
I/O  
SEL  
EN  
LOGIC CONTROL*  
GND  
GND  
SEL  
EN  
*Internal 6MO Pull-Down on Logic Pins  
应用示例  
方框图  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCDS423  
 
 
 
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
Table of Contents  
7.9 Off Isolation...............................................................15  
7.10 Channel-to-Channel Crosstalk................................15  
7.11 Bandwidth............................................................... 16  
8 Detailed Description......................................................17  
8.1 Overview...................................................................17  
8.2 Functional Block Diagram.........................................17  
8.3 Feature Description...................................................17  
8.4 Device Functional Modes..........................................18  
9 Application and Implementation..................................19  
9.1 Typical Application.................................................... 19  
10 Power Supply Recommendations..............................20  
11 Layout...........................................................................20  
11.1 Layout Guidelines................................................... 20  
11.2 Layout Example...................................................... 21  
12 Device and Documentation Support..........................22  
12.1 Documentation Support.......................................... 22  
12.2 Receiving Notification of Documentation Updates..22  
12.3 Support Resources................................................. 22  
12.4 Trademarks.............................................................22  
12.5 Electrostatic Discharge Caution..............................22  
12.6 Glossary..................................................................22  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................4  
6.5 Electrical Characteristics ............................................5  
6.6 Dynamic Characteristics ............................................ 6  
6.7 Timing Requirements .................................................7  
6.8 Typical Characteristics................................................8  
7 Parameter Measurement Information..........................10  
7.1 On-Resistance.......................................................... 10  
7.2 Off-Leakage Current................................................. 10  
7.3 On-Leakage Current................................................. 11  
7.4 IPOFF Leakage Current.............................................. 11  
7.5 Transition Time......................................................... 12  
7.6 tON (EN) and tOFF (EN) Time......................................... 12  
7.7 Break-Before-Make Delay.........................................13  
7.8 Charge Injection........................................................14  
Information.................................................................... 23  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
October 2020  
*
Initial Release  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMUX1575  
 
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
1
2
3
4
A
B
C
D
S2A  
S3A  
S4A  
D1  
S1A  
S1B  
S2B  
VDD  
SEL  
D2  
EN  
GND  
D3  
S3B  
S4B  
D4  
Not to scale  
5-1. WCSP Package 16-Pin Top View  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION(2)  
Source pin 2A. Can be an input or output.  
NAME  
S2A  
NO.  
A1  
A2  
A3  
A4  
B1  
I/O  
I/O  
I/O  
I/O  
I/O  
S1A  
S1B  
S2B  
S3A  
VDD  
Source pin 1A. Can be an input or output.  
Source pin 1B. Can be an input or output.  
Source pin 2B. Can be an input or output.  
Source pin 3A. Can be an input or output.  
Positive power supply. This pin is the most positive power-supply potential. For reliable operation,  
connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.  
B2  
P
EN  
B3  
B4  
C1  
C2  
C3  
C4  
D1  
D2  
D3  
D4  
I
Active high enable: Internal 6 MΩ pull-down to GND.  
Source pin 3B. Can be an input or output.  
Source pin 4A. Can be an input or output.  
Select pin: controls state of switches according to 8-1. Internal 6 MΩ pull-down to GND.  
Ground (0 V) reference  
S3B  
S4A  
SEL  
GND  
S4B  
D1  
I/O  
I/O  
I
P
I/O  
I/O  
I/O  
I/O  
I/O  
Source pin 4B. Can be an input or output.  
Drain pin 1. Can be an input or output.  
D2  
Drain pin 2. Can be an input or output.  
D3  
Drain pin 3. Can be an input or output.  
D4  
Drain pin 4. Can be an input or output.  
(1) I = input, O = output, I/O = input and output, P = power.  
(2) Refer to 8.4 for what to do with unused pins.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMUX1575  
 
 
 
 
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2) (3)  
MIN  
0.5  
0.5  
30  
0.5  
20  
65  
MAX  
UNIT  
V
VDD  
Supply voltage  
4
4
VSEL or VEN  
ISEL or IEN  
VS or VD  
IS or ID (CONT)  
Tstg  
Logic control input pin voltage (SEL or EN)  
Logic control input pin current (SEL or EN)  
Source or drain pin voltage  
V
30  
4
mA  
V
Source and drain pin continuous current: (SxA, SxB, Dx)  
Storage temperature  
20  
150  
150  
mA  
°C  
°C  
TJ  
Junction temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
(3) All voltages are with respect to ground, unless otherwise specified.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC  
specification JESD22-C101(2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
MAX  
3.6  
UNIT  
V
VDD  
Supply voltage  
1.08  
0
Signal path input/output voltage (source or drain pin), VDD 1.08 V(1)  
Signal path input/output voltage (source or drain pin), VDD =0 V  
Logic control input voltage (EN, SEL)  
VS or VD  
VS_off or VD_off  
VSEL or VEN  
TA  
VDD x 2  
3.6  
V
0
V
0
3.6  
V
Ambient temperature  
125  
ºC  
40  
(1) Device input/output can operate up to VDD x 2, with a maximum input/output voltage of 3.6 V.  
6.4 Thermal Information  
DEVICE  
THERMAL METRIC(1)  
YCJ (WCSP)  
16 PINS  
89.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
21.4  
0.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ΨJT  
21.3  
ΨJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMUX1575  
 
