TMUX646 [TI]

TMUX646 6 GHz, 5 V, 2:1 (SPDT) 10-Channel MIPI Switch with 1.8-V Logic Support;
TMUX646
型号: TMUX646
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TMUX646 6 GHz, 5 V, 2:1 (SPDT) 10-Channel MIPI Switch with 1.8-V Logic Support

光电二极管
文件: 总37页 (文件大小:3050K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMUX646  
SCDS432 – JUNE 2021  
TMUX646 6 GHz, 5 V, 2:1 (SPDT) 10-Channel MIPI Switch with 1.8-V Logic Support  
1 Features  
3 Description  
Supply range of 1.5 V to 5.5 V  
10-Channel 2:1 bidirectional switch  
Supports MIPI CSI/DSI, SATA, LVDS, RGMII,  
DDR, ethernet interfaces  
Powered-off protection:  
I/Os Hi-Z when VDD = 0 V  
Low RON: 6-Ω typical  
The TMUX646 is an optimized 10-channel (5  
differential) single-pole, double-throw bi-directional  
switch for use in high speed applications. The  
TMUX646 is designed to facilitate multiple MIPI  
compliant devices to connect to a single CSI/DSI, C-  
PHY/D-PHY module. The device also supports SATA,  
SAS, MIPI DSI/CSI, LVDS, RGMII, DDR and Ethernet  
interfaces.  
High bandwidth : 6 GHz  
Ultra low crosstalk: -40 dB  
Low power disable mode  
1.2 V logic compatible  
Bidirectional signal path  
ESD protection:  
The device has a bandwidth of 6 GHz, low channel-  
to-channel skew with little signal degradation, and  
wide margins to compensate for layout losses. The  
device's low current consumption meets the needs of  
low power applications, including mobile phones and  
other personal electronics.  
– 6-kV human body model (HBM)  
– 2-kV human body model (CDM)  
Device Information(1)  
2 Applications  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
Mobile phones  
Tablet  
TMUX646  
nFBGA (ZEC)  
2.45 mm × 2.45 mm  
(1) For all available package, see the orderable addendum at the  
end of the data sheet.  
PC and notebooks  
Virtual and augmented reality  
Drones  
Camera-based carcode scanner  
Medical  
IP netcam  
1.5 V to 5.5 V  
1.5 V to 5.5 V  
100 nF  
2.2 µF  
100 nF  
2.2 µF  
VDD  
VDD  
CLK  
Trio[1:3]  
Data[1:4]  
CLK  
MIPI Module 1  
MIPI Module 1  
Trio[1:3]  
Data[1:4]  
50  
TMUX646  
MIPI Switch  
TMUX646  
MIPI Switch  
Processor  
Processor  
CLK  
Trio [1:3]  
50 Ω  
Data[1:4]  
MIPI Module 2  
MIPI Module 2  
SEL  
/OE  
SEL  
/OE  
50 Ω  
Simplified D-PHY Schematic  
Simplified C-PHY Schematic  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings ....................................... 5  
6.2 ESD Ratings .............................................................. 5  
6.3 Recommended Operating Conditions ........................5  
6.4 Thermal Information ...................................................5  
6.5 Electrical Characteristics ............................................6  
6.6 Typical Characteristics..............................................10  
7 Parameter Measurement Information..........................13  
8 Detailed Description......................................................19  
8.1 Overview...................................................................19  
8.2 Functional Block Diagram.........................................19  
8.3 Feature Description...................................................20  
8.4 Device Functional Modes..........................................21  
9 Application and Implementation..................................22  
9.1 Application Information............................................. 22  
9.2 Typical Application.................................................... 22  
10 Power Supply Recommendations..............................27  
11 Layout...........................................................................28  
11.1 Layout Guidelines................................................... 28  
11.2 Layout Example...................................................... 28  
12 Device and Documentation Support..........................29  
12.1 Documentation Support.......................................... 29  
12.2 Receiving Notification of Documentation Updates..29  
12.3 Support Resources................................................. 29  
12.4 Trademarks.............................................................29  
12.5 Electrostatic Discharge Caution..............................29  
12.6 Glossary..................................................................29  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 29  
4 Revision History  
DATE  
REVISION  
NOTES  
June 2021  
*
Initial Release  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMUX646  
 
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
5 Pin Configuration and Functions  
1
2
3
4
5
6
A
B
C
D
E
F
VDD  
DB4N  
DB3N  
DB2N  
DB1N  
CLKBN  
GND  
DB4P  
DB3P  
DB2P  
DB1P  
CLKBP  
DA4N  
DA4P  
OE  
SEL  
DA3N  
DA3P  
D4N  
D4P  
D3P  
D2P  
D1P  
NC  
NC  
D3N  
DA2N  
DA1N  
CLKAN  
DA2P  
DA1P  
CLKAP  
D2N  
D1N  
CLKN  
CLKP  
Not to scale  
Figure 5-1. nFBGA Package 36 Pin (ZEC) Top View  
Table 5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
CLKAN  
CLKAP  
CLKBN  
CLKBP  
CLKN  
CLKP  
D1N  
NO.  
F3  
F4  
F1  
F2  
F5  
F6  
E5  
E6  
D5  
D6  
C5  
C6  
B5  
B6  
E3  
E4  
D3  
D4  
B3  
B4  
A3  
A4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
D1P  
D2N  
D2P  
D3N  
D3P  
D4N  
D4P  
DA1N  
DA1P  
DA2N  
DA2P  
DA3N  
DA3P  
DA4N  
DA4P  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMUX646  
 
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
Table 5-1. Pin Functions (continued)  
PIN  
NAME  
DB1N  
DB1P  
DB2N  
DB2P  
DB3N  
DB3P  
DB4N  
DB4P  
GND  
I/O  
DESCRIPTION  
NO.  
E1  
E2  
D1  
D2  
C1  
C2  
B1  
B2  
A2  
C3  
C4  
A5  
A6  
A1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Differential I/O  
Device Ground  
NC  
I
No internal connection  
No internal connection  
Output enable (active low), has internal pull-down resistor  
Channel select, has internal pull-down resistor  
Power supply input  
NC  
OE  
SEL  
I
VDD  
P
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMUX646  
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VDD  
VSW  
Supply Voltage  
–0.5  
6
4
V
Switch signal voltage (CLKP/N, CLKAP/N, CLKBP/N, DxP/N,  
DAxP/N, DBxP/N)  
–0.5  
V
VSEL, VOE  
TJ  
Logic control input pin voltage (SEL, OE)  
Junction temperature  
–0.5  
–65  
–65  
6
125  
150  
V
°C  
°C  
Tstg  
Storage temperature  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated  
under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±6000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±2000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VDD  
VSW  
Supply Voltage  
1.5  
5.5  
V
Switch signal voltage (CLKP/N, CLKAP/N, CLKBP/N, DxP/N, DAxP/N,  
DBxP/N)  
0
0
3.6  
5.5  
V
V
V(SEL)  
V(OE)  
Logic control input pin voltage  
IS or ID  
Continuous current through switch  
Operating ambient temperature  
–35(1)  
–40  
35(1)  
85  
mA  
°C  
(CONT)  
TA  
(1) At TJ = 85°C  
6.4 Thermal Information  
TMUX646  
THERMAL METRIC(1)  
ZEC (nFBGA)  
36 PINS  
111.7  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
49.2  
54.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
2.0  
ΨJB  
54.7  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMUX646  
 
 
 
 
 
 
 
 
 
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
6.4 Thermal Information (continued)  
TMUX646  
ZEC (nFBGA)  
36 PINS  
THERMAL METRIC(1)  
UNIT  
RθJC(bot)  
Junction-to-case (bottom) thermal resistance  
N/A  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
30  
MAX UNIT  
POWER SUPPLY  
VDD = 1.5 V to 5.5 V  
OE = 0 V  
IDD  
VDD active supply current  
Power-down supply current  
55  
1
µA  
µA  
µA  
µA  
SEL = 0 V or 5.5 V  
Dn, CLKn = 0 V  
VDD = 1.5 V to 5.5 V  
OE = VDD  
SEL = 0 V or 5.5 V  
Dn, CLKn = 0 V  
IDD_PD  
0.1  
1.3  
2.5  
VDD = 2.5 V  
OE = 1.8 V  
SEL = 0 V or VDD  
Dn, CLKn = 0 V  
Increase in supply current per  
logic pin at 1.8 V  
ΔIDD  
VDD = 5 V  
OE = 1.8 V  
SEL = 0 V or VDD  
Dn, CLKn = 0 V  
DC CHARACTERISTICS  
VDD = 1.5 V to 5.5 V  
OE = 0 V, SEL = 0 V or VDD  
Dn, CLKn = –8 mA, 0.2 V  
DAn, DBn, CLKAn, CLKBn = 0.2 V, 8 mA  
,
RON_HS  
On-state resistance  
6
6
9
Ω
Ω
VDD = 1.5 V to 5.5 V  
OE = 0 V, SEL = 0 V or VDD  
Dn, CLKn = –8 mA, 1.2 V  
,
RON_LP  
On-state resistance  
10  
DAn, DBn, CLKAn, CLKBn = 1.2 V, 8 mA  
VDD = 1.5 V to 5.5 V  
OE = 0 V, SEL = 0 V or VDD  
,
RON_flat_HS  
On-state resistance flatness  
Dn, CLKn = –8 mA, 0 V to 0.3 V  
DAn, DBn, CLKAn, CLKBn = 0 V to 0.3 V, 8  
mA  
0.1  
0.9  
Ω
Ω
VDD = 1.5 V to 5.5 V  
OE = 0 V, SEL = 0 V or VDD  
,
RON_flat_LP  
On-state resistance flatness  
Dn, CLKn = –8 mA, 0 V to 1.3 V  
DAn, DBn, CLKAn, CLKBn = 0 V to 1.3 V, 8  
mA  
VDD = 1.5 V to 5.5 V  
On-state resistance match  
between + and – paths  
OE = 0 V, SEL = 0 V or VDD  
Dn, CLKn = –8 mA, 0.2 V  
DAn, DBn, CLKAn, CLKBn = 0.2 V, 8 mA  
VDD = 1.5 V to 5.5 V  
OE = 0 V, SEL = 0 V or VDD  
Dn, CLKn = –8 mA, 1.3 V  
,
DRON_HS  
0.1  
0.1  
Ω
Ω
On-state resistance match  
between + and – paths  
,
DRON_LP  
DAn, DBn, CLKAn, CLKBn = 1.3 V, 8 mA  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMUX646  
 
 
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
6.5 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VDD = 1.5 V to 5.5 V  
OE = 0 V or 5.5 V  
IOFF  
Switch off leakage current  
SEL = 0 V or 5.5 V  
Dn, CLKn = 0 V to 1.3 V  
DAn, DBn, CLKAn, CLKBn = 0 V to 1.3 V  
–0.5  
0.5  
10  
µA  
µA  
µA  
µA  
VDD = 0 V, 1.5 V, 1.65 V, 3.3 V, 5.5 V  
OE = 0 V or 5.5 V  
SEL= 0 V or 5.5 V  
DX,CLKX = 3.6 V  
DAX,DBx,CLKAX,CLKBX = 3.6 V  
IOFF_3_6  
Switch off leakage current  
Switch on leakage current  
Switch on leakage current  
–10  
–0.5  
–50  
VDD = 1.5 V to 5.5 V  
OE = 0 V  
SEL = 0 V or 5.5 V  
Dn, CLKn = 0 V to 1.3 V  
DAn, DBn, CLKAn, CLKBn = 0 V to 1.3 V  
ION  
0.5  
50  
VDD = 1.5 V to 5.5 V  
OE = 0 V  
SEL= 0 V or 5.5 V  
DX, CLKX = 3.6 V  
ION_3_6  
DAX ,DBx, CLKAX, CLKBX = 3.6 V  
DYNAMIC CHARACTERISTICS  
VDD = 1.5 V to 5.5 V  
OE = 0 V  
tSWITCH  
Switching time SEL to output  
Dn, CLKn = 1.2 V  
DAn, DBn, CLKAn, CLKBn:  
RL = 50 Ω, CL = 15pF  
1.5  
µs  
VDD = 1.5 V to 5.5 V  
Turnon time from OE to output Dn, CLKn = 1.2 V  
tON_OE  
50  
300  
1
µs  
µs  
DAn, DBn, CLKAn, CLKBn:  
RL = 50 Ω, CL = 15 pF  
VDD = 1.5 V to 5.5 V  
Dn, CLKn = 1.2 V  
DAn, DBn, CLKAn, CLKBn:  
RL = 50 Ω, CL = 15 pF  
tOFF_OE  
Turnoff time from OE to output  
0.5  
VDD = 1.5 V to 5.5 V  
Dn, CLKn = 1.2 V  
DAn, DBn, CLKAn, CLKBn:  
RL = 50 Ω, CL = 2 pF  
Maximum toggling frequency  
for the SEL line  
fSEL_MAX  
100  
kHz  
VDD = 0 V to 5.5 V  
VDD ramp rate = 1 µs  
Dn, CLKn = 1.2 V  
DAn, DBn, CLKAn, CLKBn:  
RL = 50 Ω, CL = 15 pF  
Turnon time from VDD to  
output  
tON_VDD  
50  
300  
1
µs  
VDD = 5 V to 0 V  
Dn, CLKn = 1.2 V  
DAn, DBn, CLKAn, CLKBn:  
RL = 50 Ω, CL = 15 pF  
Turnoff time from VDD to  
output  
tOFF_VDD  
tMIN_OE  
tBBM  
0.5  
ms  
ns  
ns  
VDD = 1.5 V to 5.5 V  
Dn, CLKn = 1.2 V  
DAn, DBn, CLKAn, CLKBn:  
RL = 50 Ω, CL = 2 pF  
Minimum pulse width for OE  
Break before make time  
500  
50  
VDD = 1.5 V to 5.5 V  
OE = 0 V  
Dn, CLKn = RL = 50 Ω, CL = 15 pF  
DAn, DBn, CLKAn, CLKBn: 1.2 V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMUX646  
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
6.5 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VDD = 1.5 V to 5.5 V  
OE = 0 V  
Intrapair skew  
tSKEW  
(opposite transitions of same  
output)  
Dn, CLKn =0.3 V  
DnX, DBn, CLKAn, CLKBn:  
RL = 50 Ω, CL = 5 pF  
1
ps  
ps  
VDD = 1.5 V to 5.5 V  
OE = 0 V  
Dn, CLKn = 0.3 V  
DAn, DBn, CLKAn, CLKBn: RL = 50 Ω, CL =  
5 pF  
Interpair Skew  
(Channel−to−Channel Skew)  
tSKEW  
4
VDD = 1.5 V to 5.5 V  
OE = 0 V  
Propagation delay with 100 ps Dn, CLKn = 1.2 V  
tPD  
40  
ps  
rise time  
DAn, DBn, CLKAn, CLKBn:  
RL = 50 Ω, CL = 5 pF  
tRISE = 100 ps  
VDD = 1.5 V to 5.5 V  
OE = 0 V, VDD  
SEL = 0 V, VDD  
OISO  
Differential off isolation  
Dn, CLKn, DAn, DBn, CLKAn, CLKBn:  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF  
VSW = 200 mVpp (differential)  
f = 1250 MHz  
–20  
dB  
VDD = 1.5 V to 5.5 V  
OE = 0 V, VDD  
SEL = 0 V, VDD  
Differential channel to channel  
crosstalk  
XTALK  
Dn, CLKn, DAn, DBn, CLKAn, CLKBn:  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF  
VSW = 200 mVpp (differential)  
f = 1250 MHz  
–40  
dB  
GHz  
dB  
VDD = 1.5 V to 5.5 V  
OE = 0 V  
SEL = 0 V, VDD  
Dn, CLKn, DAn, DBn, CLKAn, CLKBn:  
VSW = 200 mVpp (differential)  
f = 1250 MHz  
Differential Bandwidth  
BW  
6
VDD = 1.5 V to 5.5 V  
OE = 0 V  
SEL = 0 V, VDD  
Dn, CLKn, DAn, DBn, CLKAn, CLKBn:  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF  
VSW = 200 mVpp (differential)  
f = 100 kHz  
ILOSS  
Insertion Loss  
–0.65  
VDD = 1.5 V to 5.5 V  
OE = 0 V, VDD  
SEL = 0 V, VDD  
Dn, CLKn, DAn, DBn, CLKAn, CLKBn = 0 V,  
0.2 V  
f = 1250 MHz  
COFF  
Off capacitance  
On capacitance  
1.5  
1.5  
pF  
pF  
VDD = 1.5 V to 5.5 V  
OE = 0 V  
SEL = 0 V, VDD  
Dn, CLKn, DAn, DBn, CLKAn, CLKBn = 0 V,  
CON  
0.2 V  
f = 1250 MHz  
DIGITAL CHARACTERISTICS  
VIH  
VIL  
IIH  
Input logic high  
SEL, OE  
SEL, OE  
SEL, OE  
1
0
5.5  
0.4  
5
V
V
Input logic low  
Input high leakage current  
–5  
µA  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMUX646  
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
6.5 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IIL  
Input low leakage current  
SEL, OE  
SEL, OE  
–5  
5
µA  
Internal pull-down resistance  
on digital input pins  
RPD  
6
5
MΩ  
VSEL = 0 V, 1.8 V or VDD  
f = 1 MHz  
CI  
Digital Input capacitance  
pF  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMUX646  
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
6.6 Typical Characteristics  
At TA = 25°C (unless otherwise noted).  
Figure 6-1. RON vs Input Voltage. VDD = 1.5 V  
Figure 6-2. RON vs Input Voltage. VDD = 3.3 V  
Figure 6-3. RON vs Input Voltage. VDD = 5.5 V  
Figure 6-4. RON vs Input Voltage, VDD = 1.5 V to 5.5 V  
Figure 6-5. On-Leakage vs Input Voltage  
Figure 6-6. Off-Leakage vs Input Voltage  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMUX646  
 
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
At TA = 25°C (unless otherwise noted).  
Figure 6-7. Supply Current vs Temperature  
Figure 6-8. Supply Current vs Logic Voltage  
Figure 6-9. Switching Time (tSWITCH) vs Supply Voltage  
Figure 6-10. Propagation Delay (tPD) vs Supply Voltage  
Figure 6-11. tON_VDD vs Supply Voltage  
Figure 6-12. tOFF_VDD vs Supply Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMUX646  
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
At TA = 25°C (unless otherwise noted).  
Figure 6-13. Interpair Skew vs Supply Voltage  
Figure 6-15. Differential Bandwidth  
Figure 6-17. Differential Crosstalk  
Figure 6-14. Intrapair Skew vs Supply Voltage  
Figure 6-16. Off Isolation  
Figure 6-18. Capacitance vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMUX646  
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
7 Parameter Measurement Information  
Channel ON  
RON = V/ION  
V
VSW  
ION  
Switch  
Figure 7-1. On Resistance  
VSW  
VSW  
A
A
Switch  
Figure 7-2. Off Leakage  
VSW  
A
Switch  
Figure 7-3. On Leakage  
VSWA  
VSWB  
VSW  
CL  
RL  
RL  
SEL  
CL  
VSEL  
1.5 V  
1.5 V  
VSEL  
tSWITCH  
VSWA  
VIL  
VIH  
VSEL  
tSWITCH  
VSWB  
VIH  
VIL  
0 V  
VSW  
0 V  
0 V  
VSW  
0 V  
tSWITCH  
10 %  
tSWITCH  
10 %  
90 %  
90 %  
A. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω , tr = 3 ns, tf = 3 ns.  
B. CL includes probe and jig capacitance.  
Figure 7-4. tSWITCH Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMUX646  
 
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
VDD  
VSW  
/OE  
VSW  
1.5 V  
0 V  
VIL  
VIH  
V/OE  
CL  
RL  
tON  
tOFF  
VSW  
0 V  
90 %  
10 %  
VSW  
V/OE  
A. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω , tr = 3 ns, tf = 3 ns.  
B. CL includes probe and jig capacitance.  
Figure 7-5. tON and tOFF Timing for OE  
Network Analyzer  
Switch  
50  
50 ꢀ  
DXP  
DXN  
50 ꢀ  
Source  
Signal  
50 ꢀ  
Source  
Signal  
50 ꢀ  
50 ꢀ  
Copyright © 2018, Texas Instruments Incorporated  
Figure 7-6. Off Isolation  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMUX646  
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
Network Analyzer  
Switch  
50  
DXP  
DXN  
50 ꢀ  
50 ꢀ  
Source  
Signal  
50 ꢀ  
50 ꢀ  
Source  
Signal  
50 ꢀ  
DXP  
DXN  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
Copyright © 2018, Texas Instruments Incorporated  
Figure 7-7. Crosstalk  
Network Analyzer  
Switch  
50  
DXN  
50 ꢀ  
Source  
Signal  
50 ꢀ  
DXP  
50 ꢀ  
Source  
Signal  
50 ꢀ  
50 ꢀ  
Copyright © 2017, Texas Instruments Incorporated  
Figure 7-8. Bandwidth and Insertion Loss  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMUX646  
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
Generator  
Switch  
50  
50 ꢀ  
D1P  
D1N  
D2P  
D2N  
DX1P  
DX1N  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
Source  
Signal  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
Source  
Signal  
50 ꢀ  
50 ꢀ  
50 ꢀ  
DX2P  
Source  
Signal  
DX2N  
Source  
Signal  
50 ꢀ  
50 ꢀ  
50 ꢀ  
D3P  
DX3P  
Source  
Signal  
D3N  
DX3N  
Source  
Signal  
50 ꢀ  
50 ꢀ  
50 ꢀ  
D4P  
DX4P  
Source  
Signal  
D4N  
DX4N  
Source  
Signal  
50 ꢀ  
50 ꢀ  
50 ꢀ  
CLKP  
CLKN  
CLKXP  
Source  
Signal  
CLKXN  
Source  
Signal  
50 ꢀ  
Copyright © 2017, Texas Instruments Incorporated  
Figure 7-9. tPD, tSKEW(INTRA) and tSKEW(INTER) Setup  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMUX646  
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
DXX/CLKX  
50%  
50%  
tPD  
tPD  
DXXX/CLKXX  
50%  
50%  
A. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω , tr = 100 ps, tf = 100 ps.  
B. CL includes probe and jig capacitance.  
Figure 7-10. tPD  
DXX/CLKX  
50%  
50%  
tSKEW  
tSKEW  
DXXX/CLKXX  
50%  
50%  
A. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω , tr = 100 ps, tf = 100 ps.  
B. CL includes probe and jig capacitance.  
Figure 7-11. tSKEW(INTRA)  
tSKEW  
DX/CLKX  
tSKEW  
tSKEW  
DX1  
DX2  
DX3  
DX4  
CLK  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
A. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω , tr = 100 ps, tf = 100 ps.  
B. CL includes probe and jig capacitance.  
C. tSKEW is the maximum skew between all channels. The diagram exaggerates tSKEW to show the measurement technique.  
Figure 7-12. tSKEW(INTER)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMUX646  
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
0.6 V  
VSW  
VSEL  
CL  
RL  
SEL  
0.6 V  
tBBM  
80 %  
VSW  
VSEL  
tBBM  
A. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω , tr = 3 ns, tf = 3 ns.  
B. CL includes probe and jig capacitance.  
Figure 7-13. tBBM  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMUX646  
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The TMUX646 is a high-speed 4 data lane 2:1 MIPI Switch. The device includes 10 channels (5 differential) with  
4 differential data lanes and 1 differential clock lane for D-PHY, CSI or DSI. The clock and data lanes can be  
interchanged as necessary to facilitate the best layout possible for the application. The switch allows a single  
MIPI port to interface between two MIPI modules, expanding the number of potential MIPI devices that can be  
used within a system that is MIPI port limited.  
8.2 Functional Block Diagram  
VDD  
SEL  
6 MO  
6 MO  
Control  
Logic  
/OE  
CLKAP  
CLKBP  
CLKP  
CLKN  
D1P  
D1N  
D2P  
D2N  
D3P  
D3N  
D4P  
D4N  
CLKAN  
CLKBN  
DA1P  
DB1P  
DA1N  
DB1N  
DA2P  
DB2P  
DA2N  
DB2N  
DA3P  
DB3P  
DA3N  
DB3N  
DA4P  
DB4P  
DA4N  
DB4N  
GND  
Copyright © 2018, Texas Instruments Incorporated  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMUX646  
 
 
 
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
8.3 Feature Description  
8.3.1 1.2-V Logic Compatible Inputs  
The TMUX646 has 1.2-V logic compatible control inputs. Regardless of the VDD voltage, the 1.2-V logic level  
inputs allow the TMUX646 to interface with processors that have lower logic I/O rails and eliminates the need for  
an external voltage translator, which saves both space and BOM cost. For more information on 1.2 V and 1.8 V  
logic implementations, refer to Simplifying Design with 1.8 V logic Muxes and Switches.  
8.3.2 Bidirectional Operation  
The TMUX646 conducts equally well from A to COM, B to COM, COM to A, or COM to B. Each channel has very  
similar characteristics in both directions and supports analog and digital signals.  
8.3.3 Powered-Off Protection  
When the TMUX646 is powered off (VDD = 0 V) the I/Os and digital logic pins of the device remains in a  
high impedance state. The crosstalk, off-isolation, and leakage will remain within the electrical specifications.  
This prevents errant voltages from reaching the rest of the system and maintains isolation when the system is  
powering up:  
Figure 8-1 shows an example system containing a switch without powered-off protection with the following  
system level scenario.  
1. Subsystem A powers up and starts sending information to Subsystem B that remains unpowered.  
2. The I/O voltage back powers the supply rail in Subsystem B.  
3. The digital logic is back powered and turns on the switch. The signal is transmitted to Subsystem B before it  
is powered and damages it.  
Unpowered  
Powered  
LDO  
2
VDD  
1
ESD  
Subsystem A  
Subsystem B  
SEL  
3
Switch  
Figure 8-1. System Without Powered-Off Protection  
With powered-off protection, the switch prevents back powering the supply and the switch remains high-  
impedance. Subsystem B remains protected.  
Unpowered  
Powered  
LDO  
2
VDD  
Protection  
ESD  
Subsystem A  
Subsystem B  
SEL  
Hi-Z  
Switch  
Figure 8-2. System With Powered-Off Protection  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMUX646  
 
 
 
 
 
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
This features has the following system level benefits:  
Protects the system from damage.  
Prevents data from being transmitted unintentionally.  
Eliminates the need for power sequencing solutions, reducing BOM count and cost, simplifying system  
design, and improving reliability.  
8.3.4 Low Power Disable Mode  
The TMUX646 has a low power mode that places all the signal paths in a high impedance state and lowers the  
current consumption while the device is not in use. To put the device in low power mode and disable the switch,  
the output enable pin OE must be supplied with a logic high signal.  
8.4 Device Functional Modes  
8.4.1 Pin Functions  
The SEL and OE pins have a weak 6-MΩ pull-down to prevent floating input logic.  
Table 8-1. Function Table  
OE  
SEL  
Function  
I/O pins High-Impedance  
CLK(P/N) = CLKA(P/N)  
Dn(P/N) = DAn(P/N)  
H
X
L
L
L
CLK(P/N) = CLKB(P/N)  
Dn(P/N) = DBn(P/N)  
H
8.4.2 Low Power Disable Mode  
While the output enable pin OE is supplied with a logic high, the device remains in the low power disabled  
state. This reduces the current consumption substantially and the switches are high impedance. The SEL pin is  
ignored while the OE remains high. Upon exiting low power mode, the switch status reflects the SEL pin as seen  
in Table 8-1.  
8.4.3 Switch Enabled Mode  
While the output enable pin OE is supplied with a logic low, the device remains in switch enabled mode.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMUX646  
 
 
 
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TMUX646 is a 2:1, 10 channel MIPI switch designed to facilitate multiple MIPI compliant devices to connect  
to a single CSI/DSI, C-PHY/D-PHY module.  
9.2 Typical Application  
Figure 9-1 represents a typical application of the TMUX646 MIPI switch. The TMUX646 is used to switch signals  
between multiple MIPI modules and a single MIPI port on a processor. This expands the capabilities of a single  
port to handle multiple MIPI modules.  
1.5 V to 5.5 V  
100 nF  
2.2 µF  
VDD  
CLK  
Data[1:4]  
CLK  
MIPI Module 1  
Data[1:4]  
TMUX646  
MIPI Switch  
Processor  
CLK  
Data[1:4]  
MIPI Module 2  
SEL  
/OE  
Figure 9-1. Typical D-PHY Application  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMUX646  
 
 
 
 
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
1.5 V to 5.5 V  
100 nF  
2.2 µF  
VDD  
Trio[1:3]  
MIPI Module 1  
Trio[1:3]  
50  
TMUX646  
MIPI Switch  
Processor  
Trio [1:3]  
50 Ω  
MIPI Module 2  
SEL  
/OE  
50 Ω  
Figure 9-2. Typical C-PHY Application  
9.2.1 Design Requirements  
Design requirements of the MIPI standard must be followed. Supply pin decoupling capacitors of 2.2 µF and 100  
nF are recommended for best performance. The TMUX646 has internal 6-MΩ pulldown resistors on SEL and  
OE. The pulldown on these pins ensure that the digital remains in a non-floating state during system power-up to  
prevent shoot through current spikes and an unknown switch status. By default the switch will power up enabled  
and with the A path selected until driven externally by the processor.  
9.2.2 Detailed Design Procedure  
The TMUX646 can be properly operated without any external components. However, TI recommends that  
unused I/O signal pins be connected to ground through a 50 Ω resistor to prevent signal reflections and maintain  
device performance. The NC pins of the device do not require any external connections or terminations and  
have no connection to the rest of the device internally.  
The clock and data lanes can be interchanged as necessary to facilitate the best layout possible for the  
application. For example, the clock can be placed on the D1 channel and a data lane can be used on the CLK  
channel if this improves the layout. In addition, the signal lines of the TMUX646 are routed single ended on the  
chip die. This makes the device suitable for differential and single-ended high-speed systems.  
9.2.2.1 MIPI D-PHY Application  
The clock and data lanes can be interchanged as necessary to facilitate the best layout possible for the  
application. In addition, the signal lines of the TMUX646 are routed single ended on the chip die. This makes the  
device suitable for differential and single-ended high-speed systems. This also allows the positive and negative  
lines to be interchanged as necessary to facilitate the best layout possible for the application.  
D-PHY application includes a differential clock and 4 differential data lanes. All the channels of the device  
perform similar and the clock or data signals can be interchanged as necessary to facilitate the best layout  
possible for the application.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMUX646  
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
VDD  
D-PHY  
Module A  
SEL  
/OE  
6 M  
6 M  
Control  
Logic  
D-PHY  
Module B  
MIPI_CSI_CLKP_Module A  
MIPI_CSI_CLKP_Module B  
CLKAP  
CLKBP  
CLKP  
CLKN  
D1P  
D1N  
D2P  
D2N  
D3P  
D3N  
D4P  
D4N  
MIPI_CSI_CLKP  
MIPI_CSI_CLKN  
+/- Clock  
MIPI_CSI_CLKN_Module A  
MIPI_CSI_CLKN_Module B  
CLKAN  
CLKBN  
MIPI_CSI_DATA1P_Module A  
MIPI_CSI_DATA1P_Module B  
DA1P  
DB1P  
MIPI_CSI_DATA1P  
MIPI_CSI_DATA1N  
MIPI_CSI_DATA2P  
MIPI_CSI_DATA2N  
MIPI_CSI_DATA3P  
+/- DATA1  
+/- DATA2  
MIPI_CSI_DATA1N_Module A  
MIPI_CSI_DATA1N_Module B  
DA1N  
DB1N  
MIPI_CSI_DATA2P_Module A  
MIPI_CSI_DATA2P_Module B  
DA2P  
DB2P  
MIPI_CSI_DATA2N_Module A  
MIPI_CSI_DATA2N_Module B  
DA2N  
DB2N  
MIPI_CSI_DATA3P_Module A  
MIPI_CSI_DATA3P_Module B  
DA3P  
DB3P  
MIPI_CSI_DATA3N_Module A  
MIPI_CSI_DATA3N_Module B  
DA3N  
DB3N  
+/- DATA3  
+/- DATA4  
MIPI_CSI_DATA3N  
MIPI_CSI_DATA4P  
MIPI_CSI_DATA4N  
MIPI_CSI_DATA4P_Module A  
MIPI_CSI_DATA4P_Module B  
DA4P  
DB4P  
MIPI_CSI_DATA4N_Module A  
MIPI_CSI_DATA4N_Module B  
DA4N  
DB4N  
GND  
Figure 9-3. MIPI D-PHY Example Pinout  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMUX646  
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
9.2.2.2 MIPI C-PHY Application  
The clock and data lanes can be interchanged as necessary to facilitate the best layout possible for the  
application. In addition, the signal lines of the TMUX646 are routed single ended on the chip die. This makes the  
device suitable for differential and single-ended high-speed systems. This also allows the positive and negative  
lines to be interchanged as necessary to facilitate the best layout possible for the application.  
C-PHY application includes 3 trios of signals, which may be routed on any channel, which means there will be  
one unused channel on the TMUX646. TI recommends that the unused I/O signal pin be connected to ground  
through a 50 Ω resistor to prevent signal reflections and maintain device performance.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMUX646  
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
VDD  
C-PHY  
Module A  
SEL  
/OE  
6 M  
6 M  
Control  
Logic  
C-PHY  
Module B  
MIPI_CSI_A0_Module A  
MIPI_CSI_A0_Module B  
CLKAP  
CLKBP  
CLKP  
CLKN  
D1P  
D1N  
D2P  
D2N  
D3P  
D3N  
D4P  
D4N  
MIPI_CSI_A0  
MIPI_CSI_B0  
MIPI_CSI_B0_Module A  
MIPI_CSI_B0_Module B  
CLKAN  
CLKBN  
Trio 0  
MIPI_CSI_C0_Module A  
MIPI_CSI_C0_Module B  
DA1P  
DB1P  
MIPI_CSI_C0  
MIPI_CSI_A1  
MIPI_CSI_B1  
MIPI_CSI_C1  
MIPI_CSI_A2  
MIPI_CSI_A1_Module A  
MIPI_CSI_A1_Module B  
DA1N  
DB1N  
MIPI_CSI_B1_Module A  
MIPI_CSI_B1_Module B  
DA2P  
DB2P  
Trio 1  
MIPI_CSI_C1_Module A  
MIPI_CSI_C1_Module B  
DA2N  
DB2N  
MIPI_CSI_A2_Module A  
MIPI_CSI_A2_Module B  
DA3P  
DB3P  
MIPI_CSI_B2_Module A  
MIPI_CSI_B2_Module B  
DA3N  
DB3N  
MIPI_CSI_B2  
Trio 2  
MIPI_CSI_C2_Module A  
DA4P  
DB4P  
MIPI_CSI_C2  
MIPI_CSI_C2_Module B  
50 Ω  
50 ꢀ  
DA4N  
DB4N  
GND  
50 Ω  
GND  
Figure 9-4. MIPI C-PHY Example Pinout  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMUX646  
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
9.2.3 Application Curves  
Figure 9-5. 4.5 Gbps Through Path (500-mVpp)  
Figure 9-6. 4.5 Gbps with TMUX646 (500-mVpp)  
Figure 9-7. 6 Gbps Through Path (200-mVpp)  
Figure 9-8. 6 Gbps with TMUX646 (200-mVpp)  
10 Power Supply Recommendations  
When the TMUX646 is powered off (VDD = 0 V), the I/Os of the device remains in a high-Z state. The crosstalk,  
off-isolation, and leakage remain within the electrical characteristics Section 6. Power to the device is supplied  
through the VDD pin. Decoupling capacitors of 100 nF and 2.2 µF are recommended on the supply.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMUX646  
 
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
Place the supply de-coupling capacitors as close to the VDD and GND pin as possible. The spacing between the  
power traces, supply and ground, and the signal I/O lines, clock and data, should be a minimum of three times  
the race width of the signal I/O lines to maintain signal integrity.  
The characteristic impedance of one or more traces must match that of the receiver and transmitter to maintain  
signal integrity. Route the high-speed traces using a minimum amount of vias and corners. This will reduce the  
amount of impedance changes.  
When it becomes necessary to make the traces turn 90°, use two 45° turns or an arc instead of making a single  
90° turn.  
Do not route high-speed traces near crystals, oscillators, external clock signals, switching regulators, mounting  
holes or magnetic devices.  
Avoid stubs on the signal lines.  
All I/O signal traces should be routed over a continuous ground plane with no interruptions. The minimum width  
from the edge of the trace to any break in the ground plane must be 3 times the trace width. When routing on  
PCB inner signal layers, the high speed traces should be between two ground planes and maintain characteristic  
impedance.  
High speed signal traces must be length matched as much as possible to minimize skew between data and  
clock lines.  
11.2 Layout Example  
Top Layer Routing  
Bottom Layer Routing  
VIA to  
VIA to  
power plane  
ground plane  
Via  
C
C
To Control  
Logic  
DA4  
DA4  
P
VDD  
GND  
N
/OE  
D4N  
D3N  
D2N  
D1N  
SEL  
D4P  
D3P  
D2P  
D1P  
DB4  
N
DB4  
P
DA3  
N
DA3  
P
DB3  
N
DB3  
P
To MIPI  
Modules  
NC  
NC  
To MIPI Port  
DB2  
N
DB2  
P
DA2  
N
DA2  
P
DB1  
N
DB1  
P
DA1  
N
DA1  
P
CLK  
BN  
CLK  
BP  
CLK  
AN  
CLK  
AP  
CLK  
N
CLK  
P
Figure 11-1. Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMUX646  
 
 
 
TMUX646  
SCDS432 – JUNE 2021  
www.ti.com  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
See the following for related documenation:  
Texas Instruments, 1.8 V Logic for Muxes and Signal Switches application brief  
Texas Instruments, High-Speed Interface Layout Guidelines application report  
Texas Instruments, High-Speed Layout Guidelines application report  
Texas Instruments, Multiplexers and Signal Switches Glossary application report  
Texas Instruments, nFBGA Packaging application report  
Texas Instruments, Small Body nFBGA Packages application report  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMUX646  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX646NZECR  
TMUX646ZECR  
ACTIVE  
ACTIVE  
NFBGA  
NFBGA  
ZEC  
ZEC  
36  
36  
2500 RoHS & Green  
2500 RoHS & Green  
SNAGCU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
T646  
T646  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Oct-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX646NZECR  
TMUX646ZECR  
NFBGA  
NFBGA  
ZEC  
ZEC  
36  
36  
2500  
2500  
330.0  
330.0  
8.4  
2.62  
2.8  
2.62  
2.8  
0.78  
0.8  
4.0  
8.0  
8.0  
Q1  
Q1  
12.4  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Oct-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMUX646NZECR  
TMUX646ZECR  
NFBGA  
NFBGA  
ZEC  
ZEC  
36  
36  
2500  
2500  
338.1  
336.6  
338.1  
336.6  
20.6  
31.8  
Pack Materials-Page 2  
PACKAGE OUTLINE  
NFBGA - 0.65 mm max height  
PLASTIC BALL GRID ARRAY  
ZEC0036A  
B
2.55  
2.35  
BALL A1  
CORNER  
2.55  
2.35  
0.65 MAX  
C
SEATING PLANE  
0.08 C  
0.24  
0.14  
BALL TYP  
2 TYP  
(0.225) TYP  
F
(0.225) TYP  
E
D
SYMM  
2
TYP  
C
B
A
0.3  
36X Ø  
0.2  
0.4 TYP  
1
2
3
4
5
6
0.15  
0.05  
C A B  
C
SYMM  
0.4 TYP  
4226214/A 09/2020  
NanoFree is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NFBGA - 0.65 mm max height  
PLASTIC BALL GRID ARRAY  
ZEC0036A  
(0.4) TYP  
3
1
2
4
5
6
A
B
(0.4) TYP  
C
D
E
F
SYMM  
36X (Ø 0.23)  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
0.0375 MAX  
ALL AROUND  
0.0375 MIN  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
(Ø 0.23)  
SOLDER MASK  
OPENING  
(Ø 0.23)  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON- SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4226214/A 09/2020  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments  
Literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NFBGA - 0.65 mm max height  
PLASTIC BALL GRID ARRAY  
ZEC0036A  
(0.4) TYP  
3
1
2
4
5
6
A
B
(0.4) TYP  
C
D
E
F
SYMM  
(R0.05)  
36X (SQ 0.23)  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.100 mm THICK STENCIL  
SCALE: 25X  
4226214/A 09/2020  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TMUX646NZECR

TMUX646 6 GHz, 5 V, 2:1 (SPDT) 10-Channel MIPI Switch with 1.8-V Logic Support
TI

TMUX646ZECR

TMUX646 6 GHz, 5 V, 2:1 (SPDT) 10-Channel MIPI Switch with 1.8-V Logic Support
TI

TMUX646_V01

TMUX646 6 GHz, 5 V, 2:1 (SPDT) 10-Channel MIPI Switch with 1.8-V Logic Support
TI

TMUX7201

具有 1.8V 逻辑电平和闩锁效应抑制的 44V、1:1 (SPST) 单通道精密开关(高电平有效)
TI

TMUX7201RQXR

| RQX | 8 | -40 to 125
TI

TMUX7202

具有 1.8V 逻辑电平和闩锁效应抑制的 44V、1:1 (SPST) 单通道精密开关(低电平有效)
TI

TMUX7202RQXR

44-V, latch-up immune, 1:1 (SPST) 1 channel precision switch with 1.8V Logic (Active Low) | RQX | 8 | -40 to 125
TI

TMUX7208

TMUX720x 44-V, Latch-Up Immune, 8:1, 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8-V Logic
TI

TMUX7208PWR

TMUX720x 44-V, Latch-Up Immune, 8:1, 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8-V Logic
TI

TMUX7208RUMR

TMUX720x 44-V, Latch-Up Immune, 8:1, 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8-V Logic
TI

TMUX7208_V01

TMUX720x 44-V, Latch-Up Immune, 8:1, 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8-V Logic
TI

TMUX7208_V02

TMUX720x 44-V, Latch-Up Immune, 8:1, 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8-V Logic
TI