TMUX6136PWR [TI]

0.5pA 导通状态电容、±16.5V、2:1 (SPDT)、2 通道精密模拟开关 | PW | 16 | -40 to 125;
TMUX6136PWR
型号: TMUX6136PWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

0.5pA 导通状态电容、±16.5V、2:1 (SPDT)、2 通道精密模拟开关 | PW | 16 | -40 to 125

开关 PC 光电二极管
文件: 总31页 (文件大小:1484K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMUX6136  
ZHCSJ28A NOVEMBER 2018 REVISED OCTOBER 2022  
TMUX6136 ±16.5V、低电容、低漏电流、精密  
SPDT 开关  
1 特性  
3 说明  
• 宽电源电压范围±5V ±16.5V双电源或  
10V 16.5V单电源)  
• 所有引脚的闩锁性能都达100mAJESD78  
II A 级要求  
• 低导通电容5.5pF  
• 低输入漏电流0.5pA  
TMUX6136 是一款具有两个独立可选 SPDT 开关的互  
补金属氧化物半导体 (CMOS) 模拟开关。该器件在双  
电源±5V ±16.5V、单电源10V 16.5V或  
非对称电源供电时均能正常运行。数字选择引脚  
(SELx) 具有兼容晶体管到晶体管逻辑 (TTL) 的阈值,  
这些阈值可确TTL/CMOS 逻辑兼容性。  
• 低电荷注入-0.4 pC  
• 轨到轨运行  
• 低导通电阻120Ω  
• 快速转换时间66ns  
• 先断后合开关操作  
SELx 引脚可连接至带集成下拉电阻器VDD  
• 逻辑电平2V VDD  
TMUX6136 会根据 SELx 引脚的状态将两个输入 (Sx)  
之一切换为共模输出 (D)。每个开关在“ON”位置时  
在两个方向上表现得都很好而且支持最高到电源的输  
入信号范围。在 OFF 状态下则会阻止最高到电源的  
信号电平。所有开关都具有先断后合 (BBM) 开关操  
作。  
TMUX6136 是德州仪器 (TI) 精密开关和多路复用器系  
列中的一款产品。该器件具有非常低的漏电流和电荷注  
因此可用于高精度测量应用。当开关处于 OFF 位  
置时该器件还可通过阻断到达电源的信号电平来提供  
出色的隔离能力。17μA 的低电源电流使其可用于多  
种便携式应用。  
• 低电源电流17µA  
• 人体放电模(HBM) ESD 保护所有引脚上均为  
±2kV  
• 业界通TSSOP 封装  
2 应用  
工厂自动化和工业过程控制  
• 可编程逻辑控制(PLC)  
模拟输入模块  
ATE 测试设备  
数字万用表  
电池监控系统  
封装信息(1)  
封装尺寸标称值)  
器件型号  
TMUX6136  
封装  
PW (TSSOP, 16)  
5.00mm × 4.40mm  
(1) 要了解所有可用封装请参见数据表末尾的封装选项附录。  
VSS  
VDD  
S1A  
S1B  
D1  
SEL1  
S2A  
S2B  
D2  
SEL2  
TMUX6136  
Copyright © 2018, Texas Instruments Incorporated  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCDS397  
 
 
 
 
TMUX6136  
www.ti.com.cn  
ZHCSJ28A NOVEMBER 2018 REVISED OCTOBER 2022  
Table of Contents  
7.4 Device Functional Modes..........................................19  
8 Application and Implementation..................................20  
8.1 Application Information............................................. 20  
8.2 Typical Application.................................................... 20  
9 Power Supply Recommendations................................22  
10 Layout...........................................................................23  
10.1 Layout Guidelines................................................... 23  
10.2 Layout Example...................................................... 23  
11 Device and Documentation Support..........................24  
11.1 Documentation Support.......................................... 24  
11.2 接收文档更新通知................................................... 24  
11.3 支持资源..................................................................24  
11.4 Trademarks............................................................. 24  
11.5 Electrostatic Discharge Caution..............................24  
11.6 术语表..................................................................... 24  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Thermal Information....................................................4  
6.4 Recommended Operating Conditions.........................5  
6.5 Electrical Characteristics (Dual Supplies: ±15 V)........5  
6.6 Switching Characteristics (Dual Supplies: ±15 V).......6  
6.7 Electrical Characteristics (Single Supply: 12 V)..........7  
6.8 Switching Characteristics (Single Supply: 12 V).........7  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................18  
7.3 Feature Description...................................................18  
Information.................................................................... 24  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (November 2018) to Revision A (October 2022)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Updated the Transition-Time Measurement Setup figure ................................................................................ 13  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMUX6136  
 
TMUX6136  
www.ti.com.cn  
ZHCSJ28A NOVEMBER 2018 REVISED OCTOBER 2022  
5 Pin Configuration and Functions  
SEL1  
S1A  
D1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
N.C.  
N.C.  
N.C.  
S1B  
V
DD  
V
S2B  
D2  
SS  
GND  
N.C.  
N.C.  
S2A  
SEL2  
Not to scale  
5-1. PW Package, 16-Pin TSSOP (Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
SEL1  
S1A  
NO.  
1
I
Select line 0  
2
I/O  
I/O  
I/O  
Source pin 1A. Can be an input or output.  
Drain pin D1. Can be an input or output.  
Source pin 1B. Can be an input or output.  
D1  
3
S1B  
4
Negative power supply. This pin is the most negative power-supply potential. In single-supply  
applications, this pin can be connected to ground. For reliable operation, connect a decoupling  
capacitor ranging from 0.1 µF to 10 µF between VSS and GND.  
VSS  
5
P
GND  
N.C.  
6
Ground (0 V) reference  
No internal connection  
7, 8, 14,  
15, 16  
No  
Connect  
SEL2  
S2A  
D2  
9
I
Select line 1  
10  
11  
12  
I/O  
I/O  
I/O  
Source pin 2A. Can be an input or output.  
Drain pin D2. Can be an input or output.  
Source pin 2B. Can be an input or output.  
S2B  
Positive power supply. This pin is the most positive power-supply potential. For reliable operation,  
connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.  
VDD  
13  
P
(1) I = input, O = output, P = power  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMUX6136  
 