 
 
 
 
 
 
 
 
 
 
 
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
6.5 Electrical Characteristics  
VDD = 1.08 V to 3.6 V, GND = 0V, TA = 40°C to +125°C  
Typical values are at VDD = 3.3 V, TA = 25°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VSEL = 0 V, 1.2V or VDD  
VS = 0 V to 3.6 V  
TA = 40°C to +85°C  
IDD  
Active supply current  
Active supply current  
7
7
10  
14  
µA  
µA  
VSEL = 0 V, 1.2V or VDD  
VS = 0 V to 3.6 V  
IDD  
TA = 40°C to +125°C  
DC CHARACTERISTICS  
RON ON-state resistance  
VS = 0 V to VDD  
ISD = 8 mA  
1.7  
3
6.5  
8
VS = 0 V to VDD * 2  
VS(max) = 3.6 V  
ISD = 8 mA  
RON  
On-resistance  
VS = VDD  
ISD = 8 mA  
On-resistance match between channels  
On-resistance flatness  
0.1  
1
0.4  
3.5  
ΔRON  
RON(FLAT)  
VS = 0 V to VDD  
ISD = 8 mA  
VDD = 0 V  
IPOFF  
Powered-off I/O pin leakage current  
OFF leakage current  
VS = 0 V to 3.6 V  
VD = 0 V  
0.01  
0.01  
2
µA  
nA  
2  
Switch Off  
VD = 0.8*VDD / 0.2*VDD  
VS = 0.2*VDD / 0.8*VDD  
TA = 40°C to +85°C  
IS(OFF)  
ID(OFF)  
10  
10  
Switch Off  
VD = 0.8*VDD / 0.2*VDD  
VS = 0.2*VDD / 0.8*VDD  
TA = 40°C to +125°C  
IS(OFF)  
ID(OFF)  
OFF leakage current  
ON leakage current  
0.01  
0.01  
100  
10  
nA  
nA  
100  
10  
Switch On  
VD = 0.8 x VDD / 0.2 x VDD, S pins floating  
or  
VS = 0.8 x VDD / 0.2 x VDD, D pins floating  
ID(ON)  
IS(ON)  
TA = 40°C to +85°C  
Switch On  
VD = 0.8*VDD / 0.2*VDD, S pins floating  
or  
VS = 0.8*VDD / 0.2*VDD, D pins floating  
ID(ON)  
IS(ON)  
ON leakage current  
0.01  
160  
nA  
160  
TA = 40°C to +125°C  
LOGIC INPUTS  
VIH  
VIL  
IIH  
Input logic high  
0.8  
0
3.6  
0.45  
2.5  
V
Input logic low  
V
Input high leakage current  
Input low leakage current  
Internal pull-down resistor on logic pins  
VSEL = 1.8 V, VDD  
VSEL = 0 V  
0.5  
0.1  
6
μA  
μA  
MΩ  
IIL  
1  
RPD  
VSEL = 0 V, 1.8 V or VDD  
f = 1 MHz  
CI  
Logic input capacitance  
3
pF  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMUX1575  
 
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
6.6 Dynamic Characteristics  
VDD = 1.08 V to 3.6 V, GND = 0V, TA = 40°C to +125°C  
Typical values are at VDD = 3.3 V, TA = 25°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VS = 2.5 V  
VSEL= 0 V  
f = 1 MHz  
Switch  
OFF  
COFF  
Source and drain off capacitance  
3.5  
pF  
VS = 2.5 V  
VSEL= 0 V  
f = 1 MHz  
Switch  
ON  
CON  
Source and drain on capacitance  
Charge Injection  
10  
5
pF  
VS = VDD/2  
RS = 0 Ω, CL =1 nF  
Switch  
ON  
QC  
pC  
dB  
Switch  
OFF  
RL = 50 Ω  
f = 100 kHz  
95  
70  
90  
1.8  
OISO  
Off isolation  
Switch  
OFF  
RL = 50 Ω  
f = 1 MHz  
dB  
Switch  
ON  
RL = 50 Ω  
f = 100 kHz  
XTALK  
BW  
Channel to Channel crosstalk  
Bandwidth  
dB  
Switch  
ON  
GHz  
dB  
RL = 50 Ω  
Switch  
ON  
RL = 50 Ω  
f = 1 MHz  
ILOSS  
Insertion loss  
0.15  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMUX1575  
 
