TMUX7348F [TI]

具有故障阈值、闩锁效应抑制和 1.8V 逻辑电平的 ±60V 故障保护、8:1 多路复用器;
TMUX7348F
型号: TMUX7348F
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有故障阈值、闩锁效应抑制和 1.8V 逻辑电平的 ±60V 故障保护、8:1 多路复用器

复用器
文件: 总64页 (文件大小:3663K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
TMUX734xF 具有可调节故障阈值、闩锁效应抑制1.8V 逻辑电平±60V 故障  
保护、8:1 和双4:1 多路复用器  
1 特性  
3 说明  
• 宽电源电压范围:  
TMUX7348F TMUX7349F 是现代互补金属氧化物  
半导体 (CMOS) 模拟多路复用器可采用 8:1单端)  
4:1差分配置。这些器件在双电源±5 V ±22  
V、单电源8 V 44 V或非对称电源例如 VDD  
= 12 VVSS = 5 V电时均能正常运行。  
TMUX7348F TMUX7349F 器件在通电和断电情况  
下均提供过压保护适用于无法精确控制电源时序的应  
用。  
– 双电源±5 V ±22 V  
– 单电源8 V 44 V  
• 集成故障保护:  
过压保护从源极到电源或到漏极): ±85V  
过压保护±60 V  
断电保护±60 V  
可调节过压触发阈值  
VFP3 V VDDVFN0 V VSS  
中断标志用于指示全面和特定的故障通道信息  
无故障通道在低泄漏电流下继续运行  
在过压条件下输出被钳位到故障电源  
由器件构造实现的闩锁效应抑制  
支持的逻辑电平1.8V  
失效防护逻辑44V与电源无关)  
• 先断后合开关  
• 行业标TSSOP 封装和较小WQFN 封装  
在通电和断电条件下该器件可阻断最高达 +60 V 和  
-60 V 的接地故障电压。无论开关输入条件和逻辑控制  
状态如何在没有电源的情况下开关通道将保持关断  
状态。在正常工作条件下如果任何 Sx 引脚上的模拟  
输入信号电平超过正极故障电源 (VFP) 或负极故障电源  
(VFN)且超出幅度达到阈值电压 (VT)那么通道将会  
关闭并且 Sx 引脚将变为高阻态。选择故障通道后,  
漏极引脚D Dx将被拉至所超过的故障电源电压  
VFP VFN。该器件提供两个低电平有效中断标志  
FF SF),用于指示故障详情。FF 标志指示是否  
有任何源输入出现故障SF 标志用于说明出现故障  
状态的特定输入。  
2 应用  
工厂自动化和控制  
可编程逻辑控制(PLC)  
模拟输入模块  
半导体测试设备  
电池测试设备  
TMUX7348F TMUX7349F 器件具有低电容、低电  
荷注入和集成式故障保护功能因此可用于注重高性能  
和高稳健性的前端数据采集应用。这些器件可采用标准  
TSSOP 封装和较小的 WQFN 封装非常适合 PCB 空  
间受限的情况。  
伺服驱动器控制模块  
数据采集系(DAQ)  
VDD VSS  
VFN VFP  
VDD VSS  
VFN VFP  
封装信息(1)(2)  
SW  
SW  
SW  
封装尺寸标称值)  
器件型号  
TMUX7348F  
封装  
S1  
S2  
S1A  
DA  
DB  
PWTSSOP206.50mm × 4.40mm  
RTJWQFN204.00mm × 4.00mm  
SW  
SW  
S4A  
S1B  
TMUX7349F  
D
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
SW  
SW  
S4B  
S8  
(2) 请参阅器件比表。  
A0  
A1  
A2  
EN  
A0  
A1  
EN  
Fault Detec on/  
Switch Driver/  
Logic Decoder  
Fault Detec on/  
Switch Driver/  
Logic Decoder  
FF  
SF  
FF  
SF  
TMUX7348F  
TMUX7349F  
功能模块图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCDS400  
 
 
 
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
Table of Contents  
8.10 Fault Flag Response Time......................................33  
8.11 Fault Flag Recovery Time....................................... 33  
8.12 Charge Injection......................................................34  
8.13 Off Isolation.............................................................34  
8.14 Crosstalk.................................................................35  
8.15 Bandwidth............................................................... 36  
8.16 THD + Noise........................................................... 36  
9 Detailed Description......................................................37  
9.1 Overview...................................................................37  
9.2 Functional Block Diagram.........................................37  
9.3 Feature Description...................................................38  
9.4 Device Functional Modes..........................................41  
10 Application and Implementation................................44  
10.1 Application Information........................................... 44  
10.2 Typical Application.................................................. 44  
11 Power Supply Recommendations..............................46  
12 Layout...........................................................................46  
12.1 Layout Guidelines................................................... 46  
12.2 Layout Example...................................................... 46  
13 Device and Documentation Support..........................49  
13.1 Documentation Support.......................................... 49  
13.2 接收文档更新通知................................................... 49  
13.3 支持资源..................................................................49  
13.4 Trademarks.............................................................49  
13.5 Electrostatic Discharge Caution..............................49  
13.6 术语表..................................................................... 49  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings........................................ 6  
7.2 ESD Ratings............................................................... 6  
7.3 Thermal Information....................................................7  
7.4 Recommended Operating Conditions.........................7  
7.5 Electrical Characteristics (Global)...............................8  
7.6 ±15 V Dual Supply: Electrical Characteristics.............9  
7.7 ±20 V Dual Supply: Electrical Characteristics...........12  
7.8 12 V Single Supply: Electrical Characteristics.......... 15  
7.9 36 V Single Supply: Electrical Characteristics.......... 18  
7.10 Typical Characteristics............................................21  
8 Parameter Measurement Information..........................28  
8.1 On-Resistance.......................................................... 28  
8.2 Off-Leakage Current................................................. 28  
8.3 On-Leakage Current................................................. 29  
8.4 Input and Output Leakage Current Under  
Overvoltage Fault........................................................29  
8.5 Break-Before-Make Delay.........................................30  
8.6 Enable Delay Time....................................................31  
8.7 Transition Time......................................................... 31  
8.8 Fault Response Time................................................32  
8.9 Fault Recovery Time.................................................32  
Information.................................................................... 49  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (April 2022) to Revision A (November 2022)  
Page  
TMUX7349F 器件WQFN TSSOP (20) 封装状态从预发更改为正在供.........................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMUX7348F TMUX7349F  
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
5 Device Comparison Table  
PRODUCT  
DESCRIPTION  
TMUX7348F  
TMUX7349F  
+60 V/ 60 V tolerant, fault-protected, latch-up immune, single-ended 8:1 multiplexers with adjustable fault threshold  
+60 V/ 60 V tolerant, fault-protected, latch-up immune, dual 4:1 multiplexers with adjustable fault threshold  
6 Pin Configuration and Functions  
A0  
EN  
VSS  
S1  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
A1  
A2  
GND  
VDD  
S5  
VSS  
S1  
1
2
3
4
5
15  
14  
13  
12  
11  
VDD  
S5  
S2  
Thermal  
Pad  
S2  
S6  
S3  
S6  
S3  
S7  
S4  
S7  
S4  
S8  
D
S8  
VFN  
SF  
VFP  
FF  
Not to scale  
Not to scale  
6-2. RTJ Package, 20-Pin WQFN (Top View)  
6-1. PW Package, 20-Pin TSSOP (Top View)  
6-1. Pin Functions: TMUX7348F  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
TSSOP  
WQFN  
Logic control input address 0 (A0). The pin has a 4-MΩinternal pull-down resistor. This pin can also  
be used together with the specific fault pin (SF) to indicate which input is under fault. For more  
details, see 9.4.3.  
A0  
1
19  
I
Logic control input address 1 (A1). The pin has a 4-MΩinternal pull-down resistor. This pin can also  
be used together with the specific fault pin (SF) to indicate which input is under fault. For more  
details, see 9.4.3.  
A1  
20  
18  
I
Logic control input address 2 (A2). The pin has a 4-MΩinternal pull-down resistor. This pin can also  
be used together with the specific fault pin (SF) to indicate which input is under fault. For more  
details, see 9.4.3.  
A2  
D
19  
8
17  
6
I
I/O  
I
Drain pin. Can be an input or output. The drain pin is not overvoltage protected and shall remain  
within the recommended operating range.  
Active high logic enable (EN) pin. The pin has a 4-MΩinternal pull-down resistor. The device is  
disabled and all switches become high impedance when the pin is low. When the pin is high, the Ax  
logic inputs determine individual switch states. For more details, see 9.4.3.  
EN  
2
20  
General fault flag. This pin is an open drain output and is asserted low when overvoltage condition is  
detected on any of the source (Sx) input pins. Connect this pin to an external supply (1.8 V to 5.5 V)  
through a 1-kΩpull-up resistor.  
FF  
11  
9
O
GND  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
18  
4
16  
2
P
Ground (0 V) reference.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Overvoltage protected source pin 1. Can be an input or output.  
Overvoltage protected source pin 2. Can be an input or output.  
Overvoltage protected source pin 3. Can be an input or output.  
Overvoltage protected source pin 4. Can be an input or output.  
Overvoltage protected source pin 5. Can be an input or output.  
Overvoltage protected source pin 6. Can be an input or output.  
Overvoltage protected source pin 7. Can be an input or output.  
Overvoltage protected source pin 8. Can be an input or output.  
5
3
6
4
7
5
16  
15  
14  
13  
14  
13  
12  
11  
Specific fault flag. 9-1 shows how this pin is an open drain output and is asserted low when  
overvoltage condition is detected on a specific pin, depending on the state of A0, A1, and A2.  
Connect this pin to an external supply (1.8 V to 5.5 V) through a 1-kΩpull-up resistor.  
SF  
10  
8
O
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMUX7348F TMUX7349F  
 
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6-1. Pin Functions: TMUX7348F (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
TSSOP  
WQFN  
Positive power supply. This pin is the most positive power-supply potential. For reliable operation,  
connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.  
VDD  
17  
15  
P
Negative fault voltage supply that determines the overvoltage protection triggering threshold on the  
negative side. Connect to VSS if the triggering threshold will be the same as the device's negative  
supply. For reliable operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between  
VFN and GND.  
VFN  
9
7
P
P
Positive fault voltage supply that determines the overvoltage protection triggering threshold on the  
positive side. Connect to VDD if the triggering threshold will be the same as the device's positive  
supply. For reliable operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between  
VFP and GND.  
VFP  
12  
3
10  
1
Negative power supply. This pin is the most negative power-supply potential. In single-supply  
applications, this pin can be connected to ground. For reliable operation, connect a decoupling  
capacitor ranging from 0.1 µF to 10 µF between VSS and GND.  
VSS  
P
Thermal pad. The thermal pad is not connected internally. It is recommended that the pad be tied to  
GND or VSS for best performance.  
Thermal Pad  
(1) I = input, O = output, I/O = input and output, P = power  
A0  
EN  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
A1  
GND  
VDD  
S1B  
S2B  
S3B  
S4B  
DB  
VSS  
S1A  
S2A  
S3A  
S4A  
DA  
VSS  
S1A  
S2A  
S3A  
S4A  
1
2
3
4
5
15  
14  
13  
12  
11  
S1B  
S2B  
S3B  
S4B  
DB  
Thermal  
Pad  
VFN  
SF  
VFP  
FF  
Not to scale  
Not to scale  
6-3. PW Package, 20-Pin TSSOP (Top View)  
6-4. RTJ Package, 20-Pin WQFN (Top View)  
6-2. Pin Functions: TMUX7349F  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
TSSOP  
WQFN  
Logic control input address 0 (A0). The pin has a 4-MΩinternal pull-down resistor. This pin can also  
be used together with the specific fault pin (SF) to indicate which input is under fault. For more details,  
see 9.4.3.  
A0  
1
19  
I
Logic control input address 1 (A1). The pin has a 4-MΩinternal pull-down resistor. This pin can also  
be used together with the specific fault pin (SF) to indicate which input is under fault. For more details,  
see 9.4.3.  
A1  
20  
18  
I
Drain terminal A. Can be an input or output. The drain pin is not overvoltage protected and shall  
remain within the recommended operating range.  
DA  
DB  
8
6
I/O  
I/O  
Drain terminal B. Can be an input or output. The drain pin is not overvoltage protected and shall  
remain within the recommended operating range.  
13  
11  
Active high logic enable (EN) pin. The pin has a 4-MΩinternal pull-down resistor. The device is  
disabled and all switches become high impedance when the pin is low. When the pin is high, the Ax  
logic inputs determine individual switch states. This pin can also be used together with the specific  
fault pin (SF) to indicate which input is under fault. For more details, see 9.4.3.  
EN  
FF  
2
20  
9
I
General fault flag. This pin is an open drain output and is asserted low when overvoltage condition is  
detected on any of the source (Sx) input pins. Connect this pin to an external supply (1.8 V to 5.5 V)  
through a 1-kΩpull-up resistor.  
11  
O
GND  
S1A  
19  
4
17  
2
P
Ground (0 V) reference  
I/O  
Overvoltage protected source pin 1A. Can be an input or output.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMUX7348F TMUX7349F  
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6-2. Pin Functions: TMUX7349F (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
S1B  
S2A  
S2B  
S3A  
S3B  
S4A  
S4B  
TSSOP  
WQFN  
17  
5
15  
3
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Overvoltage protected source pin 1B. Can be an input or output.  
Overvoltage protected source pin 2A. Can be an input or output.  
Overvoltage protected source pin 2B. Can be an input or output.  
Overvoltage protected source pin 3A. Can be an input or output.  
Overvoltage protected source pin 3B. Can be an input or output.  
Overvoltage protected source pin 4A. Can be an input or output.  
Overvoltage protected source pin 4B. Can be an input or output.  
16  
6
14  
4
15  
7
13  
5
14  
12  
Specific fault flag. 9-2 provides how this pin is an open drain output and is asserted low when  
overvoltage condition is detected on a specific pin, depending on the state of A0, A1, and EN. Connect  
this pin to an external supply (1.8 V to 5.5 V) through a 1-kΩpull-up resistor.  
SF  
10  
18  
8
O
P
Positive power supply. This pin is the most positive power-supply potential. For reliable operation,  
connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.  
VDD  
16  
Negative fault voltage supply that determines the overvoltage protection triggering threshold on the  
negative side. Connect to VSS if the triggering threshold will be the same as the device's negative  
supply. For reliable operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between  
VFN and GND.  
VFN  
9
7
P
P
Positive fault voltage supply that determines the overvoltage protection triggering threshold on the  
positive side. Connect to VDD if the triggering threshold will be the same as the device's positive  
supply. For reliable operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between  
VFP and GND.  
VFP  
12  
3
10  
1
Negative power supply. This pin is the most negative power-supply potential. In single-supply  
applications, this pin can be connected to ground. For reliable operation, connect a decoupling  
capacitor ranging from 0.1 µF to 10 µF between VSS and GND.  
VSS  
P
Thermal pad. The thermal pad is not connected internally. It is recommended to tie the pad to GND or  
VSS for best performance.  
Thermal Pad  
(1) I = input, O = output, I/O = input and output, P = power  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMUX7348F TMUX7349F  
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
VDD to VSS  
48  
48  
VDD to GND  
VSS to GND  
VFP to GND  
VFN to GND  
VS to GND  
VS to VDD  
VS to VSS  
VD  
V
Supply voltage  
0.3  
48  
0.3  
V
Positive fault clamping voltage  
VDD + 0.3  
0.3  
V
0.3  
Negative fault clamping voltage  
Source input pin (Sx) voltage to GND  
Source input pin (Sx) voltage to VDD  
Source input pin (Sx) voltage to VSS  
Drain pin (D or Dx) voltage  
V
VSS 0.3  
65  
65  
V
V
90  
90  
V
VFP+0.7  
V
VFN0.7  
GND 0.7  
GND 0.7  
30  
VEN or VAx  
VxF  
Logic control input pin voltage (EN, A0, A1, A2)(2)  
Logic output pin (SF, FF) voltage(2)  
Logic control input pin current (EN, A0, A1, A2)(2)  
Logic output pin (SF, FF) current(2)  
Source or drain continuous current (Sx or D)  
Storage temperature  
48  
V
6
V
IEN or IAx  
IxF  
IS or ID (CONT)  
Tstg  
30  
mA  
mA  
mA  
°C  
°C  
°C  
mW  
mW  
10  
IDC ± 10 %(3)  
150  
10  
IDC ± 10 %(3)  
65  
TA  
Ambient temperature  
150  
55  
TJ  
Junction temperature  
150  
(4)  
Ptot  
Total power dissipation (QFN)  
1900  
(5)  
Ptot  
Total power dissipation (TSSOP)  
800  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality,  
performance, and shorten the device lifetime.  
(2) Stresses have to be kept at or below both voltage and current ratings at all time.  
(3) Refer to Recommended Operating Conditions for IDC ratings.  
(4) For QFN package: Ptot derates linearly above TA = 70°C by 28.5 mW/°C  
(5) For TSSOP package: Ptot derates linearly above TA = 70°C by 12.0 mW/°C  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±3500  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per JEDEC specification JESD22-  
C101 or ANSI/ESDA/JEDEC JS-002(2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible if necessary precautions are taken.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible if necessary precautions are taken.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMUX7348F TMUX7349F  
 
 
 
 
 
 
 
 
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.3 Thermal Information  
TMUX7348F/ TMUX7349F  
THERMAL METRIC(1)  
PW (TSSOP)  
20 PINS  
84.3  
RTJ (WQFN)  
20 PINS  
35.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
22.7  
28.3  
37.3  
13.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.0  
0.3  
ΨJT  
36.7  
13.5  
ΨJB  
RθJC(bot)  
N/A  
4.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
8
NOM  
MAX UNIT  
(1)  
Power supply voltage differential  
Positive power supply voltage  
44  
44  
V
V
V
V
V
V
VDD VSS  
VDD  
5
VFP  
Positive fault clamping voltage  
3
VDD  
0
VFN  
Negative fault clamping voltage  
VSS  
VFN  
60  
VS  
Source pin (Sx) voltage (non-fault condition)  
Source pin (Sx) voltage (fault condition)  
VFP  
60  
VS to GND  
Source pin (Sx) voltage  
to VDD or VD (fault  
condition)  
(2)  
VS to VDD  
Source pin (Sx) voltage to VDD or VD (fault condition)  
Source pin (Sx) voltage to VSS or VD (fault condition)  
V
V
85  
Source pin (Sx) voltage  
to VSS or VD (fault  
condition)  
(2)  
VS to VSS  
VD  
85  
Drain pin (D, Dx) voltage  
VFN  
0
VFP  
44  
V
V
VEN or VAx  
Logic control input pin voltage (EN, A0, A1, A2)  
Logic output pin (SF, FF) voltage  
Ambient temperature  
VxF  
TA  
0
5.5  
125  
9
V
°C  
40  
TA = 25°C  
TA = 85°C  
TA = 125°C  
(3)  
IDC  
Continuous current through switch  
6.5 mA  
5
(1) VDD and VSS can be any value as long as 8 V (VDD VSS) 44 V.  
(2) Under a fault condition, the potential difference between source pin (Sx) and supply pins (VDD and VSS.) or source pin (Sx) and drain  
pins (D, Dx) may not exceed 85 V.  
(3) Fault supplies are tied to the primary supplies (VFP= VDD, VFN = VSS  
)
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMUX7348F TMUX7349F  
 
 
 
 
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.5 Electrical Characteristics (Global)  
at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
Threshold voltage for fault  
detector  
VT  
25°C  
0.7  
V
LOGIC INPUT/ OUTPUT  
VIH  
High-level input voltage  
Low-level input voltage  
Low-level output voltage  
EN, Ax pins  
EN, Ax pins  
1.3  
0
44  
0.8  
V
V
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
VIL  
VOL(FLAG)  
POWER SUPPLY  
FF and SF pins, IO = 5 mA  
0.35  
Rising edge, single supply  
Falling edge, single supply  
5.1  
5
6
6.4  
6.3  
V
V
40°C to +125°C  
40°C to +125°C  
Undervoltage lockout (UVLO)  
threshold voltage (VDD VSS  
VUVLO  
)
5.8  
VDD Undervoltage lockout  
(UVLO) hysteresis  
VHYS  
Single supply  
0.2  
40  
V
40°C to +125°C  
RD(OVP)  
Drain resistance to supply rail during overvoltage event on selected source pin 25°C  
kΩ  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMUX7348F TMUX7349F  
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.6 ±15 V Dual Supply: Electrical Characteristics  
VDD = +15 V ± 10%, VSS = 15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
180  
250  
VS = 10 V to +10 V,  
IS = 1 mA  
330  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
390  
8
2.5  
1.5  
On-resistance mismatch between VS = 10 V to +10 V,  
12  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
channels  
IS = 1 mA  
13  
3.5  
VS = 10 V to +10 V,  
IS = 1 mA  
4
RFLAT  
On-resistance flatness  
On-resistance drift  
40°C to +85°C  
40°C to +125°C  
40°C to +125°C  
25°C  
4
RON_DRIFT  
1
VS = 0 V, IS = 1 mA  
/°C  
0.1  
1
VDD = 16.5 V, VSS = 16.5 V  
Switch state is off  
VS = +10 V / 10 V  
VD = 10 V / + 10 V  
1  
1  
IS(OFF)  
Source off leakage current(1)  
1
4
nA  
nA  
nA  
40°C to +85°C  
40°C to +125°C  
25°C  
4  
0.1  
0.3  
1
VDD = 16.5 V, VSS = 16.5 V  
Switch state is off  
VS = +10 V / 10 V  
VD = 10 V / + 10 V  
1  
ID(OFF)  
Drain off leakage current(1)  
Output on leakage current(2)  
3
40°C to +85°C  
40°C to +125°C  
25°C  
3  
14  
1.5  
5
14  
1.5  
5  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is on  
VS = VD = ±10 V  
IS(ON)  
ID(ON)  
40°C to +85°C  
40°C to +125°C  
22  
22  
FAULT CONDITION  
VS = ± 60 V, GND = 0 V,  
VDD = VFP = 16.5 V, VSS = VFN = 16.5 V  
Input leakage current  
durring overvoltage  
IS(FA)  
±110  
±135  
µA  
µA  
40°C to +125°C  
40°C to +125°C  
Input leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN= 0 V  
IS(FA) Grounded  
Input leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN= floating  
IS(FA) Floating  
±135  
±10  
µA  
nA  
40°C to +125°C  
25°C  
50  
70  
50  
70  
VS = ± 60 V, GND = 0 V,  
VDD = VFP = 16.5 V, VSS = VFN = 16.5 V,  
15.5 V VD 16.5 V  
Output leakage current  
during overvoltage  
ID(FA)  
40°C to +85°C  
40°C to +125°C  
25°C  
90  
90  
±1  
50  
50  
Output leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN= 0 V  
ID(FA) Grounded  
100  
500  
nA  
µA  
40°C to +85°C  
40°C to +125°C  
25°C  
100  
500  
±3  
±5  
±8  
Output leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN= floating  
ID(FA) Floating  
40°C to +85°C  
40°C to +125°C  
LOGIC INPUT/ OUTPUT  
IIH High-level input current  
25°C  
± 0.6  
± 0.6  
2
2
2  
2  
VEN = VAx = VDD  
VEN = VAx = 0 V  
µA  
µA  
40°C to +125°C  
25°C  
1.1  
1.2  
1.1  
1.2  
IIL  
Low-level input current  
40°C to +125°C  
SWITCHING CHARACTERISTICS  
25°C  
165  
265  
285  
300  
VS = 10 V,  
RL = 4 kΩ, CL= 12 pF  
tON (EN)  
Enable turn-on time  
40°C to +85°C  
40°C to +125°C  
ns  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMUX7348F TMUX7349F  
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.6 ±15 V Dual Supply: Electrical Characteristics (continued)  
VDD = +15 V ± 10%, VSS = 15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
350  
400  
VS = 10 V,  
RL = 4 kΩ, CL= 12 pF  
400  
420  
225  
245  
260  
tOFF (EN)  
Enable turn-off time  
40°C to +85°C  
40°C to +125°C  
25°C  
ns  
ns  
170  
VS = 10 V,  
RL = 4 kΩ, CL= 12 pF  
tTRAN  
Transition time  
40°C to +85°C  
40°C to +125°C  
VFP = 15 V, VFN = 15 V,  
RL = 4 kΩ, CL= 12 pF  
tRESPONSE  
Fault response time  
Fault recovery time  
25°C  
25°C  
25°C  
25°C  
300  
1.4  
110  
0.9  
ns  
µs  
ns  
µs  
VFP = 15 V, VFN = 15 V,  
RL = 4 kΩ, CL= 12 pF  
tRECOVERY  
VFP = 15 V, VFN = 15 V,  
VPU = 5 V, RPU = 1 kΩ, CL= 12 pF  
tRESPONSE(FLAG) Fault flag response time  
tRECOVERY(FLAG) Fault flag recovery time  
VFP = 15 V, VFN = 15 V,  
VPU = 5 V, RPU = 1 kΩ, CL= 12 pF  
tBBM  
QINJ  
Break-before-make time delay  
Charge injection  
50  
120  
ns  
VS = 10 V, RL = 4 kΩ, CL= 12 pF  
40°C to +125°C  
VS = 0 V, CL = 1 nF  
25°C  
pC  
15  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
OISO  
Off-isolation  
25°C  
25°C  
25°C  
dB  
dB  
dB  
82  
95  
Intra-channel crosstalk  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF, VS  
200 mVRMS, VBIAS = 0 V, f = 1 MHz  
=
XTALK  
Inter-channel crosstalk  
(TMUX7349F)  
103  
25°C  
25°C  
150  
280  
MHz  
MHz  
3 dB bandwidth (TMUX7348F)  
3 dB bandwidth (TMUX7349F)  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V  
BW  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
ILOSS  
Insertion loss  
25°C  
dB  
9  
Total harmonic distortion plus  
noise  
RS = 40 Ω, RL = 10 kΩ, VS = 15 VPP  
VBIAS = 0 V, f = 20 Hz to 20 kHz  
,
THD+N  
CS(OFF)  
25°C  
25°C  
25°C  
0.0014  
3.5  
%
pF  
pF  
Input off-capacitance  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
Output off-capacitance  
(TMUX7348F)  
28  
CD(OFF)  
Output off-capacitance  
(TMUX7349F)  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
25°C  
25°C  
25°C  
15  
30  
17  
pF  
pF  
pF  
Input/Output on-capacitance  
(TMUX7348F)  
CS(ON)  
CD(ON)  
Input/Output on-capacitance  
(TMUX7349F)  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMUX7348F TMUX7349F  
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.6 ±15 V Dual Supply: Electrical Characteristics (continued)  
VDD = +15 V ± 10%, VSS = 15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
POWER SUPPLY  
25°C  
0.24  
0.5  
VDD = VFP = 16.5 V, VSS = VFN = 16.5 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
0.5  
0.5  
0.4  
0.4  
0.4  
IDD  
VDD supply current  
VSS supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
mA  
mA  
0.14  
VDD = VFP = 16.5 V, VSS = VFN = 16.5 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
ISS  
40°C to +85°C  
40°C to +125°C  
VDD = VFP = 16.5 V, VSS = VFN = 16.5 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IGND  
GND current  
25°C  
25°C  
25°C  
0.075  
10  
mA  
µA  
µA  
VDD = VFP = 16.5 V, VSS = VFN = 16.5 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IFP  
VFP supply current  
VFN supply current  
VDD = VFP = 16.5 V, VSS = VFN = 16.5 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IFN  
10  
25°C  
0.25  
1
1
VS = ± 60 V,  
VDD = VFP = 16.5 V, VSS = VFN = 16.5 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IDD(FA)  
VDD supply current under fault  
VSS supply current under fault  
40°C to +85°C  
40°C to +125°C  
25°C  
mA  
mA  
1
0.15  
0.5  
0.5  
0.5  
VS = ± 60 V,  
VDD = VFP = 16.5 V, VSS = VFN = 16.5 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
ISS(FA)  
40°C to +85°C  
40°C to +125°C  
VS = ± 60 V,  
IGND(FA)  
IFP(FA)  
IFN(FA)  
GND current under fault  
25°C  
25°C  
25°C  
0.15  
9
mA  
µA  
µA  
VDD = VFP = 16.5 V, VSS = VFN = 16.5 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
VS = ± 60 V,  
VDD = VFP = 16.5 V, VSS = VFN = 16.5 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
VFP supply current under fault  
VFN supply current under fault  
VS = ± 60 V,  
VDD = VFP = 16.5 V, VSS = VFN = 16.5 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
9
25°C  
0.15  
0.5  
0.5  
0.5  
0.4  
0.4  
0.4  
VDD = VFP = 16.5 V, VSS = VFN = 16.5 V,  
VAx = 0 V, 5 V, or VDD, VEN = 0 V  
IDD(DISABLE)  
VDD supply current (disable mode)  
VSS supply current (disable mode)  
40°C to +85°C  
40°C to +125°C  
25°C  
mA  
mA  
0.1  
VDD = VFP = 16.5 V, VSS = VFN = 16.5 V,  
VAx = 0 V, 5 V, or VDD, VEN = 0 V  
ISS(DISABLE)  
40°C to +85°C  
40°C to +125°C  
(1) When VS is positive,VD is negative. And when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating. And when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMUX7348F TMUX7349F  
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.7 ±20 V Dual Supply: Electrical Characteristics  
VDD = +20 V ± 10%, VSS = 20 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +20 V, VSS = 20 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
180  
250  
VS = 15 V to +15 V,  
IS = 1 mA  
330  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
Ω
390  
8
2.5  
8
On-resistance mismatch between VS = 15 V to +15 V,  
12  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
Ω
channels  
IS = 1 mA  
13  
10  
VS = 15 V to +15 V,  
IS = 1 mA  
12  
RFLAT  
On-resistance flatness  
40°C to +85°C  
40°C to +125°C  
25°C  
Ω
12  
1.5  
3.5  
VS = 13.5 V to +13.5 V,  
IS = 1 mA  
4
RFLAT  
On-resistance flatness  
On-resistance drift  
40°C to +85°C  
40°C to +125°C  
40°C to +125°C  
25°C  
Ω
4
RON_DRIFT  
1
VS = 0 V, IS = 1 mA  
/°C  
0.1  
1
VDD = 22 V, VSS = 22 V  
Switch state is off  
VS = +15 V / 15 V  
VD = 15 V / + 15 V  
1  
1  
IS(OFF)  
Source off leakage current(1)  
1
4
nA  
nA  
nA  
40°C to +85°C  
40°C to +125°C  
25°C  
4  
0.1  
0.3  
1
VDD = 22 V, VSS = 22 V  
Switch state is off  
VS = +15 V / 15 V  
VD = 15 V / + 15 V  
1  
ID(OFF)  
Drain off leakage current(1)  
Output on leakage current(2)  
3
40°C to +85°C  
40°C to +125°C  
25°C  
3  
14  
1.5  
5
14  
1.5  
5  
VDD = 22 V, VSS = 22 V  
Switch state is on  
VS = VD = ±15 V  
IS(ON)  
ID(ON)  
40°C to +85°C  
40°C to +125°C  
22  
22  
FAULT CONDITION  
VS = ± 60 V, GND = 0 V,  
VDD = VFP = 22 V, VSS = VFN = 22 V  
Input leakage current  
durring overvoltage  
IS(FA)  
±95  
µA  
µA  
40°C to +125°C  
40°C to +125°C  
Input leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN= 0 V  
IS(FA) Grounded  
±135  
Input leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN= floating  
IS(FA) Floating  
±135  
±10  
µA  
nA  
40°C to +125°C  
25°C  
50  
70  
50  
70  
VS = ± 60 V, GND = 0 V,  
VDD = VFP = 22 V, VSS = VFN = 22 V  
21 V VD 22 V  
Output leakage current  
during overvoltage  
ID(FA)  
40°C to +85°C  
40°C to +125°C  
25°C  
90  
90  
±1  
50  
50  
Output leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN= 0 V  
ID(FA) Grounded  
100  
500  
nA  
µA  
40°C to +85°C  
40°C to +125°C  
25°C  
100  
500  
±3  
±5  
±8  
Output leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN= floating  
ID(FA) Floating  
40°C to +85°C  
40°C to +125°C  
LOGIC INPUT/ OUTPUT  
IIH High-level input current  
25°C  
± 0.6  
± 0.6  
2.2  
2.2  
1.1  
1.2  
2.2  
2.2  
1.1  
1.2  
VEN = VAx = VDD  
VEN = VAx = 0 V  
µA  
µA  
40°C to +125°C  
25°C  
IIL  
Low-level input current  
40°C to +125°C  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMUX7348F TMUX7349F  
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.7 ±20 V Dual Supply: Electrical Characteristics (continued)  
VDD = +20 V ± 10%, VSS = 20 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +20 V, VSS = 20 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
SWITCHING CHARACTERISTICS  
25°C  
175  
300  
VS = 10 V,  
RL = 4 kΩ, CL= 12 pF  
325  
350  
400  
400  
420  
245  
270  
285  
tON (EN)  
tOFF (EN)  
tTRAN  
Enable turn-on time  
Enable turn-off time  
Transition time  
40°C to +85°C  
40°C to +125°C  
25°C  
ns  
ns  
ns  
350  
170  
VS = 10 V,  
RL = 4 kΩ, CL= 12 pF  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 10 V,  
RL = 4 kΩ, CL= 12 pF  
40°C to +85°C  
40°C to +125°C  
VFP = 20 V, VFN = 20 V,  
RL = 4 kΩ, CL= 12 pF  
tRESPONSE  
Fault response time  
Fault recovery time  
25°C  
25°C  
25°C  
25°C  
300  
1.3  
110  
0.9  
ns  
µs  
ns  
µs  
VFP = 20 V, VFN = 20 V,  
RL = 4 kΩ, CL= 12 pF  
tRECOVERY  
VFP = 20 V, VFN = 20 V,  
VPU = 5 V, RPU = 1 kΩ, CL= 12 pF  
tRESPONSE(FLAG) Fault flag response time  
tRECOVERY(FLAG) Fault flag recovery time  
VFP = 20 V, VFN = 20 V,  
VPU = 5 V, RPU = 1 kΩ, CL= 12 pF  
tBBM  
QINJ  
Break-before-make time delay  
Charge injection  
50  
120  
ns  
VS = 10 V, RL = 4 kΩ, CL= 12 pF  
40°C to +125°C  
VS = 0 V, CL = 1 nF  
25°C  
pC  
17  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
OISO  
Off-isolation  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
85  
95  
103  
150  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
Intra-channel crosstalk  
XTALK  
Inter-channel crosstalk  
(TMUX7349F)  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V  
3 dB bandwidth (TMUX7348F)  
3 dB bandwidth (TMUX7349F)  
Insertion loss  
BW  
MHz  
dB  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V  
285  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
ILOSS  
9  
Total harmonic distortion plus  
noise  
RS = 40 Ω, RL = 10 kΩ, VS = 20 VPP  
VBIAS = 0 V, f = 20 Hz to 20 kHz  
,
THD+N  
CS(OFF)  
25°C  
25°C  
25°C  
0.0014  
3.5  
%
Input off-capacitance  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
pF  
Output off-capacitance  
(TMUX7348F)  
28  
CD(OFF)  
pF  
pF  
Output off-capacitance  
(TMUX7349F)  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
25°C  
25°C  
25°C  
14  
30  
16  
Input/Output on-capacitance  
(TMUX7348F)  
CS(ON)  
CD(ON)  
Input/Output on-capacitance  
(TMUX7349F)  
POWER SUPPLY  
25°C  
0.24  
0.14  
0.5  
0.5  
0.5  
0.4  
0.4  
0.4  
VDD = VFP = 22 V, VSS = VFN = 22 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IDD  
VDD supply current  
VSS supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
mA  
mA  
VDD = VFP = 22 V, VSS = VFN = 22 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
ISS  
40°C to +85°C  
40°C to +125°C  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMUX7348F TMUX7349F  
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.7 ±20 V Dual Supply: Electrical Characteristics (continued)  
VDD = +20 V ± 10%, VSS = 20 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +20 V, VSS = 20 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
VDD = VFP = 22 V, VSS = VFN = 22 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IGND  
GND current  
25°C  
25°C  
0.075  
mA  
VDD = VFP = 22 V, VSS = VFN = 22 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IFP  
VFP supply current  
VFN supply current  
10  
µA  
VDD = VFP = 22 V, VSS = VFN = 22 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IFN  
25°C  
25°C  
10  
µA  
0.25  
1
VS = ± 60 V,  
1
1
IDD(FA)  
VDD supply current under fault  
VSS supply current under fault  
40°C to +85°C  
40°C to +125°C  
25°C  
mA  
mA  
VDD = VFP = 22 V, VSS = VFN = 22 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
0.15  
0.5  
0.5  
0.5  
VS = ± 60 V,  
VDD = VFP = 22 V, VSS = VFN = 22 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
ISS(FA)  
40°C to +85°C  
40°C to +125°C  
VS = ± 60 V,  
IGND(FA)  
IFP(FA)  
IFN(FA)  
GND current under fault  
25°C  
25°C  
25°C  
0.15  
9
mA  
µA  
µA  
VDD = VFP = 22 V, VSS = VFN = 22 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
VS = ± 60 V,  
VDD = VFP = 22 V, VSS = VFN = 22 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
VFP supply current under fault  
VFN supply current under fault  
VS = ± 60 V,  
VDD = VFP = 22 V, VSS = VFN = 22 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
9
25°C  
0.15  
0.5  
0.5  
0.5  
0.4  
0.4  
0.4  
mA  
mA  
mA  
mA  
mA  
mA  
VDD = VFP = 22 V, VSS = VFN = 22 V,  
VAx = 0 V, 5 V, or VDD, VEN = 0 V  
IDD(DISABLE)  
VDD supply current (disable mode)  
VSS supply current (disable mode)  
40°C to +85°C  
40°C to +125°C  
25°C  
0.1  
VDD = VFP = 22 V, VSS = VFN = 22 V,  
VAx = 0 V, 5 V, or VDD, VEN = 0 V  
ISS(DISABLE)  
40°C to +85°C  
40°C to +125°C  
(1) When VS is positive,VD is negative. And when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating. And when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMUX7348F TMUX7349F  
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.8 12 V Single Supply: Electrical Characteristics  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
180  
250  
VS = 0 V to 7.8 V,  
IS = 1 mA  
330  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
390  
8
2.5  
7
VS = 0 V to 7.8 V,  
IS = 1 mA  
On-resistance mismatch between  
channels  
12  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
13  
30  
VS = 0 V to 7.8 V,  
IS = 1 mA  
45  
RFLAT  
On-resistance flatness  
40°C to +85°C  
40°C to +125°C  
25°C  
75  
7
1.5  
VS = 1 V to 7.8 V,  
IS = 1 mA  
8
RFLAT  
On-resistance flatness  
On-resistance drift  
40°C to +85°C  
40°C to +125°C  
40°C to +125°C  
25°C  
8
RON_DRIFT  
1
VS = 6 V, IS = 1 mA  
/°C  
0.1  
1
1  
1  
VDD = 13.2 V, VSS = 0 V  
Switch state is off  
VS = 10 V / 1 V  
IS(OFF)  
Source off leakage current(1)  
1
4
nA  
nA  
nA  
40°C to +85°C  
40°C to +125°C  
25°C  
VD = 1 V / 10 V  
4  
0.1  
0.3  
1
1  
VDD = 13.2 V, VSS = 0 V  
Switch state is off  
VS = 10 V / 1 V  
ID(OFF)  
Drain off leakage current(1)  
Output on leakage current(2)  
3
40°C to +85°C  
40°C to +125°C  
25°C  
3  
VD = 1 V / 10 V  
14  
1.5  
5
14  
1.5  
5  
VDD = 13.2 V, VSS = 0 V  
Switch state is on  
VS = VD = 10 V or 1 V  
IS(ON)  
ID(ON)  
40°C to +85°C  
40°C to +125°C  
22  
22  
FAULT CONDITION  
Input leakage current  
durring overvoltage  
VS = ± 60 V, GND = 0 V,  
VDD = VFP = 13.2 V, VSS = VFN = 0 V  
IS(FA)  
±145  
±135  
µA  
µA  
40°C to +125°C  
40°C to +125°C  
Input leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN= 0 V  
IS(FA) Grounded  
Input leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN= floating  
IS(FA) Floating  
±135  
±10  
µA  
nA  
40°C to +125°C  
25°C  
50  
70  
50  
70  
VS = ± 60 V, GND = 0 V,  
VDD = VFP = 13.2 V, VSS = VFN = 0 V  
1 V VD 13.2 V  
Output leakage current  
during overvoltage  
ID(FA)  
40°C to +85°C  
40°C to +125°C  
25°C  
90  
90  
±1  
50  
50  
Output leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN= 0 V  
ID(FA) Grounded  
100  
500  
nA  
µA  
40°C to +85°C  
40°C to +125°C  
25°C  
100  
500  
±3  
±5  
±8  
Output leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN= floating  
ID(FA) Floating  
40°C to +85°C  
40°C to +125°C  
LOGIC INPUT/ OUTPUT  
IIH High-level input current  
25°C  
± 0.6  
± 0.6  
2
2
µA  
µA  
2  
2  
VEN = VAx = VDD  
VEN = VAx = 0 V  
40°C to +125°C  
25°C  
1.1  
1.2  
1.1  
1.2  
IIL  
Low-level input current  
µA  
40°C to +125°C  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMUX7348F TMUX7349F  
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.8 12 V Single Supply: Electrical Characteristics (continued)  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
SWITCHING CHARACTERISTICS  
25°C  
160  
265  
VS = 8 V,  
RL = 4 kΩ, CL= 12 pF  
285  
300  
485  
485  
500  
215  
230  
240  
tON (EN)  
tOFF (EN)  
tTRAN  
Enable turn-on time  
Enable turn-off time  
Transition time  
40°C to +85°C  
40°C to +125°C  
25°C  
ns  
ns  
ns  
420  
160  
VS = 8 V,  
RL = 4 kΩ, CL= 12 pF  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 8 V,  
RL = 4 kΩ, CL= 12 pF  
40°C to +85°C  
40°C to +125°C  
VFP = 12 V, VFN = 0 V,  
RL = 4 kΩ, CL= 12 pF  
tRESPONSE  
Fault response time  
Fault recovery time  
25°C  
25°C  
25°C  
25°C  
220  
0.69  
110  
ns  
µs  
ns  
µs  
VFP = 12 V, VFN = 0 V,  
RL = 4 kΩ, CL= 12 pF  
tRECOVERY  
VFP = 12 V, VFN = 0 V,  
VPU = 5 V, RPU = 1 kΩ, CL= 12 pF  
tRESPONSE(FLAG) Fault flag response time  
tRECOVERY(FLAG) Fault flag recovery time  
VFP = 12 V, VFN = 0 V,  
VPU = 5 V, RPU = 1 kΩ, CL= 12 pF  
0.65  
tBBM  
QINJ  
Break-before-make time delay  
Charge injection  
30  
90  
ns  
VS = 8 V, RL = 4 kΩ, CL= 12 pF  
40°C to +125°C  
VS = 6 V, CL = 1 nF  
25°C  
pC  
11  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V, f = 1 MHz  
OISO  
Off-isolation  
25°C  
25°C  
25°C  
dB  
dB  
dB  
76  
93  
XTALK  
XTALK  
Intra-channel crosstalk  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V, f = 1 MHz  
Inter-channel crosstalk  
(TMUX7349F)  
103  
25°C  
25°C  
130  
250  
3 dB bandwidth (TMUX7348F)  
3 dB bandwidth (TMUX7349F)  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V  
BW  
MHz  
dB  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V, f = 1 MHz  
ILOSS  
Insertion loss  
25°C  
9  
Total harmonic distortion plus  
noise  
RS = 40 Ω, RL = 10 kΩ, VS = 6 VPP, VBIAS  
= 6 V, f = 20 Hz to 20 kHz  
THD+N  
CS(OFF)  
25°C  
25°C  
25°C  
0.0022  
%
Input off-capacitance  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
4
pF  
Output off-capacitance  
(TMUX7348F)  
31  
CD(OFF)  
pF  
pF  
Output off-capacitance  
(TMUX7349F)  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
25°C  
25°C  
25°C  
16  
34  
20  
Input/Output on-capacitance  
(TMUX7348F)  
CS(ON)  
CD(ON)  
Input/Output on-capacitance  
(TMUX7349F)  
POWER SUPPLY  
25°C  
0.24  
0.14  
0.5  
0.5  
0.5  
0.4  
0.4  
0.4  
VDD = VFP = 13.2 V, VSS = VFN = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IDD  
VDD supply current  
VSS supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
mA  
mA  
VDD = VFP = 13.2 V, VSS = VFN = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
ISS  
40°C to +85°C  
40°C to +125°C  
VDD = VFP = 13.2 V, VSS = VFN = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IGND  
IFP  
GND current  
25°C  
25°C  
0.075  
10  
mA  
µA  
VDD = VFP = 13.2 V, VSS = VFN = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