 
TMUX6136  
www.ti.com.cn  
ZHCSJ28A NOVEMBER 2018 REVISED OCTOBER 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
36  
UNIT  
V
VDD to VSS  
VDD to GND  
VSS to GND  
VDIG  
18  
V
Supply voltage  
0.3  
18  
0.3  
V
Digital input pin (SEL1, SEL2) voltage  
Digital input pin (SEL1, SEL2) current  
Analog input pin (Sx) voltage  
Analog input pin (Sx) current  
Analog output pin (D) voltage  
Analog output pin (D) current  
Ambient temperature  
VDD+0.3  
30  
V
GND 0.3  
30  
IDIG  
mA  
V
VANA_IN  
IANA_IN  
VANA_OUT  
IANA_OUT  
TA  
VDD+0.3  
30  
VSS0.3  
30  
mA  
V
VDD+0.3  
30  
VSS0.3  
30  
mA  
°C  
°C  
°C  
140  
55  
TJ  
Junction temperature  
150  
Tstg  
Storage temperature  
150  
65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Thermal Information  
TMUX6136  
THERMAL METRIC(1)  
PW (TSSOP)  
16 PINS  
111.0  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
41.7  
57.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
4.1  
ΨJT  
56.6  
ΨJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMUX6136  
 
 
 
 
 
 
 
 
TMUX6136  
www.ti.com.cn  
ZHCSJ28A NOVEMBER 2018 REVISED OCTOBER 2022  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VDD to VSS  
Power supply voltage differential  
10  
33  
V
(1)  
VDD to  
Positive power supply voltage (singlle supply, VSS = 0 V)  
GND  
10  
5
16.5  
16.5  
5  
V
V
V
VDD to  
Positive power supply voltage (dual supply)  
GND  
VSS to  
Negative power supply voltage (dual supply)  
GND  
16.5  
(1)  
VS  
Source pins voltage  
VSS  
VSS  
0
VDD  
VDD  
VDD  
25  
V
V
VD  
Drain pin voltage  
VDIG  
ICH  
TA  
Digital input pin (SEL1, SEL2) voltage  
Channel current (TA = 25°C )  
Ambient temperature  
V
mA  
°C  
25  
40  
125  
(1) VDD and VSS can be any value as long as 10 V (VDD VSS) 33 V.  
6.5 Electrical Characteristics (Dual Supplies: ±15 V)  
at TA = 25°C, VDD = 15 V, and VSS = -15 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
VA  
Analog signal range  
On-resistance  
VSS  
VDD  
135  
160  
210  
245  
6
V
TA = 40°C to +125°C  
VS = 0 V, IS = 1 mA  
120  
140  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
RON  
VS = ±10 V, IS = 1 mA  
TA = 40°C to +85°C  
TA = 40°C to +125°C  
2.5  
23  
On-resistance mismatch  
between channels  
9
VS = ±10 V, IS = 1 mA  
TA = 40°C to +85°C  
TA = 40°C to +125°C  
ΔRON  
11  
33  
VS = 10 V, 0 V, +10 V, IS  
= 1 mA  
35  
RON_FLAT  
On-resistance flatness  
TA = 40°C to +85°C  
TA = 40°C to +125°C  
37  
Ω
RON_DRIFT On-resistance drift  
VS = 0 V  
0.42  
%/°C  
Switch state is off, VS =  
+10 V/ 10 V, VD = 10  
V/ + 10 V  
0.005  
0.05  
0.1  
nA  
nA  
nA  
0.05  
0.17  
1  
Switch state is off, VS =  
+10 V/ 10 V, VD = 10 TA = 40°C to +85°C  
V/ + 10 V  
IS(OFF)  
Source off leakage current(1)  
Switch state is off, VS =  
+10 V/ 10 V, VD = 10 TA = 40°C to +125°C  
V/ + 10 V  
0.25  
0.008  
0.06  
0.15  
0.4  
nA  
nA  
nA  
0.06  
0.25  
1.6  
Switch state is on, VS  
+10 V/ 10 V, VD = 10 TA = 40°C to +85°C  
V/ +10 V  
=
ID(ON)  
Drain on leakage current  
TA = 40°C to +125°C  
DIGITAL INPUT (SELx pins)  
VIH  
VIL  
Logic voltage high  
Logic voltage low  
2
V
V
0.8  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMUX6136  
 
 
 
TMUX6136  
www.ti.com.cn  
ZHCSJ28A NOVEMBER 2018 REVISED OCTOBER 2022  
6.5 Electrical Characteristics (Dual Supplies: ±15 V) (continued)  
at TA = 25°C, VDD = 15 V, and VSS = -15 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Pull-down resistance on SELx  
pins  
RPD(SELx)  
6
MΩ  
POWER SUPPLY  
17  
8
21  
22  
23  
10  
11  
12  
µA  
µA  
µA  
µA  
µA  
µA  
IDD  
VDD supply current  
VA = 0 V or 3.3 V, VS = 0 V TA = 40°C to +85°C  
TA = 40°C to +125°C  
ISS  
VSS supply current  
VA = 0 V or 3.3 V, VS = 0 V TA = 40°C to +85°C  
TA = 40°C to +125°C  
(1) When VS is positive, VD is negative, and vice versa.  
6.6 Switching Characteristics (Dual Supplies: ±15 V)  
at TA = 25°C, VDD = 15 V, and VSS = -15 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
66  
78  
ns  
ns  
VS = 10 V, RL = 300 Ω, CL = 35 pF  
VS = 10 V, RL = 300 Ω, CL = 35 pF, TA = 40°C to  
+85°C  
107  
tTRAN  
Transition time  
VS = 10 V, RL = 300 Ω, CL = 35 pF, TA = 40°C to  
+125°C  
117  
ns  
ns  
VS = 10 V, RL = 300 Ω, CL = 35 pF, TA = 40°C to  
+125°C  
tBBM  
Break-before-make time delay  
20  
40  
QJ  
Charge injection  
Off-isolation  
pC  
dB  
VS = 0 V, RS = 0 Ω, CL = 1 nF  
RL = 50 Ω, CL = 5 pF, f = 1 MHz  
0.4  
85  
OISO  
RL = 50 Ω, CL = 5 pF, f = 1 MHz (Inter-channel: S1x  
and S2x)  
dB  
dB  
105  
92  
XTALK  
Channel-to-channel crosstalk  
RL = 50 Ω, CL = 5 pF, f = 1 MHz (Intra-channel: SxA  
and SxB)  
IL  
Insertion loss  
dB  
dB  
dB  
MHz  
%
RL = 50 Ω, CL = 5 pF, f = 1 MHz  
RL = 10 kΩ, CL = 5 pF, VPP= 0.62 V on VDD, f= 1 MHz  
RL = 10 kΩ, CL = 5 pF, VPP= 0.62 V on VSS, f= 1 MHz  
RL = 50 Ω, CL = 5 pF  
7  
59  
59  
670  
0.08  
1.5  
AC Power Supply Rejection  
Ratio  
ACPSRR  
BW  
-3dB Bandwidth  
THD  
CIN  
Total harmonic distortion + noise  
Digital input capacitance  
Source off-capacitance  
RL = 10 kΩ, CL = 5 pF, f= 20 Hz to 20 kHz  
VIN = 0 V or VDD  
pF  
CS(OFF)  
VS = 0 V, f = 1 MHz  
2.4  
3.3  
7.5  
pF  
CS(ON),  
CD(ON)  
Source and drain on-  
capacitance  
VS = 0 V, f = 1 MHz  
5.5  
pF  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMUX6136  
 
 
TMUX6136  
www.ti.com.cn  
ZHCSJ28A NOVEMBER 2018 REVISED OCTOBER 2022  
6.7 Electrical Characteristics (Single Supply: 12 V)  
at TA = 25°C, VDD = 12 V, and VSS = 0 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
VA  
Analog signal range  
On-resistance  
VSS  
VDD  
345  
400  
440  
12  
V
235  
Ω
Ω
Ω
Ω
Ω
RON  
VS = 10 V, IS = 1 mA  
TA = 40°C to +85°C  
TA = 40°C to +125°C  
4
On-resistance mismatch  
between channels  
19  
VS = 10 V, IS = 1 mA  
VS = 0 V  
TA = 40°C to +85°C  
TA = 40°C to +125°C  
ΔRON  
23  
Ω
%/°C  
nA  
RON_DRIFT On-resistance drift  
0.47  
0.005  
0.03  
0.07  
0.2  
0.03  
0.1  
Switch state is off, VS = 10  
V/ 1 V, VD = 1 V/ 10 V  
IS(OFF)  
Source off leakage current(1)  
nA  
nA  
nA  
nA  
nA  
TA = 40°C to +85°C  
TA = 40°C to +125°C  
0.8  
0.01  
0.04  
0.09  
0.3  
0.04  
0.16  
1.2  
Switch state is on, VS  
floating, VD = 1 V/ 10 V  
=
ID(ON)  
Drain on leakage current  
TA = 40°C to +85°C  
TA = 40°C to +125°C  
DIGITAL INPUT (SELx pins)  
VIH  
VIL  
Logic voltage high  
Logic voltage low  
2
V
V
0.8  
Pull-down resistance on SELx  
pins  
RPD(SELx)  
6
MΩ  
POWER SUPPLY  
13  
16  
17  
18  
µA  
µA  
µA  
IDD  
VDD supply current  
VA = 0 V or 3.3 V, VS = 0 V TA = 40°C to +85°C  
TA = 40°C to +125°C  
(1) When VS is positive, VD is negative, and vice versa.  
6.8 Switching Characteristics (Single Supply: 12 V)  
at TA = 25°C, VDD = 12 V, and VSS = 0 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
72  
84  
ns  
ns  
VS = 8 V, RL = 300 Ω, CL = 35 pF  
VS = 8 V, RL = 300 Ω, CL = 35 pF, TA = 40°C to  
+85°C  
117  
tTRAN  
Transition time  
VS = 8 V, RL = 300 Ω, CL = 35 pF, TA = 40°C to  
+125°C  
128  
ns  
ns  
VS = 8 V, RL = 300 Ω, CL = 35 pF, TA = 40°C to  
+125°C  
tBBM  
Break-before-make time delay  
20  
40  
QJ  
Charge injection  
Off-isolation  
pC  
dB  
VS = 6 V, RS = 0 Ω, CL = 1 nF  
RL = 50 Ω, CL = 5 pF, f = 1 MHz  
0.7  
OISO  
-85  
RL = 50 Ω, CL = 5 pF, f = 1 MHz (Inter-channel: S1x  
and S2x)  
dB  
110  
XTALK  
Channel-to-channel crosstalk  
Insertion loss  
RL = 50 Ω, CL = 5 pF, f = 1 MHz (Intra-channel: SxA  
and SxB)  
dB  
dB  
95  
13  
IL  
RL = 50 Ω, CL = 5 pF, f = 1 MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMUX6136  
 
 
 
TMUX6136  
www.ti.com.cn  
ZHCSJ28A NOVEMBER 2018 REVISED OCTOBER 2022  
6.8 Switching Characteristics (Single Supply: 12 V) (continued)  
at TA = 25°C, VDD = 12 V, and VSS = 0 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
AC Power Supply Rejection  
Ratio  
ACPSRR  
dB  
RL= 10 kΩ, CL = 5 pF, VPP= 0.62 V, f= 1 MHz  
58  
BW  
-3dB Bandwidth  
650  
1.7  
2.6  
MHz  
pF  
RL = 50 Ω, CL = 5 pF  
VIN = 0 V or VDD  
CIN  
Digital input capacitance  
Source off-capacitance  
CS(OFF)  
VS = 6 V, f = 1 MHz  
3.7  
8.5  
pF  
pF  
CS(ON)  
CD(ON)  
,
Source and drain on-  
capacitance  
VS = 6 V, f = 1 MHz  
6.3  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMUX6136  
TMUX6136  
www.ti.com.cn  
ZHCSJ28A NOVEMBER 2018 REVISED OCTOBER 2022  
Typical Characteristics  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
250  
200  
150  
100  
50  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
VDD= 13.5V  
VSS = -13.5V  
VDD= 12V  
VSS = -12V  
VDD= 12V  
VSS = 0V  
VDD= 10V  
VSS = 0V  
VDD= 16.5V  
VSS = -16.5V  
VDD= 15V  
VSS = -15V  
VDD= 14V  
VSS = 0V  
0
0
2
4
6
8
10  
Source or Drain Voltage (V)  
12  
14  
-20  
-15  
-10  
-5  
0
5
Source or Drain Voltage (V)  
10  
15  
20  
D002  
D001  
Single Supply Operation (TA = 25°C)  
6-2. On-Resistance vs Source or Drain Voltage  
Dual Supply Operation (TA = 25°C)  
6-1. On-Resistance vs Source or Drain Voltage  
250  
700  
TA = 125èC  
TA = 125èC  
TA = 85èC  
600  
500  
400  
300  
200  
100  
0
200  
150  
100  
50  
TA = 85èC  
TA = 25èC  
TA = -40èC  
TA = -40èC  
TA = 25èC  
0
-15  
-10  
-5  
Source or Drain Voltage (V)  
0
5
10  
15  
0
2
4
Source or Drain Voltage (V)  
6
8
10  
12  
D003  
D004  
VDD = 12 V, VSS = 0 V  
VDD = 15 V, VSS = 15 V  
6-4. On-Resistance vs Source or Drain Voltage  
6-3. On-Resistance vs Source or Drain Voltage  
400  
400  
ID(ON)+  
IS(OFF)_10V  
IS(OFF)+  
ID(ON)_10V  
200  
0
200  
0
-200  
-400  
-600  
-800  
-1000  
-200  
-400  
-600  
-800  
-1000  
IS(OFF)_1V  
IS(OFF)-  
ID(ON)_1V  
ID(ON)-  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D005  
D006  
VDD = 12 V, VSS = 0 V  
VDD = 15 V, VSS = 15 V  
6-5. Leakage Current vs Temperature  
6-6. Leakage Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMUX6136  
TMUX6136  
www.ti.com.cn  
ZHCSJ28A NOVEMBER 2018 REVISED OCTOBER 2022  
Typical Characteristics  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
2
1
120  
tON(VDD= 12V, VSS= 0V)  
tON(VDD= 15V, VSS= -15V)  
90  
60  
30  
0
VDD= 15V  
VSS = -15V  
VDD= 12V  
VSS = 0V  
0
tOFF(VDD= 15V, VSS= -15V)  
-1  
VDD= 10V  
VSS = -10V  
tOFF(VDD= 12V, VSS= 0V)  
-2  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-15  
-10  
-5  
0
Drain Voltage (V)  
5
10  
15  
Ambient Temperature (èC)  
D008  
D007  
.
TA = 25°C  
6-8. Transition Times vs Temperature  
6-7. Charge Injection vs Source Voltage  
0
-20  
0
-20  
VDD = 12V  
VSS= 0V  
Intra-Channel (SxA to SxB)  
-40  
-40  
-60  
-60  
-80  
-80  
VDD = 15V  
VSS= -15V  
-100  
-120  
-140  
-100  
-120  
-140  
Inter-Channel (S1x to S2x)  
1E+5  
1E+6  
1E+7  
Frequency (Hz)  
1E+8  
5E+8  
1E+5  
1E+6  
1E+7  
Frequency (Hz)  
1E+8  
5E+8  
D009  
D001  
TA = 25°C  
VDD = 15 V, VSS = 15 V, TA = 25°C  
6-10. Crosstalk vs Frequency  
6-9. Off Isolation vs Frequency  
0
-20  
100  
50  
VDD= 5V  
VSS= -5V  
20  
10  
5
-40  
Intra-Channel (SxA to SxB)  
VDD= 15V  
VSS= -15V  
2
1
-60  
-80  
0.5  
0.2  
0.1  
-100  
-120  
-140  
0.05  
Inter-Channel (S1x to S2x)  
0.02  
0.01  
1E+5  
1E+6  
1E+7  
Frequency (Hz)  
1E+8  
5E+8  
1E+1  
1E+2  
1E+3  
Frequency (Hz)  
1E+4  
1E+5  
D001  
D001  
VDD = 12 V, VSS = 0 V, TA = 25°C  
TA = 25°C  
6-11. Crosstalk vs Frequency  
6-12. THD+N vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMUX6136  
TMUX6136  
www.ti.com.cn  
ZHCSJ28A NOVEMBER 2018 REVISED OCTOBER 2022  
Typical Characteristics  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
-5  
10  
8
CS(ON), CD(ON)  
-10  
-15  
-20  
6
CS(OFF)  
4
2
0
1E+5  
1E+6  
1E+7  
Frequency(Hz)  
1E+8  
1E+9  
-15 -12  
-9  
-6  
-3  
0
3
Source Voltage (V)  
6
9
12  
15  
D001  
D001  
VDD = 15 V, VSS = 15 V, TA = 25°C  
6-13. On Response vs Frequency  
VDD = 15 V, VSS = 15 V, TA = 25°C  
6-14. Capacitance vs Source Voltage  
10  
0
CS(ON), CD(ON)  
-20  
-40  
8
6
4
2
0
VSS  
CS(OFF)  
-60  
VDD  
-80  
-100  
1E+5  
2E+53E+5 5E+5 1E+6  
Frequency (Hz)  
2E+63E+6 5E+6  
1E+7  
0
2
4
6
Source Voltage (V)  
8
10  
12  
D001  
D001  
VDD = 15 V, VSS = 15 V, TA = 25°C  
6-16. ACPSRR vs Frequency  
VDD = 12 V, VSS = 0 V, TA = 25°C  
6-15. Capacitance vs Source Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMUX6136  
TMUX6136  
www.ti.com.cn  
ZHCSJ28A NOVEMBER 2018 REVISED OCTOBER 2022  
7 Detailed Description  
7.1 Overview  
7.1.1 On-Resistance  
The on-resistance of the TMUX6136 is the ohmic resistance across the source (Sx) and drain (D) pins of the  
device. The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-  
resistance. The measurement setup used to measure RON is shown in 7-1. Voltage (V) and current (ICH) are  
measured using this setup, and RON is computed as shown in 方程1.  
V
S
D
ICH  
VS  
7-1. On-Resistance Measurement Setup  
RON = V / ICH  
(1)  
7.1.2 Off-Leakage Current  
Source off-leakage current is defined as the leakage current that flows into or out of the source pin when the  
switch is in the off state. This current is denoted by the symbol IS(OFF). Drain off-leakage measurement is not  
characterization since the drain pin is always connected to one of the two source pins.  
The setup used to measure both off-leakage currents is shown in 7-2.  
Is (OFF)  
A
ID (OFF)  
A
S
D
VS  
VD  
7-2. Off-Leakage Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMUX6136  
 
 
 
 
 
TMUX6136  
www.ti.com.cn  
ZHCSJ28A NOVEMBER 2018 REVISED OCTOBER 2022  
7.1.3 On-Leakage Current  
On-leakage current is defined as the leakage current that flows into or out of the drain pin when the switch is in  
the on state. The source pin is left floating during the measurement. 7-3 shows the circuit used for measuring  
the on-leakage current, denoted by ID(ON)  
.
ID (ON)  
S
D
NC  
A
NC = No Connection  
VD  
7-3. On-Leakage Measurement Setup  
7.1.4 Transition Time  
Transition time is defined as the time taken by the output of the TMUX6136 to rise or fall to 90% of the transition  
after the digital address signal has fallen or risen to 50% of the transition. 7-4 shows the setup used to  
measure transition time, denoted by the symbol tTRAN  
.
VDD  
VSS  
VDD  
VSS  
3 V  
VS  
SA  
SB  
Output  
D
tr < 20 ns  
tf < 20 ns  
50%  
50%  
VSEL  
0 V  
VS  
SEL  
300  
35 pF  
0.9 VS  
tTRAN  
tTRAN  
2
1
Output  
VSEL  
GND  
0.1 VS  
tTRAN = max ( tTRAN 1, tTRAN 2)  
7-4. Transition-Time Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMUX6136  
 
 
 
TMUX6136  
www.ti.com.cn  
ZHCSJ28A NOVEMBER 2018 REVISED OCTOBER 2022  
7.1.5 Break-Before-Make Delay  
Break-before-make delay is a safety feature that prevents two inputs from connecting when the TMUX6136 is  
switching. The TMUX6136 output first breaks from the on-state switch before making the connection with the  
next on-state switch. The time delay between the break and the make is known as break-before-make delay. 图  
7-5 shows the setup used to measure break-before-make delay, denoted by the symbol tBBM  
.
VDD  
VSS  
VDD  
VSS  
3 V  
VS  
SB  
SA  
Output  
D
tr < 20 ns  
tf < 20 ns  
VSEL  
0 V  
VS  
SELx  
300 Ω  
35 pF  
0.8 VS  
VSEL  
Output  
0 V  
GND  
tBBM  
1
tBBM 2  
tBBM = min ( tBBM 1, tBBM 2)  
7-5. Break-Before-Make Delay Measurement Setup  
7.1.6 Charge Injection  
The TMUX6136 have a simple transmission-gate topology. Any mismatch in capacitance between the NMOS  
and PMOS transistors results in a charge injected into the drain or source during the falling or rising edge of the  
gate signal. The amount of charge injected into the source of the device is known as charge injection, and is  
denoted by the symbol QINJ. 7-6 shows the setup used to measure charge injection from drain (D) to source  
(Sx).  
VDD  
VSS  
VDD  
VSS  
3 V  
0 V  
Output  
SB  
SA  
D
VSEL  
NC  
RS  
VS  
1 nF  
SEL  
Output  
VS  
VOUT  
QINJ = CL ×  
VOUT  
VSEL  
GND  
7-6. Charge-Injection Measurement Setup  
7.1.7 Off Isolation  
Off isolation is defined as the voltage at the drain pin (D) of the TMUX6136 when a 1-VRMS signal is applied to  
the source pin (Sx) of an off-channel. 7-7 shows the setup used to measure off isolation. Use 方程式 2 to  
compute off isolation.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMUX6136  
 
 
TMUX6136  
www.ti.com.cn  
ZHCSJ28A NOVEMBER 2018 REVISED OCTOBER 2022  
VDD  
VSS  
VDD  
VSS  
Network Analyzer  
SA  
SB  
NC  
50 Ω  
50 Ω  
VOUT  
D
VS  
50 Ω  
SEL  
GND  
VSEL  
7-7. Off Isolation Measurement Setup  
«
VOUT  
VS  
Off Isolation = 20 Log  
÷
(2)  
7.1.8 Channel-to-Channel Crosstalk  
There are two types of crosstalk that can be defined for the TMUX6136:  
1. Intra-channel crosstalk: the voltage at the source pin (Sx) of an off-switch input, when a 1-VRMS signal is  
applied at the source pin of an on-switch input in the same channel, as shown in 7-8.  
2. Inter-channel crosstalk: the voltage at the source pin (Sx) of an on-switch input, when a 1-VRMS signal is  
applied at the source pin of an on-switch input in a different channel, as shown in 7-9.  
VDD  
VSS  
VDD  
VSS  
Network Analyzer  
SxA  
SxB  
Dx  
VOUT  
50 Ω  
50 Ω  
SEL  
VS  
50 Ω  
VSEL  
GND  
7-8. Intra-Channel Crosstalk Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMUX6136  
 
 
 
TMUX6136  
www.ti.com.cn  
ZHCSJ28A NOVEMBER 2018 REVISED OCTOBER 2022  
VDD  
VSS  
VDD  
VSS  
Network Analyzer  
S1A  
S1B  
D1  
D2  
50 Ω  
N.C.  
N.C.  
50 Ω  
VS  
VOUT  
S2A  
S2B  
50 Ω  
50 Ω  
SEL  
GND  
VSEL  
7-9. Inter-Channel Crosstalk Measurement Setup  
«
÷
VOUT  
VS  
Channel-to-Channel Crosstalk = 20 Log  
(3)  
7.1.9 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by < 3 dB when the input is applied to the  
source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the TMUX6136. 7-10  
shows the setup used to measure bandwidth of the mux. Use 方程4 to compute the attenuation.  
VDD  
VSS  
VDD  
VSS  
Network Analyzer  
SA  
SB  
NC  
50 Ω  
VOUT  
D
VS  
50 Ω  
SEL  
GND  
VSEL  
7-10. Bandwidth Measurement Setup  
«
÷
V2  
Attenuation = 20 Log  
V
1
(4)  
7.1.10 THD + Noise  
The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as  
the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the  
mux output. The on-resistance of the TMUX6136 varies with the amplitude of the input signal and results in  
distortion when the drain pin is connected to a low-impedance load. Total harmonic distortion plus noise is  
denoted as THD+N.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMUX6136  
 
 
 
TMUX6136  
www.ti.com.cn  
ZHCSJ28A NOVEMBER 2018 REVISED OCTOBER 2022  
VDD  
VSS  
VDD  
VSS  
Audio Precision  
SA  
SB  
NC  
RS  
VS  
VOUT  
D
10k Ω  
SEL  
GND  
VSEL  
7-11. THD+N Measurement Setup  
7.1.11 AC Power Supply Rejection Ratio (AC PSRR)  
AC PSRR measures the ability of a device to prevent noise and spurious signals that appear on the supply  
voltage pin from coupling to the output of the switch. The DC voltage on the device supply is modulated by a  
sine wave of 620 mVPP. The ratio of the amplitude of signal on the output to the amplitude of the modulated  
signal is the AC PSRR.  
VDD  
Network Analyzer  
DC Bias  
Injector  
VSS  
VDD  
VSS  
620 mVPP  
VIN  
VBIAS  
SW  
SW  
S1  
S2  
NC  
VOUT  
D
VSEL  
10k Ω  
5 pF  
SEL  
50 Ω  
GND  
VBIAS = 0 V  
PSRR= 20 × Log (VOUT/ VIN  
)
7-12. AC PSRR Measurement Setup  
For a top-level block diagram of the TMUX6136, see 7.2. The TMUX6136 is a 4-channel, single-ended,  
analog multiplexer. Each channel is turned on or turned off based on the state of the address lines and enable  
pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMUX6136  
TMUX6136  
www.ti.com.cn  
ZHCSJ28A NOVEMBER 2018 REVISED OCTOBER 2022  
7.2 Functional Block Diagram  
VSS  
VDD  
S1A  
D1  
S1B  
SEL1  
S2A  
S2B  
D2  
SEL2  
TMUX6136  
Copyright © 2018, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Ultralow Leakage Current  
The TMUX6136 provides extremely low on- and off-leakage currents. The TMUX6136 is capable of switching  
signals from high source-impedance inputs into a high input-impedance op amp with minimal offset error  
because of the ultralow leakage currents. 7-13 shows typical leakage currents of the TMUX6136 versus  
temperature.  
400  
ID(ON)+  
IS(OFF)+  
200  
0
-200  
-400  
IS(OFF)-  
-600  
ID(ON)-  
-800  
-1000  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature (èC)  
D005  
7-13. Leakage Current vs Temperature  
7.3.2 Ultralow Charge Injection  
The TMUX6136 is implemented with simple transmission gate topology, as shown in 7-14. Any mismatch in  
the stray capacitance associated with the NMOS and PMOS causes an output level change whenever the switch  
is opened or closed.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMUX6136  
 
 
 
 
TMUX6136  
www.ti.com.cn  
ZHCSJ28A NOVEMBER 2018 REVISED OCTOBER 2022  
OFF ON  
CGDN  
CGSN  
D
S
CGSP  
CGDP  
OFF ON  
7-14. Transmission Gate Topology  
The TMUX6136 utilizes special charge-injection cancellation circuitry that reduces the drain (D)-to-source (Sx)  
charge injection to as low as 0.4 pC at VS = 0 V, as shown in 7-15.  
2
1
VDD= 15V  
VSS = -15V  
VDD= 12V  
VSS = 0V  
0
-1  
VDD= 10V  
VSS = -10V  
-2  
-15  
-10  
-5  
0
Drain Voltage (V)  
5
10  
15  
D007  
7-15. Charge Injection vs Drain Voltage  
7.3.3 Bidirectional and Rail-to-Rail Operation  
The TMUX6136 conducts equally well from source (Sx) to drain (D) or from drain (D) to source (Sx). Each  
TMUX6136 channel has very similar characteristics in both directions. The valid analog signal for TMUX6136  
ranges from VSS to VDD. The input signal to the TMUX6136 swings from VSS to VDD without any significant  
degradation in performance.  
7.4 Device Functional Modes  
7.4.1 Truth Table  
7-1. TMUX6136 Truth Table  
Switch A  
(S1A to D1 or S2A to D2)  
Switch B  
(S1B to D1 or S2B to D2)  
SELx  
0
1
OFF  
ON  
ON  
OFF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMUX6136  
 
 
 
TMUX6136  
www.ti.com.cn  
ZHCSJ28A NOVEMBER 2018 REVISED OCTOBER 2022  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The TMUX6136 offers outstanding input and output leakage currents and ultralow charge injection. The device  
operates up to 33 V (VDD to VSS dual supply) or 16.5 V (VDD single supply), and offers true rail-to-rail input and  
output. The on-capacitance of the TMUX6136 is low. These features make the TMUX6136 a precision, robust,  
high-performance analog multiplexer for high-voltage, industrial applications.  
8.2 Typical Application  
One example of the TMUX6136 precision performance to take advantage of is the implementation of parametric  
measurement unit (PMU) in the semiconductor automatic test equipment (ATE) application. The PMU is  
frequently used to characterize and measure the digital pins DC characteristics of a device under test (DUT).  
Among all the PMUs capabilities, force voltage measure current (FVMC) and force current measure voltage  
(FCMV) are the two most typical configurations in DC characterizations.  
Force  
Amplifier  
Force  
Amplifier  
VIN  
VIN  
+
RSENSE  
+
RSENSE  
Force  
Force  
œ
œ
DUT  
DUT  
Current  
Sense  
Amplifier  
Current  
Sense  
Amplifier  
Sense  
Sense  
Av  
Av  
Voltage  
Sense  
Amplifier  
+
+
Voltage  
Sense  
Amplifier  
VOUT  
œ
VOUT  
œ
8-2. FCMV Measurement in PMU  
8-1. FVMC Measurement in PMU  
8-1 shows a simplified diagram of the PMU in FVMC configuration. The control loop consists of the force  
amplifier with the voltage sense amplifier (unity gain in this example) making up the feedback path. Current  
flowing through the DUT is measured by sensing the current flowing through a sense resistor (RSENSE) in series  
with the DUT. The current sense amplifier with a gain of Av generates a voltage (VOUT) at its output and the  
voltage can then be measured by an ADC. The voltage produced at the DUT pin stays at the input voltage level  
(IN) as long as the force amplifier does not rail out (for example, IDUT × RSENSE x Av stays within the input  
voltage range of the force amplifier). Depending on the level of the DUT current to be measured, different gain  
settings need to be configured for the current sense amplifier.  
8-2 shows a simplified diagram of the PMU in FCMV mode. The voltage VIN is now converted to a current  
through the following relationship:  
Force Current = VIN / (RSENSE x Av)  
(5)  
The control loop consists of the force amplifier with the current sense amplifier making up the feedback path.  
The voltage at the DUT is sensed across the voltage sense amplifier (unity gain in this example) and presented  
at the output for sample.  
8.2.1 Design Requirements  
The goal of this design example is to simplify the FVMC and FCMV functions of a PMU design using a SPDT  
switch. The FVMC configuration is useful to test a device being used as a power supply, or in continuity or  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMUX6136  
 
 
 
 
TMUX6136  
www.ti.com.cn  
ZHCSJ28A NOVEMBER 2018 REVISED OCTOBER 2022  
leakage testing. In this configuration, the input voltage is directly applied to the DUT pin, and the current into or  
out of the DUT pin is converted to a voltage by a sense resistor and measured by an analog to digital converter  
(ADC). In the FCMV mode, an input current is forced to the DUT and the produced voltage on the DUT pin is  
directly measured. In this example, the PMU design is required to meet the following specifications:  
Force voltage range: 15 volts to +15 volts  
Force current range: ±5 µA to ±50 mA  
Measure voltage range: 15 volts to +15 volts  
Measure current range: ±5 µA to ±50 mA  
In addition to the voltage and current requirements, fast throughput is also a key requirement in ATE because it  
relates directly to the cost of manufacturing the DUT.  
8.2.2 Detailed Design Procedure  
Force  
Amplifier  
Force  
Amplifier  
DAC  
+
DAC  
+
RSENSE  
RSENSE  
DUT  
DUT  
œ
œ
Current  
Sense  
Amplifier  
Current  
Sense  
Amplifier  
+
+
A
Av  
œ
A
Av  
œ
B
A
B
A
ADC  
ADC  
+
+
B
B
œ
œ
TMUX6136  
TMUX6136  
Voltage  
Sense  
Amplifier  
Voltage  
Sense  
Amplifier  
8-3. FVMC Implementation in PMU Using the  
8-4. FCMV Implementation in PMU Using the  
TMUX6136  
TMUX6136  
The implementation of the FVMC and FCMV modes can be combined with the use of a dual SPDT switch such  
as the TMUX6136. 8-3 and 8-4 shows simplified diagrams of such implementations. In the FVMC mode,  
the switch is toggled to position A and this allows the voltage sense amplifier to become part of the feedback  
loop and the voltage output of the current sense amplifier to be sampled by the ADC. In the FCMV mode, the  
switch is toggled to position B, and this allows the current sense amplifier to become part of the feedback loop  
and the voltage output of the voltage sense amplifier to be sampled by the ADC.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMUX6136  
 
TMUX6136  
www.ti.com.cn  
ZHCSJ28A NOVEMBER 2018 REVISED OCTOBER 2022  
8.2.3 Application Curve  
The fast transition time of the TMUX6136 and low input or output parasitic capacitance help minimize the settling  
time, making the TMUX6136 an excellent candidate to implement the FVMC and FCMV functions of the PMU. 图  
8-5 shows the plot for the transition time versus temperature for the TMUX6136.  
120  
tON(VDD= 12V, VSS= 0V)  
tON(VDD= 15V, VSS= -15V)  
90  
60  
tOFF(VDD= 15V, VSS= -15V)  
30  
tOFF(VDD= 12V, VSS= 0V)  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature (èC)  
D008  
8-5. Transition Time vs Temperature for TMUX6136  
9 Power Supply Recommendations  
The TMUX6136 operates across a wide supply range of ±5 V to ±16.5 V (10 V to 16.5 V in single-supply mode).  
The device also performs well with unsymmetric supplies such as VDD = 12 V and VSS= 5 V. For reliable  
operation, use a supply decoupling capacitor ranging between 0.1 µF to 10 µF at both the VDD and VSS pins to  
ground.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMUX6136  
 
 
TMUX6136  
www.ti.com.cn  
ZHCSJ28A NOVEMBER 2018 REVISED OCTOBER 2022  
10 Layout  
10.1 Layout Guidelines  
10-1 shows an example of a PCB layout with the TMUX6136.  
Some key considerations are as follows:  
1. Decouple the VDD and VSS pins with a 0.1-µF capacitor, placed as close to the pin as possible. Make sure  
that the capacitor voltage rating is sufficient for the VDD and VSS supplies.  
2. Keep the input lines as short as possible.  
3. Use a solid ground plane to help distribute heat and reduce electromagnetic interference (EMI) noise pickup.  
4. Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
10.2 Layout Example  
Via to  
ground plane  
SEL1  
S1A  
D1  
NC  
NC  
C
NC  
VDD  
S2B  
D2  
S1B  
VSS  
TMUX6136  
GND  
NC  
C
S2A  
SEL2  
NC  
Via to  
ground plane  
Copyright © 2018, Texas Instruments Incorporated  
10-1. TMUX6136 Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMUX6136  
 
 
 
 
TMUX6136  
www.ti.com.cn  
ZHCSJ28A NOVEMBER 2018 REVISED OCTOBER 2022  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, ADS8664 12-Bit, 500-kSPS, 4- and 8-Channel, Single-Supply, SAR ADCs with Bipolar  
Input Ranges  
Texas Instruments, OPA192 36-V, Precision, Rail-to-Rail Input/Output, Low Offset Voltage, Low Input Bias  
Current Op Amp with e-Trim™  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMUX6136  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Sep-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX6136PWR  
ACTIVE  
TSSOP  
PW  
16  
2000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
MUX6136  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Sep-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX6136PWR  
TSSOP  
PW  
16  
2000  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Sep-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
TMUX6136PWR  
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TMUX6201

具有 1.8V 逻辑电平和闩锁效应抑制的 36V、1:1 (SPST) 单通道精密开关(高电平有效)
TI

TMUX6201RQXR

36-V, latch-up immune, 1:1 (SPST) 1 channel precision switch with 1.8V Logic (Active High) | RQX | 8 | -40 to 125
TI

TMUX6202

具有 1.8V 逻辑电平和闩锁效应抑制的 36V、1:1 (SPST) 单通道精密开关(低电平有效)
TI

TMUX6202RQXR

36-V, latch-up immune, 1:1 (SPST) 1 channel precision switch with 1.8V Logic (active low)

| RQX | 8 | -40 to 125
TI

TMUX6208

TMUX620x 36 V, Low-Ron, 8:1 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8 V Logic
TI

TMUX6208PWR

TMUX620x 36 V, Low-Ron, 8:1 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8 V Logic
TI

TMUX6208RUMR

TMUX620x 36 V, Low-Ron, 8:1 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8 V Logic
TI

TMUX6208_V01

TMUX620x 36-V, Low-Ron, 8:1 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8-V Logic
TI

TMUX6208_V02

TMUX620x 36 V, Low-Ron, 8:1 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8 V Logic
TI

TMUX6209

TMUX620x 36 V, Low-Ron, 8:1 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8 V Logic
TI

TMUX6209PWR

TMUX620x 36 V, Low-Ron, 8:1 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8 V Logic
TI

TMUX6209RUMR

TMUX620x 36 V, Low-Ron, 8:1 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8 V Logic
TI