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
6.7 Timing Requirements  
VDD = 1.08 V to 3.6 V, GND = 0V, TA = 40°C to +125°C  
Typical values are at VDD = 3.3 V, TA = 25°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
VDD = 1.8 V to 3.6 V  
VS = VDD  
tTRAN  
Transition time from control input  
35  
80  
ns  
RL = 200 Ω, CL = 15pF  
VDD < 1.8 V  
VS = VDD  
RL = 200 Ω, CL = 15pF  
tTRAN  
Transition time from control input  
Device turn on time from enable pin  
40  
115  
ns  
VS = VDD  
RL = 200 Ω, CL = 15pF  
tON(EN)  
55  
30  
130  
60  
ns  
ns  
VS = VDD  
RL = 200 Ω, CL = 15pF  
tOFF(EN) Device turn off time from enable pin  
tON(VDD) Device turn on time (VDD to output)  
VS = VDD  
VDD rise time = 1us  
RL = 200 Ω, CL = 15pF  
300  
1
990  
12  
µs  
VS = VDD  
VDD fall time = 1us  
RL = 200 Ω, CL = 15pF  
tOFF(VDD) Device turn off time (VDD to output)  
µs  
ns  
VS = 1 V  
RL = 200 Ω, CL = 15pF  
tOPEN  
Break before make time  
1
(BBM)  
tSK(P)  
tPD  
Inter - channel skew  
Propagation delay  
6
ps  
ps  
60  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMUX1575  
 
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
6.8 Typical Characteristics  
At TA = 25°C, VDD = 3.3 V (unless otherwise noted).  
4
5
4
3
2
1
125èC  
85èC  
25èC  
-40èC  
125èC  
85èC  
25èC  
-40èC  
3
2
1
0
1 2  
Source or Drain Voltage (V)  
3
3.6  
0
0.5  
1
1.5  
2
Source or Drain Voltage (V)  
2.5  
3
3.5  
D001  
D002  
VDD = 3.3 V  
VDD = 1.8 V  
6-1. On-Resistance vs Temperature  
6-2. On-Resistance vs Temperature  
3
10  
8
VDD = 3.3 V  
VDD = 1.8 V  
6
2.5  
2
4
2
0
-2  
-4  
-6  
-8  
-10  
1.5  
1
0
1 2  
Source or Drain Voltage (V)  
3
3.6  
0
0.6  
1.2  
1.8  
Source or Drain Voltage (V)  
2.4  
3
3.3  
D003  
DB0o1o1k  
TA = 25°C  
VDD = 3.3 V  
6-3. On-Resistance vs Source or Drain Voltage  
6-4. On-Leakage vs Source or Drain Voltage  
9
70  
VDD = 3.6 V  
VDD = 1.8 V  
VDD = 1.08 V  
Transiton_Falling  
Transiton_Rising  
65  
60  
55  
50  
45  
40  
35  
30  
25  
8.5  
8
7.5  
7
6.5  
6
5.5  
5
0
0.5  
1
1.5  
Logic Voltage (V  
2
2.5  
3
3.5  
1
1.5  
2
Supply Voltage (V)  
2.5  
3
3.3  
D006  
D007  
TA = 25°C  
TA = 25°C  
6-5. Supply Current vs Logic Voltage  
6-6. TTRANSITION vs Supply Voltage  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMUX1575  
 
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
160  
140  
120  
100  
80  
60  
50  
40  
30  
20  
60  
40  
1
1.5  
2
Supply Voltage (V)  
2.5  
3
3.3  
1
1.5  
2
Supply Voltage (V)  
2.5  
3
3.3  
D004  
D010  
TA = 25°C  
TA = 25°C  
6-7. TON (EN) vs Supply Voltage  
6-8. TOFF (EN) vs Supply Voltage  
75  
65  
55  
45  
35  
25  
15  
5
0
Propagation Delay  
Skew  
Crosstalk  
Off Isolation  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
1.5  
2
2.5  
Supply Voltage (V)  
3
3.3  
100k  
1M  
10M 100M  
Frequency (Hz)  
1G  
D008  
D009  
TA = 25°C  
TA = 25°C  
6-9. Skew and Propagation Delay vs Supply  
6-10. Off Isolation and Crosstalk vs Frequency  
Voltage  
0
-1  
-2  
-3  
-4  
-5  
-6  
100k  
1M  
10M 100M  
Frequency (Hz)  
1G  
D005  
TA = 25°C  
6-11. On-Response vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMUX1575  
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 On-Resistance  
The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (Dx) pins of the device.  
The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-  
resistance. The measurement setup used to measure RON is shown in 7-1. Voltage (V) and current (ISD) are  
measured using this setup, and RON is computed as shown below with RON = V / ISD  
:
V
ISD  
Sx  
Dx  
VS  
7-1. On-Resistance Measurement Setup  
7.2 Off-Leakage Current  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS (OFF)  
.
Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off.  
This current is denoted by the symbol ID (OFF)  
.
The setup used to measure both off-leakage currents is shown in 7-2.  
VDD  
VDD  
IS (OFF)  
A
VDD  
VDD  
ID (OFF)  
S1A  
S1B  
S1A  
D1  
D1  
A
S1B  
VS  
VD  
VD  
VD  
VS  
ID (OFF)  
A
IS (OFF)  
A
S4A  
S4B  
D4  
S1A  
S1B  
D1  
VD  
VS  
VS  
VD  
GND  
GND  
VD  
7-2. Off-Leakage Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMUX1575  
 
 
 
 
 
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
7.3 On-Leakage Current  
Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is on. This current is denoted by the symbol IS (ON)  
.
Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
on. This current is denoted by the symbol ID (ON)  
.
Either the source pin or drain pin is left floating during the measurement. 7-3 shows the circuit used for  
measuring the on-leakage current, denoted by IS(ON) or ID(ON)  
.
VDD  
VDD  
IS (ON)  
VDD  
VDD  
ID (ON)  
S1A  
S1A  
S1B  
A
N.C.  
D1  
D1  
A
N.C.  
S1B  
N.C.  
N.C.  
VS  
VD  
IS (ON)  
ID (ON)  
A
S4A  
S4B  
S4A  
S4B  
N.C.  
N.C.  
A
D4  
D4  
N.C.  
N.C.  
VS  
VD  
GND  
GND  
7-3. On-Leakage Measurement Setup  
7.4 IPOFF Leakage Current  
IPOFF leakage current is defined as the leakage current flowing into or out of the source pin when the device is  
powered off. This current is denoted by the symbol IPOFF  
.
The setup used to measure both IPOFF leakage current is shown in 7-4.  
VDD  
IPOFF  
VDD  
S1A  
A
D1  
S1B  
N.C.  
VS  
VD  
IPOFF  
S4A  
S4B  
A
D4  
N.C.  
VS  
VD  
GND  
7-4. IPOFF Leakage Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMUX1575  
 
 
 
 
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
7.5 Transition Time  
Transition time is defined as the time taken by the output of the device to rise or fall 10% after the select signal  
has risen or fallen past the logic threshold. The 10% transition measurement is utilized to provide the timing of  
the device. The time constant from the load resistance and load capacitance can be added to the transition time  
to calculate system level timing. 7-5 shows the setup used to measure transition time, denoted by the symbol  
tTRANSITION  
.
VDD  
0.1F  
VDD  
VDD  
ADDRESS  
DRIVE  
tf < 5ns  
tr < 5ns  
VIH  
S1A  
S1B  
(VSEL  
)
VS  
VIL  
OUTPUT  
RL  
D1  
D4  
0 V  
CL  
tTRANSITION  
tTRANSITION  
S4A  
S4B  
VS  
OUTPUT  
RL  
CL  
90%  
OUTPUT  
SEL  
GND  
VSEL  
10%  
0 V  
7-5. Transition-Time Measurement Setup  
7.6 tON (EN) and tOFF (EN) Time  
The tON (EN) time is defined as the time taken by the output of the device to rise to 90% after the enable has  
fallen past the logic threshold. The 90% measurement is used to provide the timing of the device being enabled  
in the system. 7-6 shows the setup used to measure the enable time, denoted by the symbol tON (EN)  
.
VDD  
0.1F  
VDD  
VDD  
ENABLE  
DRIVE  
tr < 5ns  
tf < 5ns  
S1A  
S1B  
VIH  
VS  
OUTPUT  
D1  
(VEN  
)
VIL  
CL  
RL  
0 V  
S4A  
S4B  
VS  
tOFF  
tON (EN)  
(EN)  
OUTPUT  
RL  
D4  
90%  
CL  
OUTPUT  
0 V  
EN  
10%  
VEN  
GND  
7-6. tON (EN) and tOFF (EN) Time Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMUX1575  
 
 
 
 
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
7.7 Break-Before-Make Delay  
Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is  
switching. The output first breaks from the on-state switch before making the connection with the next on-state  
switch. The time delay between the break and the make is known as break-before-make delay. 7-7 shows the  
setup used to measure break-before-make delay, denoted by the symbol tOPEN(BBM)  
.
VDD  
0.1F  
VDD  
VDD  
VSEL  
0 V  
S1A  
S1B  
VS  
OUTPUT  
RL  
D1  
D4  
tr < 5ns  
tf < 5ns  
CL  
S4A  
S4B  
VS  
OUTPUT  
RL  
90%  
Output  
0 V  
tBBM  
1
tBBM  
2
CL  
tOPEN (BBM) = min ( tBBM 1, tBBM 2)  
SEL  
VSEL  
GND  
7-7. Break-Before-Make Delay Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMUX1575  
 
 
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
7.8 Charge Injection  
The amount of charge injected into the source or drain of the device during the falling or rising edge of the gate  
signal is known as charge injection, and is denoted by the symbol QC. 7-8 shows the setup used to measure  
charge injection from source (Sx) to drain (Dx).  
VDD  
0.1F  
VDD  
VDD  
S1A  
VS  
OUTPUT  
D1  
VOUT  
CL  
VEN  
0 V  
S1B  
S4A  
S4B  
VS  
Output  
VS  
OUTPUT  
D4  
VOUT  
CL  
VOUT  
QC = CL  
×
VOUT  
EN  
VEN  
GND  
7-8. Charge-Injection Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMUX1575  
 
 
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
7.9 Off Isolation  
Off isolation is defined as the ratio of the signal at the drain pin (Dx) of the device when a signal is applied to the  
source pin (Sx) of an off-channel. The characteristic impedance, Z0, for the measurement is 50 Ω. 7-9 shows  
the setup used to measure off isolation. Use off isolation equation to compute off isolation.  
0.1µF  
NETWORK  
VDD  
ANALYZER  
VS  
S
D
50Ω  
VSIG  
VOUT  
RL  
SxA / SxB / Dx  
50Ω  
RL  
GND  
50Ω  
7-9. Off Isolation Measurement Setup  
«
VOUT  
VS  
Off Isolation = 20 Log  
÷
(1)  
7.10 Channel-to-Channel Crosstalk  
Crosstalk is defined as the ratio of the signal at the drain pin (Dx) of a different channel, when a signal is applied  
at the source pin (Sx) of an on-channel. The characteristic impedance, Z0, for the measurement is 50 Ω. 7-10  
shows the setup used to measure, and the equation used to compute crosstalk.  
VDD  
0.1µF  
NETWORK  
VDD  
ANALYZER  
D1  
D4  
S1A  
VOUT  
RL  
RL  
50Ω  
50Ω  
VS  
S4A  
RL  
50Ω  
50Ω  
SxA / SxB / Dx  
VSIG = 200 mVpp  
VBIAS = VDD / 2  
RL  
50Ω  
GND  
7-10. Channel-to-Channel Crosstalk Measurement Setup  
«
÷
VOUT  
VS  
Channel-to-Channel Crosstalk = 20 Log  
(2)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMUX1575  
 
 
 
 
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
7.11 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (Dx) of the device. The  
characteristic impedance, Z0, for the measurement is 50 Ω. 7-11 shows the setup used to measure  
bandwidth.  
VDD  
0.1µF  
NETWORK  
VDD  
ANALYZER  
VS  
50Ω  
S
D
VSIG  
VOUT  
RL  
50Ω  
SxA / SxB / Dx  
RL  
GND  
50Ω  
7-11. Bandwidth Measurement Setup  
#PPAJQ=PEKJ = 20 × .KC (8  
)
176  
8
5
(3)  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMUX1575  
 
 
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TMUX1575 is a high speed 2:1 (SPDT) 4-ch. switch with powered-off protection. Wide operating supply of  
1.08 V to 3.6 V allows for use in a wide array of applications from servers and communication equipment to  
personal electronics. The device supports bidirectional analog and digital signals on the source (SxA, SxB) and  
drain (Dx) pins. The wide bandwidth of this switch allows little or no attenuation of high-speed signals at the  
outputs to pass with minimum edge and phase distortion as well as propagation delay.  
8.2 Functional Block Diagram  
TMUX1575  
S1A  
D1  
S1B  
S2A  
D2  
S2B  
S3A  
D3  
S3B  
S4A  
D4  
S4B  
LOGIC CONTROL*  
SEL  
EN  
*Internal 6MO Pull-Down on Logic Pins  
8.3 Feature Description  
8.3.1 Bidirectional Operation  
The TMUX1575 conducts equally well from source (SxA, SxB) to drain (Dx) or from drain (Dx) to source (SxA,  
SxB). Each channel has very similar characteristics in both directions and supports both analog and digital  
signals.  
8.3.2 Beyond Supply Operation  
When the TMUX1575 is powered from 1.08 V to 3.6 V, the valid signal path input and output voltage ranges from  
GND to VDD x 2, with a maximum input/output voltage of 3.6 V.  
Example 1: If the TMUX1575 is powered at 1.2 V, the signal range is 0 V to 2.4 V.  
Example 2: If the TMUX1575 is powered at 1.8 V, the signal range is 0 V to 3.6 V.  
Example 3: If the TMUX1575 is powered at 3.6 V, the signal range is 0 V to 3.6 V.  
Other voltage levels not mentioned in the examples support Beyond Supply Operation as long as the supply  
voltage falls within the recommended operation conditions of 1.08 V to 3.6 V.  
8.3.3 1.2 V Logic Compatible Inputs  
The TMUX1575 has 1.2-V logic compatible control inputs. Regardless of the VDD voltage, the control input  
thresholds remain fixed, allowing a 1.8-V processor GPIO to control the TMUX1575 without the need for an  
external translator. This saves both space and BOM cost. For more information on 1.2 V and 1.8 V logic  
implementations, refer to Simplifying Design with 1.8 V logic Muxes and Switches.  
8.3.4 Powered-off Protection  
Powered-off protection up on the signal path of the TMUX1575 provides isolation when the supply voltage is  
removed (VDD = 0 V). When the TMUX1575 is powered-off, the I/Os of the device remain in a high-Z state.  
Powered-off protection minimizes system complexity by removing the need for power supply sequencing on the  
signal path. The device performance remains within the leakage performance mentioned in the Electrical  
Specifications. For more information on powered-off protection, refer to Eliminate Power Sequencing with  
Powered-off Protection Signal Switches.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMUX1575  
 
 
 
 
 
 
 
 
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
8.3.5 Fail-Safe Logic  
The TMUX1575 has Fail-Safe Logic on the control input pins (SELx) which allows for operation up to 3.6 V,  
regardless of the state of the supply pin. This feature allows voltages on the control pins to be applied before the  
supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system complexity by  
removing the need for power supply sequencing on the logic control pins. For example, the Fail-Safe Logic  
feature allows the select pins of the TMUX1575 to be ramped to 3.6 V while VDD = 0 V. Additionally, the feature  
enables operation of the TMUX1575 with VDD = 1.08 V while allowing the select pins to interface with a logic  
level of another device up to 3.6 V.  
8.3.6 Integrated Pull-Down Resistors  
The TMUX1575 has internal weak pull-down resistors (6 MΩ) to GND to ensure the logic pins are not left  
floating. This feature integrates external components and reduces system size and cost.  
8.4 Device Functional Modes  
The enable (EN) pin is an active-high logic pin that controls the connection between the source (SxA, SxB) and  
drain (Dx) pins of the device. When the enable pin is pulled low, all switches are turned off. When the enable is  
pulled high, the select pin controls the signal path selection. The select pin (SEL) controls the state of all four  
channels of the TMUX1575 and determines which source pin is connected to the drain pins. When the select pin  
is pulled low, the SxA pin conducts to the corresponding Dx pins. When the select pin is pulled high, the SxB pin  
conducts to the corresponding Dx pins. The TMUX1575 logic pins have internal weak pull-down resistors (6  
MΩ) to GND so that it powers-on in a known state.  
The TMUX1575 can be operated without any external components except for the supply decoupling capacitors.  
Unused logic control pins should be tied to GND or VDD in order to ensure the device does not consume  
additional current as highlighted in Implications of Slow or Floating CMOS Inputs. Unused signal path inputs  
(SxA, SxB, or Dx) should be connected to GND.  
8.4.1 Truth Tables  
8-1. TMUX1575 Truth Table  
INPUTS  
Selected Source Pins Connected To Drain Pins  
(Dx)  
EN  
SEL  
S1A connected to D1  
S2A connected to D2  
S3A connected to D3  
S4A connected to D4  
1
0
S1B connected to D1  
S2B connected to D2  
S3B connected to D3  
S4B connected to D4  
1
0
1
X(1)  
Hi-Z (OFF)  
(1) X denotes don't care.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMUX1575  
 
 
 
 
 
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Typical Application  
Common applications that require the features of the TMUX1575 include multiplexing various protocols from a  
possessor or MCU such as SPI, JTAG, eMMC, or standard GPIO signals. The TMUX1575 provides superior  
isolation performance when the device is powered. The added benefit of powered-off protection allows a system  
to minimize complexity by eliminating the need for power sequencing in hot-swap and live insertion applications.  
The example shown in 9-1 illustrates the use of the TMUX1575 to multiplex an SPI bus to multiple flash  
memory devices.  
1.2 V  
3.3 V  
3.3 V  
0.1µF  
FLASH Device #1  
VI/O  
VDD  
VDD  
Processor  
S1A  
S2A  
S3A  
S4A  
MISO  
MOSI  
SCLK  
SS  
D1  
D2  
D3  
D4  
RAM  
CPU  
SPI PORT  
FLASH Device #2  
S1B  
S2B  
S3B  
S4B  
MISO  
MOSI  
SCLK  
SS  
Peripherals  
1.2V Logic  
I/O  
SEL  
EN  
GND  
GND  
9-1. Multiplexing Flash Memory  
9.1.1 Design Requirements  
For this design example, use the parameters listed in 9-1.  
9-1. Design Parameters  
PARAMETERS  
VALUES  
3.3 V  
Supply (VDD  
)
Input / Output signal range  
Control logic thresholds  
0 V to 3.3 V  
1.2 V compatible  
9.1.2 Detailed Design Procedure  
The TMUX1575 can be operated without any external components except for the supply decoupling capacitors.  
The TMUX1575 has internal weak pull-down resistors (6 MΩ) to GND so that it powers-on with the switches in a  
known state. All inputs signals passing through the switch must fall within the recommend operating conditions of  
the TMUX1575 including signal range and continuous current. For this design example, with a supply of 3.3 V,  
the signals can range from 0 V to 3.3 V when the device is powered. This example can also utilize the Powered-  
off protection feature where the inputs can range from 0 V to 3.6 V when VDD = 0 V. Due to the voltage range  
and high speed capability, the TMUX1575 example is suitable for use in SPI, JTAG, eMMC, and I2S  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMUX1575  
 
 
 
 
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
applications. Refer to Enabling SPI-based flash memory expansion by using multiplexers for more information on  
using switches and multiplexers for SPI protocol expansion.  
10 Power Supply Recommendations  
The TMUX1575 operates across a wide supply range of 1.08 V to 3.6 V. Do not exceed the absolute maximum  
ratings because stresses beyond the listed ratings can cause permanent damage to the devices.  
Power-supply bypassing improves noise margin and prevents switching noise propagation from the VDD supply  
to other components. Good power-supply decoupling is important to achieve optimum performance. For  
improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μF to 10 μF from VDD to  
ground. Place the bypass capacitors as close to the power supply pins of the device as possible using low-  
impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low  
equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes.  
For very sensitive systems, or for systems in harsh noise environments, avoiding the use of vias for connecting  
the capacitors to the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers  
the overall inductance and is beneficial for connections to ground planes.  
11 Layout  
11.1 Layout Guidelines  
When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of  
the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and selfinductance  
of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must  
turn corners. 11-1 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
WORST  
BETTER  
BEST  
2W  
1W min.  
W
11-1. Trace Example  
Route the high-speed signals using a minimum of vias and corners which reduces signal reflections and  
impedance changes. When a via must be used, increase the clearance size around it to minimize its  
capacitance. Each via introduces discontinuities in the signals transmission line and increases the chance of  
picking up interference from the other layers of the board. Be careful when designing test points, through-hole  
pins are not recommended at high frequencies.  
Do not route high speed signal traces under or near crystals, oscillators, clock signal generators, switching  
regulators, mounting holes, magnetic devices or ICs that use or duplicate clock signals.  
Avoid stubs on the high-speed signals traces because they cause signal reflections.  
Route all high-speed signal traces over continuous GND planes, with no interruptions.  
Avoid crossing over anti-etch, commonly found with plane splits.  
When working with high frequencies, a printed circuit board with at least four layers is recommended; two signal  
layers separated by a ground and power layer as shown in 11-2.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMUX1575  
 
 
 
 
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
Signal 1  
GND Plane  
Power Plane  
Signal 2  
11-2. Example Layout  
The majority of signal traces must run on a single layer, preferably Signal 1. Immediately next to this layer must  
be the GND plane, which is solid with no cuts. Avoid running signal traces across a split in the ground or power  
plane. When running across split planes is unavoidable, sufficient decoupling must be used. Minimizing the  
number of signal vias reduces EMI by reducing inductance at high frequencies. 11-3 illustrates an example of  
a PCB layout with the TMUX1575. Some key considerations are:  
Decouple the VDD pin with a 0.1-μF capacitor, placed as close to the pin as possible. Make sure that the  
capacitor voltage rating is sufficient for the VDD supply.  
High-speed switches require proper layout and design procedures for optimum performance.  
Keep the input lines as short as possible.  
Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
11.2 Layout Example  
Example:  
Top Layer Routing  
SxA  
To A port  
To B port  
Bottom Layer Routing  
Via  
SxB  
Dx  
To common port  
To Control  
Logic  
S2A  
S3A  
S4A  
D1  
S1A  
VDD  
SEL  
D2  
S1B  
EN  
S2B  
To input/output  
port A  
S3B  
S4B  
D4  
To input/output  
port B  
GND  
D3  
Decoupling capacitor under  
part on bottom layer for  
lowest inductance  
To common  
input/output port  
11-3. Example Layout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMUX1575  
 
 
 
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
Texas Instruments, Improve Stability Issues with Low CON Multiplexers.  
Texas Instruments, Enabling SPI-based flash memory expansion by using multiplexers.  
Texas Instruments, Simplifying Design with 1.8 V logic Muxes and Switches.  
Texas Instruments, Eliminate Power Sequencing with Powered-off Protection Signal Switches.  
Texas Instruments, System-Level Protection for High-Voltage Analog Multiplexers.  
Texas Instruments, High-Speed Interface Layout Guidelines.  
Texas Instruments, High-Speed Layout Guidelines.  
Texas Instruments, QFN/SON PCB Attachment.  
Texas Instruments, Quad Flatpack No-Lead Logic Packages.  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMUX1575  
 
 
 
 
 
 
 
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMUX1575  
 
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
PACKAGE OUTLINE  
YCJ0016-C01  
DSBGA - 0.35 mm max height  
SCALE 12.000  
DIE SIZE BALL GRID ARRAY  
1.359  
1.319  
A
B
BALL A1  
CORNER  
1.359  
1.319  
0.35 MAX  
C
SEATING PLANE  
0.05 C  
0.125  
0.075  
1.05 TYP  
SYMM  
D
C
1.05  
SYMM  
TYP  
B
A
0.35  
TYP  
1
4
2
3
0.195  
0.155  
16X  
0.35 TYP  
0.015  
C A B  
4225953/A 05/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMUX1575  
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
YCJ0016-C01  
DSBGA - 0.35 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
1
16X ( 0.18)  
4
3
2
A
(0.35) TYP  
B
C
SYMM  
D
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 50X  
0.0375 MIN  
0.0375 MAX  
METAL UNDER  
SOLDER MASK  
( 0.18)  
METAL  
EXPOSED  
METAL  
(
0.18)  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
(PREFERRED)  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225953/A 05/2020  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMUX1575  
TMUX1575  
ZHCSM11 OCTOBER 2020  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
YCJ0016-C01  
DSBGA - 0.35 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
(R0.05) TYP  
3
16X ( 0.21)  
2
1
4
A
(0.35) TYP  
B
C
SYMM  
METAL  
TYP  
D
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 mm THICK STENCIL  
SCALE: 50X  
4225953/A 05/2020  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMUX1575  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX1575YCJR  
ACTIVE  
DSBGA  
YCJ  
16  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
-40 to 125  
1575  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
YCJ0016  
DSBGA - 0.35 mm max height  
SCALE 12.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
0.35 MAX  
C
SEATING PLANE  
0.05 C  
0.125  
0.075  
1.05 TYP  
SYMM  
D
C
1.05  
TYP  
SYMM  
D: Max = 1.329 mm, Min =1.269 mm  
E: Max = 1.329 mm, Min =1.269 mm  
B
A
0.35  
TYP  
1
4
2
3
0.195  
0.155  
16X  
0.015  
0.35 TYP  
C A B  
4226577/A 02/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YCJ0016  
DSBGA - 0.35 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
1
16X ( 0.18)  
4
3
2
A
(0.35) TYP  
B
C
SYMM  
D
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 50X  
0.0375 MIN  
0.0375 MAX  
METAL UNDER  
SOLDER MASK  
(
0.18)  
METAL  
EXPOSED  
METAL  
(
0.18)  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
(PREFERRED)  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4226577/A 02/2021  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YCJ0016  
DSBGA - 0.35 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
(R0.05) TYP  
16X ( 0.21)  
2
1
3
4
A
(0.35) TYP  
B
C
SYMM  
METAL  
TYP  
D
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 mm THICK STENCIL  
SCALE: 50X  
4226577/A 02/2021  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TMUX4051

具有 1.8V 逻辑电平的 ±12V 8:1 单通道多路复用器
TI

TMUX4051-Q1

具有 1.8V 兼容逻辑电压的汽车类 ±12V、8:1、单通道通用多路复用器
TI

TMUX4051PWR

具有 1.8V 逻辑电平的 ±12V 8:1 单通道多路复用器 | PW | 16 | -55 to 125
TI

TMUX4051PWRQ1

具有 1.8V 兼容逻辑电压的汽车类 ±12V、8:1、单通道通用多路复用器 | PW | 16 | -55 to 125
TI

TMUX4052

具有 1.8V 逻辑电平的 ±12V 4:1 双通道多路复用器
TI

TMUX4052-Q1

具有 1.8V 兼容逻辑电平的汽车类 ±12V 4:1 双通道多路复用器
TI

TMUX4052PWR

具有 1.8V 逻辑电平的 ±12V 4:1 双通道多路复用器 | PW | 16 | -55 to 125
TI

TMUX4052PWRQ1

具有 1.8V 兼容逻辑电平的汽车类 ±12V 4:1 双通道多路复用器 | PW | 16 | -55 to 125
TI

TMUX4053

具有 1.8V 逻辑电平的 ±12V 2:1 三通道多路复用器
TI

TMUX4053PWR

具有 1.8V 逻辑电平的 ±12V 2:1 三通道多路复用器 | PW | 16 | -55 to 125
TI

TMUX4157N

输入切换时无过冲的 2Ω 低 RON、-12V、2:1 (SPDT) 通用开关
TI

TMUX4157NDCKR

输入切换时无过冲的 2Ω 低 RON、-12V、2:1 (SPDT) 通用开关 | DCK | 6 | -55 to 125
TI