TMUX7436FPWR [TI]

具有故障保护功能、闩锁效应抑制和 1.8V 逻辑电平的 ±60V 双路 2:1 多路复用器 | PW | 16 | -40 to 125;
TMUX7436FPWR
型号: TMUX7436FPWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有故障保护功能、闩锁效应抑制和 1.8V 逻辑电平的 ±60V 双路 2:1 多路复用器 | PW | 16 | -40 to 125

复用器
文件: 总46页 (文件大小:3001K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
TMUX7436F 具有故障保护功能、闩锁  
效应抑制1.8V 逻辑±60V 2:1 多路复用器  
1 特性  
3 说明  
• 宽电源电压范围:  
TMUX7436F 是一款具有闩锁效应抑制的互补金属氧化  
物半导体 (CMOS) 模拟多路复用器采用双通道 2:1  
配置。该器件在双电源±5V ±22V、单电源8V  
44V或非对称电源例如 VDD = 12VVSS = –  
5V供电情况下运行良好。TMUX7436F 器件在通电  
和断电情况下均提供过压保护适用于无法精确控制电  
源时序的应用。  
– 单电源8V 44V  
– 双电源±5V ±22V  
• 集成故障保护:  
– 过压保护从源极到电源或到漏极):±85V  
– 过压保护±60V  
– 断电保护±60V  
– 指示故障状态的中断标志  
– 故障期间的输出开路  
在通电和断电条件下该器件可阻断最+60V 或  
-60V 的对地故障电压。在没有电源的情况下无论开  
关输入条件如何开关通道都将保持关断状态并且逻  
辑引脚上的任何控制信号都会被忽略。如果任何 Sx 引  
• 器件构造可实现闩锁效应抑制  
6kV 人体放电模(HBM) ESD 等级  
• 低导通电阻8.6Ω型值  
• 平缓的导通电阻10mΩ型值  
• 支1.8V 逻辑电平  
脚上的信号路径输入电压超过电源电压VDD VSS  
一个阈值电压 (VT)那么通道将会关闭并且 Sx 引脚  
将变为高阻态。漏极引脚 (Dx) 将被拉至超出范围的故  
障电源电压或保持悬空具体取决于 DR 控制逻辑。  
TMUX7436F 器件提供两个低电平有效中断标志FF  
SF),用于指示故障详情并有助于系统诊断。FF  
标志指示是否有任何源输入出现故障SF 标志用于  
说明出现故障状态的特定输入。  
• 失效防护逻辑44V与电源无关)  
• 业界通用TSSOP 封装和较小WQFN 封装  
2 应用  
工厂自动化和控制  
可编程逻辑控制(PLC)  
模拟输入模块  
封装信息(1)  
半导体测试设备  
电池测试设备  
伺服驱动器控制模块  
数据采集系(DAQ)  
封装尺寸标称值)  
器件型号  
封装  
PWTSSOP165.00mm × 4.40mm  
RRPWQFN16)  
TMUX7436F  
4.00mm × 4.00mm  
(2)  
VDD  
VSS  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
S1A  
S1B  
(2) 预发布封装  
D1  
D2  
S2A  
S2B  
SEL1  
SEL2  
EN  
Fault Detection/  
Switch Driver/  
Logic Decoder  
FF  
SF  
DR  
TMUX7436F  
功能模块图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCDS459  
 
 
 
 
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
Table of Contents  
7.11 Fault Flag Recovery Time....................................... 30  
7.12 Charge Injection......................................................31  
7.13 Off Isolation.............................................................31  
7.14 Crosstalk.................................................................32  
7.15 Bandwidth............................................................... 33  
7.16 THD + Noise........................................................... 33  
8 Detailed Description......................................................34  
8.1 Overview...................................................................34  
8.2 Functional Block Diagram.........................................34  
8.3 Feature Description...................................................34  
8.4 Device Functional Modes..........................................38  
9 Application and Implementation..................................40  
9.1 Application Information............................................. 40  
9.2 Typical Application.................................................... 40  
10 Power Supply Recommendations..............................42  
11 Layout...........................................................................42  
11.1 Layout Guidelines................................................... 42  
11.2 Layout Example...................................................... 42  
12 Device and Documentation Support..........................43  
12.1 Documentation Support.......................................... 43  
12.2 接收文档更新通知................................................... 43  
12.3 支持资源..................................................................43  
12.4 Trademarks.............................................................43  
12.5 Electrostatic Discharge Caution..............................43  
12.6 术语表..................................................................... 43  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Thermal Information....................................................5  
6.4 Recommended Operating Conditions.........................5  
6.5 Electrical Characteristics: Global................................ 6  
6.6 ±15 V Dual Supply: Electrical Characteristics.............7  
6.7 ±20 V Dual Supply: Electrical Characteristics...........10  
6.8 12 V Single Supply: Electrical Characteristics.......... 13  
6.9 36 V Single Supply: Electrical Characteristics.......... 16  
6.10 Typical Characteristics............................................19  
7 Parameter Measurement Information..........................25  
7.1 On-Resistance.......................................................... 25  
7.2 Off-Leakage Current................................................. 25  
7.3 On-Leakage Current................................................. 26  
7.4 Input and Output Leakage Current Under  
Overvoltage Fault........................................................26  
7.5 Enable Delay Time....................................................27  
7.6 Break-Before-Make Delay.........................................27  
7.7 Transition Time......................................................... 28  
7.8 Fault Response Time................................................28  
7.9 Fault Recovery Time.................................................29  
7.10 Fault Flag Response Time......................................29  
Information.................................................................... 43  
4 Revision History  
Changes from Revision * (October 2022) to Revision A (November 2022)  
Page  
• 将数据表的状态从预告信更改为“量产数据.............................................................................................. 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMUX7436F  
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
SEL1  
S1A  
D1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
SF  
FF  
D1  
S1B  
VSS  
GND  
1
2
3
4
12  
11  
10  
9
EN  
EN  
VDD  
S2B  
D2  
S1B  
VSS  
GND  
NC  
VDD  
S2B  
D2  
Thermal  
Pad  
S2A  
SEL2  
DR  
Not to scale  
5-2. RRP (Preview) Package,  
Not to scale  
16-Pin WQFN (Top View)  
5-1. PW Package,  
16-Pin TSSOP (Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
D1  
TSSOP  
WQFN(2)  
3
1
9
I/O  
I/O  
Drain pin 1. Can be an input or output. The drain pin is not overvoltage protected.  
Drain pin 2. Can be an input or output. The drain pin is not overvoltage protected.  
Drain Response (DR) input. Tying the DR pin to GND enables the drain to be pulled to VDD or  
D2  
11  
DR  
EN  
FF  
8
5
I
I
V
SS through a 40 kΩresistor during an overvoltage fault event. The drain pin becomes open  
circuit when the DR pin is a logic high or left floating.  
Active high logic enable (EN) pin, has internal 4 MΩpull-down resistor. The device is disabled  
and all switches become high impedance when the pin is low. As provided in 8-1, when the  
pin is high, the SELx logic inputs determine individual switch states.  
14  
15  
12  
13  
General fault flag. This pin is an open drain output and is asserted low when overvoltage  
condition is detected on any of the source (Sxy) input pins. Connect this pin to an external  
supply (1.8 V to 5.5 V) through a 1 kΩpull-up resistor.  
O
P
GND  
N.C.  
S1A  
6
7
4
7
Ground (0 V) reference  
No internal connection. This pin can be shorted to GND or left floating.  
Overvoltage protected source pin 1A. Can be an input or output.  
Overvoltage protected source pin 1B. Can be an input or output.  
Overvoltage protected source pin 2A. Can be an input or output.  
Overvoltage protected source pin 2B. Can be an input or output.  
Logic control input 1.  
I/O  
I/O  
I/O  
I/O  
I
2
16  
2
S1B  
4
S2A  
10  
12  
1
8
S2B  
10  
15  
6
SEL1  
SEL2  
9
I
Logic control input 2.  
Specific fault flag. This pin is an open drain output and is asserted low when an overvoltage  
condition is detected on a specific (Sxy) input pin, depending on the state of the SELx pins, as  
provided in 8-1. Connect this pin to an external supply (1.8 V to 5.5 V) through a 1 kΩpull-  
up resistor.  
SF  
16  
14  
O
P
Positive power supply. This pin is the most positive power-supply potential. Connect a  
decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND for reliable  
operation.  
VDD  
13  
5
11  
3
Negative power supply. This pin is the most negative power-supply potential. This pin can be  
connected to ground in single-supply applications. Connect a decoupling capacitor ranging  
from 0.1 µF to 10 µF between VSS and GND for reliable operation.  
VSS  
P
The thermal pad is not connected internally. It is recommended to tie the pad to GND or VSS  
for best performance.  
Thermal Pad  
(1) I = input, O = output, I/O = input and output, P = power.  
(2) Preview package.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMUX7436F  
 
 
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
48  
UNIT  
V
VDD to VSS  
VDD to GND  
VSS to GND  
VS to GND  
VS to VDD  
VS to VSS  
VD  
48  
V
Supply voltage  
0.3  
48  
65  
90  
0.3  
65  
V
Source input pin (Sx) voltage to GND  
Source input pin (Sx) voltage to VDD  
Source input pin (Sx) voltage to VSS  
Drain pin (Dx) voltage  
V
V
90  
V
VDD+0.7  
V
VSS0.7  
GND 0.7  
GND 0.7  
30  
VLOGIC  
VxF  
Logic control input pin voltage (EN, SELx, DR)(2)  
Logic output pin voltage (FF, SF)(2)  
Logic control input pin current (EN, SELx, DR)(2)  
Logic output pin current (FF, SF)(2)  
Source or drain continuous current (Sx or Dx)  
Storage temperature  
48  
V
6
V
ILOGIC  
30  
mA  
mA  
mA  
°C  
°C  
°C  
mW  
IxF  
10  
IDC ± 10 %(3)  
150  
10  
IS or ID (CONT)  
Tstg  
IDC ± 10 %(3)  
65  
TA  
Ambient temperature  
150  
55  
TJ  
Junction temperature  
150  
(4)  
Ptot  
Total power dissipation (TSSOP)  
650  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality,  
performance, and shorten the device lifetime.  
(2) Stresses have to be kept at or below both voltage and current ratings at all time.  
(3) Refer to Recommended Operating Conditions for IDC ratings.  
(4) For TSSOP package: Ptot derates linearly above TA = 70°C by 10.1 mW/°C.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002, all  
pins(2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMUX7436F  
 
 
 
 
 
 
 
 
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.3 Thermal Information  
TMUX7436F  
THERMAL METRIC(1)  
PW (TSSOP)  
16 PINS  
100.4  
31.3  
RRP (WQFN)  
16 PINS  
TBD  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
TBD  
46.4  
TBD  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.7  
TBD  
ΨJT  
45.8  
TBD  
ΨJB  
RθJC(bot)  
N/A  
TBD  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
8
NOM  
MAX UNIT  
(1)  
Power supply voltage differential  
44  
V
44  
VDD VSS  
VDD  
Positive power supply voltage  
5
VS  
Source pin (Sx) voltage (non-fault condition)  
Source pin (Sx) voltage to GND (fault condition)  
Source pin (Sx) voltage to VDD or VD (fault condition)  
Source pin (Sx) voltage to VSS or VD (fault condition)  
Drain pin (Dx) voltage  
VSS  
60  
85  
VDD  
60  
VS to GND  
(2)  
V
VS to VDD  
VS to VSS  
VD  
(2)  
85  
VSS  
GND  
GND  
40  
VDD  
VLOGIC  
Logic control input pin voltage (EN, SELx, DR)  
Logic output pin voltage (FF, SF)  
44  
V
5.5  
(3)  
VxF  
TA  
Ambient temperature  
125  
°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
115 mA  
115 mA  
85 mA  
115 mA  
115 mA  
60 mA  
Continuous current through switch operating 1 channel,  
TSSOP package  
IDC  
Continuous current through switch operating max number of  
channels at the same time, TSSOP package  
IDC  
(1) VDD and VSS can be any value as long as 8 V (VDD VSS) 44 V, and the minimum VDD is met.  
(2) Source pin voltage (Sx) under a fault condition may not exceed 85 V from supply pins (VDD and VSS.) or drain pins (D, Dx).  
(3) Logic output pin (FF) is an open drain output and should be pulled up to a voltage within the maximum ratings.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMUX7436F  
 
 
 
 
 
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics: Global  
at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
VT  
Threshold voltage for fault detector  
25°C  
0.7  
V
LOGIC INPUT/ OUTPUT  
VIH  
High-level input voltage  
EN, SELx, DR pins  
EN, SELx, DR pins  
1.3  
0
44  
0.8  
V
V
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
VIL  
Low-level input voltage  
Low-level output voltage  
VOL(FLAG)  
POWER SUPPLY  
FF and SF pins, IO = 5 mA  
0.35  
Rising edge, single supply  
Falling edge, single supply  
5.1  
5
5.8  
5.7  
6.6  
6.4  
V
V
40°C to +125°C  
40°C to +125°C  
Undervoltage lockout (UVLO)  
threshold voltage (VDD VSS  
VUVLO  
)
VDD Undervoltage lockout  
(UVLO) hysteresis  
VHYS  
Single supply  
0.2  
40  
V
40°C to +125°C  
Drain resistance to supply rail  
during overvoltage event on  
selected source pin  
Drain resistance to supply rail during  
overvoltage event on selected source pin  
RD(OVP)  
25°C  
kΩ  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMUX7436F  
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.6 ±15 V Dual Supply: Electrical Characteristics  
VDD = +15 V ± 10%, VSS = 15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
8.6  
11  
VS = 10 V to +10 V  
ID = 10 mA  
14  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
16.5  
0.45  
0.06  
0.01  
On-resistance mismatch between VS = 10 V to +10 V  
0.5  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
channels  
ID = 10 mA  
0.6  
0.4  
VS = 10 V to +10 V  
ID = 10 mA  
0.4  
RFLAT  
On-resistance flatness  
On-resistance drift  
40°C to +85°C  
40°C to +125°C  
40°C to +125°C  
25°C  
0.4  
RON_DRIFT  
0.04  
0.03  
VS = 0 V, IS = 10 mA  
/°C  
0.7  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is off  
VS = +10 V / 10 V  
VD = 10 V / + 10 V  
0.7  
2  
IS(OFF)  
Input leakage current(1)  
2
11  
1.4  
4
nA  
nA  
nA  
40°C to +85°C  
40°C to +125°C  
25°C  
11  
1.4  
4  
0.06  
0.08  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is off  
VS = +10 V / 10 V  
VD = 10 V / + 10 V  
ID(OFF)  
Output off leakage current(1)  
Output on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
25°C  
24  
1.4  
4
24  
1.4  
4  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is on  
VS = VD = ±10 V  
IS(ON)  
ID(ON)  
40°C to +85°C  
40°C to +125°C  
27  
27  
FAULT CONDITION  
VS = ± 60 V, GND = 0 V,  
VDD = 16.5 V, VSS = 16.5 V  
Input leakage current  
durring overvoltage  
IS(FA)  
±100  
±125  
µA  
µA  
40°C to +125°C  
40°C to +125°C  
Input leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V  
VDD = VSS = 0 V  
IS(FA) Grounded  
Input leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = floating  
IS(FA) Floating  
±125  
±0.1  
µA  
nA  
40°C to +125°C  
25°C  
20  
30  
60  
30  
50  
90  
20  
30  
60  
30  
50  
90  
VS = ± 60 V, GND = 0 V,  
VDD = 16.5 V, VSS = 16.5 V  
Output leakage current  
during overvoltage  
ID(FA)  
40°C to +85°C  
40°C to +125°C  
25°C  
±0.01  
Output leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = 0 V  
ID(FA) Grounded  
nA  
µA  
40°C to +85°C  
40°C to +125°C  
25°C  
±4  
±6  
±8  
Output leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = floating  
ID(FA) Floating  
40°C to +85°C  
40°C to +125°C  
25°C  
±1.6  
±2  
IIH  
High-level input current  
Low-level input current  
VEN = VSELx = VDR = VDD  
µA  
µA  
40°C to +125°C  
25°C  
±1  
IIL  
VEN = VSELx = VDR = 0  
±1.1  
40°C to +125°C  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMUX7436F  
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.6 ±15 V Dual Supply: Electrical Characteristics (continued)  
VDD = +15 V ± 10%, VSS = 15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
SWITCHING CHARACTERISTICS  
25°C  
435  
515  
VS = 10 V,  
RL = 300 Ω, CL= 12 pF  
530  
550  
130  
140  
150  
540  
555  
570  
505  
515  
520  
4500  
4800  
4800  
tON (EN)  
Enable turn-on time  
Enable turn-off time  
Transition time  
40°C to +85°C  
40°C to +125°C  
25°C  
ns  
ns  
ns  
ns  
ns  
50  
417  
VS = 10 V,  
RL = 300 Ω, CL= 12 pF  
tOFF (EN)  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 10 V,  
RL = 300 Ω, CL= 12 pF  
tTRAN  
40°C to +85°C  
40°C to +125°C  
25°C  
110  
tRESPONSE  
Fault response time  
Fault recovery time  
40°C to +85°C  
40°C to +125°C  
25°C  
RL = 300 Ω, CL= 12 pF  
RL = 300 Ω, CL= 12 pF  
1600  
tRECOVERY  
40°C to +85°C  
40°C to +125°C  
RL = 300 Ω, CL= 12 pF,  
RPU = 1 kΩ, CL_xF = 12 pF  
tRESPONSE(FLAG) Fault flag response time  
tRECOVERY(FLAG) Fault flag recovery time  
25°C  
25°C  
120  
1
ns  
µs  
RL = 300 Ω, CL= 12 pF,  
RPU = 1 kΩ, CL_xF = 12 pF  
tBBM  
QINJ  
Break-before-make time delay  
Charge injection  
200  
380  
ns  
VS = 10 V, RL = 300 Ω, CL= 12 pF  
40°C to +125°C  
VS = 0 V, CL = 1 nF  
25°C  
pC  
300  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
OISO  
Off-isolation  
25°C  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
60  
62  
88  
220  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
Intra-channel crosstalk  
Inter-channel crosstalk  
3 dB bandwidth  
Insertion loss  
XTALK  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V  
BW  
MHz  
dB  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
ILOSS  
0.7  
RS = 50 Ω, RL = 10 kΩ,  
VS = 15 VPP, VBIAS = 0 V,  
f = 20 Hz to 20 kHz  
Total harmonic distortion plus  
noise  
THD+N  
25°C  
0.0007  
%
CS(OFF)  
CD(OFF)  
Input off-capacitance  
Output off-capacitance  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
25°C  
25°C  
13  
25  
pF  
pF  
CS(ON)  
CD(ON)  
Input/Output on-capacitance  
f = 1 MHz, VS = 0 V  
25°C  
28  
pF  
POWER SUPPLY  
25°C  
0.32  
0.5  
0.5  
0.6  
0.4  
0.4  
0.5  
VDD = 16.5 V, VSS = 16.5 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V  
or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
mA  
0.26  
0.06  
VDD = 16.5 V, VSS = 16.5 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V  
or VDD  
ISS  
VSS supply current  
GND current  
40°C to +85°C  
40°C to +125°C  
mA  
mA  
VDD = 16.5 V, VSS = 16.5 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V  
or VDD  
IGND  
25°C  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMUX7436F  
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.6 ±15 V Dual Supply: Electrical Characteristics (continued)  
VDD = +15 V ± 10%, VSS = 15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
0.27  
0.7  
VS = ± 60 V,  
VDD = 16.5 V, VSS = 16.5 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V  
or VDD  
0.8  
0.8  
0.6  
0.8  
0.8  
IDD(FA)  
VDD supply current under fault  
40°C to +85°C  
40°C to +125°C  
25°C  
mA  
mA  
mA  
mA  
mA  
0.2  
VS = ± 60 V,  
VDD = 16.5 V, VSS = 16.5 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V  
or VDD  
ISS(FA)  
VSS supply current under fault  
GND current under fault  
40°C to +85°C  
40°C to +125°C  
VS = ± 60 V,  
VDD = 16.5 V, VSS = 16.5 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V  
or VDD  
IGND(FA)  
25°C  
0.15  
0.15  
25°C  
0.5  
0.5  
0.5  
0.4  
0.4  
0.4  
VDD = 16.5 V, VSS = 16.5 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 0 V  
IDD(DISABLE)  
VDD supply current (disable mode)  
VSS supply current (disable mode)  
40°C to +85°C  
40°C to +125°C  
25°C  
0.1  
VDD = 16.5 V, VSS = 16.5 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 0 V  
ISS(DISABLE)  
40°C to +85°C  
40°C to +125°C  
(1) When VS is positive,VD is negative. And when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating. And when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMUX7436F  
 
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.7 ±20 V Dual Supply: Electrical Characteristics  
VDD = +20 V ± 10%, VSS = 20 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +20 V, VSS = 20 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
8.6  
11  
VS = 15 V to +15 V  
ID = 10 mA  
14  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
17  
0.06  
0.35  
On-resistance mismatch between VS = 15 V to +15 V  
0.5  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
channels  
ID = 10 mA  
0.5  
0.4  
0.015  
VS = 15 V to +15 V  
ID = 10 mA  
0.5  
RFLAT  
On-resistance flatness  
On-resistance drift  
40°C to +85°C  
40°C to +125°C  
40°C to +125°C  
25°C  
0.5  
RON_DRIFT  
0.04  
0.03  
VS = 0 V, IS = 10 mA  
/°C  
0.7  
VDD = 22 V, VSS = 22 V  
Switch state is off  
VS = +15 V / 15 V  
VD = 15 V / + 15 V  
0.7  
2  
IS(OFF)  
Input leakage current(1)  
2
11  
1.4  
4
nA  
nA  
nA  
40°C to +85°C  
40°C to +125°C  
25°C  
11  
1.4  
4  
0.06  
0.08  
VDD = 22 V, VSS = 22 V  
Switch state is off  
VS = +15 V / 15 V  
VD = 15 V / + 15 V  
ID(OFF)  
Output off leakage current(1)  
Output on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
25°C  
24  
1.4  
4
24  
1.4  
4  
VDD = 22 V, VSS = 22 V  
Switch state is on  
VS = VD = ±15 V  
IS(ON)  
ID(ON)  
40°C to +85°C  
40°C to +125°C  
27  
27  
FAULT CONDITION  
VS = ± 60 V, GND = 0 V,  
VDD = 22 V, VSS = 22 V  
Input leakage current  
durring overvoltage  
IS(FA)  
±85  
µA  
µA  
40°C to +125°C  
40°C to +125°C  
Input leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = 0 V  
IS(FA) Grounded  
±125  
Input leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = floating  
IS(FA) Floating  
±125  
±5  
µA  
nA  
40°C to +125°C  
25°C  
50  
70  
90  
30  
50  
90  
50  
70  
90  
30  
50  
90  
VS = ± 60 V, GND = 0 V,  
VDD = 22 V, VSS = 22 V,  
Output leakage current  
during overvoltage  
ID(FA)  
40°C to +85°C  
40°C to +125°C  
25°C  
±10  
Output leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = 0 V  
ID(FA) Grounded  
nA  
µA  
40°C to +85°C  
40°C to +125°C  
25°C  
±4  
±6  
±8  
Output leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = floating  
ID(FA) Floating  
40°C to +85°C  
40°C to +125°C  
25°C  
±1.8  
±2.2  
±1  
IIH  
High-level input current  
Low-level input current  
VEN = VSELx = VDR = VDD  
µA  
µA  
40°C to +125°C  
25°C  
IIL  
VEN = VSELx = VDR = 0  
±1.1  
40°C to +125°C  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMUX7436F  
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.7 ±20 V Dual Supply: Electrical Characteristics (continued)  
VDD = +20 V ± 10%, VSS = 20 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +20 V, VSS = 20 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
SWITCHING CHARACTERISTICS  
25°C  
430  
535  
VS = 10 V,  
RL = 300 Ω, CL= 12 pF  
560  
585  
120  
130  
150  
555  
571  
580  
505  
515  
520  
4500  
4900  
4900  
tON (EN)  
Enable turn-on time  
Enable turn-off time  
Transition time  
40°C to +85°C  
40°C to +125°C  
25°C  
ns  
ns  
ns  
ns  
ns  
50  
433  
VS = 10 V,  
RL = 300 Ω, CL= 12 pF  
tOFF (EN)  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 10 V,  
RL = 300 Ω, CL= 12 pF  
tTRAN  
40°C to +85°C  
40°C to +125°C  
25°C  
110  
tRESPONSE  
Fault response time  
Fault recovery time  
40°C to +85°C  
40°C to +125°C  
25°C  
RL = 300 Ω, CL= 12 pF  
RL = 300 Ω, CL= 12 pF  
1600  
tRECOVERY  
40°C to +85°C  
40°C to +125°C  
RL = 300 Ω, CL= 12 pF,  
RPU = 1 kΩ, CL_xF = 12 pF  
tRESPONSE(FLAG) Fault flag response time  
tRECOVERY(FLAG) Fault flag recovery time  
25°C  
25°C  
140  
1
ns  
µs  
RL = 300 Ω, CL= 12 pF,  
RPU = 1 kΩ, CL_xF = 12 pF  
tBBM  
QINJ  
Break-before-make time delay  
Charge injection  
210  
400  
ns  
VS = 10 V, RL = 300 Ω, CL= 12 pF  
40°C to +125°C  
VS = 0 V, CL = 1 nF  
25°C  
pC  
330  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
OISO  
Off-isolation  
25°C  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
60  
64  
81  
230  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
Intra-channel crosstalk  
Inter-channel crosstalk  
3 dB bandwidth  
Insertion loss  
XTALK  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V  
BW  
MHz  
dB  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
ILOSS  
0.7  
RS = 50 Ω, RL = 10 kΩ,  
VS = 20 VPP, VBIAS = 0 V,  
f = 20 Hz to 20 kHz  
Total harmonic distortion plus  
noise  
THD+N  
25°C  
0.0008  
%
CS(OFF)  
CD(OFF)  
Input off-capacitance  
Output off-capacitance  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
25°C  
25°C  
12  
24  
pF  
pF  
CS(ON)  
CD(ON)  
Input/Output on-capacitance  
f = 1 MHz, VS = 0 V  
25°C  
27  
pF  
POWER SUPPLY  
25°C  
0.32  
0.5  
0.5  
0.6  
0.4  
0.4  
0.5  
VDD = 22 V, VSS = 22 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V  
or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
mA  
0.26  
0.06  
VDD = 22 V, VSS = 22 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V  
or VDD  
ISS  
VSS supply current  
GND current  
40°C to +85°C  
40°C to +125°C  
mA  
mA  
VDD = 22 V, VSS = 22 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V  
or VDD  
IGND  
25°C  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMUX7436F  
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.7 ±20 V Dual Supply: Electrical Characteristics (continued)  
VDD = +20 V ± 10%, VSS = 20 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +20 V, VSS = 20 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
0.27  
0.8  
VS = ± 60 V,  
VDD = 22 V, VSS = 22 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V  
or VDD  
1
1
IDD(FA)  
VDD supply current under fault  
40°C to +85°C  
40°C to +125°C  
25°C  
mA  
mA  
mA  
mA  
mA  
0.2  
0.7  
1
VS = ± 60 V,  
VDD = 22 V, VSS = 22 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V  
or VDD  
ISS(FA)  
VSS supply current under fault  
GND current under fault  
40°C to +85°C  
40°C to +125°C  
1
VS = ± 60 V,  
VDD = 22 V, VSS = 22 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V  
or VDD  
IGND(FA)  
25°C  
0.15  
0.15  
25°C  
0.5  
0.5  
0.5  
0.4  
0.4  
0.4  
VDD = 22 V, VSS = 22 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 0 V  
IDD(DISABLE)  
VDD supply current (disable mode)  
VSS supply current (disable mode)  
40°C to +85°C  
40°C to +125°C  
25°C  
0.1  
VDD = 22 V, VSS = 22 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 0 V  
ISS(DISABLE)  
40°C to +85°C  
40°C to +125°C  
(1) When VS is positive,VD is negative. And when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating. And when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMUX7436F  
 
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.8 12 V Single Supply: Electrical Characteristics  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
8.6  
11  
VS = 0 V to 7.8 V,  
IS = 10 mA  
15  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
18  
0.06  
0.06  
0.5  
VS = 0 V to 7.8 V,  
IS = 10 mA  
On-resistance mismatch between  
channels  
0.6  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
0.7  
0.4  
VS = 0 V to 7.8 V,  
IS = 10 mA  
0.5  
RFLAT  
On-resistance flatness  
On-resistance drift  
40°C to +85°C  
40°C to +125°C  
40°C to +125°C  
25°C  
0.5  
RON_DRIFT  
0.04  
0.03  
VS = 6 V, IS = 10 mA  
/°C  
0.7  
0.7  
2  
VDD = 13.2 V, VSS = 0 V  
Switch state is off  
VS = 10 V / 1 V  
IS(OFF)  
Input leakage current(1)  
2
11  
1.4  
4
nA  
nA  
nA  
40°C to +85°C  
40°C to +125°C  
25°C  
VD = 1 V / 10 V  
11  
1.4  
4  
0.06  
0.08  
VDD = 13.2 V, VSS = 0 V  
Switch state is off  
VS = 10 V / 1 V  
ID(OFF)  
Output off leakage current(1)  
Output on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
25°C  
VD = 1 V / 10 V  
24  
1.4  
4
24  
1.4  
4  
VDD = 13.2 V, VSS = 0 V  
Switch state is on  
VS = VD = 10 V or 1 V  
IS(ON)  
ID(ON)  
40°C to +85°C  
40°C to +125°C  
26  
26  
FAULT CONDITION  
Input leakage current  
durring overvoltage  
VS = ± 60 V, GND = 0 V,  
VDD = 13.2 V, VSS = 0 V  
IS(FA)  
±130  
±125  
µA  
µA  
40°C to +125°C  
40°C to +125°C  
Input leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = 0 V  
IS(FA) Grounded  
Input leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = floating  
IS(FA) Floating  
±125  
±2  
µA  
nA  
40°C to +125°C  
25°C  
20  
30  
50  
30  
50  
90  
20  
30  
50  
30  
50  
90  
Output leakage current  
during overvoltage  
VS = ± 60 V, GND = 0 V,  
VDD = 13.2 V, VSS = 0 V  
ID(FA)  
40°C to +85°C  
40°C to +125°C  
25°C  
±10  
Output leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = 0 V  
ID(FA) Grounded  
nA  
µA  
40°C to +85°C  
40°C to +125°C  
25°C  
±4  
±6  
±8  
Output leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = floating  
ID(FA) Floating  
40°C to +85°C  
40°C to +125°C  
25°C  
±1.6  
±2  
IIH  
High-level input current  
Low-level input current  
VEN = VSELx = VDR = VDD  
µA  
µA  
40°C to +125°C  
25°C  
±1  
IIL  
VEN = VSELx = VDR = 0  
±1.1  
40°C to +125°C  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMUX7436F  
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.8 12 V Single Supply: Electrical Characteristics (continued)  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
SWITCHING CHARACTERISTICS  
25°C  
350  
515  
VS = 8 V,  
RL = 300 Ω, CL= 12 pF  
530  
550  
200  
210  
210  
520  
540  
560  
765  
765  
765  
2400  
2900  
2900  
tON (EN)  
Enable turn-on time  
Enable turn-off time  
Transition time  
40°C to +85°C  
40°C to +125°C  
25°C  
ns  
ns  
ns  
ns  
ns  
85  
360  
180  
950  
VS = 8 V,  
RL = 300 Ω, CL= 12 pF  
tOFF (EN)  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 8 V,  
RL = 300 Ω, CL= 12 pF  
tTRAN  
40°C to +85°C  
40°C to +125°C  
25°C  
tRESPONSE  
Fault response time  
Fault recovery time  
40°C to +85°C  
40°C to +125°C  
25°C  
RL = 300 Ω, CL= 12 pF  
RL = 300 Ω, CL= 12 pF  
tRECOVERY  
40°C to +85°C  
40°C to +125°C  
RL = 300 Ω, CL= 12 pF,  
RPU = 1 kΩ, CL_xF = 12 pF  
tRESPONSE(FLAG) Fault flag response time  
tRECOVERY(FLAG) Fault flag recovery time  
25°C  
25°C  
160  
0.7  
ns  
µs  
RL = 300 Ω, CL= 12 pF,  
RPU = 1 kΩ, CL_xF = 12 pF  
tBBM  
QINJ  
Break-before-make time delay  
Charge injection  
25°C  
25°C  
155  
250  
ns  
VS = 8 V, RL = 300 Ω, CL= 12 pF  
VS = 6 V, CL = 1 nF  
pC  
203  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
OISO  
Off-isolation  
25°C  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
56  
58  
81  
213  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V, f = 1 MHz  
Intra-channel crosstalk  
Inter-channel crosstalk  
3 dB bandwidth  
Insertion loss  
XTALK  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V, f = 1 MHz  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V  
BW  
MHz  
dB  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
ILOSS  
0.7  
RS = 50 Ω, RL = 10k Ω,  
VS = 6 VPP, VBIAS = 6 V,  
f = 20 Hz to 20 kHz  
Total harmonic distortion plus  
noise  
THD+N  
25°C  
0.0009  
%
CS(OFF)  
CD(OFF)  
Input off-capacitance  
Output off-capacitance  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
25°C  
25°C  
13  
28  
pF  
pF  
CS(ON)  
CD(ON)  
Input/Output on-capacitance  
f = 1 MHz, VS = 6 V  
25°C  
31  
pF  
POWER SUPPLY  
25°C  
0.3  
0.5  
0.5  
0.6  
0.4  
0.4  
0.4  
VDD = 13.2 V, VSS = 0 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V  
or VDD  
mA  
mA  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
0.14  
0.06  
VDD = 13.2 V, VSS = 0 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V  
or VDD  
ISS  
VSS supply current  
GND current  
40°C to +85°C  
40°C to +125°C  
mA  
mA  
VDD = 13.2 V, VSS = 0 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V  
or VDD  
IGND  
25°C  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMUX7436F  
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.8 12 V Single Supply: Electrical Characteristics (continued)  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
0.25  
0.6  
VS = ± 60 V,  
VDD = 13.2 V, VSS = 0 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V  
or VDD  
0.7  
0.7  
0.5  
0.5  
0.5  
IDD(FA)  
VDD supply current under fault  
40°C to +85°C  
40°C to +125°C  
25°C  
mA  
mA  
mA  
mA  
mA  
0.15  
VS = ± 60 V,  
VDD = 13.2 V, VSS = 0 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V  
or VDD  
ISS(FA)  
VSS supply current under fault  
GND current under fault  
40°C to +85°C  
40°C to +125°C  
VS = ± 60 V,  
VDD = 13.2 V, VSS = 0 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V  
or VDD  
IGND(FA)  
25°C  
0.15  
0.15  
25°C  
0.5  
0.5  
0.5  
0.4  
0.4  
0.4  
VDD = 13.2 V, VSS = 0 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 0 V  
IDD(DISABLE)  
VDD supply current (disable mode)  
VSS supply current (disable mode)  
40°C to +85°C  
40°C to +125°C  
25°C  
0.1  
VDD = 13.2 V, VSS = 0 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 0 V  
ISS(DISABLE)  
40°C to +85°C  
40°C to +125°C  
(1) When VS is 10 V, VD is 1 V. Or when VS is 1 V, VD is 10 V.  
(2) When VS is at a voltage potential, VD is floating. Or when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMUX7436F  
 
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.9 36 V Single Supply: Electrical Characteristics  
VDD = +36 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +36 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
8.6  
11  
VS = 0 V to 30 V,  
IS = 10 mA  
14  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
17  
0.06  
0.07  
0.5  
VS = 0 V to 30 V,  
IS = 10 mA  
On-resistance mismatch between  
channels  
0.6  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
0.7  
0.4  
VS = 0 V to 30 V,  
IS = 10 mA  
0.5  
RFLAT  
On-resistance flatness  
On-resistance drift  
40°C to +85°C  
40°C to +125°C  
40°C to +125°C  
25°C  
0.5  
RON_DRIFT  
0.04  
0.05  
VS = 18 V, IS = 1 mA  
/°C  
0.7  
0.7  
2  
VDD = 39.6 V, VSS = 0 V  
Switch state is off  
VS = 30 V / 1 V  
IS(OFF)  
Input leakage current(1)  
2
11  
1.4  
4
nA  
nA  
nA  
40°C to +85°C  
40°C to +125°C  
25°C  
VD = 1 V / 30 V  
11  
1.4  
4  
0.1  
VDD = 39.6 V, VSS = 0 V  
Switch state is off  
VS = 30 V / 1 V  
ID(OFF)  
Output off leakage current(1)  
Output on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
25°C  
VD = 1 V / 30 V  
24  
1.4  
4
24  
1.4  
4  
0.15  
VDD = 39.6 V, VSS = 0 V  
Switch state is on  
VS = VD = 30 V or 1 V  
IS(ON)  
ID(ON)  
40°C to +85°C  
40°C to +125°C  
27  
27  
FAULT CONDITION  
Input leakage current  
durring overvoltage  
VS = 60 / 40 V,  
VDD = 39.6 V, VSS = 0 V, GND = 0 V  
IS(FA)  
±90  
µA  
µA  
40°C to +125°C  
40°C to +125°C  
Input leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V,  
VDD = VSS = 0 V, GND = 0 V  
IS(FA) Grounded  
±125  
Input leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V,  
VDD = VSS = floating, GND = 0 V,  
IS(FA) Floating  
±125  
±2  
µA  
nA  
40°C to +125°C  
25°C  
20  
30  
60  
30  
50  
90  
20  
30  
60  
30  
50  
90  
Output leakage current  
during overvoltage  
VS = 60 / 40 V,  
VDD = 39.6 V, VSS = 0, GND = 0V  
ID(FA)  
40°C to +85°C  
40°C to +125°C  
25°C  
±10  
Output leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = 0 V  
ID(FA) Grounded  
nA  
µA  
40°C to +85°C  
40°C to +125°C  
25°C  
±4  
±6  
±8  
Output leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = floating  
ID(FA) Floating  
40°C to +85°C  
40°C to +125°C  
25°C  
±2.7  
±3.1  
±1  
IIH  
High-level input current  
Low-level input current  
VEN = VSELx = VDR = VDD  
µA  
µA  
40°C to +125°C  
25°C  
IIL  
VEN = VSELx = VDR = 0  
±1.1  
40°C to +125°C  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMUX7436F  
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.9 36 V Single Supply: Electrical Characteristics (continued)  
VDD = +36 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +36 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
SWITCHING CHARACTERISTICS  
25°C  
370  
520  
VS = 18 V,  
RL = 300 Ω, CL= 12 pF  
550  
560  
210  
230  
230  
540  
560  
570  
340  
360  
385  
2350  
2850  
2850  
tON (EN)  
Enable turn-on time  
Enable turn-off time  
Transition time  
40°C to +85°C  
40°C to +125°C  
25°C  
ns  
ns  
ns  
ns  
ns  
100  
365  
VS = 18 V,  
RL = 300 Ω, CL= 12 pF  
tOFF (EN)  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 18 V,  
RL = 300 Ω, CL= 12 pF  
tTRAN  
40°C to +85°C  
40°C to +125°C  
25°C  
120  
tRESPONSE  
Fault response time  
Fault recovery time  
40°C to +85°C  
40°C to +125°C  
25°C  
RL = 300 Ω, CL= 12 pF  
RL = 300 Ω, CL= 12 pF  
1250  
tRECOVERY  
40°C to +85°C  
40°C to +125°C  
RL = 300 Ω, CL= 12 pF,  
RPU = 1 kΩ, CL_xF = 12 pF  
tRESPONSE(FLAG) Fault flag response time  
tRECOVERY(FLAG) Fault flag recovery time  
25°C  
25°C  
100  
1
ns  
µs  
RL = 300 Ω, CL= 12 pF,  
RPU = 1 kΩ, CL_xF = 12 pF  
tBBM  
QINJ  
Break-before-make time delay  
Charge injection  
25°C  
25°C  
160  
270  
ns  
VS = 18 V, RL = 300 Ω, CL= 12 pF  
VS = 18 V, CL = 1 nF  
pC  
300  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V, f = 1 MHz  
OISO  
Off-isolation  
25°C  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
56  
59  
80  
215  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V, f = 1 MHz  
Intra-channel crosstalk  
Inter-channel crosstalk  
3 dB bandwidth  
Insertion loss  
XTALK  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V, f = 1 MHz  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V  
BW  
MHz  
dB  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V, f = 1 MHz  
ILOSS  
0.7  
RS = 50 Ω, RL = 10 kΩ,  
VS = 18 VPP, VBIAS = 18 V,  
f = 20 Hz to 20 kHz  
Total harmonic distortion plus  
noise  
THD+N  
25°C  
0.0008  
%
CS(OFF)  
CD(OFF)  
Input off-capacitance  
Output off-capacitance  
f = 1 MHz, VS = 18 V  
f = 1 MHz, VS = 18 V  
25°C  
25°C  
14  
28  
pF  
pF  
CS(ON)  
CD(ON)  
Input/Output on-capacitance  
f = 1 MHz, VS = 18 V  
25°C  
31  
pF  
POWER SUPPLY  
25°C  
0.3  
0.5  
0.5  
0.6  
0.4  
0.4  
0.4  
VDD = 39.6 V, VSS = 0 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V  
or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
mA  
0.14  
0.06  
VDD = 39.6 V, VSS = 0 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V  
or VDD  
ISS  
VSS supply current  
GND current  
40°C to +85°C  
40°C to +125°C  
mA  
mA  
VDD = 39.6 V, VSS = 0 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V  
or VDD  
IGND  
25°C  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMUX7436F  
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.9 36 V Single Supply: Electrical Characteristics (continued)  
VDD = +36 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +36 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
0.25  
1.2  
VS = 60 / 40 V,  
VDD = 39.6 V, VSS = 0 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V  
or VDD  
1.6  
1.6  
0.5  
0.5  
0.5  
IDD(FA)  
VDD supply current under fault  
40°C to +85°C  
40°C to +125°C  
25°C  
mA  
mA  
mA  
mA  
mA  
0.15  
VS = 60 / 40 V,  
VDD = 39.6 V, VSS = 0 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V  
or VDD  
ISS(FA)  
VSS supply current under fault  
GND current under fault  
40°C to +85°C  
40°C to +125°C  
VS = 60 / 40 V,  
VDD = 39.6 V, VSS = 0 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 5 V  
or VDD  
IGND(FA)  
25°C  
0.1  
25°C  
0.15  
0.5  
0.5  
0.5  
0.4  
0.4  
0.4  
VDD = 39.6 V, VSS = 0 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 0 V  
IDD(DISABLE)  
VDD supply current (disable mode)  
VSS supply current (disable mode)  
40°C to +85°C  
40°C to +125°C  
25°C  
0.1  
VDD = 39.6 V, VSS = 0 V,  
VSELx = VDR = 0 V, 5 V, or VDD, VEN = 0 V  
ISS(DISABLE)  
40°C to +85°C  
40°C to +125°C  
(1) When VS is 30 V, VD is 1 V. Or when VS is 1 V, VD is 30 V.  
(2) When VS is at a voltage potential, VD is floating. Or when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMUX7436F  
 
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.10 Typical Characteristics  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
160  
12  
11.5  
11  
VDD = 13.5 V, VSS = -13.5 V  
VDD = 13.5 V, VSS = -13.5 V  
VDD = 15 V, VSS = -15 V  
VDD = 16.5 V, VSS = -16.5 V  
VDD = 18 V, VSS = -18 V  
VDD = 20 V, VSS = -20 V  
VDD = 22 V, VSS = -22 V  
VDD = 15 V, VSS = -15 V  
VDD = 16.5 V, VSS = -16.5 V  
VDD = 18 V, VSS = -18 V  
VDD = 20 V, VSS = -20 V  
VDD = 22 V, VSS = -22 V  
140  
120  
100  
80  
10.5  
10  
9.5  
9
60  
8.5  
8
40  
20  
7.5  
7
0
-22 -18 -14 -10 -6  
-2  
2
6
10 14 18 22  
-22 -18 -14 -10 -6  
-2  
2
6
10 14 18 22  
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
Dual Supply Flat Ron Region  
Dual Supply Voltages  
6-2. On-Resistance vs Source or Drain Voltage  
6-1. On-Resistance vs Source or Drain Voltage  
9.3  
15  
14  
VDD = 13.5 V, VSS = -13.5 V  
VDD = 15 V, VSS = -15 V  
9.2  
VDD = 16.5 V, VSS = -16.5 V  
VDD = 18 V, VSS = -18 V  
9.1  
13  
TA = 125C  
VDD = 20 V, VSS = -20 V  
VDD = 22 V, VSS = -22 V  
9
8.9  
8.8  
8.7  
8.6  
8.5  
8.4  
8.3  
12  
11  
TA = 85C  
10  
9
8
TA = 25C  
TA = 40C  
7
6
5
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
-15 -12  
-9  
-6  
-3  
0
3
6
9
12  
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
Flatest RON region for all supply voltages shown  
15 V Supply Flatest Ron Region  
.
6-3. On-Resistance vs Source or Drain Voltage  
6-4. On-Resistance vs Source or Drain Voltage  
15  
14  
160  
VDD = 8 V, VSS = 0 V  
VDD = 8.8 V, VSS = 0 V  
140  
120  
100  
80  
VDD = 10.8 V, VSS = 0 V  
VDD = 12 V, VSS = 0 V  
VDD = 13.2 V, VSS = 0 V  
13  
TA = 125C  
12  
11  
TA = 85C  
10  
9
60  
8
40  
TA = 25C  
TA = 40C  
7
20  
6
0
5
0
2
4
6
8
10  
12  
14  
-20 -16 -12  
-8  
-4  
0
4
8
12  
16 18  
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
Single Supply Voltages  
20 V Supply Flatest Ron Region  
.
.
6-5. On-Resistance vs Source or Drain Voltage  
6-6. On-Resistance vs Source or Drain Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMUX7436F  
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
9.2  
9.1  
9
15  
14  
13  
12  
11  
10  
9
TA = 125C  
8.9  
8.8  
8.7  
8.6  
TA = 85C  
VDD = 8 V, VSS = 0 V  
VDD = 8.8 V, VSS = 0 V  
8.5  
8
TA = 25C  
8.4  
8.3  
8.2  
VDD = 10.8 V, VSS = 0 V  
VDD = 12 V, VSS = 0 V  
VDD = 13.2 V, VSS = 0 V  
TA = 40C  
7
6
5
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0
1
2
3
4
5
6
7
8
9
10  
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
Single Supply Flat Ron Region  
12 VDD Flatest Ron Region  
.
.
6-8. On-Resistance vs Source or Drain Voltage  
6-7. On-Resistance vs Source or Drain Voltage  
160  
9.3  
VDD = 32.4 V, VSS = 0 V  
VDD = 32.4 V, VSS = 0 V  
9.2  
9.1  
9
VDD = 36 V, VSS = 0 V  
VDD = 36 V, VSS = 0 V  
140  
120  
100  
80  
VDD = 39.6 V, VSS = 0 V  
VDD = 44 V, VSS = 0 V  
VDD = 39.6 V, VSS = 0 V  
VDD = 44 V, VSS = 0 V  
8.9  
8.8  
8.7  
8.6  
8.5  
8.4  
8.3  
60  
40  
20  
0
0
4
8
12 16 20 24 28 32 36 40 44  
0
4
8
12 16 20 24 28 32 36 40 44  
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
Single Supply Voltages  
Single Supply Flat Ron Region  
.
.
6-9. On-Resistance vs Source or Drain Voltage  
6-10. On-Resistance vs Source or Drain Voltage  
15  
14  
15  
14  
13  
13  
12  
11  
10  
9
TA = 125C  
TA = 125C  
12  
11  
TA = 85C  
TA = 85C  
10  
9
8
8
TA = 25C  
TA = 25C  
TA = 40C  
TA = 40C  
7
6
5
7
6
5
0
4
8
12  
16  
20  
24  
28  
32 34  
0
4
8
12 16 20 24 28 32 36 40 42  
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
36 VDD Flatest Ron Region  
44 VDD Flatest Ron Region  
.
.
6-11. On-Resistance vs Source or Drain Voltage  
6-12. On-Resistance vs Source or Drain Voltage  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMUX7436F  
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
15  
19  
17  
15  
13  
11  
9
ION VS = 10 V, VD = 10 V  
IDOFF VS = 10 V, VD = 10 V  
ISOFF VS = 10 V, VD = 10 V  
IDOFF VS = 10 V, VD = 10 V  
ISOFF VS = 10 V, VD = 10 V  
ION VS = 10 V, VD = 10 V  
ION VS = 1 V, VD = 1 V  
14  
13  
12  
11  
10  
9
8
7
6
5
IDOFF VS = 1 V, VD = 10 V  
ISOFF VS = 1 V, VD = 10 V  
IDOFF VS = 10 V, VD = 1 V  
ISOFF VS = 10 V, VD = 1 V  
ION VS = 10 V, VD = 10 V  
7
4
3
2
5
3
1
0
-1  
1
-1  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
Temperature (C)  
Temperature (C)  
VDD = 15 V, VSS = 15 V  
VDD = 12 V, VSS = 0 V  
.
.
6-14. Leakage Current vs Temperature  
6-13. Leakage Current vs Temperature  
25  
23  
21  
19  
17  
15  
13  
11  
9
21  
19  
17  
15  
13  
11  
9
ION VS = 1 V, VD = 1 V  
ION VS = 15 V, VD = 15 V  
IDOFF VS = 15 V, VD = 15 V  
ISOFF VS = 15 V, VD = 15 V  
IDOFF VS = 15 V, VD = 15 V  
ISOFF VS = 15 V, VD = 15 V  
ION VS = 15 V, VD = 15 V  
IDOFF VS = 1 V, VD = 30 V  
ISOFF VS = 1 V, VD = 30 V  
IDOFF VS = 30 V, VD = 1 V  
ISOFF VS = 30 V, VD = 1 V  
ION VS = 30 V, VD = 30 V  
7
7
5
5
3
3
1
1
-1  
-3  
-1  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
Temperature (C)  
Temperature (C)  
VDD = 20 V, VSS = 20 V  
VDD = 36 V, VSS = 0 V  
.
.
6-16. Leakage Current vs Temperature  
6-15. Leakage Current vs Temperature  
27  
24  
21  
18  
15  
12  
9
32  
28  
24  
20  
16  
12  
8
VS = -60 V, VD = 15 V  
VS = -30 V, VD = 15 V  
VS = 30 V, VD = -14 V  
VS = 60 V, VD = -14 V  
VS = -60 V, VD = 20 V  
VS = -30 V, VD = 20 V  
VS = 30 V, VD = -19 V  
VS = 60 V, VD = -19 V  
6
4
3
0
0
-3  
-4  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
Temperature (C)  
Temperature (C)  
15 V Dual Supply  
20 V Dual Supply  
.
.
6-17. ID(FA) Overvoltage Leakage Current vs Temperature  
6-18. ID(FA) Overvoltage Leakage Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMUX7436F  
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
25  
32  
28  
24  
20  
16  
12  
8
VS = -60 V, VD = 12 V  
VS = -30 V, VD = 12 V  
VS = 30 V, VD = 1 V  
VS = 60 V, VD = 1 V  
VS = -40 V, VD = 36 V  
VS = -30 V, VD = 36 V  
VS = 30 V, VD = 1 V  
VS = 60 V, VD = 1 V  
22.5  
20  
17.5  
15  
12.5  
10  
7.5  
5
4
2.5  
0
0
-2.5  
-4  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
Temperature (C)  
Temperature (C)  
VDD = 12 V Single Supply  
VDD = 36 V Single Supply  
.
.
6-19. ID(FA) Overvoltage Leakage Current vs Temperature  
6-20. ID(FA) Overvoltage Leakage Current vs Temperature  
0.1  
100  
60  
VDD = 12 V, VSS = 0 V  
VDD = 15 V, VSS = -15 V  
VDD = 20 V, VSS = -20 V  
VDD = 36 V, VSS = 0 V  
0.05  
0.03  
0.02  
20  
0.01  
-20  
-60  
-100  
0.005  
0.003  
0.002  
0.001  
-140  
-180  
-220  
VS = -60 V  
VS = -30 V  
VS = 30 V  
VS = 60 V  
0.0005  
0.0003  
0.0002  
0.0001  
0
20  
40  
60  
80  
100  
120  
0
4k  
8k  
12k  
16k  
20k  
Temperature (C)  
Frequency (Hz)  
15 V Dual Supply  
.
.
6-22. THD+N vs Frequency  
6-21. IS(FA) Overvoltage Leakage Current vs Temperature  
0
-50  
0
-50  
VDD = 8 V, VSS = 0 V  
VDD = 12 V, VSS = 0 V  
VDD = 36 V, VSS = 0 V  
VDD = 44 V, VSS = 0 V  
-100  
-150  
-200  
-250  
-300  
-350  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
-450  
-400  
VDD = 15 V, VSS = -15 V  
VDD = 20 V, VSS = -20 V  
-450  
-500  
-20 -16 -12  
-8 -4  
VS - Source Voltage (V)  
0
4
8
12  
16  
20  
0
4
8
12 16 20 24 28 32 36 40 44  
VS - Source Voltage (V)  
.
.
6-23. Charge Injection vs Source Voltage Dual Supply  
6-24. Charge Injection vs Source Voltage Single Supply  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMUX7436F  
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
400  
350  
300  
250  
200  
150  
100  
50  
VDD: 8 V, VSS: 0 V, Falling Edge  
VDD: 8 V, VSS: 0 V, Rising Edge  
VDD: 12 V, VSS: 0 V, Falling Edge  
VDD: 12 V, VSS: 0 V, Rising Edge  
VDD = 36V, VSS = 0 V, Falling Edge  
VDD = 36V, VSS = 0 V, Rising Edge  
0
-40  
-15  
10  
35  
60  
85  
110 125  
Temperature (C)  
.
.
6-25. Transition Times vs Temperature  
6-26. Transition Times vs Temperature  
500  
450  
400  
350  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TOFF 15V  
300  
TOFF +8V  
TON +8V  
TOFF +12V  
TON +12V  
TOFF +36V  
TON +36V  
TON 15V  
TOFF 20V  
TON 20V  
250  
200  
150  
100  
50  
0
0
-40  
-15  
10  
35  
60  
85  
110 125  
-40  
-15  
10  
35  
60  
85  
110 125  
Temperature (C)  
Temperature (C)  
.
.
6-27. Turn-On and Turn-Off Times vs Temperature  
6-28. Turn-On and Turn-Off Times vs Temperature  
30  
0
CrossTalk: Adjacent Channel  
CrossTalk: Nonadjacent Channel  
Off-Isolation  
10  
-10  
-1  
-2  
-3  
-4  
-5  
-6  
-30  
-50  
-70  
-90  
-110  
-130  
10k  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
Frequency(Hz)  
Frequency (Hz)  
.
.
6-29. Crosstalk and Off Isolation vs Frequency  
6-30. Insertion Loss vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMUX7436F  
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.10 Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
0.9  
30  
25  
20  
15  
10  
5
VT Falling  
VT Rising  
0.8  
0.7  
0.6  
0.5  
0.4  
SOURCE  
DRAIN  
VDD  
FF/SF  
40  
0
-5  
-40  
-40  
-15  
10  
35  
60  
85  
110 125  
-20  
0
20  
60  
80  
100  
120  
Temperature (C)  
Time (s)  
.
.
6-31. Threshold Voltage vs Temperature  
6-32. Fault Response and Recovery  
70  
10  
5
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
FF/SF  
40V/s Fault Ramp  
0
SOURCE  
-5  
DRAIN  
-10  
-15  
-20  
-25  
-30  
-35  
VSS  
VDD  
FF/SF  
SOURCE  
DRAIN  
0
-5  
-10  
-1.5  
30V/s Fault Ramp  
-2  
-1  
0
1
2
3
4
5
6
7
8
-1  
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
Time (s)  
Time (s)  
.
.
6-34. Drain Output Response Negative Overvoltage  
6-33. Drain Output Response Positive Overvoltage  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
15  
10  
5
0
SOURCE  
DRAIN  
-5  
40V/s fault ramp  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
VSS  
SOURCE  
VDD  
400V/s fault ramp  
DRAIN  
-1  
5
0
-5  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
-2  
0
1
2
3
4
5
Time(s)  
Time(s)  
.
.
6-36. Drain Output Recovery Negative Overvoltage  
6-35. Drain Output Recovery Positive Overvoltage  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMUX7436F  
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 On-Resistance  
The on-resistance of the TMUX7436F is the ohmic resistance across the source (Sx) and drain (Dx) pins of the  
device. The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-  
resistance. 7-1 shows the measurement setup used to measure RON. ΔRON represents the difference  
between the RON of any two channels, while RON_FLAT denotes the flatness that is defined as the difference  
between the maximum and minimum value of on-resistance measured over the specified analog signal range.  
V
VDD  
VSS  
8
410  
=
+
5
VDD  
VSS  
IS  
SW  
Sx  
Dx  
VS  
GND  
7-1. On-Resistance Measurement Setup  
7.2 Off-Leakage Current  
There are two types of leakage currents associated with a switch during the off state:  
1. Source off-leakage current IS(OFF): the leakage current flowing into or out of the source pin when the switch  
is off.  
2. Drain off-leakage current ID(OFF): the leakage current flowing into or out of the drain pin when the switch is  
off.  
7-2 shows the setup used to measure both off-leakage currents.  
VDD  
VSS  
VDD  
VSS  
Is (OFF)  
ID (OFF)  
S1A  
S1B  
S1A  
S1B  
A
D1  
D1  
A
VS  
VD  
VD  
VS  
VD  
Is (OFF)  
ID (OFF)  
S2A  
S2B  
S2A  
S2B  
D2  
A
A
D2  
VS  
VS  
GND  
GND  
VD  
VD  
IS(OFF)  
ID(OFF)  
7-2. Off-Leakage Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMUX7436F  
 
 
 
 
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.3 On-Leakage Current  
Source on-leakage current (IS(ON)) and drain on-leakage current (ID(ON)) denote the channel leakage currents  
when the switch is in the on state. IS(ON) is measured with the drain floating, while ID(ON) is measured with the  
source floating. 7-3 shows the circuit used for measuring the on-leakage currents.  
VDD  
VSS  
VDD  
VSS  
Is (ON)  
A
ID (ON)  
S1A  
S1B  
S1A  
S1B  
N.C.  
N.C.  
D1  
D1  
A
N.C.  
VS  
N.C.  
VD  
Is (ON)  
A
S2A  
S2B  
S2A  
S2B  
N.C.  
N.C.  
D2  
D2  
N.C.  
A
VS  
N.C.  
VD  
GND  
GND  
IS(ON)  
ID(ON)  
7-3. On-Leakage Measurement Setup  
7.4 Input and Output Leakage Current Under Overvoltage Fault  
If any of the source pin voltage goes above the supplies (VDD or VSS) by one threshold voltage (VT), then the  
overvoltage protection feature of the TMUX7436F is triggered to turn off the switch under fault, keeping the fault  
channel in a high-impedance state. IS(FA) and ID(FA) denotes the input and output leakage current under  
overvoltage fault conditions, respectively. When the overvoltage fault occurs, the supply (or supplies) can either  
be in normal operating condition (7-4) or abnormal operating condition (7-5). During abnormal operating  
condition, the supply (or supplies) can either be unpowered (VDD= VSS = 0 V) or floating (VDD= VSS = no  
connection), and remains within the leakage performance specifications.  
VDD  
VSS  
IS (FA)  
ID (FA)  
S1A  
S1B  
A
D1  
A
N.C.  
VS  
VD  
IS (FA)  
ID (FA)  
S2A  
S2B  
A
D2  
A
N.C.  
VS  
GND  
VD  
IS(FA) / ID(FA)  
( |VS| > |VDD + VT| or |VSS - VT| )  
7-4. Measurement Setup for Input and Output Leakage Current under Overvoltage Fault With Normal  
Supplies  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMUX7436F  
 
 
 
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
N.C.  
GND  
VDD  
VSS  
VDD  
VSS  
IS (FA)  
IS (FA)  
ID (FA)  
ID (FA)  
S1A  
S1B  
S1A  
S1B  
A
A
D1  
D1  
A
A
N.C.  
N.C.  
VS  
VS  
IS (FA)  
IS (FA)  
ID (FA)  
ID (FA)  
S2A  
S2B  
S2A  
S2B  
A
A
D2  
D2  
A
A
N.C.  
N.C.  
VS  
VS  
GND  
GND  
Unpowered  
Floating  
(VDD = VSS = GND = 0 V)  
(VDD = VSS = N.C.)  
7-5. Measurement Setup for Input and Output Leakage Current under Overvoltage Fault With  
Unpowered or Floating Supplies  
7.5 Enable Delay Time  
tON(EN) is defined as the time taken by the output of the TMUX7436F to rise to a 90% final value after the EN  
signal has past the 50% threshold. tOFF(EN) is defined as the time taken by the output of the TMUX7436F to fall  
to a 10% initial value after the EN signal has past the 50% threshold. 7-6 shows the setup used to measure  
tON and tOFF  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
S1A  
VSS  
3 V  
VS  
D1  
D2  
Output  
CL  
tr < 20 ns  
tf < 20 ns  
50%  
50%  
S1B  
VEN  
RL  
0 V  
VS  
S2A  
S2B  
VS  
0.9 VS  
tON(EN)  
Output  
CL  
tOFF(EN)  
0.1 VS  
Output  
RL  
EN  
GND  
VEN  
7-6. Enable Delay Measurement Setup  
7.6 Break-Before-Make Delay  
The break-before-make delay is a safety feature of the TMUX7436F switch. The ON switches of the  
TMUX7436F first break the connection before the OFF switches make connection. The time delay between the  
break and the make is known as break-before-make delay. 7-7 shows the setup used to measure break-  
before-make delay, denoted by the symbol tBBM  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMUX7436F  
 
 
 
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
VDD  
VSS  
0.1 µF  
0.1 µF  
3 V  
VDD  
S1A  
VSS  
VSEL  
tr < 20 ns  
tf < 20 ns  
VS  
0 V  
VS  
D1  
D2  
Output  
S1B  
RL  
CL  
0.8 VS  
Output  
0 V  
S2A  
S2B  
VS  
tBBM  
1
tBBM 2  
Output  
CL  
RL  
tBBM = min ( tBBM 1, tBBM 2)  
SELx  
GND  
VSEL  
7-7. Break-Before-Make Delay Measurement Setup  
7.7 Transition Time  
Transition time is defined as the time taken by the output of the device to rise (to 90% of the transition) or fall (to  
10% of the transition) after the select signal (SELx) has fallen or risen to 50% of the transition. 7-8 shows the  
setup used to measure transition time, denoted by the symbol tTRAN  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
VS  
3 V  
0 V  
VDD  
S1A  
VSS  
VSEL  
tr < 20 ns  
tf < 20 ns  
50%  
50%  
D1  
Output  
CL  
S1B  
tTRAN  
2
tTRAN  
1
RL  
VS  
Output  
0.9 VS  
S2A  
S2B  
VS  
D2  
Output  
CL  
0.1 VS  
0 V  
RL  
tTRAN = max ( tTRAN 1, tTRAN 2)  
SELx  
GND  
VSEL  
7-8. Transition Time Measurement Setup  
7.8 Fault Response Time  
Fault response time (tRESPONSE) measures the delay between the source voltage exceeding the supply voltage  
(VDD or VSS) by 0.5 V and the drain voltage failing to 50% of the maximum output voltage. 7-9 shows the  
setup used to measure tRESPONSE  
.
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMUX7436F  
 
 
 
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
VDD  
VSS  
0.1 µF  
0.1 µF  
Max positive fault  
VDD  
S1A  
VSS  
0 V  
VDD + 0.5 V  
60V/µs  
ramp  
60 V/µs  
ramp  
VS  
VS  
D1  
Output  
CL  
VSS - 0.5 V  
S1B  
VS  
0 V  
RL  
Max negative fault  
tRESPONSE (VDD)  
VDD  
tRESPONSE (VSS)  
0 V  
Output  
S2A  
S2B  
D2  
Output  
CL  
Output  
0 V  
Output × 50%  
Output × 50%  
VS  
RL  
VSS  
GND  
tRESPONSE = max ( tRESPONSE(VDD), tRESPONSE(VSS)  
)
7-9. Fault Response Time Measurement Setup  
7.9 Fault Recovery Time  
Fault recovery time (tRECOVERY) measures the delay between the source voltage falling from overvoltage  
condition to below supply voltage (VDD or VSS) plus 0.5 V and the drain voltage rising from 0 V to 50% of the final  
output voltage. 7-10 shows the setup used to measure tRECOVERY  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
0 V  
VDD  
S1A  
VSS  
VDD + 0.5 V  
VSS - 0.5 V  
VS  
VS  
tRECOVERY (VSS)  
0 V  
D1  
Output  
CL  
0 V  
tRECOVERY (VDD)  
S1B  
VS  
RL  
S2A  
S2B  
Output  
0 V  
D2  
Output  
CL  
Output x 50%  
Output × 50%  
Output  
VS  
RL  
GND  
tRECOVERY = max ( tRECOVERY(VDD), tRECOVERY(VSS)  
)
7-10. Fault Recovery Time Measurement Setup  
7.10 Fault Flag Response Time  
Fault flag response time (tRESPONSE(FLAG)) measures the delay between the source voltage exceeding the fault  
supply voltage (VDD or VSS) by 0.5 V and the general fault flag (FF) pin to go below 10% of its original value. 图  
7-11 shows the setup used to measure tRESPONSE(FLAG)  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMUX7436F  
 
 
 
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
S1A  
VSS  
0 V  
VDD + 0.5 V  
D1  
Output  
VS  
VS  
S1B  
VFN - 0.5 V  
VS  
0 V  
tRESPONSE(FLAG)_VDD  
5 V  
RL  
CL  
tRESPONSE(FLAG)_VSS  
S2A  
S2B  
5 V  
0 V  
D2  
Output  
CL  
5 V  
VFF  
VFF  
VS  
RL  
0.5 V  
0.5 V  
RPU  
0 V  
tRESPONSE(FLAG) = max ( tRESPONSE(FLAG)_VDD, tRESPONSE(FLAG)_VSS  
)
SF/FF  
GND  
CL_xF  
GND  
7-11. Fault Flag Response Time Measurement Setup  
7.11 Fault Flag Recovery Time  
Fault flag recovery time (tRECOVERY(FLAG)) measures the delay between the source voltage falling from  
overvoltage condition to below fault supply voltage (VDD or VSS) plus 0.5 V and the general fault flag (FF) pin to  
rise above 3 V with 5 V external pull-up. 7-12 shows the setup used to measure tRECOVERY(FLAG)  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
S1A  
VSS  
0 V  
VDD + 0.5 V  
VDD - 0.5 V  
D1  
Output  
CL  
VS  
VS  
S1B  
VS  
RL  
0 V  
tRECOVERY(FLAG)_VSS  
tRECOVERY(FLAG)_VDD  
S2A  
S2B  
5 V  
VFF  
5 V  
VFF  
D2  
Output  
CL  
5 V  
3 V  
3 V  
VS  
RL  
RPU  
0 V  
0 V  
tRECOVERY(FLAG) = max ( tRECOVERY(FLAG)_VDD, tRECOVERY(FLAG)_VSS  
)
SF/FF  
GND  
CL_xF  
GND  
7-12. Fault Flag Recovery Time Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMUX7436F  
 
 
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.12 Charge Injection  
Charge injection is a measure of the glitch impulse transferred from the logic input to the signal path during logic  
pin switching, and is denoted by the symbol QINJ. 7-13 shows the setup used to measure charge injection  
from the source to drain.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VS  
3 V  
VEN  
VDD  
S1A  
VSS  
tr < 20 ns  
tf < 20 ns  
D1  
D2  
Output  
CL  
0 V  
S1B  
Output  
VD  
VOUT  
QINJ = CL ×  
VOUT  
S2A  
S2B  
VS  
Output  
CL  
EN  
VEN  
GND  
7-13. Charge-Injection Measurement Setup  
7.13 Off Isolation  
Off isolation is defined as the ratio of the signal at the drain pin (Dx) of the device when a signal is applied to the  
source pin (Sx) of an off-channel. 7-14 shows the setup used to measure off isolation.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Network Analyzer  
VS  
S
D
50  
VOUT  
VSIG  
50  
SxA / SxB / Dx  
GND  
50  
7-14. Off Isolation Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMUX7436F  
 
 
 
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.14 Crosstalk  
The following are two types of crosstalk that can be defined for the devices:  
1. Intra-channel crosstalk (XTALK(INTRA)): the voltage at the source pin (Sx) of an off-switch input, when a 1-  
RMS signal is applied at the source pin of an on-switch input in the same channel, as shown in 7-15.  
V
2. Inter-channel crosstalk (XTALK(INTER)): the voltage at the source pin (Sx) of an on-switch input, when a 1-  
VRMS signal is applied at the source pin of an on-switch input in a different channel, as shown in 7-16.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Network Analyzer  
VS  
S1A  
D1  
50  
VOUT  
S1B  
S2A  
50  
50  
VSIG  
50  
D2  
50  
S2B  
GND  
50  
7-15. Intra-Channel Crosstalk Measurement Setup  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Network Analyzer  
VS  
S1A  
D1  
50  
VOUT  
50  
S1B  
S2A  
50  
50  
VSIG  
50  
D2  
S2B  
GND  
50  
7-16. Inter-Channel Crosstalk Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMUX7436F  
 
 
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.15 Bandwidth  
Bandwidth (BW) is defined as the range of frequencies that are attenuated by < 3 dB when the input is applied to  
the source pin (Sx) of an on-channel, and the output is measured at the drain pin (Dx) of the device. 7-17  
shows the setup used to measure bandwidth of the switch.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Network Analyzer  
VS  
S
D
50  
VOUT  
VSIG  
50  
SxA / SxB / Dx  
GND  
50  
7-17. Bandwidth Measurement Setup  
7.16 THD + Noise  
The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as  
the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the  
switch output. The on-resistance of the device varies with the amplitude of the input signal and results in  
distortion when the drain pin is connected to a low-impedance load. Total harmonic distortion plus noise is  
denoted as THD+N. 7-18 shows the setup used to measure THD+N of the devices.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Audio Precision  
S
D
40  
VOUT  
VS  
RL  
SxA / SxB / Dx  
GND  
50  
7-18. THD+N Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMUX7436F  
 
 
 
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TMUX7436F device is a 44-V fault protected multiplexer with latch-up immunity in a 2:1, 2 channel  
configuration. The device works well with dual supplies (±5 V to ±22 V), a single supply (8 V to 44 V), or  
asymmetric supplies (such as VDD = 15 V, VSS = 5 V). The overvoltage protection feature on the source pins  
works under powered and powered-off conditions, allowing for use in harsh industrial environments. The  
powered-off condition includes floating power supplies, grounded power supplies, or power supplies at any level  
that are below the undervoltage (UV) threshold.  
8.2 Functional Block Diagram  
VDD  
VSS  
S1A  
S1B  
D1  
D2  
S2A  
S2B  
SEL1  
SEL2  
EN  
Fault Detection/  
Switch Driver/  
Logic Decoder  
FF  
SF  
DR  
TMUX7436F  
8.3 Feature Description  
8.3.1 Flat ON-Resistance  
The TMUX7436F is designed with a special switch architecture to produce ultra-flat on-resistance (RON) across  
most of the switch input operation region. The flat RON response allows the device to be used in precision sensor  
applications since the RON is controlled regardless of the signals sampled. The architecture is implemented  
without a charge pump so no unwanted noise is produced from the device to affect sampling accuracy.  
8.3.2 Protection Features  
The TMUX7436F offers a number of protection features to enable robust system implementations.  
8.3.2.1 Input Voltage Tolerance  
The maximum voltage that can be applied to any source input pin is +60 V or 60 V, regardless of supply  
voltage. This allows the device to handle typical voltage fault condition in industrial applications. Caution: the  
device is rated to handle a maximum stress of 85 V across different pins, such as the following:  
1. Between source pins and supply rails: 85 V  
For example, if the device is powered by VDD supply of 25 V, then the maximum negative signal level on any  
source pin is 60 V to maintain the 60 V maximum rating on any source pin. If the device is powered by  
V
DD supply of 40 V, then the maximum negative signal level on any source pin is reduced to 45 V to  
maintain the 85 V maximum rating across the source pin and the supply.  
2. Between source pins and the drain pin: 85 V  
For example, if channel S1A is ON and the voltage on S1A pin is 40 V, then the drain voltage D1 is also 40  
V. In this case, the maximum negative voltage allowed on S1B is 45 V to maintain the 85 V maximum  
rating across the source pin and the drain pin.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TMUX7436F  
 
 
 
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.3.2.2 Powered-Off Protection  
When the supplies of TMUX7436F are removed (VDD/ VSS = 0 V or floating), the source (Sx) pins of the device  
remain in high impedance (Hi-Z) state, and the source (Sx) and drain (Dx) pins of the device remain within the  
leakage performance mentioned in the Electrical Characteristics. Powered-off protection minimizes system  
complexity by removing the need to control power supply sequencing of the system. The feature prevents errant  
voltages on the input source pins from reaching the rest of the system and maintains isolation when the system  
is powering up. Without powered-off protection, signals on the input source pins can back-power the supply rails  
through internal ESD diodes and cause potential damage to the system. For more information on powered-off  
protection, refer to the Eliminate Power Sequencing with Powered-Off Protection Signal Switches application  
brief.  
A GND reference must always be present to ensure proper operation. Source and drain voltage levels of up to  
±60 V are blocked in the powered-off condition.  
8.3.2.3 Fail-Safe Logic  
Fail-safe logic circuitry allows voltages on the logic control pins to be applied before the supply pins, protecting  
the device from potential damage. The switch is specified to be in the OFF state, regardless of the state of the  
logic signals. The logic inputs are protected against positive faults of up to +44 V in powered-off condition, but do  
not offer protection against negative overvoltage condition.  
Fail-safe logic also allows the TMUX7436F device to interface with a voltage greater than VDD during normal  
operation to add maximum flexibility in system design. For example, with a VDD of = 15 V, the logic control pins  
could be connected to +24 V for a logic high signal which allows different types of signals, such as analog  
feedback voltages, to be used when controlling the logic inputs. Regardless of the supply voltage, the logic  
inputs can be interfaced as high as 44 V.  
8.3.2.4 Overvoltage Protection and Detection  
The TMUX7436F detects overvoltage inputs by comparing the voltage on a source pin (Sx) with the supplies  
(VDD and VSS). A signal is considered overvoltage if it exceeds the supply voltages by the threshold voltage (VT).  
The switch automatically turns OFF regardless of the logic controls when an overvoltage is detected. The source  
pin becomes high impedance and ensures only small leakage current flows through the switch. The drain pin  
(Dx) behavior can be adjusted by controlling the drain response (DR) pin in the following ways:  
1. DR pin floating or driven above VIH:  
If the DR pin is driven above VIH level of the pin, then the drain pin becomes high impedance (Hi-Z) upon  
overvoltage fault.  
2. DR driven below VIL:  
If the DR pin is driven below VIL level of the pin, and the channel expeirencing the overvoltage fault  
condition is currently being selected by the logic controls (EN, SELx), then the drain pin (Dx) is pulled to the  
supply that was exceeded through a 40 kΩresistor. For example, if the source voltage exceeds VDD, then  
the drain output is pulled to VDD. If the source voltage exceeds VSS, then the drain output is pulled to VSS  
.
The pull-up/pull-down impedance is approximately 40 kΩ, and as a result, the drain current is limited during  
a shorted load (to GND) condition.  
8-1 shows a detailed view of the how the DR pin, SELx pin, and EN pin controls the output state of the drain  
pin under a fault scenario.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TMUX7436F  
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
DR  
VDD  
SELx  
EN  
Logic &  
Fault  
Detection  
40 k  
40 k  
Sx  
Dx  
ESD  
Protection  
VSS  
GND  
8-1. Detailed Functional Diagram  
8.3.2.5 Adjacent Channel Operation During Fault  
When the logic pins are set to a channel under a fault, the overvoltage detection will trigger, the switch will open,  
and the drain pin will operate as described in 8.3.2.4. During such an event, all other channels not under a  
fault can continue to operate as normal. For example, if S1A voltage exceeds VDD, and the logic pins are set to  
S1A, and the DR pin is set to logic low, then the drain output is pulled to VDD. Afterwards if the logic pins are  
changed to set S1B, which is not in overvoltage or undervoltage, then the drain will disconnect from the pullup to  
VDD and the S1B switch will be enabled and connected to the drain, operating as normal, although there is still  
an overvoltage condition present on S1A. If the logic pins are switched back to S1A, then the S1B switch will be  
disabled, the drain pin will be pulled up to VDD again, and the switch from S1A to drain will be disabled until the  
overvoltage fault is removed.  
8.3.2.6 ESD Protection  
All pins on the TMUX7436F support HBM ESD protection level up to ±6 kV, which helps prevent the device from  
being damaged by ESD events during the manufacturing process.  
The drain pins (Dx) have internal ESD protection diodes to the supplies VDD and VSS; therefore the voltage at  
the drain pins must not exceed the supply voltages to prevent excessive diode current. The source pins have  
specialized ESD protection that allows the signal voltage to reach ±60 V regardless of supply voltage level.  
Exceeding ±60 V on any source input may damage the ESD protection circuitry on the device and cause the  
device to malfunction if the damage is excessive.  
8.3.2.7 Latch-Up Immunity  
Latch-up is a condition where a low impedance path is created between a supply pin and ground. This condition  
is caused by a trigger (current injection or overvoltage), but once activated, the low impedance path remains  
even after the trigger is no longer present. This low impedance path may cause system upset or catastrophic  
damage due to excessive current levels. The latch-up condition typically requires a power cycle to eliminate the  
low impedance path.  
The TMUX7436F device is constructed on silicon on insulator (SOI) based process where an oxide layer is  
added between the PMOS and NMOS transistor of each CMOS switch to prevent parasitic structures from  
forming. The oxide layer is also known as an insulating trench and prevents triggering of latch up events due to  
overvoltage or current injections. The latch-up immunity feature allows the TMUX7436F to be used in harsh  
environments. For more information on latch-up immunity, refer to Using Latch Up Immune Multiplexers to Help  
Improve System Reliability.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TMUX7436F  
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.3.2.8 EMC Protection  
The TMUX7436F is not intended for standalone electromagnetic compatibility (EMC) protection in industrial  
applications. There are three common high voltage transient specifications that govern industrial high voltage  
transient specification: IEC61000-4-2 (ESD), IEC61000-4-4 (EFT), and IEC61000-4-5 (surge immunity). A  
transient voltage suppressor (TVS), along with some low-value series current limiting resistor, are required to  
prevent source input voltages from going above the rated ±60 V limits.  
When selecting a TVS protection device, it is critical to ensure that the maximum working voltage is greater than  
both the normal operating range of the input source pins to be protected and any known system common-mode  
overvoltage that may be present due to miswiring, loss of power, or short circuit. 8-2 shows an example of the  
proper design window when selecting a TVS device.  
Region 1 denotes normal operation region of TMUX7436F, where the input source voltages stay below the  
supplies VDD and VSS. Region 2 represents the range of possible persistent DC (or long duration AC overvoltage  
fault) presented on the source input pins. Region 3 represents the margin between any known DC overvoltage  
level and the absolute maximum rating of the TMUX7436F. The TVS breakdown voltage must be selected to be  
less than the absolute maximum rating of the TMUX7436F, but greater than any known possible persistent DC  
or long duration AC overvoltage fault to avoid triggering the TVS inadvertently. Region 4 represents the margin  
system designers must impose when selecting the TVS protection device to prevent accidental triggering of ESD  
cells of the TMUX7436F device.  
Internal ESD  
Trigger Voltage  
4
Device Absolute  
Max Rating  
TVS  
Breakdown  
Voltage  
3
2
System  
Overvoltage  
Overvoltage  
Protection Window  
Positive Supply  
VDD  
0 V  
1
Normal Operation  
Negative Supply  
VSS  
2
3
4
System  
Overvoltage  
Overvoltage  
Protection Window  
TVS  
Breakdown  
Voltage  
Device Absolute  
Max Rating  
Internal ESD  
Trigger Voltage  
8-2. System Operation Regions and Proper Region of Selecting a TVS Protection Device  
8.3.3 Overvoltage Fault Flags  
The voltages on the source input pins of the TMUX7436F are continuously monitored, and the status of whether  
an overvoltage condition occurs is indicated by an active low general fault flag (FF). The voltage on the FF pin  
indicates if any of the source input pins are experiencing an overvoltage condition. If any source pin voltage  
exceeds the fault supply voltages by a VT, then the FF output is pulled-down to below VOL  
.
The specific fault (SF) output pins, on the other hand, can be used to decode which inputs are experiencing an  
overvoltage condition. As provided in the 8-1, the SF pin is pulled-down to below VOL when an overvoltage  
condition is detected on a specific source input pin, depending on the state of the SEL1, SEL2, and EN logic  
pins.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TMUX7436F  
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
Both the FF pin and the SF pin are an open-drain output and an external pull-up resistor of 1 kis  
recommended. The pull-up voltage can be in the range of 1.8 V to 5.5 V, depending on the controller voltage the  
device interfaces with.  
8.3.4 Bidirectional Operation  
The TMUX7436F conducts equally well from source (Sx) to drain (Dx) or from drain (Dx) to source (Sx).  
However, it is noted that the overvoltage protection is implemented only on the source (Sx) side. The voltage on  
the drain is only allowed to swing between VDD and VSS and no overvotlage protection is available on the drain  
side.  
The flatest on-resistance region extends from VSS to roughly 3 V below VDD. Once the signal is within 3 V of VDD  
the on-resistance will expoentially increase and may impact desired signal transmission.  
8.3.5 1.8 V Logic Compatible Inputs  
The TMUX7436F device has 1.8 V logic compatible control for all logic control inputs. 1.8 V logic level inputs  
allows the TMUX7436F to interface with processors that have lower logic I/O rails and eliminates the need for an  
external translator, which saves both space and BOM cost. For more information on 1.8 V logic implementations,  
refer to Simplifying Design with 1.8 V logic Muxes and Switches.  
8.3.6 Integrated Pull-Down Resistor on Logic Pins  
The TMUX7436F has internal weak pull-down resistors to GND to ensure the logic pins are not left floating. The  
value of this pull-down resistor is approximately 4 MΩ, but is clamped to about 1 µA at higher voltages. This  
feature integrates up to four external components and reduces system size and cost.  
8.4 Device Functional Modes  
The TMUX7436F offers two modes of operation (normal mode and fault mode) depending on whether any of the  
input pins experience an overvoltage condition.  
8.4.1 Normal Mode  
In Normal mode operation, signals of up to VDD and VSS can be passed through the switch from source (Sx) to  
drain (Dx) or from drain (Dx) to source (Sx). As provided in 8-1, the select pins (SELx) and enable pin (EN)  
determines which switch path to turn on. The following conditions must be satisfied for the switch to stay in the  
ON condition:  
The difference between the supples (VDD VSS) must be greater than or equal to 8 V, with a minimum VDD  
of 5 V.  
The input signals on the source (Sx) or the drain (Dx) must be be between VDD+ VT and VSS VT.  
The logic control (SELx and EN) must have selected the switch.  
8.4.2 Fault Mode  
The TMUX7436F enters into Fault mode when any of the input signals on the source (Sx) pins exceed VDD or  
VSS by a threshold voltage VT. Under the overvoltage condition, the switch input experiencing the fault  
automatically turns off regardless of the logic status, and the source pin becomes high impedance with negligible  
amount of leakage current flowing through the switch. For more information about how the drain pain (Dx)  
behavior under the Fault mode can be programmed, see 8.3.2.4.  
In the Fault mode, the general fault flag (FF) is asserted low. 8-1 provides how the specific flag (SF) is  
asserted low depending on the status of the logic control pins SELx and EN.  
The overvoltage protection is provided only for the source (Sx) input pins. The drain (Dx) pin, if used as signal  
input, must stay in between VDD and VSS at all times since no overvoltage protection is implemented on the drain  
pin.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TMUX7436F  
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.4.3 Truth Tables  
8-1 and 8-2 provides the truth tables for the TMUX7436F under normal and fault conditions.  
8-1. TMUX7436F Truth Table  
Fault Condition  
Normal Condition  
EN  
SEL2  
SEL1  
State of Specific Flag (SF) when fault occurs on  
On Switch  
None  
S1A  
0
S1B  
1
S2A  
1
S2B  
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
None  
1
0
1
1
None  
1
1
1
0
None  
1
1
0
1
S1B, S2B  
S1A, S2B  
S1B, S2A  
S1A, S2A  
0
1
1
1
1
0
1
1
1
1
1
0
1
1
0
1
Take note, more than one source pin can be in fault at a given time. As 8-1 provides, the SF pin will assert low  
even when multiple source pins are under fault.  
8-2. TMUX7436F DR Truth Table  
Dx State During Fault  
DR PIN STATE  
Condition  
0
1
Pulled up to VDD or VSS  
Open (HI-Z)  
If unused, then SELx pins must be tied to GND to ensure the device does not consume additional current (for  
more information, refer to Implications of Slow or Floating CMOS Inputs. Unused signal path inputs (Sx or Dx)  
should be connected to GND.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TMUX7436F  
 
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TMUX7436F is a part of the fault protected switches and multiplexers family of devices. The abilty to protect  
downstream components from overvoltage events up to ±60 V and latch-up immunity features makes these  
switches and multiplexers suitable for harsh environments.  
9.2 Typical Application  
The need to monitor remote sensors is common among factory automation control systems. For example, an  
analog input module or mixed module (AI, AO, DI, and DO) of a programmable logic controller (PLC) will  
interface to a field transmitter to monitor various process sensors at remote locations around the factory. A  
switch or multiplexer is often used to connect multiple inputs from the system and reduce the number of  
downstream channels.  
There are a number of fault cases that may occur that can be damaging to many of the integrated circuits. Such  
fault conditions may include, but are not limited to, human error from wiring the connections incorrectly,  
component failure, wire shorts, electromagnetic interference (EMI), transient distrubances, and more.  
Supply  
Power Module  
GND  
Local Control Side  
TMUX7436F  
+15V -15V  
VDD VSS  
+
-
+24V  
+60V  
Field Side  
Di eren al  
Output  
S1A  
S1B  
+15V  
D1  
D2  
Sensors  
Sensors  
Sensors  
Sensors  
Fault  
Protected  
Mux Inputs  
+
Control  
& Processing  
DAC  
ADC  
ADC  
RG  
S2A  
S2B  
+
-
Di eren al  
Output  
-15V  
Logic Select Pins  
SEL2  
SEL1  
1.8V Logic  
Signals  
9-1. Typical Application  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TMUX7436F  
 
 
 
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
9.2.1 Design Requirements  
9-1. Design Parameters  
PARAMETER  
VALUE  
+15 V  
Positive supply (VDD) mux  
Negative supply (VSS) mux  
Power board supply voltage  
Input or output signal range non-faulted  
Overvoltage protection levels  
Control logic thresholds  
15 V  
24 V  
15 V to 15 V  
60 V to 60 V  
1.8 V compatible, up to 44 V  
40°C to +125°C  
Temperature range  
9.2.2 Detailed Design Procedure  
The normal operation of the application is to take multiple differential inputs and use a 2:1 multiplexer to pass the  
signal to the downstream instrumentation amplifier. A fault protected switch can add extra robustness to the  
sytem against fault conditions while also reducing the number of components required to interface with the  
systems physical input channels.  
The 9-1 shows the case where a human wired the condition incorrectly and one of the input connectors  
shorted to the power board supply voltage. If the board supply voltage is higher than the power supply of the  
multiplexer, then the TMUX7436F device will disconnect the source input from passing the signal to protect the  
downstream components. The drain pin of the channels can either be pulled up to the supply voltage (VDD and  
V
SS) through a 40 kΩ resistor or be left floating depending on the state of the DR pin. This can be configured to  
match the system requirements on how to handle a fault condition.  
9.2.3 Application Curves  
The previous example shows how the fault protection of the TMUX7436F is utilized to protect downstream  
components from damage due to wiring the connections incorrectly from the power module. 9-2 shows an  
example of positive overvoltage fault response with a fast fault ramp rate of 40 V/µs. 9-3 shows the extremely  
flat on-resistance across source voltage while operating within a common signal range of ±10 V. These features  
make the TMUX7436F an ideal solution for factory automation applications that can face various fault conditions  
but also require excellent linearity and low distortion.  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
9.3  
9.2  
9.1  
9
VDD = 13.5 V, VSS = -13.5 V  
VDD = 15 V, VSS = -15 V  
VDD = 16.5 V, VSS = -16.5 V  
VDD = 18 V, VSS = -18 V  
VDD = 20 V, VSS = -20 V  
VDD = 22 V, VSS = -22 V  
40V/s Fault Ramp  
SOURCE  
8.9  
8.8  
8.7  
8.6  
8.5  
8.4  
8.3  
VDD  
FF/SF  
DRAIN  
0
-5  
-10  
-1.5  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
-1  
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
VS or VD - Source or Drain Voltage (V)  
Time (s)  
9-3. RON Flatness in Non-Fault Region  
9-2. Positive Overvoltage Response  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TMUX7436F  
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
The TMUX7436F operates across a wide supply range of ±5 V to ±22 V (8 V to 44 V in single-supply mode). It  
also performs well with asymmetrical supplies such as VDD = 12 V and VSS = 5 V. Use a supply decoupling  
capacitor ranging from 1 µF to 10 µF at the VDD and VSS pins to ground for improved supply noise immunity.  
Always ensure the ground (GND) connection is established before supplies are ramped.  
11 Layout  
11.1 Layout Guidelines  
11-1 and 11-2 shows an example of a PCB layout with the TMUX7436F. The following are some key  
considerations:  
Decouple the VDD and VSS pins with a 1-µF capacitor, placed as close to the pin as possible. Make sure that  
the capacitor voltage rating is sufficient for the VDD and VSS supplies.  
Multiple decoupling capacitors can be used if their is a lot of noise in the system. For example, a 0.1-µF and  
1-µF can be placed on the supply pins. If multiple capacitors are used, placing the lowest value capacitor  
closest to the supply pin is recommended.  
Keep the input lines as short as possible.  
Use a solid ground plane to help distribute heat and reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
11.2 Layout Example  
Wide (low inductance)  
trace for power  
Via to power plane  
1k  
1kΩ  
1kΩ  
Via to  
ground plane  
1k  
SEL1  
SF  
FF  
C
Wide (low inductance)  
trace for power  
S1A  
EN  
D1  
S1B  
VSS  
EN  
VDD  
S2B  
D2  
D1  
VDD  
S2B  
D2  
TMUX7436F  
S1B  
VSS  
GND  
GND  
NC  
C
S2A  
SEL2  
Wide (low inductance)  
trace for power  
DR  
Via to ground plane  
Via to  
ground plane  
11-2. WQFN Layout Example  
11-1. TSSOP Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TMUX7436F  
 
 
 
 
 
TMUX7436F  
ZHCSPX3A OCTOBER 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
Texas Instruments, Implications of Slow or Floating CMOS Inputs application note  
Texas Instruments, Improving Analog Input Modules Reliability Using Fault Protected Multiplexers application  
report  
Texas Instruments, Multiplexers and Signal Switches Glossary application report  
Texas Instruments, Protection Against Overvoltage Events, Miswiring, and Common Mode Voltages  
application report  
Texas Instruments, Using Latch-Up Immune Multiplexers to Help Improve System Reliability application  
report  
Texas Instruments, Using Latch Up Immune Multiplexers to Help Improve System Reliability  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TMUX7436F  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Nov-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTMUX7436FPWR  
TMUX7436FPWR  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
16  
16  
3000  
TBD  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
Samples  
Samples  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
TM7436F  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Nov-2022  
Addendum-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TMUX7462F

具有可调节故障阈值、1.8V 逻辑电平和闩锁效应抑制的 ±60V 故障保护、4 通道保护器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX7462FRRPR

具有可调节故障阈值、1.8V 逻辑电平和闩锁效应抑制的 ±60V 故障保护、4 通道保护器 | RRP | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX8108

TMUX810x 100-V, Flat RON, Single 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX8108PWR

具有闩锁效应抑制和 1.8V 逻辑电平的 100V、扁平 RON、单路 8:1 多路复用器 | PW | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX8108_V01

TMUX810x 100-V, Flat RON, Single 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX8109

TMUX810x 100-V, Flat RON, Single 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX8109PWR

具有闩锁效应抑制和 1.8V 逻辑电平的 100V、扁平 RON、双路 4:1 多路复用器 | PW | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX810X

TMUX810x 100-V, Flat RON, Single 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX8211

TMUX821x 100-V, Flat Ron, 1:1 (SPST), 4-Channel Switches with Latch-Up Immunity and 1.8-V Logic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX8211PWR

具有闩锁效应抑制和 1.8V 逻辑电平(逻辑低电平)的 100V、扁平 RON、1:1 (SPST)、四通道开关 | PW | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX8212

TMUX821x 100-V, Flat Ron, 1:1 (SPST), 4-Channel Switches with Latch-Up Immunity and 1.8-V Logic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX8212PWR

TMUX821x 100-V, Flat Ron, 1:1 (SPST), 4-Channel Switches with Latch-Up Immunity and 1.8-V Logic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI