TMUX4157NDCKR [TI]

输入切换时无过冲的 2Ω 低 RON、-12V、2:1 (SPDT) 通用开关 | DCK | 6 | -55 to 125;
TMUX4157NDCKR
型号: TMUX4157NDCKR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

输入切换时无过冲的 2Ω 低 RON、-12V、2:1 (SPDT) 通用开关 | DCK | 6 | -55 to 125

开关 通用开关 光电二极管
文件: 总25页 (文件大小:1851K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMUX4157N  
ZHCSMU3A MARCH 2020 REVISED MARCH 2021  
TMUX4157N  
1.8V 逻辑控制器的-12V RON2:1 (SPDT) 负电压开关  
1 特性  
3 说明  
• 负电压支持-4V -12V  
• 轨到轨运行  
• 双向信号路径  
• 兼1.8V 逻辑电平  
• 失效防护逻辑  
TMUX4157N 是一款仅支持负电源轨的通2:1 单极双  
(SPDT) 开关。电源电压范围为 -4V -12V而且  
该器件可在源极 (Sx) 和漏极 (D) 引脚上支持从 GND  
VSS 范围的双向模拟和数字信号。选择引脚 (SEL)  
的状态决定连接到漏极引脚的源极引脚。  
• 持续高电流支持150mA  
• 低导通电阻1.8Ω  
-55°C +125°C 工作温度  
• 先断后合开关  
虽然 在电源引脚和信号路径上支持负电压但逻辑输  
入引脚却通过正电压进行控制以实现与典型控制逻辑  
电路比如 GPIO 信号的连接。逻辑输入引脚具有  
兼容 1.8V 逻辑电平的阈值并可在高达 5.5V 的电压  
下运行以增加系统灵活性。失效防护逻辑电路允许先在  
控制引脚上施加电压然后在电源引脚上施加电压从  
而保护器件免受潜在的损害。  
ESD HBM2000V  
2 应用  
• 模拟和数字开关  
GaN 功率放大器栅极开关  
远程射频单(RRU)  
有源天线系mMIMO (AAS)  
基带单(BBU)  
快 速 转 换 时 间 和 通 过 开 关 的 持 续 高 电 流 使  
TMUX4157N 非常适合需要在两个不同的电压输入之  
间快速切换的系统应用。  
器件信息  
无线通信测试  
器件型号(1)  
TMUX4157N  
封装尺寸标称值)  
封装  
SC70 (6)  
2.00mm × 1.25mm  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
TMUX4157N  
RF Input  
RF Output  
S1  
S2  
0 V  
TMUX4157N  
D
-12 V  
DAC  
SEL  
1.8 V  
SEL  
应用示例  
TMUX4157N 方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCDS428  
 
 
 
TMUX4157N  
ZHCSMU3A MARCH 2020 REVISED MARCH 2021  
www.ti.com.cn  
Table of Contents  
7.10 Crosstalk.................................................................14  
7.11 Bandwidth............................................................... 15  
8 Detailed Description......................................................15  
8.1 Overview...................................................................15  
8.2 Functional Block Diagram.........................................15  
8.3 Feature Description...................................................15  
8.4 Device Functional Modes..........................................16  
8.5 Truth Tables.............................................................. 16  
9 Application and Implementation..................................17  
9.1 Application Information............................................. 17  
9.2 Typical Application.................................................... 17  
10 Power Supply Recommendations..............................18  
11 Layout...........................................................................19  
11.1 Layout Guidelines................................................... 19  
11.2 Layout Example...................................................... 19  
12 Device and Documentation Support..........................20  
12.1 Documentation Support.......................................... 20  
12.2 Receiving Notification of Documentation Updates..20  
12.3 支持资源..................................................................20  
12.4 Trademarks.............................................................20  
12.5 静电放电警告.......................................................... 20  
12.6 术语表..................................................................... 20  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................5  
6.5 Electrical Characteristics ............................................5  
6.6 Dynamic Characteristics ............................................ 6  
6.7 Timing Characteristics ................................................7  
6.8 Typical Characteristics................................................8  
7 Parameter Measurement Information..........................10  
7.1 On-Resistance.......................................................... 10  
7.2 Off-Leakage Current................................................. 10  
7.3 On-Leakage Current................................................. 11  
7.4 Transition Time..........................................................11  
7.5 Break-Before-Make...................................................12  
7.6 Prop Delay................................................................ 12  
7.7 Device Turn on Time.................................................13  
7.8 Charge Injection........................................................13  
7.9 Off Isolation...............................................................14  
Information.................................................................... 20  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (March 2020) to Revision A (March 2021)  
Page  
• 将文档状态从预告信更改为数据.............................................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMUX4157N  
 
TMUX4157N  
ZHCSMU3A MARCH 2020 REVISED MARCH 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
S2  
VSS  
S1  
1
2
3
6
5
4
SEL  
GND  
D
Not to scale  
5-1. DCK Package 6-Pin SC70 Top View  
5-1. Pin Functions  
DESCRIPTION(2)  
PIN  
TYPE(1)  
NAME  
NO.  
S2  
1
I/O  
P
Source pin 2. Can be an input or output.  
Negative power supply. This pin is the most negative power-supply potential. For reliable operation,  
connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VSS and GND.  
VSS  
2
S1  
3
4
5
6
I/O  
I/O  
P
Source pin 1. Can be an input or output.  
D
Drain pin. Can be an input or output.  
GND  
SEL  
Ground (0 V) reference  
I
Select pin: controls state of the switch according to 8-1. (Logic Low = S1 to D, Logic High = S2 to D)  
(1) I = input, O = output, I/O = input and output, P = power.  
(2) Refer to 8.4 for what to do with unused pins.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMUX4157N  
 
 
 
TMUX4157N  
ZHCSMU3A MARCH 2020 REVISED MARCH 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2) (3)  
MIN  
13  
MAX  
0.5  
6
UNIT  
VSS  
Supply voltage  
VSEL  
Logic control input pin voltage (SEL)  
V
0.5  
VS or VD  
ISEL  
Source or drain voltage (Sx, D)  
0.5  
VSS0.5  
50  
Logic control input pin diode current (SEL)  
Switch source or drain pin diode current (Sx, D)  
Continuous current through switch (Sx, D pins) 40°C to +125°C  
Continuous current through switch (Sx, D pins) 40°C to +85°C  
IIOK  
50  
100  
150  
50  
mA  
IS or ID (CONT)  
IS or ID (CONT)  
100  
150  
Source and drain peak current: (1 ms period max, 10% duty cycle  
maximum) (Sx, D)  
IS or ID (PEAK)  
150  
mA  
150  
PD  
Tstg  
TJ  
Power dissipation  
80  
150  
150  
mW  
Storage temperature  
Junction temperature  
65  
°C  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
(3) All voltages are with respect to ground, unless otherwise specified.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN NOM  
MAX  
4  
UNIT  
V
VSS  
Supply voltage  
12  
VSS  
VS or VD  
VSEL  
Signal path input/output voltage (source or drain pin) (Sx, D)  
Logic control input pin voltage (SEL)  
GND  
5.5  
V
0
V
IS or ID (CONT)  
IS or ID (CONT)  
TA  
100  
150  
125  
mA  
mA  
°C  
Continuous current through switch (Sx, D pins) 40°C to +125°C  
Continuous current through switch (Sx, D pins) 40°C to +85°C  
Ambient temperature  
100  
150  
55  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMUX4157N  
 
 
 
 
 
 
 
 
 
TMUX4157N  
ZHCSMU3A MARCH 2020 REVISED MARCH 2021  
www.ti.com.cn  
6.4 Thermal Information  
TMUX4157N  
THERMAL METRIC(1)  
SC70 (DCK)  
6 PINS  
181.7  
132.6  
73.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
56.3  
ΨJT  
72.9  
ΨJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
Typical values measured at nominal VSS and TA = 25°C.  
55°C to 125°C  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
VSS  
UNIT  
MIN  
TYP  
MAX  
1.8  
1.8  
1.9  
2
6.5  
6.5  
6.5  
6.5  
8
12 V  
10 V  
8 V  
6 V  
4 V  
12 V  
10 V  
8 V  
6 V  
4 V  
12 V  
10 V  
8 V  
6 V  
4 V  
VS = VSS to GND  
ISD = 50 mA  
RON  
On-state switch resistance  
Ω
2.6  
1.8  
1.8  
1.8  
1.6  
1.4  
0.2  
0.2  
0.25  
0.25  
0.3  
On-state switch resistance  
flatness  
VS = VSS to GND  
ISD = 50 mA  
RON FLAT  
Ω
On-state switch resistance  
matching between inputs  
VS = VSS to GND  
ISD = 50 mA  
ΔRON  
Ω
Switch Off  
IS(OFF)  
Source off-state leakage current VD = VSS / GND  
VS = GND / VSS  
±1  
±15  
±15  
µA  
10 V  
ID(ON)  
IS(ON)  
Switch On  
VS = VD = GND to VSS  
Channel on-state leakage current  
±1  
10  
20  
µA  
pF  
pF  
10 V  
10 V  
10 V  
VS = VSS / 2  
f = 1 MHz  
CSOFF  
Source off capacitance  
On capacitance  
CSON  
CDON  
VS = VSS / 2  
f = 1 MHz  
POWER SUPPLY  
Logic inputs = GND or 3.3 V  
VS = VSS or GND  
12 V to 4  
V
ISS  
VSS supply current  
20  
70  
µA  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMUX4157N  
 
 
 
TMUX4157N  
ZHCSMU3A MARCH 2020 REVISED MARCH 2021  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
Typical values measured at nominal VSS and TA = 25°C.  
55°C to 125°C  
PARAMETER  
LOGIC INPUT (SEL)  
TEST CONDITIONS  
VSS  
UNIT  
MIN  
TYP  
MAX  
1.35  
1.35  
1.35  
1.35  
1.35  
0
5
5
12 V  
10 V  
8 V  
6 V  
4 V  
12 V  
10 V  
8 V  
6 V  
4 V  
VIH  
Input logic high  
5
V
V
5
5
0.8  
0.8  
0.8  
0.8  
0.8  
0
VIL  
Input logic low  
0
0
0
IIH  
IIL  
12 V to 4  
V
Logic input leakage current  
Logic input capacitance  
±1  
3
±30  
µA  
pF  
12 V to 4  
V
CIN  
6.6 Dynamic Characteristics  
Typical values measured at nominal VSS and TA = 25°C.  
55°C to 125°C  
PARAMETER  
TEST CONDITIONS  
VSS  
UNIT  
MIN  
TYP  
80  
70  
55  
40  
25  
MAX  
12 V  
10 V  
8 V  
6 V  
4 V  
VS = VSS / 2  
RS = 0 Ω, CL = 100 pF  
QINJ  
Charge Injection  
pC  
VBIAS = VSS / 2  
VS = 200 mVpp  
RL = 50 Ω, CL = 5 pF  
f = 1 MHz  
12 V to 4  
V
OISO  
OISO  
XTALK  
Off Isolation  
Off Isolation  
Crosstalk  
dB  
dB  
dB  
65  
40  
65  
VBIAS = VSS / 2  
VS = 200 mVpp  
RL = 50 Ω, CL = 5 pF  
f = 10 MHz  
12 V to 4  
V
VBIAS = VSS / 2  
VS = 200 mVpp  
RL = 50 Ω, CL = 5 pF  
f = 1 MHz  
12 V to 4  
V
VBIAS = VSS / 2  
VS = 200 mVpp  
RL = 50 Ω, CL = 5 pF  
f = 10 MHz  
12 V to 4  
V
XTALK  
Crosstalk  
dB  
42  
VBIAS = VSS / 2  
VS = 200 mVpp  
RL = 50 Ω, CL = 5 pF  
12 V to 4  
V
BW  
Bandwidth  
340  
MHz  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMUX4157N  
 
TMUX4157N  
ZHCSMU3A MARCH 2020 REVISED MARCH 2021  
www.ti.com.cn  
6.7 Timing Characteristics  
Typical values measured at nominal VSS and TA = 25°C.  
55°C to 125°C  
PARAMETER  
TEST CONDITIONS  
VSS  
12 V  
UNIT  
MIN  
TYP  
0.4  
0.4  
0.4  
0.4  
0.5  
MAX  
2
2
10 V  
8 V  
6 V  
4 V  
12 V  
10 V  
8 V  
6 V  
4 V  
12 V  
10 V  
8 V  
6 V  
4 V  
12 V  
10 V  
8 V  
6 V  
4 V  
Propagation delay  
Sx to D, D to Sx  
tPD  
CL = 100 pF  
2
ns  
ns  
ns  
2
2.5  
210  
200  
205  
215  
280  
210  
210  
215  
225  
260  
Transition-time between inputs  
tTRAN HIGH turning on (high)  
SEL to D, SEL to Sx  
RL = 250 Ω, CL = 100 pF  
VS = VSS  
Transition-time between inputs  
turning off (low)  
SEL to D, SEL to Sx  
RL = 250 Ω, CL = 100 pF  
VS = VSS  
tTRAN LOW  
5
5
RL = 50 Ω, CL = 100 pF  
VS = 2.5 V  
tBBM  
Break before make time  
10  
10  
40  
ns  
µs  
Device turn on time (VSS to  
output)  
RL = 250 Ω, CL = 100 pF  
VS = VSS  
12 V to 4  
V
TON (VSS)  
20  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMUX4157N  
 
TMUX4157N  
ZHCSMU3A MARCH 2020 REVISED MARCH 2021  
www.ti.com.cn  
6.8 Typical Characteristics  
At TA = 25°C, VSS = -10 V (unless otherwise noted).  
4.5  
6
5
4
3
2
1
0
VSS = -12 V  
TA = 125èC  
TA = 85èC  
TA = 25èC  
TA = -55èC  
VSS = -10 V  
VSS = -8 V  
VSS = -4 V  
4
3.5  
3
2.5  
2
1.5  
-12  
-10  
-8  
Source or Drain Voltage (V)  
-6  
-4  
-2  
0
-12  
-10  
-8  
Source or Drain Voltage (V)  
-6  
-4  
-2  
0
D001  
D002  
TA = 25°C  
VSS = -12 V  
6-1. On-Resistance vs Signal Voltage  
6-2. On-Resistance vs Signal Voltage  
6
5
4
3
2
1
0
-6  
-8  
TA = 125èC  
TA = 85èC  
TA = 25èC  
TA = -55èC  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-6  
-5  
-4  
Source or Drain Voltage (V)  
-3  
-2  
-1  
0
-12  
-11  
-10  
-9  
Supply Voltage (V)  
-8  
-7  
-6  
-5  
-4  
D003  
D004  
VSS = -6 V  
TA = 25°C  
6-3. On-Resistance vs Signal Voltage  
6-4. Supply Current vs Supply Voltage  
180  
170  
160  
150  
140  
130  
120  
110  
100  
200  
190  
180  
170  
160  
150  
140  
130  
120  
110  
100  
TA = 125èC  
TA = 125èC  
TA = 85èC  
TA = 25èC  
TA = -55èC  
TA = 85èC  
TA = 25èC  
TA = -55èC  
-10  
-8  
-6  
Source or Drain Voltage (V)  
-4  
-2  
-10  
-8  
-6  
Source or Drain Voltage (V)  
-4  
-2  
D005  
D006  
VSS = -10 V  
VSS = -10 V  
6-5. Transition Time vs Signal Voltage  
6-6. Transition Time vs Signal Voltage  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMUX4157N  
 
TMUX4157N  
ZHCSMU3A MARCH 2020 REVISED MARCH 2021  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
At TA = 25°C, VSS = -10 V (unless otherwise noted).  
152  
0
-20  
Output Rising Edge  
Output Falling Edge  
VSS: -12  
VSS: -8  
VSS: -6  
150  
148  
146  
144  
142  
140  
138  
136  
134  
132  
130  
128  
126  
124  
-40  
-60  
-80  
-100  
-12  
-11  
-10  
-9  
Supply Voltage (V)  
-8  
-7  
-6  
-5  
-4  
-12  
-10  
-8  
-6  
Drain Voltage (V)  
-4  
-2  
0
D007  
D008  
TA = 25°C  
TA = 25°C  
6-7. Transition Time vs Supply Voltage  
6-8. Charge Injection vs Drain Voltage  
0
-20  
0
-2  
VSS = -12  
VSS = -6  
VSS = -8  
-4  
-40  
VSS = -12  
VSS = -6  
VSS = -8  
-6  
-60  
-8  
-80  
-10  
-100  
-12  
100k  
1M  
10M  
Frequency (Hz)  
100M  
1G  
100k  
1M  
10M  
Frequency (Hz)  
100M  
1G  
D009  
D010  
TA = 25°C  
TA = 25°C  
6-10. Frequency Response  
6-9. Crosstalk and Off-Isolation vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMUX4157N  
TMUX4157N  
ZHCSMU3A MARCH 2020 REVISED MARCH 2021  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 On-Resistance  
The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (D) pins of the device.  
The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-  
resistance. 7-1 shows the measurement setup used to measure RON. Voltage (V) and current (ISD) are  
measured using this setup, and RON is computed with RON = V / ISD  
:
V
ISD  
Sx  
D
VS  
7-1. On-Resistance Measurement Setup  
7.2 Off-Leakage Current  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS(OFF)  
.
7-2 shows the setup used to measure off-leakage current.  
VSS  
Is (OFF)  
S1  
A
D
S2  
VS  
VD  
GND  
7-2. Off-Leakage Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMUX4157N  
 
 
 
 
 
TMUX4157N  
ZHCSMU3A MARCH 2020 REVISED MARCH 2021  
www.ti.com.cn  
7.3 On-Leakage Current  
Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is on. This current is denoted by the symbol IS(ON)  
.
Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
on. This current is denoted by the symbol ID(ON)  
.
Either the source pin or drain pin is left floating during the measurement. 7-3 shows the circuit used for  
measuring the on-leakage current, denoted by IS(ON) or ID(ON)  
.
VSS  
VSS  
IS (ON)  
S1  
S2  
S1  
S2  
ID (ON)  
N.C.  
A
D
D
A
N.C.  
Vs  
VS  
VS  
VD  
GND  
GND  
7-3. On-Leakage Measurement Setup  
7.4 Transition Time  
Transition time is defined as the time taken by the output of the device to rise or fall 50% after the logic control  
signal has risen or fallen past the 50% threshold. System level timing can then account for the time constant  
added from the load resistance and load capacitance. 7-4 shows the setup used to measure transition time,  
denoted by the symbol tTRANSITION  
.
VSS  
0.1F  
1.8 V  
50%  
50%  
VSEL  
tr < 5ns  
tf < 5ns  
S2  
S1  
VS  
OUTPUT  
D
0 V  
tTRAN_HIGH  
tTRAN_LOW  
RL  
CL  
0 V  
Output  
SEL  
50%  
50%  
VSEL  
GND  
7-4. Transition-Time Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMUX4157N  
 
 
 
 
TMUX4157N  
ZHCSMU3A MARCH 2020 REVISED MARCH 2021  
www.ti.com.cn  
7.5 Break-Before-Make  
Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is  
switching. The output first breaks from the on-state switch before making the connection with the next on-state  
switch. The time delay between the break and the make is known as break-before-make delay. 7-5 shows the  
setup used to measure break-before-make delay, denoted by the symbol tOPEN(BBM)  
.
VSS  
0.1F  
3.3 V  
S1  
S2  
VSEL  
tr < 5ns  
tf < 5ns  
VS  
OUTPUT  
D
0 V  
RL  
CL  
90%  
Output  
SEL  
tBBM  
1
tBBM 2  
0 V  
VSEL  
tOPEN (BBM) = min ( tBBM 1, tBBM 2)  
GND  
7-5. Break-Before-Make Delay Measurement Setup  
7.6 Prop Delay  
Propagation delay is defined as the time taken by the output of the device to rise or fall 50% after the input signal  
has risen or fallen past the 50% threshold. 7-6 shows the setup used to measure propagation delay, denoted  
by the symbol tPD  
.
VSS  
0.1F  
0 V  
Input  
(VS)  
50%  
50%  
S1  
S2  
VS  
OUTPUT  
D
VSS  
tPD_1  
tPD_2  
CL  
0 V  
SEL  
50%  
50%  
Output  
tProp Delay = max ( tPD_1, tPD_2  
)
GND  
7-6. Prop Delay Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMUX4157N  
 
 
 
 
TMUX4157N  
ZHCSMU3A MARCH 2020 REVISED MARCH 2021  
www.ti.com.cn  
7.7 Device Turn on Time  
The TON (VSS) time is defined as the time taken by the output of the device to rise to 90% after the supply has  
risen past the supply threshold. The 90% measurement is used to provide the timing of the device turning on in  
the system. 7-7 shows the setup used to measure turn on time, denoted by the symbol TON (VSS)  
.
VSS  
VSS  
0 V  
Supply  
Ramp  
tr = 1 µs  
œ 4 V  
VS  
S2  
S1  
OUTPUT  
D
VSS  
tON  
RL  
CL  
0 V  
Output  
SEL  
3 V  
90%  
GND  
7-7. Device Turn on Time Measurement Setup  
7.8 Charge Injection  
The TMUX4157N has a transmission-gate topology. Any mismatch in capacitance between the NMOS and  
PMOS transistors results in a charge injected into the drain or source during the falling or rising edge of the gate  
signal. The amount of charge injected into the source or drain of the device is known as charge injection, and is  
denoted by the symbol QC. 7-8 shows the setup used to measure charge injection from Drain (D) to Source  
(Sx).  
VSS  
0.1F  
3.3 V  
VSEL  
0 V  
S2  
N.C.  
D
VD  
OUTPUT  
S1  
VOUT  
CL  
Output  
VOUT  
SEL  
VS  
QC = CL  
×
VOUT  
VSEL  
GND  
7-8. Charge-Injection Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMUX4157N  
 
 
 
 
TMUX4157N  
ZHCSMU3A MARCH 2020 REVISED MARCH 2021  
www.ti.com.cn  
7.9 Off Isolation  
Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to the  
source pin (Sx) of an off-channel. 7-9 shows the setup used to measure, and the equation used to calculate  
off isolation.  
0.1µF  
NETWORK  
VSS  
ANALYZER  
VS  
50Q  
S
VSIG  
D
VOUT  
RL  
SX  
50Q  
GND  
RL  
50Q  
7-9. Off Isolation Measurement Setup  
«
÷
VOUT  
VS  
Off Isolation = 20 Log  
(1)  
7.10 Crosstalk  
Crosstalk is defined as the ratio of the signal at the drain pin (D) of a different channel, when a signal is applied  
at the source pin (Sx) of an on-channel. 7-10 shows the setup used to measure, and the equation used to  
calculate crosstalk.  
0.1µF  
NETWORK  
VSS  
ANALYZER  
S1  
VOUT  
RL  
D
50Q  
VS  
RL  
S2  
50Q  
50Q  
VSIG  
GND  
7-10. Crosstalk Measurement Setup  
«
÷
VOUT  
VS  
Channel-to-Channel Crosstalk = 20 Log  
(2)  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMUX4157N  
 
 
 
 
TMUX4157N  
ZHCSMU3A MARCH 2020 REVISED MARCH 2021  
www.ti.com.cn  
7.11 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the device. 7-11  
shows the setup used to measure bandwidth.  
0.1µF  
NETWORK  
VSS  
ANALYZER  
VS = VSS / 2  
S
50Q  
VSIG  
D
VS = VSS / 2  
VOUT  
RL  
50Q  
SX  
GND  
RL  
50Q  
7-11. Bandwidth Measurement Setup  
8 Detailed Description  
8.1 Overview  
The TMUX4157N is an 2:1 (SPDT), 1-channel switch where the input is controlled with a single select (SEL)  
control pin.  
8.2 Functional Block Diagram  
TMUX4157N  
S1  
D
S2  
SEL  
8-1. TMUX4157N Functional Block Diagram  
8.3 Feature Description  
8.3.1 Bidirectional Operation  
The TMUX4157N conducts equally well from source (Sx) to drain (D) or from drain (D) to source (Sx). The  
device has very similar characteristics in both directions and supports both analog and digital signals.  
8.3.2 Rail-to-Rail Operation  
The valid signal path input or output voltage for TMUX4157N ranges from GND to VSS  
.
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMUX4157N  
 
 
 
 
 
 
TMUX4157N  
ZHCSMU3A MARCH 2020 REVISED MARCH 2021  
www.ti.com.cn  
8.3.3 1.8 V Logic Compatible Inputs  
The TMUX4157N has 1.8 V logic compatible control for the logic control input (SEL). The logic input threshold  
scales with supply but still provides 1.8 V logic control when operating at 5.5 V supply voltage. 1.8 V logic level  
inputs allow the TMUX4157N to interface with processors that have lower logic I/O rails and eliminates the need  
for an external translator, which saves both space and BOM cost. Refer to Simplifying Design with 1.8 V logic  
Muxes and Switches for more information on 1.8 V logic implementations.  
8.3.4 Fail-Safe Logic  
The TMUX4157N supports Fail-Safe Logic on the control input pin (SEL) allowing for operation up to 5.5 V,  
regardless of the state of the supply pin. This feature allows voltages on the control pin to be applied before the  
supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system complexity by  
removing the need for power supply sequencing on the logic control pins. For example, the Fail-Safe Logic  
feature allows the select pin of the TMUX4157N to be ramped to 5.5 V while VSS = 0 V. Additionally, the feature  
enables operation of the TMUX4157N with VSS = 1.2 V while allowing the select pin to interface with a logic level  
of another device up to 5.5 V.  
8.4 Device Functional Modes  
The select (SEL) pin of the TMUX4157N controls which switch is connected to the drain of the device. When a  
given input is not selected, that source pin is in high impedance mode (HI-Z). The control pins can be as high as  
5.5 V.  
The TMUX4157N can be operated without any external components except for the supply decoupling  
capacitors. Implications of Slow or Floating CMOS Inputs highlights how the unused logic control pins should be  
tied to GND or logic high in order to ensure the device does not consume additional current. Unused signal path  
inputs (Sx or D) should be connected to GND.  
8.5 Truth Tables  
8-1. TMUX4157N Truth Table  
CONTROL  
Selected Source (Sx) Connected To Drain (D) Pin  
LOGIC (SEL)  
0
1
S1  
S2  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMUX4157N  
 
 
 
TMUX4157N  
ZHCSMU3A MARCH 2020 REVISED MARCH 2021  
www.ti.com.cn  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TMUX4157N system flexibilty in GaN power amlifier biasing by supporting neative voltages across a wide  
operating supply (-4 V to -12 V). This device includes a 1.8 V logic compatible control input pin that enables  
operation in systems with 1.8 V I/O rails. These features allow the switch to reduce system complexity, board  
size, and overall system cost.  
9.2 Typical Application  
9.2.1 Negative Voltage Input Control for Power Amplifier  
One application of the TMUX4157N is for input control of a power amplifier. Utilizing a switch allows a system to  
control when the DAC is connected to the power amplifier, and can stop biasing the power amplifier by switching  
the gate voltage. The ability to dynamically control the power amplifier is beneficial in multiple applications within  
communication equipment. 9-1 shows the TMUX4157N configured for control of the power amplifier.  
RF Input  
RF Output  
0 V  
TMUX4157N  
-12 V  
DAC  
1.8 V  
SEL  
9-1. Input Control of Power Amplifier  
9.2.1.1 Design Requirements  
9-1 lists the parameters that are used in this design example.  
9-1. Design Parameters  
PARAMETERS  
VALUES  
-12 V  
Supply (VSS  
)
Switch I/O signal range  
0 V to VSS (Rail-to-Rail)  
1.8 V compatible (up to 5.5 V)  
Control logic thresholds (SEL)  
9.2.1.2 Detailed Design Procedure  
The application shown in 9-1 demonstrates how to toggle between the DAC output and GND for control of a  
GaN power amplifier using a single control input. The DAC output is utilized to bias the gate of the power  
amplifier and can be disconnected from the circuit using the select pin of the switch. The TMUX4157N can  
support 1.8-V logic signals on the control input, allowing the device to interface with low logic controls of an  
FPGA or MCU. The TMUX4157N can be operated without any external components except for the supply  
decoupling capacitors. The select pin is recommended to have a pull-down or pull-up resistor to ensure the input  
is in a known state if the control signal becomes disconnected. All inputs to the switch must fall within the  
recommend operating conditions of the TMUX4157N including signal range and continuous current.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMUX4157N  
 
 
 
 
 
TMUX4157N  
ZHCSMU3A MARCH 2020 REVISED MARCH 2021  
www.ti.com.cn  
9.2.1.3 Application Curve  
A key parameter for this application is the transition time of the device. Faster transition time allows the system  
to toggle between input sources at a faster rate and allows the output to settle to the final value. No Overshoot  
When Switching Between Inputs shows how the transition times varies with supply voltage.  
152  
Output Rising Edge  
Output Falling Edge  
150  
148  
146  
144  
142  
140  
138  
136  
134  
132  
130  
128  
126  
124  
-12  
-11  
-10  
-9  
-8  
-7  
Supply Voltage (V)  
-6  
-5  
-4  
D007  
TA = 25°C  
9-2. No Overshoot When Switching Between Inputs  
10 Power Supply Recommendations  
The TMUX4157N operates across a wide supply range of -4 V to -12 V. Do not exceed the absolute maximum  
ratings because stresses beyond the listed ratings can cause permanent damage to the devices.  
Power-supply bypassing improves noise margin and prevents switching noise propagation from the VSS supply  
to other components. Good power-supply decoupling is important to achieve optimum performance. For  
improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μF to 10 μF from VSS to  
ground. Place the bypass capacitors as close to the power supply pins of the device as possible using low-  
impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low  
equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes.  
For very sensitive systems, or for systems in harsh noise environments, avoiding the use of vias for connecting  
the capacitors to the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers  
the overall inductance and is beneficial for connections to ground planes.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMUX4157N  
 
 
TMUX4157N  
ZHCSMU3A MARCH 2020 REVISED MARCH 2021  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection primarily occurs because the  
width of the trace changes. At the apex of the turn, the trace width increases to 1.414 times its width. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and selfinductance  
of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must  
turn corners. 11-1 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
WORST  
BETTER  
BEST  
2W  
1W min.  
W
11-1. Trace Example  
Route high-speed signals using a minimum of vias and corners which reduces signal reflections and impedance  
changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via  
introduces discontinuities in the signals transmission line and increases the chance of picking up interference  
from the other layers of the board. Be careful when designing test points, through-hole pins are not  
recommended at high frequencies.  
11-2 illustrates an example of a PCB layout with the TMUX4157N. Some key considerations are:  
Decouple the VSS pin with a 0.1-µF capacitor, placed as close to the pin as possible. Make sure that the  
capacitor voltage rating is sufficient for the VSS supply.  
Keep the input lines as short as possible.  
Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
11.2 Layout Example  
Via to  
GND plane  
TMUX4157N  
Wide (low inductance)  
trace for power  
C
11-2. TMUX4157N Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMUX4157N  
 
 
 
 
 
TMUX4157N  
ZHCSMU3A MARCH 2020 REVISED MARCH 2021  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
Texas Instruments, Eliminate Power Sequencing with Powered-off Protection Signal Switches application  
brief.  
Texas Instruments, Improve Stability Issues with Low CON Multiplexers appication brief.  
Texas Instruments, Simplifying Design with 1.8 V logic Muxes and Switches application brief.  
Texas Instruments, System-Level Protection for High-Voltage Analog Multiplexers application report.  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMUX4157N  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Jul-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX4157NDCKR  
ACTIVE  
SC70  
DCK  
6
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-55 to 125  
1II  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX4157NDCKR  
SC70  
DCK  
6
3000  
178.0  
9.0  
2.4  
2.5  
1.2  
4.0  
8.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SC70 DCK  
SPQ  
Length (mm) Width (mm) Height (mm)  
180.0 180.0 18.0  
TMUX4157NDCKR  
6
3000  
Pack Materials-Page 2  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TMUX6104

5pA 导通状态电容、±16.5V、4:1、单通道精密模拟多路复用器
TI

TMUX6104PWR

5pA 导通状态电容、±16.5V、4:1、单通道精密模拟多路复用器 | PW | 14 | -40 to 125
TI

TMUX6111

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(低电平有效)
TI

TMUX6111PWR

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(低电平有效) | PW | 16 | -40 to 125
TI

TMUX6111RTER

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(低电平有效) | RTE | 16 | -40 to 125
TI

TMUX6112

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(高电平有效)
TI

TMUX6112PWR

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(高电平有效) | PW | 16 | -40 to 125
TI

TMUX6112RTER

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(高电平有效) | RTE | 16 | -40 to 125
TI

TMUX6113

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(2 个低电平有效,2 个高电平有效)
TI

TMUX6113PWR

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(2 个低电平有效,2 个高电平有效) | PW | 16 | -40 to 125
TI

TMUX6113RTER

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(2 个低电平有效,2 个高电平有效) | RTE | 16 | -40 to 125
TI

TMUX6119

0.5pA 导通状态电容、±16.5V、2:1 (SPDT)、单通道精密模拟开关
TI