VFP supply current  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMUX7348F TMUX7349F  
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.8 12 V Single Supply: Electrical Characteristics (continued)  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
10  
MAX UNIT  
VDD = VFP = 13.2 V, VSS = VFN = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IFN  
VFN supply current  
25°C  
25°C  
µA  
0.25  
1
VS = ± 60 V,  
1
1
IDD(FA)  
VDD supply current under fault  
VSS supply current under fault  
VDD = VFP = 13.2 V, VSS = VFN = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
40°C to +85°C  
40°C to +125°C  
25°C  
mA  
mA  
0.15  
0.5  
0.5  
0.5  
VS = ± 60 V,  
VDD = VFP = 13.2 V, VSS = VFN = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
ISS(FA)  
40°C to +85°C  
40°C to +125°C  
VS = ± 60 V,  
IGND(FA)  
IFP(FA)  
IFN(FA)  
GND current under fault  
VDD = VFP = 13.2 V, VSS = VFN = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
25°C  
25°C  
25°C  
0.17  
9
mA  
µA  
µA  
VS = ± 60 V,  
VDD = VFP = 13.2 V, VSS = VFN = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
VFP supply current under fault  
VFN supply current under fault  
VS = ± 60 V,  
VDD = VFP = 13.2 V, VSS = VFN = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
7.5  
25°C  
0.15  
0.5  
0.5  
0.5  
0.4  
0.4  
0.4  
VDD = VFP = 13.2 V, VSS = VFN = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 0 V  
IDD(DISABLE)  
VDD supply current (disable mode)  
VSS supply current (disable mode)  
40°C to +85°C  
40°C to +125°C  
25°C  
mA  
mA  
0.1  
VDD = VFP = 13.2 V, VSS = VFN = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 0 V  
ISS(DISABLE)  
40°C to +85°C  
40°C to +125°C  
(1) When VS is 10 V, VD is 1 V. Or when VS is 1 V, VD is 10 V.  
(2) When VS is at a voltage potential, VD is floating. Or when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMUX7348F TMUX7349F  
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.9 36 V Single Supply: Electrical Characteristics  
VDD = +36 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +36 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
180  
250  
VS = 0 V to 28 V,  
IS = 1 mA  
330  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
390  
8
2.5  
8
VS = 0 V to 28 V,  
IS = 1 mA  
On-resistance mismatch between  
channels  
12  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
13  
65  
75  
90  
VS = 0 V to 30 V,  
IS = 1 mA  
RFLAT  
On-resistance flatness  
40°C to +85°C  
40°C to +125°C  
25°C  
1.5  
3
VS = 1 V to 28 V,  
IS = 1 mA  
4
RFLAT  
On-resistance flatness  
On-resistance drift  
40°C to +85°C  
40°C to +125°C  
40°C to +125°C  
25°C  
4
RON_DRIFT  
1
VS = 18 V, IS = 1 mA  
/°C  
0.1  
1
1  
1  
VDD = 39.6 V, VSS = 0 V  
Switch state is off  
VS = 30 V / 1 V  
IS(OFF)  
Source off leakage current(1)  
1
4
nA  
nA  
nA  
40°C to +85°C  
40°C to +125°C  
25°C  
VD = 1 V / 30 V  
4  
0.1  
0.3  
1
1  
VDD = 39.6 V, VSS = 0 V  
Switch state is off  
VS = 30 V / 1 V  
ID(OFF)  
Output on leakage current(2)  
Output on leakage current(1)  
3
40°C to +85°C  
40°C to +125°C  
25°C  
3  
VD = 1 V / 30 V  
14  
1.5  
5
14  
1.5  
5  
VDD = 39.6 V, VSS = 0 V  
Switch state is on  
VS = VD = 30 V or 1 V  
IS(ON)  
ID(ON)  
40°C to +85°C  
40°C to +125°C  
22  
22  
FAULT CONDITION  
Input leakage current  
durring overvoltage  
VS = 60 / 40 V, GND = 0 V  
VDD = VFP = 39.6 V, VSS = VFN = 0 V  
IS(FA)  
±110  
±135  
µA  
µA  
40°C to +125°C  
40°C to +125°C  
Input leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V  
VDD = VSS = VFP = VFN= 0 V  
IS(FA) Grounded  
Input leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V  
VDD = VSS = VFP = VFN= floating  
IS(FA) Floating  
±135  
±10  
µA  
nA  
40°C to +125°C  
25°C  
50  
70  
50  
70  
VS = 60 / 40 V, GND = 0 V,  
VDD = VFP = 39.6 V, VSS = VFN = 0 V  
1 V VD 39.6 V  
Output leakage current  
during overvoltage  
ID(FA)  
40°C to +85°C  
40°C to +125°C  
25°C  
90  
90  
±1  
50  
50  
Output leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN= 0 V  
ID(FA) Grounded  
100  
500  
nA  
µA  
40°C to +85°C  
40°C to +125°C  
25°C  
100  
500  
±3  
±5  
±8  
Output leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = VFP = VFN= floating  
ID(FA) Floating  
40°C to +85°C  
40°C to +125°C  
LOGIC INPUT/ OUTPUT  
IIH High-level input current  
25°C  
± 0.6  
± 0.6  
3.2  
3.2  
1.1  
1.2  
3.2  
3.2  
1.1  
1.2  
VEN = VAx = VDD  
VEN = VAx = 0 V  
µA  
µA  
40°C to +125°C  
25°C  
IIL  
Low-level input current  
40°C to +125°C  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMUX7348F TMUX7349F  
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.9 36 V Single Supply: Electrical Characteristics (continued)  
VDD = +36 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +36 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
SWITCHING CHARACTERISTICS  
25°C  
185  
390  
VS = 18 V,  
RL = 4 kΩ, CL= 12 pF  
460  
530  
450  
450  
450  
230  
245  
255  
tON (EN)  
tOFF (EN)  
tTRAN  
Enable turn-on time  
Enable turn-off time  
Transition time  
40°C to +85°C  
40°C to +125°C  
25°C  
ns  
ns  
ns  
380  
185  
VS = 18 V,  
RL = 4 kΩ, CL= 12 pF  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 18 V,  
RL = 4 kΩ, CL= 12 pF  
40°C to +85°C  
40°C to +125°C  
VFP = 36 V, VFN = 0 V,  
RL = 4 kΩ, CL= 12 pF  
tRESPONSE  
Fault response time  
Fault recovery time  
25°C  
25°C  
25°C  
25°C  
210  
0.67  
110  
ns  
µs  
ns  
µs  
VFP = 36 V, VFN = 0 V,  
RL = 4 kΩ, CL= 12 pF  
tRECOVERY  
VFP = 36 V, VFN = 0 V,  
VPU = 5 V, RPU = 1 kΩ, CL= 12 pF  
tRESPONSE(FLAG) Fault flag response time  
tRECOVERY(FLAG) Fault flag recovery time  
VFP = 36 V, VFN = 0 V,  
VPU = 5 V, RPU = 1 kΩ, CL= 12 pF  
0.65  
tBBM  
QINJ  
Break-before-make time delay  
Charge injection  
50  
100  
ns  
VS = 18 V, RL = 4 kΩ, CL= 12 pF  
40°C to +125°C  
VS = 18 V, CL = 1 nF  
25°C  
pC  
16  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V, f = 1 MHz  
OISO  
Off-isolation  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
78  
95  
103  
130  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V, f = 1 MHz  
Intra-channel crosstalk  
XTALK  
Inter-channel crosstalk  
(TMUX7349F)  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V, f = 1 MHz  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V  
3 dB bandwidth (TMUX7348F)  
3 dB bandwidth (TMUX7349F)  
Insertion loss  
BW  
MHz  
dB  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V  
255  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V, f = 1 MHz  
ILOSS  
9  
Total harmonic distortion plus  
noise  
RS = 40 Ω, RL = 10 kΩ, VS = 18 VPP  
VBIAS = 18 V, f = 20 Hz to 20 kHz  
,
THD+N  
CS(OFF)  
25°C  
25°C  
25°C  
0.0014  
%
Input off-capacitance  
f = 1 MHz, VS = 18 V  
f = 1 MHz, VS = 18 V  
4
pF  
Output off-capacitance  
(TMUX7348F)  
31  
CD(OFF)  
pF  
pF  
Output off-capacitance  
(TMUX7349F)  
f = 1 MHz, VS = 18 V  
f = 1 MHz, VS = 18 V  
f = 1 MHz, VS = 18 V  
25°C  
25°C  
25°C  
16  
34  
19  
Input/Output on-capacitance  
(TMUX7348F)  
CS(ON)  
CD(ON)  
Input/Output on-capacitance  
(TMUX7349F)  
POWER SUPPLY  
25°C  
0.24  
0.14  
0.5  
0.5  
0.5  
0.4  
0.4  
0.4  
VDD = VFP = 39.6 V, VSS = VFN = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
mA  
VDD = VFP = 39.6 V, VSS = VFN = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
ISS  
VSS supply current  
GND current  
40°C to +85°C  
40°C to +125°C  
mA  
mA  
VDD = VFP = 39.6 V, VSS = VFN = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IGND  
25°C  
0.075  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMUX7348F TMUX7349F  
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.9 36 V Single Supply: Electrical Characteristics (continued)  
VDD = +36 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +36 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
VDD = VFP = 39.6 V, VSS = VFN = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IFP  
IFN  
VFP supply current  
25°C  
10  
µA  
VDD = VFP = 39.6 V, VSS = VFN = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
VFN supply current  
25°C  
25°C  
10  
µA  
0.25  
1
VS = 60 / 40 V,  
1
1
IDD(FA)  
VDD supply current under fault  
40°C to +85°C  
40°C to +125°C  
25°C  
mA  
mA  
VDD = VFP = 39.6 V, VSS = VFN = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
0.15  
0.5  
0.5  
0.5  
VS = 60 / 40 V,  
VDD = VFP = 39.6 V, VSS = VFN = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
ISS(FA)  
VSS supply current under fault  
40°C to +85°C  
40°C to +125°C  
VS = 60 / 40 V,  
IGND(FA)  
IFP(FA)  
IFN(FA)  
GND current under fault  
25°C  
25°C  
25°C  
0.12  
9
mA  
µA  
µA  
VDD = VFP = 39.6 V, VSS = VFN = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
VS = 60 / 40 V,  
VDD = VFP = 39.6 V, VSS = VFN = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
VFP supply current under fault  
VFN supply current under fault  
VS = 60 / 40 V,  
VDD = VFP = 39.6 V, VSS = VFN = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
7.5  
25°C  
0.15  
0.5  
0.5  
0.5  
0.4  
0.4  
0.4  
VDD = VFP = 39.6 V, VSS = VFN = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 0 V  
IDD(DISABLE)  
VDD supply current (disable mode)  
VSS supply current (disable mode)  
40°C to +85°C  
40°C to +125°C  
25°C  
mA  
mA  
0.1  
VDD = VFP = 39.6 V, VSS = VFN = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 0 V  
ISS(DISABLE)  
40°C to +85°C  
40°C to +125°C  
(1) When VS is 30 V, VD is 1 V. Or when VS is 1 V, VD is 30 V.  
(2) When VS is at a voltage potential, VD is floating. Or when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMUX7348F TMUX7349F  
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.10 Typical Characteristics  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
420  
VDD = 13.5 V, VSS = -13.5 V  
VDD = 15 V, VSS = -15 V  
VDD = 16.5 V, VSS = -16.5 V  
VDD = 18 V, VSS = -18 V  
VDD = 20 V, VSS = -20 V  
VDD = 22 V, VSS = -22 V  
VDD = 13.5 V, VSS = -13.5 V  
VDD = 15 V, VSS = -15 V  
VDD = 16.5 V, VSS = -16.5 V  
VDD = 18 V, VSS = -18 V  
VDD = 20 V, VSS = -20 V  
VDD = 22 V, VSS = -22 V  
380  
340  
300  
260  
220  
180  
140  
100  
-22 -18 -14 -10 -6  
-2  
2
6
10 14 18 22  
-22 -18 -14 -10 -6  
-2  
2
6
10 14 18 22  
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
Dual Supply Voltages  
Dual Supply Flat RON Region  
7-1. On-Resistance vs Source or Drain Voltage  
240  
7-2. On-Resistance vs Source or Drain Voltage  
350  
VDD = 13.5 V, VSS = -13.5 V  
VDD = 15 V, VSS = -15 V  
VDD = 16.5 V, VSS = -16.5 V  
VDD = 18 V, VSS = -18 V  
VDD = 20 V, VSS = -20 V  
VDD = 22 V, VSS = -22 V  
TA = 125C  
230  
220  
210  
200  
190  
180  
170  
160  
300  
250  
200  
150  
100  
TA = 85C  
TA = 25C  
TA = -40C  
-10  
-6  
-2  
2
6
10  
-18  
-14  
-10  
-6  
-2  
2
6
10  
14  
18  
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
Flattest RON region for all supply voltages shown  
±15 V Supply Flattest RON Region  
7-3. On-Resistance vs Source or Drain Voltage  
350  
7-4. On-Resistance vs Source or Drain Voltage  
1800  
VDD = 7.2 V, V SS = 0 V  
VDD = 8 V, V SS = 0 V  
VDD = 8.8 V, V SS = 0 V  
TA = 125C  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
300  
250  
200  
150  
100  
VDD = 10.8 V, V  
= 0 V  
SS  
VDD = 12 V, V SS = 0 V  
VDD = 13.2 V, V = 0 V  
TA = 85C  
SS  
TA = 25C  
TA = -40C  
0
2
4
6
8
10  
12 13.2  
-18  
-14  
-10  
-6  
-2  
2
6
10  
14  
18  
VS or V D - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
Single Supply Voltages  
±20 V Supply Flattest RON Region  
7-6. On-Resistance vs Source or Drain Voltage  
7-5. On-Resistance vs Source or Drain Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMUX7348F TMUX7349F  
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.10 Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
480  
420  
360  
300  
240  
180  
120  
60  
350  
TA = 125C  
300  
250  
200  
150  
100  
TA = 85C  
TA = 25C  
VDD = 8 V, V SS = 0 V  
VDD = 8.8 V, V SS = 0 V  
VDD = 12 V, V SS = 0 V  
VDD = 13.2 V, V SS = 0 V  
TA = -40C  
VDD = 10.8 V, V  
= 0 V  
SS  
0
2
4
6
8
10  
12 13.2  
1
2
3
4
5
6
7
8
9
VS or V D - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
Single Supply Flat RON Region  
12 V Supply Flattest RON Region  
7-7. On-Resistance vs Source or Drain Voltage  
7-8. On-Resistance vs Source or Drain Voltage  
Single Supply Voltages  
Single Supply Flat RON Region  
7-9. On-Resistance vs Source or Drain Voltage  
7-10. On-Resistance vs Source or Drain Voltage  
350  
TA = 125C  
300  
250  
200  
150  
100  
TA = 85C  
TA = 25C  
TA = -40C  
1
5
9
13  
17  
21  
25  
29  
33  
VS or VD - Source or Drain Voltage (V)  
44 V Supply Flattest RON Region  
36 V Supply Flattest RON Region  
7-12. On-Resistance vs Source or Drain Voltage  
7-11. On-Resistance vs Source or Drain Voltage  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMUX7348F TMUX7349F  
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.10 Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
12  
IDOFF VS = -10 V, VD = 10 V  
IDOFF VS = 10 V, VD = -10 V  
IDON VS = -10 V, VD = -10 V  
IDON VS = 10 V, VD = 10 V  
ISOFF VS = -10 V, VD = 10 V  
ISOFF VS = 10 V, VD = -10 V  
11  
10  
9
8
7
6
5
4
3
2
1
0
-1  
0
25  
50  
75  
100  
125  
Temperature (C)  
VDD = 12 V, VSS = 0 V  
VDD = 15 V, VSS = 15 V  
7-13. Leakage Current vs Temperature  
7-14. Leakage Current vs Temperature  
12  
11  
10  
9
12  
11  
10  
9
IDOFF VS = 1 V, VD = 30 V  
IDOFF VS = 30 V, VD = 1 V  
IDON VS = 1 V, VD = 1 V  
IDON VS = 30 V, VD = 30 V  
ISOFF VS = 1 V, VD = 30 V  
ISOFF VS = 30 V, VD = 1 V  
IDOFF VS = -15 V, VD = 15 V  
IDOFF VS = 15 V, VD = -15 V  
IDON VS = -15 V, VD = -15 V  
IDON VS = 15 V, VD = 15 V  
ISOFF VS = -15 V, VD = 15 V  
ISOFF VS = 15 V, VD = -15 V  
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
-1  
-1  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Temperature (C)  
Temperature (C)  
VDD = 36 V, VSS = 0 V  
VDD = 20 V, VSS = 20 V  
7-15. Leakage Current vs Temperature  
7-16. Leakage Current vs Temperature  
200  
100  
200  
100  
IDOFF VS = 1 V, VD = 30 V  
IDOFF VS = 30 V, VD = 1 V  
IDON VS = 1 V, VD = 1 V  
IDON VS = 30 V, VD = 30 V  
ISOFF VS = 1 V, VD = 30 V  
ISOFF VS = 30 V, VD = 1 V  
IDOFF VS = -15 V, VD = 15 V  
IDOFF VS = 15 V, VD = -15 V  
IDON VS = -15 V, VD = -15 V  
IDON VS = 15 V, VD = 15 V  
ISOFF VS = -15 V, VD = 15 V  
ISOFF VS = 15 V, VD = -15 V  
10  
1
10  
1
0.1  
0.1  
0.01  
0.01  
0.0005  
0.0005  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Temperature (C)  
Temperature (C)  
VDD = 36 V, VSS = 0 V  
VDD = 20 V, VSS = 20 V  
7-17. Leakage Current vs Temperature  
7-18. Leakage Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMUX7348F TMUX7349F  
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.10 Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
16  
14  
12  
10  
8
16  
VS = -60 V, VD = 15 V  
VS = -30 V, VD = 15 V  
VS = 60 V, VD = -14 V  
VS = 30 V, VD = -14 V  
VS = -60 V, VD = 20 V  
VS = -30 V, VD = 20 V  
VS = 60 V, VD = -19 V  
VS = 30 V, VD = -19 V  
14  
12  
10  
8
6
6
4
4
2
2
0
0
-2  
-2  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Temperature (C)  
Temperature (C)  
VDD = 15 V, VSS = 15 V  
VDD = 20 V, VSS = 20 V  
7-19. ID(FA) Overvoltage Leakage Current vs Temperature  
7-20. ID(FA) Overvoltage Leakage Current vs Temperature  
16  
VS = -40 V, VD = 36 V  
14  
12  
10  
8
VS = -30 V, VD = 36 V  
VS = 60 V, VD = 1 V  
VS = 30 V, VD = 1 V  
6
4
2
0
-2  
0
25  
50  
75  
100  
125  
Temperature (C)  
VDD = 12 V, VSS = 0 V  
VDD = 36 V, VSS = 0 V  
7-21. ID(FA) Overvoltage Leakage Current vs Temperature  
7-22. ID(FA) Overvoltage Leakage Current vs Temperature  
120  
90  
0.1  
VDD = 15 V, VSS = -15 V  
VDD = 20 V, VSS = -20 V  
0.05  
0.03  
0.02  
VDD = 36 V, VSS = 0 V  
VDD = 44 V, VSS = 0 V  
60  
30  
0.01  
0
0.005  
-30  
-60  
-90  
-120  
0.003  
0.002  
0.001  
0.0005  
0.0003  
0.0002  
VS = -60 V  
VS = -30 V  
VS = 30 V  
VS = 60 V  
-150  
-180  
0.0001  
0
4k  
8k  
12k  
16k  
20k  
0
25  
50  
75  
100  
125  
Frequency (Hz)  
Temperature (C)  
VDD = 15 V, VSS = 15 V  
7-24. THD+N vs Frequency  
7-23. IS(FA) Overvoltage Leakage Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMUX7348F TMUX7349F  
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.10 Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
2
-2  
2
-2  
-6  
-6  
-10  
-14  
-18  
-22  
-26  
-30  
-34  
-10  
-14  
-18  
-22  
-26  
-30  
VDD = 8 V, VSS = 0 V  
VDD = 12 V, VSS = 0 V  
VDD = 36 V, VSS = 0 V  
VDD = 44 V, VSS = 0 V  
VDD = 15 V, VSS = -15 V  
VDD = 20 V, VSS = -20 V  
-20 -16 -12  
-8  
-4  
0
4
8
12  
16  
20  
0
4
8
12 16 20 24 28 32 36 40 44  
VS - Source Voltage (V)  
VS - Source Voltage (V)  
7-25. Charge Injection vs Source Voltage Dual Supply  
7-26. Charge Injection vs Source Voltage Single Supply  
210  
VDD: 15 V, VSS: -15 V, Falling Edge  
200  
190  
180  
170  
160  
150  
140  
130  
120  
VDD: 15 V, VSS: -15 V, Rising Edge  
VDD: 20 V, VSS: -20 V, Falling Edge  
VDD: 20 V, VSS: -20 V, Rising Edge  
-40  
-15  
10  
35  
60  
85  
110 125  
Temperature (C)  
7-27. Transition Times vs Temperature  
7-28. Transition Times vs Temperature  
350  
330  
310  
290  
270  
250  
230  
210  
190  
170  
150  
130  
450  
420  
390  
360  
330  
TOFF 15 V  
TOFF +8 V  
TON +8 V  
TOFF +12 V  
TON +12 V  
TOFF +36 V  
TON +36 V  
TON 15 V  
TOFF 20 V  
TON 20 V  
300  
270  
240  
210  
180  
150  
120  
-40  
-15  
10  
35  
60  
85  
110 125  
-40  
-15  
10  
35  
60  
85  
110 125  
Temperature ( C)  
Temperature ( C)  
7-29. Turn-On and Turn-Off Times vs Temperature  
7-30. Turn-On and Turn-Off Times vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMUX7348F TMUX7349F  
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.10 Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
0
Off-Isolation  
CrossTalk: Adjacent Channel  
CrossTalk: Nonadjacent Channel  
-20  
-40  
-60  
-80  
-100  
-120  
10k  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
7-32. On Response vs Frequency  
CDOFF TMUX7348F  
7-31. Off Isolation and Crosstalk vs Frequency  
120  
120  
100  
80  
60  
40  
20  
0
CDOFF TMUX7348F  
CON TMUX7348F  
CSOFF  
CON TMUX7348F  
CSOFF  
CDOFF TMUX7349F  
CON TMUX7349F  
100  
CDOFF TMUX7349F  
CON TMUX7349F  
80  
60  
40  
20  
0
-15 -12  
-9  
-6  
-3  
0
3
6
9
12  
15  
0
2
4
6
8
10  
12  
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
VDD = 12 V, VSS = 0 V  
VDD = 15 V, VSS = 15 V  
7-34. Capacitance vs Source or Drain Voltage  
7-33. Capacitance vs Source or Drain Voltage  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.4  
VT Falling  
VT Rising  
VDD = +10 V  
VSS = -10 V  
VS = 10 V  
0.36  
0.32  
0.28  
0.24  
0.2  
0.16  
0.12  
0.08  
0.04  
100k  
1M  
Frequency (Hz)  
10M  
50M  
-40  
-15  
10  
35  
60  
85  
110 125  
Temperature (C)  
7-35. Threshold Voltage vs Temperature  
7-36. Large Signal Voltage Off Isolation vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMUX7348F TMUX7349F  
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.10 Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
25  
10  
7.5  
5
2.5  
0
-2.5  
-5  
-7.5  
-10  
-12.5  
-15  
-17.5  
-20  
-22.5  
-25  
SOURCE  
FF/SF  
22.5  
20  
50 V/s Fault Ramp  
17.5  
15  
VFP  
12.5  
10  
DRAIN  
VFN  
7.5  
5
FF/SF  
DRAIN  
2.5  
0
-2.5  
-5  
50 V/s Fault Ramp  
SOURCE  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Time (s)  
3
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Time (s)  
3
7-37. Drain Output Response Positive Overvoltage  
7-38. Drain Output Response Negative Overvoltage  
10  
FF/SF  
7.5  
5
2.5  
0
-2.5  
-5  
DRAIN  
VFN  
-7.5  
-10  
-12.5  
-15  
-17.5  
-20  
-22.5  
-25  
50 V/s Fault Ramp  
SOURCE  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Time (s)  
3
7-39. Drain Output Recovery Positive Overvoltage  
7-40. Drain Output Recovery Negative Overvoltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMUX7348F TMUX7349F  
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 On-Resistance  
The on-resistance of the TMUX7348F and TMUX7349F is the ohmic resistance across the source (Sx) and drain  
(Dx) pins of the device. The on-resistance varies with input voltage and supply voltage. The symbol RON is used  
to denote on-resistance. 8-1 shows the measurement setup used to measure RON. ΔRON represents the  
difference between the RON of any two channels, while RON_FLAT denotes the flatness that is defined as the  
difference between the maximum and minimum value of on-resistance measured over the specified analog  
signal range.  
V
VDD  
VSS  
8
410  
=
+
5
VDD  
VSS  
IS  
SW  
Sx  
Dx  
VS  
GND  
8-1. On-Resistance Measurement Setup  
8.2 Off-Leakage Current  
There are two types of leakage currents associated with a switch during the off state:  
1. Source off-leakage current IS(OFF): the leakage current flowing into or out of the source pin when the switch  
is off.  
2. Drain off-leakage current ID(OFF): the leakage current flowing into or out of the drain pin when the switch is  
off.  
8-2 shows the setup used to measure both off-leakage currents.  
VDD VSS  
VFP  
VFN  
VDD VSS  
VFP  
VFN  
Is (OFF)  
SW  
SW  
SW  
SW  
S1  
S1  
A
S2  
S8  
S2  
ID (OFF)  
VS  
D
D
A
GND  
VD  
SW  
SW  
S8  
VD  
GND  
VS  
GND  
GND  
GND  
GND  
IS(OFF)  
ID(OFF)  
8-2. Off-Leakage Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMUX7348F TMUX7349F  
 
 
 
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.3 On-Leakage Current  
Source on-leakage current (IS(ON)) and drain on-leakage current (ID(ON)) denote the channel leakage currents  
when the switch is in the on state. IS(ON) is measured with the drain floating, while ID(ON) is measured with the  
source floating. 8-3 shows the circuit used for measuring the on-leakage currents.  
VDD VSS  
VFP VFN  
VDD VSS  
VFP VFN  
IS(ON)  
A
SW  
SW  
SW  
SW  
S1  
S2  
S1  
S2  
N.C.  
ID(ON)  
A
D
D
VS  
GND  
N.C.  
SW  
SW  
VD  
S8  
S8  
GND  
VS  
VS  
GND  
GND  
GND  
GND  
IS(ON)  
ID(ON)  
8-3. On-Leakage Measurement Setup  
8.4 Input and Output Leakage Current Under Overvoltage Fault  
If the voltage for any of the source pins rises above the fault supplies (VFP or VFN), the overvoltage protection  
feature of the TMUX7348F and TMUX7349F is triggered to turn off the switch under fault, keeping the fault  
channel in high-impedance state. IS(FA) and ID(FA) denotes the input and output leakage current under  
overvoltage fault conditions, respectively. For ID(FA), the device is disabled to measure leakage current on the  
drain pin without being impacted by the 40 kΩimpedance to the fault supply. When the overvoltage fault occurs,  
the supply (or supplies) can either be in normal operating condition (8-4) or abnormal operating condition (图  
8-5). During abnormal operating condition, the supply (or supplies) can either be unpowered (VDD= VSS = VFN  
=
VFP = 0 V) or floating (VDD= VSS = VFN = VFP = no connection), and remains within the leakage performance  
specifications.  
VDD VSS  
VFP  
VFN  
IS (FA)  
A
N.C.  
SW  
SW  
S1  
S2  
S8  
ID (FA)  
A
VS  
D
GND  
SW  
N.C.  
VD  
GND  
GND  
IS(FA) / ID(FA)  
( |VS| > |VFP + VT| or |VFN - VT| )  
8-4. Measurement Setup for Input and Output Leakage Current under Overvoltage Fault with Normal  
Supplies  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMUX7348F TMUX7349F  
 
 
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
N.C.  
VFP  
GND  
VDD  
VSS  
VDD  
VSS  
VFP  
VFN  
VFN  
IS (FA)  
A
N.C.  
IS (FA)  
A
N.C.  
SW  
SW  
SW  
SW  
S1  
S2  
S1  
S2  
ID (FA)  
A
ID (FA)  
A
VS  
VS  
D
D
GND  
GND  
SW  
SW  
S8  
S8  
GND  
GND  
N.C.  
N.C.  
GND  
GND  
Unpowered  
(VDD = VSS = VFP = VFN = 0 V)  
Floating  
(VDD = VSS = VFP = VFN = N.C.)  
8-5. Measurement Setup for Input and Output Leakage Current Under Overvoltage Fault with  
Unpowered or Floating Supplies  
8.5 Break-Before-Make Delay  
The break-before-make delay is a safety feature of the TMUX7348F and TMUX7349F. The ON switches first  
break the connection before the OFF switches make connection. The time delay between the break and the  
make is known as break-before-make delay. 8-6 shows the setup used to measure break-before-make delay,  
denoted by the symbol tBBM  
.
VDD  
VSS  
0.1 µF  
GND  
0.1 µF  
GND  
VDD VSS  
VFP VFN  
SW  
SW  
S1  
S2  
3 V  
D
tr < 20 ns  
tf < 20 ns  
VA  
0 V  
VD  
CL  
RL  
GND  
SW  
SW  
S7  
S8  
GND  
GND  
0.8 VD  
Output  
A0  
A1  
tBBM  
1
tBBM 2  
VS  
EN  
0 V  
Decoder  
tBBM = min ( tBBM 1, tBBM 2)  
A2  
GND  
VEN  
VA  
GND  
GND  
GND  
8-6. Break-Before-Make Delay Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMUX7348F TMUX7349F  
 
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.6 Enable Delay Time  
tON(EN) time is defined as the time taken by the output of the TMUX7348F and TMUX7349F to rise to a 90% final  
value after the EN signal has risen to a 50% final value. tOFF(EN) is defined as the time taken by the output of the  
TMUX7348F and TMUX7349F to fall to a 10% initial value after the EN signal has fallen to a 50% initial value. 图  
8-7 shows the setup used to measure the enable delay time.  
VDD  
VSS  
0.1 µF  
GND  
VDD VSS  
VFP VFN  
0.1 µF  
GND  
SW  
SW  
S1  
S2  
3 V  
VS  
D
tr < 20 ns  
tf < 20 ns  
50%  
50%  
VEN  
GND  
0 V  
VD  
RL  
CL  
SW  
S8  
0.9 VD  
tON(EN)  
GND  
GND  
tOFF(EN)  
0.1 VD  
GND  
Output  
A0  
A1  
EN  
Decoder  
A2  
VEN  
GND  
GND  
GND  
8-7. Enable Delay Measurement Setup  
8.7 Transition Time  
Transition time is defined as the time taken by the output of the device to rise (to 90% of the transition) or fall (to  
10% of the transition) after the address signal (Ax) has fallen or risen to 50% of the transition. 8-8 shows the  
setup used to measure transition time, denoted by the symbol tTRAN  
.
VDD  
VSS  
0.1 µF  
GND  
0.1 µF  
GND  
VDD VSS  
VFP VFN  
SW  
SW  
S1  
3 V  
S2  
tr < 20 ns  
tf < 20 ns  
50%  
50%  
VA  
VS  
D
0 V  
VD  
GND  
RL  
CL  
0.9 VD  
tTRAN  
SW  
S8  
Output  
0 V  
tTRAN  
1
2
GND  
GND  
0.1 VD  
GND  
tTRAN = max ( tTRAN 1, tTRAN 2)  
A0  
A1  
EN  
Decoder  
A2  
VEN  
VA  
GND  
GND  
GND  
8-8. Transition Time Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMUX7348F TMUX7349F  
 
 
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.8 Fault Response Time  
Fault response time (tRESPONSE) measures the delay between the source voltage exceeding the fault supply  
voltage (VFP or VFN) by 0.5 V and the drain voltage failing to 50% of the maximum output voltage. 8-9 shows  
the setup used to measure tRESPONSE  
.
VSS  
VFP  
0.1 µF  
GND  
0.1 µF  
GND  
VDD  
VFN  
0 V  
Max positive fault  
VFP + 0.5 V  
60 V/µs  
ramp  
60 V/µs  
ramp  
0.1 µF  
GND  
0.1 µF  
GND  
VS  
VS  
VFN - 0.5 V  
tRESPONSE (FN)  
VDD VSS  
VFP VFN  
0 V  
Max negative fault  
SW  
SW  
Sx  
tRESPONSE (FP)  
VFP  
0 V  
Output  
(VD)  
Output  
(VD)  
VS  
Output × 50%  
Output × 50%  
Output  
CL  
D/ DX  
All other  
source  
pins  
VFN  
tRESPONSE = max ( tRESPONSE(FP), tRESPONSE(FN)  
0 V  
GND  
)
RL  
SW  
GND  
GND  
GND  
8-9. Fault Response Time Measurement Setup  
8.9 Fault Recovery Time  
Fault recovery time (tRECOVERY) measures the delay between the source voltage falling from overvoltage  
condition to below fault supply voltage (VFP or VFN) plus 0.5 V and the drain voltage rising from 0 V to 50% of the  
final output voltage. 8-10 shows the setup used to measure tRECOVERY  
.
VSS  
VFP  
0.1 µF  
0.1 µF  
GND  
VDD  
VFN  
0 V  
GND  
VFP + 0.5 V  
VFN - 0.5 V  
0.1 µF  
GND  
0.1 µF  
GND  
VS  
VS  
VDD VSS  
VFP VFN  
0 V  
tRECOVERY (FP)  
tRECOVERY (FN)  
SW  
SW  
Sx  
0 V  
Output  
(VD)  
VS  
Output × 50%  
Output  
(VD)  
Output × 50%  
Output  
CL  
D/ DX  
All other  
source  
pins  
0 V  
GND  
tRECOVERY = max ( tRECOVERY(FP), tRECOVERY(FN)  
)
RL  
SW  
GND  
GND  
GND  
8-10. Fault Recovery Time Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMUX7348F TMUX7349F  
 
 
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.10 Fault Flag Response Time  
Fault flag response time (tRESPONSE(FLAG)) measures the delay between the source voltage exceeding the fault  
supply voltage (VFP or VFN) by 0.5 V and the general fault flag (FF) pin or specific fault flag (SF) pin to go below  
10% of its original value. 8-11 shows the setup used to measure tRESPONSE(FLAG)  
.
VSS  
VFP  
0.1 µF  
0.1 µF  
GND  
VDD  
VFN  
GND  
0.1 µF  
0.1 µF  
GND  
0 V  
VDD VSS  
VFP VFN  
VFP + 0.5 V  
GND  
VS  
VS  
SW  
SW  
Sx  
VFN - 0.5 V  
0 V  
tRESPONSE(FLAG)_FP  
5 V  
tRESPONSE(FLAG)_FN  
5 V  
VS  
Output  
D/ DX  
All other  
source  
pins  
Output (VXF  
)
Output (VXF  
0 V  
tRESPONSE(FLAG) = max ( tRESPONSE(FLAG)_FP, tRESPONSE(FLAG)_FN  
)
GND  
5 V  
RL  
CL  
0.5 V  
0.5 V  
SW  
0 V  
RPU  
GND  
GND  
)
GND  
xF  
CL_xF  
GND  
8-11. Fault Flag Response Time Measurement Setup  
8.11 Fault Flag Recovery Time  
Fault flag recovery time (tRECOVERY(FLAG)) measures the delay between the source voltage falling from  
overvoltage condition to below fault supply voltage (VFP or VFN) plus 0.5 V and the general fault flag (FF) pin or  
the specific fault flag (SF) pin to rise above 3 V with 5 V external pull-up. 8-12 shows the setup used to  
measure tRECOVERY(FLAG)  
.
VSS  
VFP  
0.1 µF  
GND  
0.1 µF  
GND  
VDD  
VFN  
0 V  
0.1 µF  
GND  
0.1 µF  
GND  
VDD VSS  
VFP VFN  
VFP + 0.5 V  
VFN - 0.5 V  
VS  
SW  
SW  
Sx  
0 V  
tRECOVERY(FLAG)_FN  
tRECOVERY(FLAG)_FP  
VS  
5 V  
Output (VXF  
5 V  
Output  
D/ DX  
All other  
source  
pins  
3 V  
3 V  
)
Output (VXF  
)
GND  
5V  
0 V  
0 V  
RL  
CL  
SW  
tRECOVERY(FLAG) = max ( tRECOVERY(FLAG)_FP, tRECOVERY(FLAG)_FN  
)
RPU  
GND  
GND  
GND  
xF  
CL_xF  
GND  
8-12. Fault Flag Recovery Time Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMUX7348F TMUX7349F  
 
 
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.12 Charge Injection  
Charge injection is a measure of the glitch impulse transferred from the logic input to the analog output during  
switching, and is denoted by the symbol QINJ. 8-13 shows the setup used to measure charge injection from  
the source to drain.  
VDD  
VSS  
0.1 µF  
GND  
0.1 µF  
GND  
VDD VSS  
VFP VFN  
SW  
SW  
S1  
S2  
Output  
VS  
D
3 V  
VEN  
0 V  
GND  
CL  
SW  
S8  
tr < 20 ns  
tf < 20 ns  
GND  
GND  
A0  
A1  
Output  
VS  
EN  
VOUT  
QINJ = CL ×  
VOUT  
Decoder  
A2  
VEN  
GND  
GND  
GND  
8-13. Charge-Injection Measurement Setup  
8.13 Off Isolation  
Off isolation is defined as the ratio of the signal at the drain pin (Dx) of the device when a signal is applied to the  
source pin (Sx) of an off-channel. 8-14 shows the setup used to measure, and the equation used to calculate  
off isolation.  
VDD  
VSS  
0.1 µF  
GND  
0.1 µF  
GND  
VDD VSS  
VFP VFN  
Network Analyzer  
VS  
SW  
SW  
SX  
50  
Other  
50  
Sx Pins  
SW  
50  
VOUT  
50  
D/ DX  
VSIG  
Ax, EN  
VAX  
VEN  
GND  
VOUT  
Off Isolation = 20 x Log  
VS  
8-14. Off Isolation Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TMUX7348F TMUX7349F  
 
 
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.14 Crosstalk  
There are two types of crosstalk that can be defined for the devices:  
1. Intra-channel crosstalk (XTALK(INTRA)): 8-15 shows the voltage at the source pin (Sx) of an off-switch input  
when a signal is applied at the source pin of an on-switch input in the same channel.  
2. Inter-channel crosstalk (XTALK(INTER)): 8-16 shows the voltage at the source pin (Sx) of an on-switch input,  
when a signal is applied at the source pin of an on-switch input in a different channel. Inter-channel crosstalk  
applies only to the TMUX7349F device.  
VDD  
VSS  
0.1 µF  
GND  
0.1 µF  
VDD VSS  
VFP VFN  
Network Analyzer  
VOUT  
GND  
SW  
S1/S1X  
S2/S2X  
D/ DX  
SW  
RS  
RL  
Other  
Sx/ Dx  
Pins  
50  
SW  
VS  
50  
Ax, EN  
GND  
VAX  
VEN  
VOUT  
Intra - channel Crosstalk = 20 x Log  
VS  
8-15. Intra-Channel Crosstalk Measurement Setup  
VDD  
VSS  
0.1 µF  
GND  
0.1 µF  
VDD VSS  
VFP VFN  
Network Analyzer  
GND  
SW  
SxA  
DA  
Other  
SxA Pins  
SW  
RS  
50  
RL  
SW  
SW  
VOUT  
SxB  
DB  
Other  
SxB Pins  
50  
VS  
50  
RL  
Ax, EN  
GND  
VAX  
VEN  
VOUT  
VS  
Inter – channel Crosstalk = 20 x Log  
8-16. Inter-Channel Crosstalk Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TMUX7348F TMUX7349F  
 
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.15 Bandwidth  
Bandwidth (BW) is defined as the range of frequencies that are attenuated by < 3 dB when the input is applied to  
the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D or Dx) of the TMUX7348F  
and TMUX7349F. 8-17 shows the setup used to measure bandwidth of the switch.  
VDD  
VSS  
0.1 µF  
GND  
0.1 µF  
GND  
VDD VSS  
VFP VFN  
Network Analyzer  
SW  
SW  
SX  
50  
50  
Other  
Sx/ Dx  
Pins  
RS  
SW  
VOUT  
D/ DX  
VS  
50  
Ax, EN  
VAX  
VEN  
GND  
VOUT  
Bandwidth = 20 x Log  
VS  
8-17. Bandwidth Measurement Setup  
8.16 THD + Noise  
The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as  
the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the  
multiplexer output. The on-resistance of the TMUX7348F and TMUX7349F varies with the amplitude of the input  
signal and results in distortion when the drain pin is connected to a low-impedance load. Total harmonic  
distortion plus noise is denoted as THD+N. 8-18 shows the setup used to measure THD+N of the devices.  
VDD  
VSS  
0.1 µF  
GND  
0.1 µF  
GND  
VDD VSS  
VFP VFN  
Audio Precision  
SW  
SW  
SX  
N.C.  
N.C.  
Other  
Sx/ Dx  
Pins  
RS  
SW  
VOUT  
D/ DX  
VS  
RL  
Ax, EN  
GND  
VAX  
VEN  
8-18. THD+N Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TMUX7348F TMUX7349F  
 
 
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TMUX7348F and TMUX7349F are a modern complementary metal-oxide semiconductor (CMOS) analog  
multiplexers in 8:1 (single ended) and 4:1 (differential) configurations. The devices work well with dual supplies  
(±5 V to ±22 V), a single supply (8 V to 44 V), or asymmetric supplies (such as VDD = 15 V, VSS = 5 V). The  
devices have an overvoltage protection feature on the source pins under powered and powered-off conditions,  
allowing them to be used in harsh industrial environments.  
9.2 Functional Block Diagram  
VDD VSS  
VFN VFP  
VDD VSS  
VFN VFP  
SW  
SW  
SW  
S1  
S2  
S1A  
DA  
DB  
SW  
SW  
S4A  
S1B  
D
SW  
SW  
S4B  
S8  
A0  
A1  
A2  
EN  
A0  
A1  
EN  
Fault Detec on/  
Switch Driver/  
Logic Decoder  
Fault Detec on/  
Switch Driver/  
Logic Decoder  
FF  
SF  
FF  
SF  
TMUX7348F  
TMUX7349F  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TMUX7348F TMUX7349F  
 
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Flat ON- Resistance  
The TMUX7348F and TMUX7349F are designed with a special switch architecture to produce ultra-flat on-  
resistance (RON) across most of the switch input operation region. The flat RON response allows the device to be  
used in precision sensor applications since the RON is controlled regardless of the signals sampled. The  
architecture is implemented without a charge pump so no unwanted noise is produced from the device to affect  
sampling accuracy.  
9.3.2 Protection Features  
The TMUX7348F and TMUX7349F offer a number of protection features to enable robust system  
implementations.  
9.3.2.1 Input Voltage Tolerance  
The maximum voltage that can be applied to any source input pin is +60 V or 60 V, regardless of the supply  
voltage. This allows the device to handle typical voltage fault conditions in industrial applications. Take caution:  
the device is rated to handle a maximum stress of 85 V across different pins, such as the following:  
1. Between source pins and supply rails:  
For example, if the device is powered by VDD supply of 20 V, then the maximum negative signal level on any  
source pin is 60 V to maintain the 60 V maximum rating on any source pin. If the device is powered by  
V
DD supply of 40 V, then the maximum negative signal level on any source pin is reduced to 45 V to  
maintain the 85 V maximum rating across the source pin and the supply.  
2. Between source pins and one or more of the drain pins:  
For example, if channel S1(A) is ON and the voltage on S1(A) pin is 40 V. In this case, the drain voltage is  
also 40 V. The maximum negative voltage on any of the other source pins is 45 V to maintain the 85 V  
maximum rating across the source pin and the drain pin.  
9.3.2.2 Powered-Off Protection  
When the supplies of TMUX7348F and TMUX7349F are removed (VDD/ VSS = 0 V or floating), the source (Sx)  
pins of the device remain in the high impedance (Hi-Z) state, and the source (Sx) and drain (Dx) pins of the  
device remain within the leakage performance mentioned in the Electrical Characteristics. Powered-off  
protection minimizes system complexity by removing the need to control the power supply sequencing of the  
system. The feature prevents errant voltages on the input source pins from reaching the rest of the system and  
maintains isolation when the system is powering up. Without powered-off protection, the signal on the input  
source pins can back-power the supply rails through the internal ESD diodes and potentially cause damage to  
the system. For more information on powered-off protection, refer to the Eliminate Power Sequencing with  
Powered-Off Protection Signal Switches application brief.  
The switch remains OFF regardless of whether the VDD and VSS supplies are 0 V or floating. A GND reference  
must always be present to ensure proper operation. Source and drain voltage levels of up to ±60 V are blocked  
in the powered-off condition.  
9.3.2.3 Fail-Safe Logic  
Fail-safe logic circuitry allows voltages on the logic control pins to be applied before the supply pins, protecting  
the device from potential damage. The switch is specified to be in the OFF state, regardless of the state of the  
logic signals. The logic inputs are protected against positive faults of up to +44 V in the powered-off condition,  
but do not offer protection against the negative overvoltage condition.  
Fail-safe logic also allows the TMUX7348F and TMUX7349F devices to interface with a voltage greater than VDD  
during normal operation to add maximum flexibility in system design. For example, with a VDD of = 15 V, the logic  
control pins could be connected to +24 V for a logic high signal which allows different types of signals, such as  
analog feedback voltages, to be used when controlling the logic inputs. Regardless of the supply voltage, the  
logic inputs can be interfaced as high as 44 V.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TMUX7348F TMUX7349F  
 
 
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
9.3.2.4 Overvoltage Protection and Detection  
The TMUX7348F and TMUX7349F detect overvoltage inputs by comparing the voltage on a source pin (Sx) with  
the fault supplies (VFP and VFN). A signal is considered overvoltage if it exceeds the fault supply voltages by the  
threshold voltage (VT).  
When an overvoltage is detected, the switch automatically turns OFF regardless of the logic controls. The source  
pin becomes high impedance and ensures only small leakage current flows through the switch and the  
overvoltage does not appear on the drain. When the overvoltage channel is selected by the logic control, the  
drain pin (D or Dx) is pulled to the supply that was exceeded. For example, if the source voltage exceeds VFP,  
then the drain output is pulled to VFP. If the source voltage exceeds VFN, then the drain output is pulled to VFN  
.
The pull-up impedance is approximately 40 kΩ, and as a result, the drain current is limited to roughly 1 mA  
during a shorted load (to GND) condition.  
9-1 shows a detailed view of how the pullup or down controls the output state of the drain pin under a fault  
scenario.  
VDD VSS  
VFP  
Ax  
Sx  
Logic &  
Fault  
Detection  
40 kΩ  
40 kΩ  
Dx  
ESD  
Protection  
VFN  
GND  
9-1. Detailed Functional Diagram  
VFP and VFN are required fault supplies that set the level at which the overvoltage protection is engaged. VFP can  
be supplied from 3 V to VDD, while the VFN can be supplied from VSS to 0 V. If the fault supplies are not available  
in the system, then the VFP pin must be connected to VDD, while the VFN pin must be connected to VSS. In this  
case, overvoltage protection then engages at the primary supply voltages VDD and VSS  
.
9.3.2.5 Adjacent Channel Operation During Fault  
When the logic pins are set to a channel under a fault, the overvoltage detection will trigger, the switch will open,  
and the drain pin will be pulled up or down as described in 9.3.2.4. During such an event, all other channels  
not under a fault can continue to operate as normal. For example, if S1 voltage exceeds VFP, and the logic pins  
are set to S1, the drain output is pulled to VFP. Then if the logic pins are changed to set S4, which is not in  
overvoltage or undervoltage, the drain will disconnect from the pullup to VFP and the S4 switch will be enabled  
and connected to the drain, operating as normal. If the logic pins are switched back to S1, the S4 switch will be  
disabled, the drain pin will be pulled up to VFP again, and the switch from S1 to drain will not be enabled until the  
overvoltage fault is removed.  
9.3.2.6 ESD Protection  
All pins on the TMUX7348F and TMUX7349F support HBM ESD protection level up to ±3.5 kV, which helps the  
device from getting ESD damages during the manufacturing process.  
The drain pins (D or Dx) have internal ESD protection diodes to the fault supplies VFP and VFN. Therefore, the  
voltage at the drain pins must not exceed the fault supply voltages to prevent excessive diode current. The  
source pins have specialized ESD protection that allows the signal voltage to reach ±60 V regardless of the  
supply voltage level. Exceeding ±60 V on any source input may damage the ESD protection circuitry on the  
device and cause the device to malfunction if the damage is excessive.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TMUX7348F TMUX7349F  
 
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
9.3.2.7 Latch-Up Immunity  
Latch-up is a condition where a low impedance path is created between a supply pin and ground. This condition  
is caused by a trigger (current injection or overvoltage), but once activated, the low impedance path remains  
even after the trigger is no longer present. This low impedance path may cause system upset or catastrophic  
damage due to excessive current levels. The latch-up condition typically requires a power cycle to eliminate the  
low impedance path.  
The TMUX7348F and TMUX7349F devices are constructed on silicon on insulator (SOI) based process where  
an oxide layer is added between the PMOS and NMOS transistor of each CMOS switch to prevent parasitic  
structures from forming. The oxide layer is also known as an insulating trench and prevents triggering of latch up  
events due to overvoltage or current injections. The latch-up immunity feature allows the TMUX7348F and  
TMUX7349F to be used in harsh environments. For more information on latch-up immunity refer to the Using  
Latch-Up Immune Multiplexers to Help Improve System Reliability application report.  
9.3.2.8 EMC Protection  
The TMUX7348F and TMUX7349F are not intended for standalone electromagnetic compatibility (EMC)  
protection in industrial applications. There are three common high voltage transient specifications that govern  
industrial high voltage transient specifications: IEC61000-4-2 (ESD), IEC61000-4-4 (EFT), and IEC61000-4-5  
(surge immunity). A transient voltage suppressor (TVS), along with some low-value series current limiting  
resistors, are required to prevent source input voltages from going above the rated ±60 V limits.  
When selecting a TVS protection device, it is critical to ensure that the maximum working voltage is greater than  
both the normal operating range of the input source pins to be protected and any known system common-mode  
overvoltage that may be present due to incorrect wiring, loss of power, or short circuit. 9-2 shows an example  
of the proper design window when selecting a TVS device.  
Region 1 denotes the normal operation region of TMUX7348F and TMUX7349F where the input source voltages  
stay below the fault supplies VFP and VFN. Region 2 represents the range of possible persistent DC (or long  
duration AC overvoltage fault) presented on the source input pins. Region 3 represents the margin between any  
known DC overvoltage level and the absolute maximum rating of the TMUX7348F and TMUX7349F. The TVS  
breakdown voltage must be selected to be less than the absolute maximum rating of the TMUX7348F and  
TMUX7349F, but greater than any known possible persistent DC or long duration AC overvoltage fault to avoid  
triggering the TVS inadvertently. Region 4 represents the margin system designers must impose when selecting  
the TVS protection device to prevent accidental triggering of ESD cells of the TMUX7348F and TMUX7349F  
devices.  
Internal ESD  
Trigger Voltage  
4
Device Absolute  
Max Rating  
TVS  
Breakdown  
Voltage  
3
2
System  
Overvoltage  
Overvoltage  
Protection Window  
Fault Voltage  
Supply VFP  
0 V  
1
Normal Operation  
Fault Voltage  
Supply VFN  
2
3
4
System  
Overvoltage  
Overvoltage  
Protection Window  
TVS  
Breakdown  
Voltage  
Device Absolute  
Max Rating  
Internal ESD  
Trigger Voltage  
9-2. System Operation Regions and Proper Region of Selecting a TVS Protection Device  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TMUX7348F TMUX7349F  
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
9.3.3 Overvoltage Fault Flags  
The voltages on the source input pins of the TMUX7348F and TMUX7349F are continuously monitored, and the  
status of whether an overvoltage condition occurs is indicated by an active low general fault flag (FF). The  
voltage on the FF pin indicates if any of the source input pins are experiencing an overvoltage condition. If any  
source pin voltage exceeds the fault supply voltages by a VT, the FF output is pulled-down to below VOL  
.
The specific fault (SF) output pins, on the other hand, can be used to decode which inputs are experiencing an  
overvoltage condition. As provided in 9-1 and 9-2, the SF pin is pulled-down to below VOL when an  
overvoltage condition is detected on a specific source input pin, depending on the state of the A0, A1, A2, and  
EN logic pins.  
Both the FF pin and SF pin are open-drain output and external pull-up resistors of 1 kare recommended. The  
pull-up voltage can be in the range of 1.8 V to 5.5 V, depending on the controller voltage the device interfaces  
with.  
9.3.4 Bidirectional and Rail-to-Rail Operation  
The TMUX7348F and TMUX7349F conducts equally well from source (Sx) to drain (D or Dx) or from drain (D or  
Dx) to source (Sx). Each signal path has very similar characteristics in both directions. It is important to note,  
however, that the overvoltage protection is implemented only on the source (Sx) side. The voltage on the drain is  
only allowed to swing between VFP and VFN and no overvoltage protection is available on the drain side.  
The primary supplies (VDD and VSS) define the on-resistance profile of the switch channel, whereas the fault  
voltage supplies (VFP and VFN) define the signal range that can be passed through from source to drain of the  
device. It is good practice to use voltages on VFP and VFN that are lower than VDD and VSS to take advantage of  
the flat on-resistance region of the device for better input-to-output linearity. The flatest on-resistance region  
extends from VSS to roughly 3 V below VDD. Once the signal is within 3 V of VDD the on-resistance will  
exponentially increase and may impact desired signal transmission.  
9.3.5 1.8 V Logic Compatible Inputs  
The TMUX7348F and TMUX7349F devices have 1.8 V logic compatible control for all logic control inputs. 1.8 V  
logic level inputs allows the TMUX7348F and TMUX7349F to interface with processors that have lower logic I/O  
rails and eliminates the need for an external translator, which saves both space and BOM cost. For more  
information on 1.8 V logic implementations refer to Simplifying Design with 1.8 V Logic Muxes and Switches.  
9.3.6 Integrated Pull-Down Resistor on Logic Pins  
The TMUX7348F and TMUX7349F have internal weak pull-down resistors to GND to ensure the logic pins are  
not left floating. The value of this pull-down resistor is approximately 4 MΩ, but is clamped to about 1 µA at  
higher voltages. This feature integrates up to four external components and reduces system size and cost.  
9.4 Device Functional Modes  
The TMUX7348F and TMUX7349F offer two modes of operation (Normal mode and Fault mode) depending on  
whether any of the input pins experience an overvoltage condition.  
9.4.1 Normal Mode  
In Normal mode operation, signals of up to VFP and VFN can be passed through the switch from source (Sx) to  
drain (D or Dx) or from drain (D or Dx) to source (Sx). As provided in 9-1 and 9-2, the address (Ax) pins  
and the enable (EN) pin determine which switch path to turn on. The following conditions must be satisfied for  
the switch to stay in the ON condition:  
The difference between the primary supples (VDD VSS) must be higher or equal to 8 V. With a minimum  
VDD of 5 V.  
VFP must be between 3 V and VDD, and VFN must be between VSS and 0 V.  
The input signals on the source (Sx) or the drain (D or Dx) must be be between VFP+ VT and VFN VT.  
The logic control (Ax and EN) must have selected the switch.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TMUX7348F TMUX7349F  
 
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
9.4.2 Fault Mode  
The TMUX7348F and TMUX7349F enters into Fault mode when any of the input signals on the source (Sx) pins  
exceed VFP or VFN by a threshold voltage VT. Under the overvoltage condition, the switch input experiencing the  
fault automatically turns OFF regardless of the logic status, and the source pin becomes high impedance with a  
negligible amount of leakage current flowing through the switch. When the fault channel is selected by the logic  
control, the drain pin (D or Dx) is pulled to the fault supply that was exceeded through a 40 kΩinternal resistor.  
In the Fault mode, the general fault flag (FF) is asserted low. 9-1 and 9-2 provides how the specific flag  
(SF) is asserted low when a specific input path is selected.  
The overvoltage protection is provided only for the source (Sx) input pins. The drain (D or Dx) pin, if used as  
signal input, must stay in between VFP and VFN at all time since no overvoltage protection is implemented on the  
drain pin.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TMUX7348F TMUX7349F  
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
9.4.3 Truth Tables  
9-1 shows the truth tables for the TMUX7348F under normal and fault conditions.  
9-1. TMUX7348F Truth Table  
Fault Condition  
State of Specific Flag (SF) when fault occurs on  
Normal Condition  
EN  
A2  
A1  
A0  
On Switch  
None  
None  
None  
None  
None  
None  
None  
None  
S1  
S1  
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
S2  
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
S3  
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
S4  
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
S5  
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
S6  
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
S7  
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
S8  
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
S2  
S3  
S4  
S5  
S6  
S7  
S8  
9-2 shows the truth tables for the TMUX7349F under normal and fault conditions.  
9-2. TMUX7349F Truth Table  
Fault Condition  
Normal Condition  
EN  
A1  
A0  
State of Specific Flag (SF) when fault occurs on  
On Switch  
None  
None  
None  
None  
S1x  
S1A  
0
S2A  
1
S3A  
1
S4A  
1
S1B  
1
S2B  
1
S3B  
1
S4B  
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
0
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
1
1
1
S2x  
1
1
1
1
1
0
1
1
S3x  
1
1
1
1
1
1
0
1
S4x  
1
1
1
1
1
1
1
0
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TMUX7348F TMUX7349F  
 
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
10 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
The TMUX7348F and TMUX7349F are part of the fault protected switches and multiplexers family of devices.  
The ability to protect downstream components from overvoltage events up to ±60 V makes these switches and  
multiplexers suitable for harsh environments.  
10.2 Typical Application  
In analog input programmable logic controllers (PLC) a multiplexer is often used to switch multiple sensors to a  
single ADC. By using a multiplexer, the number of components in the system can be reduced to save system  
cost and size. In a PLC module a ±10 V input signal range is common for interfacing with external field  
transmitters and sensors; however, there are a number of fault cases that may occur that can be damaging to  
many of the integrated circuits. Such fault conditions may include, but are not limited to, human error from wiring  
connections incorrectly, component failure or wire shorts, electromagnetic interference (EMI) or transient  
disturbances, and so forth.  
Supply  
Power Module  
GND  
VDD VSS VFP VFN  
PLC Analog  
Input Module  
Bridge Sensor  
TMUX7348F  
S1  
5 V  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
REF5025  
Thermocouple  
Current Sensing  
D
Gain / Filter  
Network  
Fault  
Protected  
Mux Inputs  
Signal  
Processing  
ISO77xx  
ADS125H01  
Photo  
LED  
A2  
A1  
V
Detector  
A0  
GND  
1.8 V Logic  
Signals  
Op cal Sensor  
Sensors  
10-1. Typical Application  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TMUX7348F TMUX7349F  
 
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
10.2.1 Design Requirements  
10-1. Design Parameters  
PARAMETER  
VALUE  
+15 V  
15 V  
+10 V  
10 V  
Positive supply (VDD) mux  
Negative supply (VSS) mux  
Positive fault voltage supply (VFP) mux and ADC  
Negative fault voltage supply (VFN) mux and ADC  
Power board supply voltage  
Input or output signal range non-faulted  
Overvoltage protection levels  
24 V  
10 V to 10 V  
60 V to 60 V  
Control logic thresholds  
Temperature range  
1.8 V compatible, up to 44 V  
40°C to +125°C  
10.2.2 Detailed Design Procedure  
The previous image shows the case where an incorrect wiring condition occurred and one of the input  
connectors shorted to the power board supply voltage. If the board supply voltage is higher than the fault voltage  
supply of the multiplexer, then the TMUX7348F or TMUX7349F will disconnect the source input from passing the  
signal to protect the downstream ADC. The drain pin of the mux will be pulled up to the fault voltage supply  
voltage VFP through a 40 kΩresistor to allow the ADC to determine a fault condition has occurred.  
10.2.3 Application Curves  
The previous example shows how the fault protection of the TMUX7348F or TMUX7349F is utilized to protect  
downstream components from damage due to wiring the connections incorrectly from the power module. 10-2  
shows an example of positive overvoltage fault response with a fast fault ramp rate of 58 V/µs. 10-3 shows  
the extremely flat on-resistance across source voltage while operating within a common signal range of ±10 V.  
These features make the TMUX7348F or TMUX7349F an ideal solution for factory automation applications that  
can face various fault conditions but also require excellent linearity and low distortion.  
240  
230  
220  
210  
200  
190  
180  
170  
160  
25  
22.5  
20  
VDD = 13.5 V, VSS = -13.5 V  
VDD = 15 V, VSS = -15 V  
VDD = 16.5 V, VSS = -16.5 V  
VDD = 18 V, VSS = -18 V  
VDD = 20 V, VSS = -20 V  
VDD = 22 V, VSS = -22 V  
SOURCE  
VFP  
50 V/s Fault Ramp  
17.5  
15  
12.5  
10  
7.5  
5
FF/SF  
DRAIN  
2.5  
0
-2.5  
-5  
-10  
-6  
-2  
2
6
10  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Time (s)  
3
VS or VD - Source or Drain Voltage (V)  
10-3. RON Flatness in Non-Fault Region  
10-2. Positive Overvoltage Response  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TMUX7348F TMUX7349F  
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
11 Power Supply Recommendations  
The TMUX7348F and TMUX7349F operate across a wide supply range of ±5 V to ±22 V (8 V to 44 V in single-  
supply mode). They also perform well with asymmetrical supplies such as VDD = 12 V and VSS= 5 V. For  
improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 µF to 10 µF at both the VDD  
and VSS pins to ground. Always ensure the ground (GND) connection is established before supplies are ramped.  
The fault supplies (VFP and VFN) provide the current required to operate the fault protection, and thus, must be  
low impedance supplies. They can be derived from the primary supplies by using a resistor divider and buffer or  
be an independent supply rail. The fault supplies must not exceed the primary supplies as it might cause  
unexpected behavior of the switch. Use a supply decoupling capacitor ranging from 0.1 µF to 10 µF at both the  
VFP and VFN pins to ground for improved supply noise immunity.  
The positive supply (VDD) must be ramped before the positive fault rail (VFP) for proper power sequencing of the  
TMUX7348F and TMUX7349F. Similarly, the negative supply (VSS) must be ramped before the negative fault  
voltage rail (VFN).  
12 Layout  
12.1 Layout Guidelines  
The following images illustrate examples of a PCB layout with the TMUX7348F and TMUX7349F. Some key  
considerations are as follows:  
For reliable operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and VSS to  
GND. We recommend a 0.1 µF and 1 µF capacitor, placing the lowest value capacitor as close to the pin as  
possible. Make sure that the capacitor voltage rating is sufficient for the VDD and VSS supplies.  
Multiple decoupling capacitors can be used if there is a lot of noise in the system. For example, a 0.1-µF and  
1-µF can be placed on the supply pins. If multiple capacitors are used, then placing the lowest value  
capacitor closest to the supply pin is recommended.  
Keep the input lines as short as possible.  
Use a solid ground plane to help distribute heat and reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
12.2 Layout Example  
A0  
EN  
VSS  
Wide (low inductance)  
trace for power  
A1  
A2  
Wide (low inductance)  
trace for power  
C
C
GND  
VDD  
S1  
S2  
S3  
S4  
D
S5  
S6  
S7  
S8  
TMUX7348F  
Wide (low inductance)  
trace for power  
Wide (low inductance)  
trace for power  
C
C
VFN  
SF  
VFP  
FF  
Via to ground plane  
Via to signal plane  
1 k  
1 k  
Wide (low inductance)  
trace for power  
12-1. TMUX7348FPW Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TMUX7348F TMUX7349F  
 
 
 
 
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
A0  
EN  
VSS  
A1  
Wide (low inductance)  
C
Wide (low inductance)  
trace for power  
C
trace for power  
GND  
VDD  
S1B  
S1A  
S2A  
S3A  
S4A  
DA  
S2B  
S3B  
S4B  
DB  
TMUX7349F  
Wide (low inductance)  
trace for power  
Wide (low inductance)  
trace for power  
C
C
VFN  
SF  
VFP  
FF  
Via to ground plane  
Via to signal plane  
1 k  
1 k  
Wide (low inductance)  
trace for power  
12-2. TMUX7349FPW Layout Example  
Wide (low inductance)  
trace for power  
Wide (low inductance)  
trace for power  
VDD  
S5  
VSS  
S1  
Via to ground plane  
Via to signal plane  
S6  
S2  
S7  
S3  
S8  
S4  
Wide (low inductance)  
trace for power  
1 kΩ  
1 kΩ  
C
C
Wide (low inductance)  
trace for power  
12-3. TMUX7348FQFN Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TMUX7348F TMUX7349F  
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
Wide (low inductance)  
trace for power  
Wide (low inductance)  
trace for power  
S1B  
S2B  
S3B  
S4B  
DB  
VSS  
S1A  
S2A  
S3A  
S4A  
Via to ground plane  
Via to signal plane  
Wide (low inductance)  
trace for power  
1 kΩ  
1 kΩ  
C
C
Wide (low inductance)  
trace for power  
12-4. TMUX7349FQFN Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TMUX7348F TMUX7349F  
TMUX7348F, TMUX7349F  
ZHCSPC6A MARCH 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Documentation Support  
13.1.1 Related Documentation  
Texas Instruments, Eliminate Power Sequencing with Powered-Off Protection Signal Switches application  
brief  
Texas Instruments, Implications of Slow or Floating CMOS Inputs application note  
Texas Instruments, Improving Analog Input Modules Reliability Using Fault Protected Multiplexers application  
report  
Texas Instruments, Multiplexers and Signal Switches Glossary application report  
Texas Instruments, Protection Against Overvoltage Events, Miswiring, and Common Mode Voltages  
application report  
Texas Instruments, Using Latch-Up Immune Multiplexers to Help Improve System Reliability application  
report  
13.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
13.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TMUX7348F TMUX7349F  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX7348FRTJR  
ACTIVE  
QFN  
RTJ  
20  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
TMUX  
7348F  
Samples  
TMUX7349FPWR  
TMUX7349FRTJR  
ACTIVE  
ACTIVE  
TSSOP  
QFN  
PW  
20  
20  
2000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
TM7349F  
Samples  
Samples  
RTJ  
TMUX  
7349F  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jul-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX7348FRTJR  
TMUX7349FPWR  
TMUX7349FRTJR  
QFN  
TSSOP  
QFN  
RTJ  
PW  
RTJ  
20  
20  
20  
3000  
2000  
3000  
330.0  
330.0  
330.0  
12.4  
16.4  
12.4  
4.25  
6.95  
4.25  
4.25  
7.1  
1.15  
1.6  
8.0  
8.0  
8.0  
12.0  
16.0  
12.0  
Q2  
Q1  
Q2  
4.25  
1.15  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMUX7348FRTJR  
TMUX7349FPWR  
TMUX7349FRTJR  
QFN  
TSSOP  
QFN  
RTJ  
PW  
RTJ  
20  
20  
20  
3000  
2000  
3000  
367.0  
356.0  
367.0  
367.0  
356.0  
367.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0020A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
18X 0.65  
20  
1
2X  
5.85  
6.6  
6.4  
NOTE 3  
10  
B
11  
0.30  
20X  
4.5  
4.3  
NOTE 4  
0.19  
1.2 MAX  
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220206/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
20X (1.5)  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
11  
10  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220206/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
20X (1.5)  
SYMM  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
10  
11  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220206/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
RTJ 20  
4 x 4, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224842/A  
www.ti.com  
DATA BOOK  
PACKAGE OUTLINE  
LEADFRAME EXAMPLE  
4222370  
DRAFTSMAN:  
DATE:  
DATE:  
DATE:  
DATE:  
DATE:  
DATE:  
DATE:  
H. DENG  
09/12/2016  
09/12/2016  
09/12/2016  
DESIGNER:  
CHECKER:  
ENGINEER:  
APPROVED:  
RELEASED:  
CODE IDENTITY  
NUMBER  
H. DENG  
01295  
SEMICONDUCTOR OPERATIONS  
V. PAKU & T. LEQUANG  
T. TANG  
ePOD, RTJ0020D / WQFN,  
20 PIN, 0.5 MM PITCH  
09/12/2016  
10/06/2016  
10/24/2016  
E. REY & D. CHIN  
WDM  
SCALE  
SIZE  
REV  
PAGE  
OF  
TEMPLATE INFO:  
4219125  
A
15X  
04/07/2016  
A
EDGE# 4218519  
PACKAGE OUTLINE  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
RTJ0020D  
A
4.1  
3.9  
B
PIN 1 INDEX AREA  
4.1  
3.9  
DIM A  
OPT 1  
(0.1)  
OPT 2  
(0.2)  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
16X 0.5  
(A) TYP  
6
10  
EXPOSED  
THERMAL PAD  
5
11  
SYMM  
ꢀꢁꢂ“ꢃꢁꢄ  
4X 2  
21  
15  
1
0.5  
0.3  
20X  
PIN 1 ID  
(OPTIONAL)  
20  
16  
SYMM  
0.29  
0.19  
0.1  
20X  
C A B  
C
0.05  
4219125 / A 10/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WQFN - 0.8 mm max height  
RTJ0020D  
PLASTIC QUAD FLATPACK - NO LEAD  
2.7)  
SYMM  
20  
16  
20X (0.6)  
1
20X (0.24)  
15  
(1.1)  
TYP  
21  
SYMM  
(3.8)  
(0.5)  
TYP  
ꢅ‘ꢃꢁꢀꢆꢇ7<3  
VIA  
5
11  
(R0.05)  
TYP  
6
10  
(3.8)  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219125 / A 10/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their  
locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WQFN - 0.8 mm max height  
RTJ0020D  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(0.69)  
TYP  
20  
16  
20X (0.6)  
1
20X (0.24)  
15  
(0.69)  
TYP  
SYMM  
(3.8)  
(0.5)  
TYP  
5
11  
(R0.05)  
TYP  
21  
6
10  
4X ( 1.19)  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
78% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4219125 / A 10/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
R E V I S I O N S  
REV  
A
DESCRIPTION  
ECR  
DATE  
ENGINEER / DRAFTSMAN  
T. TANG / H. DENG  
RELEASE NEW DRAWING  
2160736  
10/24/2016  
SCALE  
SIZE  
REV  
PAGE  
4219125  
5 OF 5  
A
NTS  
A
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TMUX7348FRTJR

具有故障阈值、闩锁效应抑制和 1.8V 逻辑电平的 ±60V 故障保护、8:1 多路复用器 | RTJ | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX7349F

具有故障阈值、闩锁效应抑制和 1.8V 逻辑电平的 ±60V 故障保护、双路 4:1 多路复用器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX7349FRTJR

具有故障阈值、闩锁效应抑制和 1.8V 逻辑电平的 ±60V 故障保护、双路 4:1 多路复用器 | RTJ | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX7411F

TMUX741xF ±60 V Fault-Protected, 1:1 (SPST), 4-Channel Switches with Latch-Up Immunity and 1.8-V Logic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX7411FRRPR

具有 1.8V 逻辑电平的 ±60V 故障保护、1:1 (SPST) 四通道开关(四个低电平有效) | RRP | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX7411F_V01

TMUX741xF ±60 V Fault-Protected, 1:1 (SPST), 4-Channel Switches with Latch-Up Immunity and 1.8-V Logic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX7412F

TMUX741xF ±60 V Fault-Protected, 1:1 (SPST), 4-Channel Switches with Latch-Up Immunity and 1.8-V Logic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX7412FRRPR

TMUX741xF ±60 V Fault-Protected, 1:1 (SPST), 4-Channel Switches with Latch-Up Immunity and 1.8-V Logic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX7413F

TMUX741xF ±60 V Fault-Protected, 1:1 (SPST), 4-Channel Switches with Latch-Up Immunity and 1.8-V Logic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX7413FRRPR

具有 1.8V 逻辑电平的 ±60V 故障保护、1:1 (SPST) 4 通道开关(2 个低电平有效,2 个高电平有效) | RRP | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX741XF

TMUX741xF ±60 V Fault-Protected, 1:1 (SPST), 4-Channel Switches with Latch-Up Immunity and 1.8-V Logic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX7436F

具有故障保护功能、闩锁效应抑制和 1.8V 逻辑电平的 ±60V 双路 2:1 多路复用器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI